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ABSTRACT. We consider the Cauchy problem for the electron magnetohydro-
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1. INTRODUCTION

With static background flow the electron magnetohydrodynamics(MHD) is mod-
eled by

B+ V x ((VxB) xB)=AB,

V.B—0 (1.1)

where the nonlinear term captures the Hall effect. It is a subsystem of the full
MHD system with Hall effect, which has attracted much attention in recent time,
see [1, 5, 7]. The magnetic field considered in this paper takes the form B(z,t) =
(Bi(z,t), Ba(z,t), B3(z,t)) for either z € T? or x € T?. In particular, in the former
case, the problem is regarded as for a 3-dimensional (3D) magnetic field posed on
the 2D torus (c.f. [8]). One notices that the highest order derivative appears both
in the linear diffusion and the quadratic Hall term, resulting (1.1) as a quasilinear
system. Beside other difficulties caused by the peculiar geometry structure of the
Hall effect, the quasilinear feature is a major obstacle in the analysis of (1.1). We
will further illustrate this point by the discussion of scaling property. System (1.1)
has the natural scaling that if B(z,t) solves the system with initial data By(z),
then the rescaled vector field

Bi(z,t) = B(Az, \*t)
for an arbitrary parameter \ solves the system as well with initial data Bo(Ax).
Some scaling invariant spaces (also referred as critical spaces) with embedding for
(1.1) in n-dimensional space are
HE < L < Bloo < BMO < B° 1<p< oo (1.2)

00,007

In view of (1.2) we note the energy space L?(T") is supercritical in both 2D and 3D,
and system (1.1) is supercritical in both situations. Thus it is naturally challenging
to analyze (1.1) even in 2D.
From the perspective of mathematics, in order to understand the competition
between the nonlinear Hall effect and the linear term, we consider the electron
1
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MHD with generalized diffusion
Bi+Vx((VxB)xB)=—(-A)"B,
V-B=0
on [0,00) X T, n = 2,3, for « > 0. The MHD system with fractional diffusion was
previously studied, for instance see [6]. System (1.3) possesses the scaling
By(z,t) = \**72B(\x, A\**t),

according to which, some critical spaces with embedding for (1.3) are

(1.3)

FEH22 O pae o By 27T o BMOY2 o B2 1< p<oo. (14)
The basic energy law for (1.3) is given by
t
1B, t)||72 +/0 IV B(z, 5)l|72 ds = | B(x,0)] 2. (1.5)

It follows from (1.5) that solutions of (1.3) satisfy the a priori estimates
B € L>([0,T); L*(T")) N L*([0, T); H*(T")).

On the other hand we see from (1.4) that the Sobolev space H3~2* is critical for
(1.3) in 2D, while #7~2* is critical in 3D. Since H*>~2* = L? for a = 3 and
Hi 2 = L2 for a = 7, system (1.3) is critical in 2D when a = £ and critical
in 3D when o = Z. For @ > 2 in 2D and o > I in 3D, system (1.3) is referred
to be subcritical in which situation the linear term dominates, and hence global
regularity is known to hold by standard energy method. While for o < % in 2D
and a < % in 3D (including o = 1), system (1.3) is supercritical and challenging
in general. In this paper, we consider (1.3) in the supercritical and critical setting,
i.e. aS%inQDandaS%in?)D.

When the initial data is rather regular, say in H* with s > 5+ 2 — 2a, well-
posedness of (1.3) is expected, see [10] for instance. With initial data By € L?(T"),
one can obtain weak solutions for (1.3) by using Galerkin approximating approach.
Nevertheless, for rough initial data below L2?(T"), it is not clear how to construct
weak solutions for (1.3). This is a similar situation for many other equations, like the
Navier-Stokes equation, nonlinear Schrondinger equation, nonlinear wave equation,
etc. The purpose of the paper is to construct global in time weak solutions to (1.3)
by randomizing initial data in Sobolev spaces H~*(T") with n = 2,3 and s > 0.
For a given rough initial data f € H~%(T") with V- f = 0 and Jpu fdz =0, we
randomize it appropriately to f« satisfying V - f“ = 0. We then consider solution
of (1.3) with the initial data f“ in the form

B(z,t) = e * A" 9 (2) + H(x, t)

where H satisfies a nonlinear equation that depends on e *(=2)" f« and obviously
H(z,0) = 0. A crucial point is that the free evolution e~*(=*) f* has almost surely
improved LP estimates thanks to the randomization of the data. As a consequence,
it provides the possibility to construct a global in time weak solution H.

