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Protein N-linked glycosylation is an important post-translational mechanism in Homo sapiens, playing essential roles in many vital
biological processes. It occurs at the N-X-[S/T] sequon in amino acid sequences, where X can be any amino acid except proline.
However, not all N-X-[S/T] sequons are glycosylated; thus, the N-X-[S/T] sequon is a necessary but not sufficient determinant for
protein glycosylation. In this regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an
important problem that has not been extensively addressed by the existing methods, especially in regard to the creation of negative
sets and leveraging the distilled information from protein language models (pLMs). Here, we developed LMNglyPred, a deep learning-
based approach, to predict N-linked glycosylated sites in human proteins using embeddings from a pre-trained pLM. LMNglyPred
produces sensitivity, specificity,Matthews Correlation Coefficient, precision, and accuracy of 76.50, 75.36, 0.49, 60.99, and 75.74 percent,
respectively, on a benchmark-independent test set. These results demonstrate that LMNglyPred is a robust computational tool to
predict N-linked glycosylation sites confined to the N-X-[S/T] sequon.
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Introduction

Post-translational modifications (PTMs) are the predominant
factors leading to the diversity of the proteome (Olsen and
Mann 2013). ProteinN-linked glycosylation is one of themost
common PTMs in humans that play essential roles in many
vital biological processes. Abnormal N-linked glycosylation
is observed in many common disorders like cancer, inflamma-
tion, Alzheimer’s disease, and diabetes. The characterization
of N-linked glycosylation can be used in clinical diagnostics
as well as development of therapeutics. In N-linked glycosy-
lation, the N-glycans (oligosaccharides) are attached to the
nitrogen atom of an asparagine (Asn or N) residue of the
protein. It only occurs at the conserved motifs N-X-S or
N-X-T sequons, where X can be any amino acid except
proline (Gavel and von Heijne 1990; Kowarik et al. 2006;
Bagdonaite et al. 2022). However, the presence of such a
sequon in the peptide does not sufficiently confirm that it is
glycosylated because about one-third to half of the sequons
are buried deep inside the proteins and are not accessible to
glycosylation enzymes (Nita-Lazar et al. 2004; Petrescu et al.
2004; Zielinska et al. 2010; Schulz 2012). In addition, various
artifacts like distance to the next glycosylation site, sequences
surrounding a potential glycosylation site, etc., can impact
whether the sequon is N-glycosylated or not. In that regard,
the presence of this sequon is necessary but not sufficient for

N-linked glycosylation in both prokaryotes and eukaryotes
(Gavel and von Heijne 1990; Nita-Lazar et al. 2004; Petrescu
et al. 2004; Wacker et al. 2006).
N-linked glycosylation is often identified using mass spec-

trometry (MS; Agarwal et al. 1969;Medzihradszky 2005) and
a lot of progress has been made in experimental techniques
used for mapping and quantifying PTMs. In that regard,
more than 14,000 unique N-glycosites have been identified in
humans (Sun et al. 2019). Although experimental approaches
are the most reliable ways to identify N-glycosites, they are
often time-consuming, labor-intensive, and still quite limited.
Thus, a mechanistic characterization of PTMs including N-
linked glycosylation is lacking for a large portion of the pro-
teome. Therefore, complimentary computational tools using
machine learning and deep learning (DL) are playing an
increasingly essential role in the characterization of glycosyla-
tion sites.
In this regard, several computational approaches have been

developed to predict N-glycosylation sites. For example, Net-
NGlyc (Gupta and Brunak 2001) uses an artificial neural
network (ANN) for N-linked glycosylation prediction. It has
to be noted that NetNGlyc attempted to solve this problem
confined to the sequon (N-X-[S/T]). EnsembleGly (Caragea
et al. 2007) uses ensemble support vector machines (SVM)
to predict N-linked glycosylation sites. It utilizes a Position-
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Specific Scoring Matrix (PSSM) that is generated by PSI-
Blast (Altschul et al. 1997), physicochemical properties, and
a One Hot encoding scheme to encode the dataset. GlycoPP
(Chauhan et al. 2012) uses an SVM to predict N-linked
glycosylation based on amino acid composition (AAC), One
Hot encoding, PSSM, Secondary Structures (SS), and acces-
sible surface area (ASA) features. NGlycPred (Chuang et al.
2012) utilizes the sequence, pattern, and structural-based fea-
tures; and uses a random forest classifier to predict N-linked
glycosylation sites. The GlycoEP “in silico” (Chauhan et al.
2013) tool uses SVM to predict N-linked glycosylation sites.
Moreover, GlycoEP datasets were encoded with sequence,
evolutionary and structural features. GlycoMine (Li et al.
2015) uses a Random Forest (RF) classifier for N-linked
glycosylation site prediction, and it is based on heterogeneous
functional and sequence-based features. GlycoMinestruct (Li
et al. 2016) combines sequence and structural features for
predicting N-linked glycosylation sites using a random forest.
Akmal et al. (Akmal et al. 2017) encoded the dataset with
position relative and statistical moments and used artificial
neural networks to predict N-linked glycosylation sites. Gly-
coMine_PU (Li et al. 2019) uses a positive unlabeled (PU)
learning technique to predict N-linked glycosylation sites. N-
GlyDE (Pitti et al. 2019) is an SVM-based method that uses
sequence and predicted structural features to predict the N-
glycosylation sites. Nglyc (Pugalenthi et al. 2020) uses RF
with sequence and structural information of amino acids to
predict N-glycosylation sites in eukaryotic protein sequences.
N-GlycoGo (Chien et al. 2020) uses XGBoost, an ensemble
machine learning model, for N-linked glycosylation site pre-
diction. PUStackNGly (Alkuhlani et al. 2022) uses a stacking
ensemble learning model to detect N-linked glycosylation. In
the PUStackNGly approach, the Logistic Regression, SVM,
ANN, RF were used as base model and prediction from
those base model was used to train the SVM meta-classifier
model.
Owing to the fact that various DL-based approaches have