The study of well-posedness for randomized initial data was initiated by Bour-
gain in [2] for supercritical nonlinear Schrondinger equation. Random data Cauchy
problem was investigated for supercritical wave equation by Burq and Tzvetkov
[3, 4], eventually leading to a global existence theory. Applying the method from
[3, 4], Nahmod, Pavlovi¢ and Staffilani [16] showed almost sure existence of global
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weak solutions for the Navier-Stokes equation (NSE) below L?(T"). An almost
sure global well-posedness result for the 2D nonlinear Schréndinger equation with
random radial initial data in the supercritical regime was established by Deng [11].
Later on, Lithrmann and Mendelson [15] established the random data Cauchy the-
ory for nonlinear wave equations of power-type on R3. In the recent breakthrough
work [12], Deng, Nahmod and Yue studied the defocusing nonlinear Schrodinger
equation in 2D and proved almost sure global well-posedness in the case of power
nonlinearity with degree p > 5. Random data Cauchy problem has been also
treated for various other equations when the deterministic Cauchy theory is hard
to be achieved. We do not intend to give an extensive list here.

Applying the framework of random data Cauchy theory to (1.3) in this paper,
the main difficulty comes from the strong nonlinear effect. The Hall term of (1.3) is
one degree higher than the nonlinear term (u- V)u of the well-known (NSE). It is a
general belief that the nonlinearity of (u-V)u poses intrinsic obstacles to crack the
global regularity problem for the 3D NSE, see [17]. As a result of the presence of
the strong nonlinear term in (1.3) and the quasilinear feature of (1.3), it prevents
us to show global existence of weak solutions with randomized data for « = 1 in
both 2D and 3D. Nevertheless, for larger value of o which is still below the critical
exponent, we are able to obtain almost sure existence of global weak solutions for
(1.3) in the supercritical regime.

2. MAIN RESULTS

In this section we fix notations to be used throughout the text, introduce the
procedure of randomization, and then state the main results.

2.1. Notations. We often denote C' by a constant in estimates which may vary
from line to line. When it is not necessary to track the constant, f < g is used to
denote f < Cg for some constant C' > 0.

Note the inhomogeneous and homogeneous Sobolev spaces are equivalent on
torus. In the rest of the paper we only use H?® to denote the Sobolev space. We
further denote

H = the closure of {f € C°(T™)|V - f = 0} in L*(T"),
Vo = the closure of {f € C*°(T")|V - f =0} in H*(T"),
V! = the dual of V,.

The inner product in L?(T") is denoted by

(frg)=[ f-gdx

Tn

2.2. Notion of randomization. We first recollect the large deviation estimates
established in [4].

Lemma 2.1. Let (I;(w))$2, be a sequence of real-valued, zero-mean and indepen-
dent random variables on a probability space (2, A, P) with associated distributions
(13)521. Assume that there exists ¢ > 0 such that

/OO e’ dp;i(x)

— 00

<e VyeR Vi>l. (2.1)
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Then there exists 3 > 0 such that

P <w: icili(w) >

Consequently, there exists another constant ¢ > 0 such that

<e/q <Z cf) Vg >2 V()2 €2

i=1

__83?
A) <2 Tt VAS0 V()R €2

La(Q)

We point out that both the standard Gaussian and Bernoulli variables satisfy
the assumption (2.1), see [4].

We follow [16] to introduce the diagonal randomization on the Sobolev space
H?*(T™) as follows.

Definition 2.2. Let (Ix(w))gezr be a sequence of real-valued and independent
random variables on the probability space (2,4, P) as in Lemma 2.1. Let ex(z) =
e’*® for any k € Z". For a vector field f = (f1, fa, ..., fn) € H*(T™) with Fourier
coefficients (ag)kez» and a = (a}, a2, ...,a?), the map

R:(Q,A) — H(TY)

w— f (Z lr(w)apex(z Z Ig(w)aper(x > (22)

kezn kezn
equipped with the Borel sigma algebra is introduced. The map R is called random-
ization.