been proposed in the field of bioinformatics (Quang and Xie
2016; Pakhrin and Pant 2018; Lee et al. 2020; Lv et al.
2021; Pakhrin et al. 2021b; Dhakal et al. 2022; Høie et al.
2022; Pakhrin 2022; Pakhrin et al. 2022; Yang et al. 2022a,
2022b), we have recently seen development of some DL-
based approaches for N-linked glycosylation sites as well.
SPRINT-Gly (Taherzadeh et al. 2019) uses fully connected
artificial neural networks to identify N-linked glycosylation
sites based on sequence, evolutionary, and structural-based
features. DeepNGlyPred (Pakhrin et al. 2021a) uses a multi-
layer perceptron (MLP) to predict the N-linked glycosylation
site confined to N-X-[S/T] by encoding a peptide window
using sequence-based features (e.g. Gapped-Dipeptide), pre-
dicted structural features (e.g. Secondary Structures, Accessi-
ble Surface Area, relative solvent accessibility (RSA), torsion
angle (�, �), and disordered regions.
Although it was known for some time that the presence

of the consensus N-X-[S/T] motif does not always lead to
glycosylation (Gavel and von Heijne 1990), it has to be noted
here that except for NetNGlyc,N-GlyDE, and DeepNGlyPred
all these other approaches are evaluated on the asparagine
residuewithout being confined to theN-X-[S/T] sequon.More
specifically, the approaches confined to N-X-[S/T] sequon
define the glycosylation site prediction problem as a clas-
sification problem to classify whether the given sequon is
likely to be glycosylated or not. In that regard, the existing

approaches can be grouped as approaches confined to the
N-X-[S/T] sequon and approaches not confined to the N-X-
[S/T] sequon and that currently only a handful of approaches
are confined to the N-X-[S/T] sequon. Perhaps this is the rea-
son why the predictive performances of approaches (especially
the ones not confined to the N-X-[S/T] sequon) for predicting
N-linked glycosylation sites tend to be overestimated as the
task here is to merely predict each N in the N-X-[S/T] sequon
as a glycosylation site. In this regard, NetNGlyc, N-GlyDE,
and DeepNGlyPred are important contributions in the field
that exploit the fact that this sequon is a necessary but not
sufficient condition for N-linked glycosylation.
On the other hand, transformer-based language models that

are learned from a large corpus of unlabeled data have recently
achieved amazing results in the field of natural language
processing (NLP) (Vaswani et al. 2017). Due to the avail-
ability of a large number of protein sequences in the UniProt
knowledgebase and other resources,we now have seen various
protein language models (pLMs) being developed (Elnaggar
et al. 2021; Rives et al. 2021; Brandes et al. 2022).Considering
protein sequences as sentences, Elnaggar et al. developed a
pre-trained pLM called ProtT5-XL-UniRef50 (herein called
ProtT5) (Elnaggar et al. 2021) based on 2.5 billion protein
sequences. The representations of these models have been
utilized for various downstream tasks (Littmann et al. 2021;
Marquet et al. 2022; Heinzinger et al. 2022; Nallapareddy
et al. 2023; Weissenow et al. 2022), and the results demon-
strate that the distributed representation learned from the
distillation of these language models have useful information
that captures the evolutionary context of a sequence, contact
map, taxonomy, protein structure, physicochemical proper-
ties, and function. Similarly, features from these transformer-
based pLMs have been successfully utilized to predict signal
peptides (Teufel et al. 2022), lysine glycation sites (Liu et al.
2022), subcellular localization (Thumuluri et al. 2022), pro-
tein structural features (Høie et al. 2022), lysine crotonylation
sites (Qiao et al. 2021), succinylation site prediction (Pokharel
et al. 2022), S-nitrosylation site prediction (Pratyush et al.
2023), and binding residues (Littmann et al. 2021), among
others.
Admittedly, some progress has been made in the devel-

opment of N-linked glycosylation site prediction methods
confined to N-X-[S/T] sequon. However, for most of these
predictors, the input features are still hand-crafted features.
As these methods use hand-crafted features, they are heavily
biased toward those selected features and they do not exploit
the latent representations from the unknown, yet indispens-
able features. Additionally, to the best of our knowledge, the
benefits of the recent advances in large pLMs and the dis-
tributed representation learned from the distillation of these
language models have not been exploited for N-linked gly-
cosylation site prediction. Moreover, besides DeepNGlyPred,
the existing approaches for N-linked glycosylations site pre-
diction (confined to the sequon) only use traditional machine
learning approaches. Hence, in this work, we aim to develop
an improved approach to predict N-linked glycosylation site
prediction confined to N-X-[S-T] sequon by leveraging the
vast amount of distilled information learned by these large
pLMs combined with advances in DL approaches. Please
refer to Table 1 for a list of approaches for glycosylation site
prediction along with their ML/DL architecture, the features,
and whether the approaches are confined toN-X-[S/T] sequon
or not.
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Table 1. Summary of approaches for N-linked glycosylation site prediction approaches.

Name ML/DL architecture Features Confined to
N-X-(S/T)?

Year
published

NetNGlyc (Gupta and Brunak 2001) ANN Cellular role descriptor and subcellular
location

Yes 2001

EnsembleGly (Caragea et al. 2007) Ensemble support vector
machines (SVM)

Position-Specific Scoring Matrix (PSSM),
physicochemical properties, and One Hot
encoding

No 2007

GlycoPP (Chauhan et al. 2012) SVM Amino acid composition (AAC), One Hot
encoding, PSSM, secondary structures
(SS), and accessible surface area (ASA)

No 2012

NGlycPred (Chuang et al. 2012) Random Forest sequence, pattern, and structural-based
features

No 2012

GlycoEP (Chauhan et al. 2013) SVM Sequence, evolutionary and structural
features

No 2013

GlycoMine (Li et al. 2015) Random Forest Structural, functional, and sequence-based
features

No 2015

N-GlyDE (Pitti et al. 2019) SVM Gapped dipeptide features
Pattern-based surface accessibility (SA)
and secondary structure (SS) features

Yes 2019

SPRINT-Gly (Taherzadeh et al. 2019) ANN relative ASA, Secondary Structures,
Half-Sphere Exposure, Intrinsically
disordered region, Physicochemical
properties, Evolutionary Information,
Amino acid sequence

No 2019

Nglyc (Pugalenthi et al. 2020) Random Forest Secondary structures, amino acid
frequencies, solvent accessibility

Yes 2020

N-GlycoGo (Chien et al. 2020) XGBoost Sequence-, structure-, functional-based
features

Yes 2020

DeepNGlyPred (Pakhrin et al. 2021a) ANN PSSM, E (beta-strand), H (helix), and C
(coil), predicted accessible surface area
(ASA), relative solvent accessibility (RSA),
predicted disordered region, gapped
dipeptide (GD)

Yes 2021

PUStackNGly (Alkuhlani et al. 2022) Stacking Ensemble
Learning (ML)

Sequence-based features, profile-based
features, structure-based features

No 2022

Although some progress has been made, the current com-
putational approaches are not at the point where they can
be used for high-throughput characterization of N-linked
glycosylation sites. Improving the existing methods for pre-
diction of N-linked glycosylation site could help address
some of the limitations of MS-based techniques as well as
provide a complementary approach to experimental methods.
By improving the prediction of N-linked glycosylation sites,
the community can better characterizeN-linked glycosylation
sites which could also lead to the discovery of novel regu-
latory mechanisms. Additionally, computational approaches
can help guide experimental design by reducing the cost and
time required for N-linked glycosylation analysis. Moreover,
robust computational approaches that have built in feature
importance and explainability can provide insights into the
mechanisms underlying N-linked glycosylation and the fac-
tors that influence the site which could then be used to design
new therapeutic agents as well as develop tools to detect
glycosylated proteins in diagnosis and prognosis of various
diseases.
Hence, we propose a novel computational approach called

LMNglyPred (Language Model based N-linked glycosylation
site Predictor) that utilizes embedding from a pLM (i.e.
ProtT5) to improve the predictive performance of N-linked
glycosylation sites. By considering proteins as sentences, we
fed the full protein sequence into the pre-trained ProtT5
model to extract fixed-length, high-dimensional per-residue

features from the last encoder layer. Subsequently, the high-
dimensional contextualized embeddings (i.e. 1,024 feature
vector) of the site in interrogation (asparagine, N) are fed into
the Deep Neural Network [DNN, essentially a multi-layer
perceptron (MLP)]-based classifier forN-linked glycosylation
site prediction.
Using cross-validation experiments, we found that the final

classifier based on the MLP architecture is better than the
other architectures compared. To demonstrate its effective-
ness, we evaluated the performance of the proposed method
LMNglyPred using N-GlyDE’s dataset against other exist-
ing approaches. Our experiment showed that LMNglyPred
achieved better performance in predicting protein N-linked
glycosylation sites compared to the state-of-the-art predictors,
yielding anMCC of 0.717 on N-GlyDE’s independent test set.
LMNglyPred is a freely available, fast, and reliable approach
for prediction of N-linked glycosylation sites. All programs
and data are available at https://github.com/KCLabMTU/
LMNglyPred.

Results

LMNglyPred utilizes embeddings extracted per residue (1,024
features) for the site of interest (N, asparagine) from ProtT5
using a full-length sequence as input. We use two datasets
for training LMNglyPred: N-GlycositeAtlas and N-GlyDE.
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Table 2. Results of the 10-fold cross-validation on the N-GlycositeAtlas training dataset using different deep and machine learning models. The highest
values in each column are highlighted in bold.

DL and ML model MCC ± 1 SD SN ± 1 SD SP ± 1 SD ACC ± 1 SD PRE ± 1 SD

Random Forest 0.412 ± 0.018 0.707 ± 0.011 0.704 ± 0.009 0.706 ± 0.009 0.705 ± 0.009
LR 0.495 ± 0.015 0.803 ± 0.012 0.688 ± 0.005 0.746 ± 0.007 0.720 ± 0.005
MLP/ANN 0.524 ± 0.014 0.809 ± 0.031 0.711 ± 0.031 0.760 ± 0.008 0.760 ± 0.016
SVM 0.499 ± 0.014 0.736 ± 0.015 0.762 ± 0.007 0.749 ± 0.007 0.743 ± 0.011
XGBoost 0.426 ± 0.022 0.739 ± 0.016 0.686 ± 0.017 0.713 ± 0.011 0.702 ± 0.011
1D CNN 0.496 ± 0.023 0.810 ± 0.024 0.681 ± 0.028 0.745 ± 0.012 0.718 ± 0.015

Protein and peptide redundancies are removed from within
and across training and independent test datasets. We per-
formed 10-fold cross-validation on the training dataset(s) to
obtain the best hyperparameters for our DL architecture.
Finally, we used the hyperparameters obtained from 10-fold
cross-validation and trained the model using the overall train-
ing set and assessed the trained model on the independent
test set and compared the performance against other existing
approaches.