It follows from Lemma 2.1 that the map R is measurable and f¢ is an H*(T")-
valued random variable. Moreover, we have

foe L2 H (T, |If*]
Indeed, as shown in [4], the randomization R does not provide regularization of

H?® in term of the regularity index s. Nevertheless, it gives rise to improved LP
estimate almost surely.

Hs ™

2.3. Statement of the main results.

Definition 2.3. Let o > 1. Let f € H~5(T") with s > 0 and
V-f=0, fdx=0.
T'n,

A function B(z,t) is said to be a weak solution of the electron MHD (1.3) with
initial data f on [0, 7] if

<LiTB,¢>+<V°‘B,VO‘¢>+((V X B) x B,V x ¢) =0 for a.e. t and forall ¢e€V.,

B € L(0,T); Vo (1) 1 LEZL((0,7); H(T™)) 1 (0, 7 H-(T7),
U ¢ L (0.1 V().

and
lim B(t) = f weakly in H™*(T").

t—0t
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Theorem 2.4. Let f be as in Definition 2.5. Let o € [3,3]. Assume s € (0,2a—3).
There exists a set & C Q with P(X) = 1 such that for any w € ¥ the electron MHD
(1.8) with initial data f* on T? has a global in time weak solution B of the form
B=Bs +H (2.3)
with Bfo = et f@ and
H € L%((0,00); L*(T%)) N L2([0, 00); H(T)).

In addition, if « > 3

> 3, the solution is reqular and unique.

Theorem 2.5. Consider (1.3) on T3. Let a € (&, 1]. Assume s € (0,20 — 1}).
Then the first statement of Theorem 2.4 holds. In addition, if o > %, the solution
is reqular and unique.

3. OUTLINE OF THE PROOF OF THE MAIN RESULTS

The strategy of showing existence of weak solutions for the electron MHD (1.3)
with initial data f“ is to look for solutions in the form B = Bj. + H with the
linear part

By = e A Bre(a,0) = f4(2)
and the remaining nonlinear part H. Denote the bilinear operator
B(u,v) = (V X u) X v.
Note that
Juf?
B(u,u) = (u-V)u— VT.
If V-u =0, we can further write
up?
5
One can check that if B satisfies (1.3) with initial data f*, the nonlinear part H
solves the Cauchy problem
H +V xB(H,H)+V x B(H, By«)
+V X B(Bfw,H) + V X B(Bfw7Bfw) - — (—A)QH,
V-H=0,
H(z,0)=0.
In order to prove Theorems 2.4 and 2.5, it is sufficient to show existence of global
in time weak solutions for (3.1) on T" with n = 2,3. We thus proceed to define
weak solutions for (3.1) and formulate the existence theorem.

Blu,u)=V-(u®u) -V

(3.1)

Definition 3.1. A function H(x,t) is said to be a weak solution of (3.1) on [0, 7]
if
dH o o
+ (B(H, By+),V x ¢) + (B(By, H),V X ¢) + (B(Bje, By),V x ¢) = 0
for a.e. ¢ and forall ¢ €V,

ar

H € L*((0,T); Va(T™)) N L=((0,T); H(T")), LY((0,7); Vo (T™)),
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and
lim H(t) =0 weakly in H™*(T").
t—0+
Denote
By (a,B,5,7,T) := |[t"Bge||Lex (0,17:01 (7)) + |7 Bye || Loz ([0,77;L92 (T7))
2—a+pB
+ 87 (=A) "= By || Lrs(jo,7): 093 (1)) (3:2)

+ |87 (=A) 7By |l Lra .72 (1))
where the parameters p; and ¢; with 1 < ¢ < 4 are given by