Performance on the N-GlycositeAtlas dataset
Ten-fold cross-validation on the N-GlycositeAtlas training

set

To tune the hyperparameters (parameters whose values are
used to control the learning process) (Yang and Shami 2020),
and to investigate the performance of various DL/ML mod-
els for the training dataset, we performed 10-fold cross-
validation on the N-GlycositeAtlas training dataset whose
negative sites are sequons from proteins in the endoplasmic
reticulum and surface accessible sequons from Golgi appa-
ratus, extracellular, and cell membrane of human glycopro-
teins. The predictive performance of different DL and ML
models using the stratified 10-fold cross-validation on the N-
GlycositeAtlas training data set is shown in Table 6. The con-
textualized embedding of the glycosylated or non-glycosylated
token “N” produced by the pre-trained ProtT5 model when
fed to MLP achieves the best performance as seen in Table 2
(although the values are relatively close). Intriguingly, the
same architecture (MLP) produced the highest result using
10-fold cross-validation on the N-GlyDE training data set as
well. This MLP model produced MCC, SN, SP, ACC, and
PRE values of 0.524 ± 0.014, 0.809 ± 0.031, 0.711 ± 0.031,
0.760 ± 0.008, and 0.760 ± 0.016, respectively, for the strat-
ified 10-fold cross-validation. As the MLP model produced
the best result on 10-fold cross-validation, we selected this
architecture as our final model and call it LMNglyPred. The
independent test set result and 10-fold cross-validation results
produced by LMNglyPred are similar, which demonstrates
that this model can be used for N-linked glycosylation pre-
diction purposes.
Moreover, to check whether the MLP and SVM are sig-

nificantly different from a statistical point of view we fur-
ther performed McNemar’s hypothesis test (McNemar 1947;
Dietterich 1998). The test comments on whether the two
models disagree in the same way (or not). In this test, the
default assumption (H0) implies that the two binary classi-
fication algorithms disagree to the same amount. Although,
when H0 is rejected, it suggests that two binary classifiers
disagree in different ways.While performing the test we found
P-value = 0.179, which is greater than the 0.05 threshold;

hence, we accept H0 and there is no difference in the dis-
agreement. Hence, the performance of MLP and SVM are not
statistically different.

Testing on the 10 percent independent test set
separated from the N-GlycositeAtlas training set

Finally, to assess the performance of our approach on an
independent test set, we trained the model on the overall N-
GlycositeAtlas training set and applied it to predict N-linked
glycosylation sites of proteins in the 10 percent independent
test set separated from the overall N-GlycositeAtlas dataset.
The total number of samples in each set for N-GlycositeAtlas
dataset is shown in Table 6. We achieved MCC, SN, SP, ACC,
and PRE values of 0.4959, 76.50, 75.36, 75.74, and 60.99
percent, respectively. Furthermore, MLP was able to classify
1,242 samples as True Negative, 635 samples as True Positive,
406 as False Positive, and 195 as False Negative. Additionally,
we balanced the independent test set and the results produced
byMLP are shown in Supplementary Table S2 for informative
purposes.

Performance on N-GlyDE dataset

In order to compare our approach against existing approaches,
we also trained and tested our approach using N-GlyDE’s
dataset. It has to be noted here that N-GlyDE’s dataset is also
confined to N-X-[S/T] sequon.

10-fold cross-validation on the N-GlyDE training set

We trained our approach (LMNglyPred) on the N-GlyDE
training set. We performed cross-validation on the N-GlyDE
training set using 11 different DL/ML models (1D CNN-
LSTM, 1D CNN-BiLSTM, 1D CNN, BiLSTM, LSTM, Ran-
dom Forest, Logistic Regression,Multi-layer Perceptron, Sup-
port Vector Machine, XGBoost, Naïve Bayes).
Consequently, all these models were trained on the N-

GlyDE training dataset (2,722 training examples) to choose
the best-performing DL or machine learning model for N-
linked glycosylation PTM prediction. The details of these
models and their hyperparameters are described in the Meth-
ods section. The performance of these models was compared
using various metrics including ACC, MCC, precision, sensi-
tivity, and specificity. The detailed results of the 10-fold cross-
validation for these models are presented in Table 3, where
it can be observed that the Multi-layer Perceptron produces
the highest MCC of 0.6576 on 10-fold cross-validation on
the N-GlyDE training dataset. The mean MCC, mean accu-
racy, mean sensitivity, mean specificity, and mean precision
obtained from the 10-fold cross-validation for thisMLP archi-
tecture was 0.657 ± 0.035, 0.958 ± 0.0192, 0.851 ± 0.014,
0.635 ± 0.053, and 0.842 ± 0.018, respectively. It can also
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Table 3. Results of the 10-fold cross-validation on the N-GlyDE training dataset using different deep and machine learning models. The highest value in
each column is highlighted in bold.

DL and ML model MCC ± 1 S.D. ACC ± 1 S.D. SP ± 1 S.D. SN ± 1 S.D. PRE ± 1 S.D.

1D CNN-LSTM 0.622 ± 0.062 0.962 ± 0.014 0.585 ± 0.063 0.837 ± 0.024 0.824 ± 0.024
1D CNN-BiLSTM 0.632 ± 0.041 0.964 ± 0.006 0.591 ± 0.055 0.841 ± 0.017 0.827 ± 0.020
BiLSTM 0.630 ± 0.045 0.959 ± 0.014 0.600 ± 0.051 0.840 ± 0.018 0.829 ± 0.018
LSTM 0.592 ± 0.055 0.953 ± 0.013 0.567 ± 0.062 0.825 ± 0.022 0.817 ± 0.022
LR 0.650 ± 0.047 0.967 ± 0.013 0.608 ± 0.031 0.848 ± 0.018 0.833 ± 0.013
MLP/ANN 0.657 ± 0.035 0.958 ± 0.019 0.635 ± 0.053 0.851 ± 0.014 0.842 ± 0.018
SVM 0.648 ± 0.053 0.974 ± 0.014 0.589 ± 0.054 0.846 ± 0.021 0.827 ± 0.020
XGBoost 0.603 ± 0.055 0.945 ± 0.020 0.597 ± 0.047 0.829 ± 0.022 0.823 ± 0.024
Naïve Bayes 0.613 ± 0.058 0.927 ± 0.013 0.647 ± 0.064 0.834 ± 0.024 0.842 ± 0.026
1D CNN 0.647 ± 0.039 0.902 ± 0.033 0.729 ± 0.028 0.845 ± 0.019 0.870 ± 0.011
Random Forest 0.648 ± 0.055 0.959 ± 0.012 0.622 ± 0.068 0.848 ± 0.022 0.837 ± 0.025

Fig. 1. Receiver operating characteristics (ROC) curves of 1D CNN LSTM,
ANN, LR, and SVM on the 10 percent test set separated from N-GlyDE
training dataset. For each model, the area under the ROC curve is
reported.

be observed that among the compared approaches the DL
methods outperform themachine learning-basedmodel forN-
linked glycosylation site prediction. Among these approaches,
the MLP deep-learning architecture, essentially deep neural
network (DNN), has the highest MCC; thus, this model was
chosen and trained on the overall training set to predict N-
linked glycosylation in the N-GlyDE-independent test dataset.

Training on the N-GlyDE∗ training set

Owing to the fact that the negative sites in original N-GlyDE
dataset have some sequons from mitochondria and nucleus
that may not be the “true” negative sites, we separated the
original N-GlyDE training set into 90 percent for training
and used the remaining 10 percent for independent test set.
This is shown in Table 7 as N-GlyDE∗. The performance of
various DL and ML architectures while trained on 80 percent
(training), 10 percent (validation) and tested on a 10 percent
test set separated from the N-GlyDE training dataset is shown
in Supplementary Table S1 and the ROC curve is shown in
Fig. 1. Furthermore, it also must be noted that none of the
10 percent test set test data is present in the 80 (training)
and 10 percent (validation) dataset. It can be observed from
Fig. 1 that LMNglyPred, which is based on anMLP approach,
has the highest area under the ROC. Figure 2 shows that
LMNglyPred has the highest precision-recall area under the
curve compared to other DL and machine learning models.

Fig. 2. Precision-recall curves of 1D CNN LSTM, ANN, LR, and SVM on
the 10 percent test set separated from N-GlyDE training dataset. For
each model, the area under the PRAUC curve is reported.

So, LMNglyPred is a robust model for the prediction of N-
linked glycosylation.

Testing on the 10 percent N-GlyDE independent test
set separated from training set

To assess the performance of the MLP model on an
independent test set, we trained the model on the 90
percent N-GlyDE training set (also known as N-GlyDE∗)
and applied it to predict N-linked glycosylation sites on
the 10 percent independent test set separated from the
N-GlyDE training set. The MLP model produced MCC,
accuracy, precision, sensitivity, and specificity values of
0.685, 86.42, 86.75, 94.05 , and 71.00 percent, respectively.
Furthermore, while observing the confusion matrix of the
MLP classifier it was able to classify 71 as True Negatives
and 190 as True Positives. However, it falsely classified 29 as
False Positive and 12 as False Negative. The independent
test results (10 percent separated from training set) for
various machine learning and DL models are presented in
Table 4. The results are shown for informative purpose only
and the final model (MLP) was selected based on 10-fold
cross-validation.

Comparison of LMNglyPred with other N-linked
glycosylation site predictors

To assess the performance of LMNglyPred against other
approaches, we trained our model on the N-GlyDE training
set and applied it to predict N-linked glycosylation sites on
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Table 4. Performance metrices of various machine learning and DL models on the 10 percent independent test dataset separated from the N-GlyDE
training dataset. The highest value in each column is highlighted in bold.

DL and ML model MCC SN SP ACC PRE

1D CNN-BiLSTM 0.629 0.980 0.55 0.837 0.814
1D CNN-LSTM 0.640 0.965 0.6 0.844 0.829
BiLSTM 0.551 0.965 0.49 0.807 0.792
LSTM 0.538 0.935 0.54 0.804 0.804
RF 0.623 0.960 0.59 0.837 0.825
LR 0.648 0.965 0.61 0.847 0.857
ANN 0.685 0.940 0.71 0.864 0.867
SVM 0.629 0.980 0.55 0.837 0.814
XGBoost 0.637 0.935 0.66 0.844 0.847
Naïve Bayes 0.662 0.930 0.7 0.854 0.862
1D CNN 0.661 0.940 0.68 0.854 0.855

Table 5. Prediction performance of LMNglyPred compared to other available N-linked glycosylation site predictors on the independent test set. The
highest value in each column is highlighted in bold.