2
plzia for a small enough € >0, ¢ > 1,
20— 2 — €
o 4o A 9 > 1
pz_q2_2a—5—2’ p3—Q3—6+2, Pas= 2, 4 .
Theorem 3.2. Fix A > 0. Forn =2, let a € [%,%], s € (0,2a — g) and v < 0

such that 0 < s < 20— 3 +2ay. Forn =3, let « € (§,%], s € (0,20 — 1) and

v < 0 such that 0 < s < 2a0 — % + 20ry. Assume the free evolution By satisfies
1B llLzmy S (L+173),
2m+ (3.3)

vaBfw”LoO(Tn < (max{t_%’t—( 22+25)})% fOT’ m=20,1,2

)N

and
BfW(OZ,ﬁ,S,’}/,T) §>‘ (34)
Then there exists a weak solution H(x,t) to the Cauchy problem (3.1) in the sense
of Definition 3.1. Moreover, the solution is unique in 2D for o = % and in 3D for
7

Proof of Theorems 2.4 and 2.5: Under the conditions on « and s of Theorems
2.4 and 2.5, one can find an appropriate constant v < 0 such that the assumptions
on the parameters of Theorem 3.2 are satisfied. By Lemmas 4.5 and 4.6, the
assumption (3.4) is satisfied almost surely. On the other hand, assumption (3.3) is
guaranteed by Lemma 4.1. Thus the existence of a global weak solution H(z,t) to
system (3.1) follows from Theorem 3.2. Consequently we obtain the existence of
a global weak solution B(z,t) = By« (x,t) + H(x,t) to (1.3) almost surely. Recall
that system (1.3) is critical in 2D for & = 2 and in 3D for o = I. Hence, above
the critical value of «, regularity of the solution can be established by standard

bootstrapping argument. The proof of uniqueness is presented in Appendix.
O

The remaining part of the paper is devoted to the proof of Theorem 3.2. The
first step is to establish estimates on the linear part By~ such that assumptions
of the theorem are satisfied. This will be the content of Section 4. The crucial
idea of adapting randomized initial data is revealed in this part. In fact, although
the initial data f is merely in H~° for s > 0, the free evolution of the randomized
data f“ has almost surely improved LP estimates. As a consequence, we are able
to establish suitable a priori estimates for H in Section 5. Then in Section 6 we
construct Galerkin approximating solutions for (3.1) by standard arguments, for
instance see [9, 13], and pass to a limit by applying the a priori estimates.
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4. THE LINEAR EQUATION WITH RANDOMIZED INITIAL DATA

We consider the linear equation with randomized initial data
Bt + (—A)aB == 0,

B(z,0) = f“, (4.1)

and establish some a priori estimates for its solution Bjo = e H=R)" fu,
The following lemma concerns deterministic estimates.

Lemma 4.1. Let s > 0 and f¥ € H™*(T™). Then the estimate

m _m+ts
IV Brelzaey S (1475 ) | fllpems ooy, (4.2)
holds for any nonnegative integer m and o > 0; and

2m+4n+2s

1
IV7 Brallpoe oy S (max{t™5, 67 55 )) " | fllpe-ere) (4.3)
holds for m >0, a > 0 and 2m +n > «a.

Proof: Note that y*e¢™¥ < C for a > 0 and y > 0. By Plancherel’s theorem we
deduce

m m_—|€1?“t 7w
IV Byo (-, )l 2(omy ~ 1€ () L2
m+s g\ s g)2e —sT
g2ty e e T fe ()

~ ||t7 20 (
_ m+s
S (14675 ) I fllpee ooy

which verifies (4.2).
In order to show (4.3), denote

o0
I = / (1 + p2)sp2me—2p2°‘tpn—1 dp.
0
Applying Fourier transform on T™ and Holder’s inequality we have

V™ Bra (@, )] <Y [¢[me
€

—

fe@©)l

|2at

s m_— 2a
S F sy | D@+ [E2)7EPme 21
§

SNl oy L.

The task now is to estimate the integral I. Changing variable y = p“+/t in the
integral we can write

1 2m4n—«

L) ) e
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where the integrand of I; and Is is the same as that of I. For 0 <y < \/i, we have

2m4n—a

2\ & amtn=a
) )
1+ <c, <1
(t> - (ﬂ)

since 2m +n > « > 0. Thus the integral I; satisfies

Vvt
<t / e 2 dy (45)
0

While for y > /%, it follows

and hence
o 2m4n—a
2s _ s Yy « 1 — 242
125/ ye °(> N
Vi Vi Vi
< 2m+2+23 /OO y2m+nga+2s —2y2 dy (4 6)
~ Vi

_ 2m4n42s
2a

<t

Therefore estimate (4.3) follows from (4.4), (4.5) and (4.6).