Predictors Accuracy Precision Sensitivity Specificity MCC

LMNglyPred (Trained on N-GlyDE
dataset)

86.93 88.57 74.69 94.24 0.717

N-GlyDE 74.0 61.3 82.6 68.9 0.499
GlycoMine 72.5 61.6 70.0 73.9 0.430
NetNGlyc 57.2 46.0 84.4 41.1 0.265
GlycoEP_Std_PPP 57.4 43.7 51.2 61.0 0.119

the N-GlyDE independent test set. The MLP model produced
MCC, accuracy, precision, sensitivity, and specificity values of
0.717, 86.93, 88.57, 74.69, and 94.24 percent respectively.
These results are better than the performance of the N-GlyDE
approach which uses a two-stage prediction approach with
a similarity voting algorithm and SVM method based on
sequence and structural features. Additionally, while observ-
ing the confusion matrix of the MLP classifier, it was able
to classify 262 as True Negatives and 124 as True Positives.
However, it falsely classified 16 as a False Positive and 42
as a False Negative. This result is likely because the N-
GlyDE’s 77.14 percent independent test set negative sites
are from nucleus, cytosol, and mitochondrion subcellular
localization of the proteins. Moreover, ProtT5 contextualized
embedding can learn subcellular localization information in
its distributed representation.
We further compared the performance of LMNglyPred with

other established N-linked glycosylation site predictors like
N-GlyDE,GlycoMine,NetNGlyc, and GlycoEP_Std_PPP, and
the results are shown in Table 5. It should be noted here
that we trained LMNglyPred on the N-GlyDE and tested
on N-GlyDE test set as the other methods are not trained
on N-GlycositeAtlas dataset. Here, we trained LMNglyPred
on the N-GlyDE datasets, using the contextual embedding
produced by ProtT5 of the glycosylated or non-glycosylated
token “N” and then tested on the N-GlyDE independent test
set and the results are shown in Table 4. The results for N-
GlyDE, GlycoMine, NetNGlyc, and GlycoEP_Std_PPP were
adopted from N-GlyDE. It can be observed from Table 5
that LMNglyPred trained on N-GlyDE produced an MCC of
0.717, compared with an MCC of 0.499 for N-GlyDE. From
these results, it can be deduced that LMNglyPred performs
better than the other compared methods including N-GlyDE.
It should be noted that LMNglyPred was trained and tested
with exactly same dataset that was used by N-GlyDE and
other approaches.

Visualization using t-SNE plot

Additionally, we investigated the classification efficacy of
the features and the learned model visually. Herein, fea-
tures represent 1024 numeric vectors of glycosylated or non-
glycosylated “N” residues extracted from ProtT5 and the
learned/trained model refers to theMLP network trained with
the N-GlycositeAtlas training dataset. To discern the classi-
fication effectiveness of these features as well as the feature
vector produced by the penultimate hidden layer of the trained
MLP network, we used t-SNE (Maaten and Hinton 2008)
to project the features into a two-dimensional space (Fig. 3).
For the features extracted from ProtT5 on the glycosylated
or non-glycosylated token “N” of N-GlycositeAtlas training
set, the positive and negative samples are relatively clustered
together (Fig. 3A). Figure 3(B) represents the t-SNE plot of the
feature vectors generated from the penultimate hidden layer of
the MLP deep-learning architecture when N-GlycositeAtlas
training set is used. This shows that negative samples (blue
points) are concentrated at the bottom left (third quadrant),
whereas positive samples (orange points) are concentrated
at the left (second quadrant) which indicates that the pre-
trained per residue pLM feature extraction with MLP learns
N-linked glycosylation patterns and largely clusters positive
and negative samples in R

2 space. Hence, this result elabo-
rates that contextualized features produced from pretrained
ProtT5 when passed to MLP DL network can cluster positive
and negative samples of N-linked glycosylation sites in two-
dimensional space.

Discussion

One of the key innovations in LMNglyPred is the incorpora-
tion of pLM based features to represent protein sequences.
pLM based features have proven to be quite useful in var-
ious bioinformatics tasks (Bepler and Berger 2019, 2021;
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Fig. 3. T -SNE illustration of the embeddings extracted from ProtT5, and the features transformed by MLP, 1 represents positive N-linked glycosylation
sites, 0 represents negative (non-) N-linked glycosylation sites. (a) Embeddings extracted from ProtT5 (N-GlycositeAtlas training set). (b) Features
transformed by MLP (N-GlycositeAtlas training set).

Rao et al. 2019; Zhou et al. 2020; Rao et al. 2021; Zhang et al.
2021; Ferruz andHöcker 2022; Unsal et al. 2022).We had one
major goal in the project: to move away from hand-crafted
feature extraction for prediction of N-linked Glycosylation
sites. To achieve this goal, we investigated whether language
models learned from a large amount of protein sequences
are able to capture the features predictive of glycosylation
sites. Additionally, we also wanted to interrogate what type
of machine learning approach would work well on these
pre-trained feature representations. Additionally, our other
contribution is the creation of negative data set where we took
the negative sites from secretory pathway (specifically, endo-
plasmic reticulum and surface accessible sequons from Golgi
bodies, cell membrane and extra-cellular compartments). In
order to achieve the goal, we used contextualized embeddings
learned from a pLM called ProtT5 to extract features for the
site of interest. Subsequently, various ML and DL algorithms
were evaluated using 10-fold cross validation, and the final
model was selected based on the 10-fold cross validation
results. TheMLPmodel that we call LMNglyPred achieves the
best prediction performance among the compared methods
which is likely made possible by using the distilled knowledge
from large sets of protein sequences by the pre-trained ProtT5
model that is used to encode the protein sequences.
LMNglyPred neither relies on knowledge of protein struc-

ture, nor in the expert-crafted sequence features, nor on
time-consuming evolutionary information derived from mul-
tiple sequence alignments (MSAs). Instead, the input to the
MLP model is a contextual representation of the glycosylated
or non-glycosylated token “N” from the pre-trained pLM
(ProtT5). This state-of-the-art prediction of N-linked glyco-
sylation is likely due to the contextual embeddings of all the
amino acids in the protein sequence that are produced by
the transformer-based model which makes use of position
embedding with a self-attention mechanism. As our results
show that our LMNglyPred model outperforms the widely
available N-linked glycosylation predictors, the LMNglyPred

N-linked glycosylation predictor is likely to be a very useful
tool for the glycobiology community to predict N-linked
glycosylated sites in proteins. One interesting result portrayed
in the t-SNE plot (Fig. 3B) is that our model was largely able
to cluster the two classes of glycosylated and non-glycosylated
asparagine residues in two-dimensional space.
LMNGlyPred is a new approach that uses information

distilled from large pLMs using a DL framework and the
results are better than existing approaches. However, there
are some limitations associated with LMNGlyPred. One of
the limitations of our approach is high FPR. The other lim-
itation of our approach is the likelihood of some “noise”
in the N-GlycoSiteAtlas dataset that could be present due
to the possibility of spontaneous deamidation (Palmisano
et al. 2012). Therefore, LMNGlyPred requires better validated
datasets to be useful for high throughput prediction of N-
linked glycosylation sites. With generation of more quality N-
glycosylation datasets and the advances in natural language
processing including large pLMs, it is expected that some of
these limitations will be addressed in the future.

Materials and methods

Predicting protein N-linked glycosylation sites

Data preparation is as follows: with the aim to train a DL
algorithm to predict N-linked glycosylation sites in proteins,
we utilized two datasets: N-GlycositeAtlas and N-GlyDE
datasets.

N-GlycositeAtlas-based dataset

The benchmark dataset considered in this work is based on N-
GlycositeAtlas (Sun et al. 2019), which is a recently developed
large-scale repository forN-linked glycosylation that contains
7,204 human glycoproteins. It must be noted here that all
the N-glycosylation sites of N-GlyDE are included in the
N-GlycositeAtlas database. Initially, all the 7,204 (19 were
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Table 6. Number of positive and negative glycosylation sites for training
and testing proposed in this work.

Name of dataset Positive
site

Negative
site

Total

Training Dataset (+ve from
N-GlycoSiteAtlas, −ve from
ER + RSA gt 0.5(Golgi + cell
membrane + extracellular)

8,405 15,860 24,265

Independent Test Set 830 1,648 2,478

obsolete) glycoproteins are extracted from the UniProt and the
corresponding 9,235 N-linked glycosylation sites from these
sequences are extracted and form the positive training data.
All these 9,235 glycosylation sites are confined to N-X-[S/T]
sequons.
For the creation of negative sites, as it is known that

proteins from the endoplasmic reticulum, Golgi apparatus,
extracellular, cell membrane undergo N-linked glycosylation;
hence, 7,875 human glycoproteins are extracted from the
DeepLoc-2.0 (Thumuluri et al. 2022) database. Then, N-X-
[S/T] sequons are extracted from these proteins and redundant
sequences were deleted; moreover, peptides that had more
than 30 percent sequence identity are filtered out using CD-
HIT (Li and Godzik 2006) which resulted into 17,508 N-X-
[S/T] sequons. For model training purpose, under-sampling
(Lemaitre et al. 2017) strategy is utilized to balance the dataset
by randomly selecting negative sites to match the number
of positive sites. The RSA (Tien et al. 2013) of a residue in
a protein measures the extent of burial or exposure of that
residue in the 3D structure. Hence, we used NetSurfP-2.0
(Klausen et al. 2019) tool to make sure that Golgi apparatus,
extracellular, and cell membrane negative sites have RSA
greater than 0.5. It also must be noted that none of the positive
or negative N-glycosylation sites nor the protein sequences
from the N-GlycositeAtlas independent test set are present in
the N-GlycositeAtlas training dataset.
Moreover, we made sure that no protein sequence appears

in both the training and test sets as ProtT5 (Elnaggar et al.
2021) can learn representation for other sites from the same
protein as well which could lead to overestimation of the
performance.

N-GlyDE dataset

This dataset is adapted from N-GlyDE (Pitti et al. 2019),
which consists of 2,023 (1,821 + 202) experimentally verified
N-glycosylation sites (confined to N-X-[S/T] sequons) from
832 glycoproteins extracted from human proteins in UniProt
(ver. 201608). These experimentally verified sites form the
positive training data. Additionally, 1,001 (901 + 100) sites
that follow the same N-X-[S/T] patterns from the same pos-
itive protein sequences but are not experimentally verified as
N-linked glycosylation sites are considered as negative sites.
This makes the N-GlyDE training dataset. Further informa-
tion about N-GlyDE (Independent Test set) can be found
at seminal approach N-GlyDE (Pitti et al. 2019). Table 6
summarizes the number of sites included in each dataset.

Feature extraction—embeddings from pLM

There are various numerical representations that can be
used to encode protein sequences. The recent development
in the field is the advent of embeddings (distributed vector
representations) that are representations of protein sequences

Table 7. Number of positive and negative glycosylation sites for training
and testing in N-GlyDE.

Name of dataset Positive site Negative site

N-GlyDE traininga 2,023 1,001
N-GlyDE test 167 280
N-GlyDE∗ (90% from original
N-GlyDE) training

1821 901

N-GlyDE∗ test (10% Independent
Test Set separated from Training set)

202 100

aUnable to extract few proteins (originally 2050 and 1030 +ves and −ves)

Table 8. Hyperparameters used in the MLP network for the N-GlyDE and
N-GlycositeAtlas datasets.