Probabilistic estimates are obtained as well. Namely,

Lemma 4.2. Fixr >p > ¢ > 2,0 >0 and v € R such that ¢(%=2 —~) < 1.

Then for any T > 0 and s > 0 there exists Cr(p,q,r,0,7,8) > 0 such that for any
fY e H (T

[#7(=A)% Byo || Lr(@;zao,1y:Lo(mm))) < Ol flla-s (o) (4.7)
Denote
Extfop =f{w € Q1 |[t7(—A)2 Byolpao,r)Lo(mm)) = A}- (4.8)
Then there exists c1 > 0 and co > 0 such that

C2 )\2

P(ExT,1,0,0) < C1€XP {_CTHf||2
EP

} YA>0 VfYeH(T). (4.9)
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Proof: Denote (—A) by the operator with Fourier symbol </—A\> =1+ We
express the term in Fourier representation
t(—A)2% Byo
= 1(=A)3(-A)FeT T (—A) T f
s _41¢12a s~
=1 Y e 16 e (1 4 1) 7E R (ec(a)

cezn
<OY IR (1 ) R (©ec(a) (4.10)
£ezn,|€1<2
ST T ) Fe T (14 €7)E FR € ee ()
Eezm,|€|>2
=: J1+J2.

Using again the fact that y®e™Y < C for a > 0 and y > 0, we have

B S0E Yt Fe P (14 [¢2)7 B (e )

gezn

SOTE Y (14D TEF(E)ee ()

gezn

and

T SO YT (P 5 e (14 Je?) T e (ee(w)

£ezn

SO N (14 [E2)TE (e (@)

¢ezn

Denote h = (—A)~3 f and hence i/L;(f) =(1+ |§|2)_5ﬁ(§) in view of the random-
ization (2.2). We estimate the norm of J; by applying Minkowski’s inequality,

||J1||LT(Q;LQ([O,T];LP(']I‘"))) < CH{Y_i Z hw(f)eﬁ(x)HL"(Q;L"([O,T];LP(T")))
ISSVAL
1

2

<G| D o FER(©ec(a)
sezn

’ 2

La([0,T];LP (T™))

(NI

=G| 3 [ ER(©ec (o ]

gezn

L#((0,7]:L% (T))

<q, </0Tt3< 7>dt>q > ‘ﬁ(f)ee(ff)‘Q

gezn .

1
2

ks

(T™)



ALMOST SURE EXISTENCE FOR EMHD 10

We further apply Lemma 2.1 to deduce

1
T q
11l 2029 (0,772 (T7))) < Crp (/ 3373 dt) Z ‘h(f)
0

N\ (4.11)
< Crp 51 [R(9)]

gezn
< CTmpyqyﬂy'y,oz||f||H‘S(T”)

where we need to require (5= —7) < 1 for the time integral to be finite. Analogously
we have
| J2ll r(sza(o, 11:27 (7)) < CTrpogll Fllag—s (T (4.12)
for g(%E2 —~) < 1. Thus the estimate (4.7) follows from (4.10), (4.11) and (4.12).
In the end, the estimate (4.9) follows from Bienaymé-Tchebishev’s inequality (see
Proposition 4.4 of [4]) and Lemma 2.1.

O

The following maximal regularity result for the free evolution equation is needed
to establish energy estimate for H in Section 5.

Lemma 4.3. Let T > 0 and f € L?((0,T); L?(T")). Denote

t
g(x,t) :/ e~ =AY (LAY f(x, 5) ds.
0
Then we have for any o > 0

lgll20,7):L2(1n)) S 1 fllL2(0.1);L2(Tm))-

Proof: The estimate for oo = 1 is classical, for instance see Theorem 7.3 of [14].
We follow the lines of [14] to prove the estimate for general a > 0.
Let G(x) be the kernel function of the operator e~ (=2)"

G(z) = (2m) "% / e e 6 gg

n

and G(x,t) the rescaled function
_n €T
G(x,t):t 20‘G<W)7 t > 0.