Name of the parameters Parameters used

Input ProtT5 feature vector length 1,024
Activation Function ReLU
No. neuron in Dense layers 64
No. of neuron in the output Dense layer 2
Activation Function at output layer softmax
Optimizer Adam
Learning rate 0.001
Objective/loss function Binary_crossentropy
Model Checkpoint Monitor = “val_accuracy”
Reduce learning rate on plateau Factor = 0.001
Early stopping patience = 5
Dropout 0.3
Batch_size 256
Decision Boundary 0.5
Epochs 400

extracted from the last hidden layers of the networks forming
the pLM trained on a large set of unlabeled protein sequences.
These embeddings have been shown to capture a diversity
of higher-level features of proteins and have been used
successfully in predicting secondary structure and other
tasks (Heinzinger et al. 2022). For the current task, we used
embeddings from the pLM ProtT5-XL-Uniref (Elnaggar et al.
2021) (herein called ProtT5). The pLM ProtT5 was trained
on unlabeled protein sequences from BFD (Big Fantastic
Database; 2.5 billion sequences including meta-genomic
sequences) (Steinegger et al. 2019) and UniRef50 (UniProt
2021). ProtT5 has been built in analogy to the NLP (Natural
Language Processing) T5 (Raffel et al. 2020) ultimately
learning some of the constraints of protein sequences.
Features learned by the pLM can be transferred to any
(prediction) task requiring numerical protein representations
by extracting vector representations for single residues from
the hidden states of the pLM (transfer learning). As ProtT5
was only trained on unlabeled protein sequences, there is
no risk of information leakage or overfitting to a certain
label during pre-training. Essentially, ProtT5 (Elnaggar et al.
2021) outputs fixed-length (1024) vector representations for
each residue in a protein sequence. In essence, to predict
whether a sequon N-X-[T/S] is glycosylated or not, we
extracted a 1024-dimensional vector for each glycosylated
or non-glycosylated asparagine (N) residue in the sequon
where only the encoder side of ProtT5 was used, and
embeddings were extracted from the last hidden layer of the
models. We only extracted embeddings from the encoder-side
of ProtT5.
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Fig. 4. Overall framework of LMNglyPred.

Model training

As discussed above,N-glycosylation occurs onN (Asparagine)
residues, and so we extract contextualized embeddings from
the ProtT5 model using the full-length protein sequence as
input. Finally, the corresponding feature for the site of inter-
rogation (in this case N) is extracted (1,024-dimensional
vector) and passed to the subsequentML/DLmodel.Using this
feature and dataset (both N-GlyDE and N-GlycositeAtlas),
we train several ML/DL models to correctly predict N-linked
glycosylation sites.
The performance of several architectures was evaluated:

1D CNN-LSTM, 1D CNN-BiLSTM, BiLSTM, LSTM, LR,
ANN, SVM, XGBoost, Naïve Bayes, 1D CNN, RF, etc. We
describe the ANN/MLP/DNN architecture in Fig. 4.As shown
in Fig. 4, the features are extracted for the site of interro-
gation (N, highlighted in red) using full protein sequence as
input and the 1024 real-valued feature vectors are fed into
a MLP deep-learning architecture consisting of a 64-neuron
input layer followed by a 2-neuron output layer. To explore
the hyperparameter space, we performed a 10-fold cross-
validation grid search on the MLP DL model with the N-
GlyDE and N-GlycositeAtlas training dataset. It was done
against 1, 2, 3, and 4 dense hidden layers, sigmoid and ReLU
activation function, 32, 64, 128, 256, 512, and 1,024 neurons
in each layer, RMSprop, and Adam optimizers, and 0.2, 0.3,
0.4, and 0.5 dropout rate, whereas the default learning rate
of 0.001 was used. A similar approach was performed for
different DL and machine learning algorithms. The optimized
hyperparameters using grid search are shown in Table 8.

Based upon grid search, 64-neuron input layers were config-
ured with ReLU activation function. As dropout layer/nodes
in the network help alleviate overfitting and improve the
generalization, we set the dropout equal to 0.3. Since our task
is to train a binary classificationmodel to distinguishN-linked
glycosylated and non-N-linked glycosylated sites. Therefore,
in the output dense layer, we set the number of neurons equal
to 2. The optimized hyperparameters for the deep-learning
architecture are elaborated in Table 8. To avoid overfitting,
we have used overfitting reduction techniques like dropout,
early stopping, Model Checkpoint, and Reduce learning rate
on the plateau. Furthermore, no signs of overfitting and
underfitting are present in our trained model as can be seen
from Supplementary Figs S1 and S2. The loss curve for the
training and validation are following each other as well as
the training and validation accuracy curves are also following
each other.
The MLP architecture was implemented with TensorFlow

2.3.1 (Abadi et al. 2016) and sklearn 1.0.2. The optimized
hyperparameters of MLP model for the N-linked glycosyla-
tion prediction are elaborated in Table 8.

Model evaluation and performance metrics

In this study, 10-fold cross-validation was used to evaluate the
performance of the model and to determine its robustness and
generalizability. During tenfold cross-validation, the data are
partitioned into ten equal parts. Then, one part is left out for
validation, whereas training is performed on the remaining
nine parts. This process is repeated until all parts are used for
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validation. For the results of 10-fold cross-validation, unless
otherwise noted, all performance metrics are reported as the
mean value ± standard deviation.
To evaluate the performance of eachmodel,we use accuracy

(ACC), sensitivity (SN), specificity (SP), Matthews Correla-
tion Coefficient (MCC), and precision. ACC describes the
correctly predicted residues out of the total residues (Equation
1). Meanwhile, SN defines the model’s ability to distinguish
positive residues (Equation 2), and SP measures the model’s
ability to correctly identify the negative residues (Equation
3). MCC is the calculated score that considers the model’s
predictive capability concerning both positive and negative
residues (Equation 4). Likewise, precision reveals how many
of the correctly predicted cases turned out to be positive
(Equation 5):

Accuracy = TP+ TN
TP+ TN + FP+ FN

× 100 (1)

Sensitivity = TP
TP+ FN

× 100 (2)

Specificity = TN
TN + FP

× 100 (3)

MCC = (TP)(TN) − (FP)(FN)
√

(TP+ FP) (TP+ FN) (TN + FP) (TN + FN)
(4)

Precision = TP
TP+ FP

× 100 (5)
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