We extend G(x,t) to the entire time line by setting G(z,t) = 0 for ¢ < 0. We then
can write g(z,t) as

sot)= [ [ Ol -yt s)1(w.s) dyds

- <1G(x,t)) * f(z,1)

where the convolution is in both x and t. Thus by Young’s inequality we have

£l 22 ((0,7);L2 (T7)) -

t L1((0,T);L} (T7)

1
l9llz2(0,7);22(Tn)) S HG(x,t)
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Note that the Fourier transform of +G(x,t) in both z and ¢ is given by

} _ > 20 —t|€|?* —itT |5|2a
]:(tG) & 71)= /0 |E[Pe S e 1T gt = |§|2a+”
1
7 (f6) en| <

HiG(m,t)

We observe that

and hence

<C.
L((0,T); L1 (T™))

It then follows
lgllzzc0,1y;L2(rmy) S N llL2(0.1);L2(Tn))-

We also need the following estimate.

Lemma 4.4. Let T > 0 and f € L?>((0,T); L?(T")). Denote

t
g(z,t) = / ef(tfs)(fA)Qme(x, s)ds
0
Then we have for 2a > m
lg@ N2y S Nfllz2o.myiL2amy)  VE> 0.

Proof: For any ¢ € L?(T"), using integration by parts and Hélder’s inequality
we have

g(t). 0] = / (F(s), e~ =D gme) g

<(f L) ([ LF

SIFllz2 0,022 e le™ T V™0l 12 0,1y 22 (2 -

1
2

—(t=9) Vmcp‘ dmds)

In view of Plancherel’s theorem, we deduce

v o m _n _ 2a m
le=* A V0| T2 0y = (27) / el ¢2(§)‘ d
1
N e <P||L2(1T”)

where we used the fact z%~*" < C for x > 0 and a > 0. Therefore, we obtain for
m < 2«
A 2 !
—t(—=A)*om
e =2 V012 0,1y 220y S ||<P||L2(Trn)/0 T s S llellzzerm)-
Therefore we have

9@, @) S22 llell ey Vo € L*(T™)

which concludes the proof of the lemma.
O

We introduce one more probabilistic estimate for the free evolution By« in each
case of 2D and 3D.
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Lemma 4.5. Letn =2, a € [%,%} and B =3 —2a. Let 0 < s < 2o — 2 + 20y for
some v < 0 such that 2cc — % +2ay > 0. Let Byo(av, B,5,7,T) be the sum of the
norms defined in (3.2). There exists a set ¥ C Q with P(X) =1 such that for any
w € X we can find a constant A > 0 such that

Bye(o, 8,5,7,T) <\
Proof: For any A > 0 denote
EN\) =EW\ s, o, f,7,T) ={w € QB (a, 8,8,7,T) > A} .
For any j > 0 we also denote \; = 2/ and E; = E()\;). Note that E; ;1 C E;. Take
= ujZOE; c Q.

One can check that the parameters satisfy the condition of Lemma 4.2. Hence it
follows from Lemma 4.2 that

caN?

2 } Vi>0 Vfee (H*(T?))>2

P(E;) <ciexpq — 55—
Nsa { Gl

Therefore we deduce
1>P(X)=1-P(X°) =1-P(NE;)=1- P(lim E;)

j—o0o

>1— lim cjexp 02/\? 1

>1— 16XP — g ( =
oo Crlfli%-.

which immediately gives P(X) = 1. By definition of 3, we see that for any w € ¥
there exists j > 0 such that w € E7, Le.

Bfw(Oé,/B,S,’)/,T) S )\]
(I

Lemma 4.6. Letn =3, a € (%1, %} and B = 57204. Let0 < s < 2a71¢1+2a7 for
some v < 0 such that 2a. — L + 2y > 0. There exists a set ¥ C Q with P(X) =1

such that for any w € X we can find a constant A > 0 such that
Bf“’ (a76a577aT) S )\

Proof: We observe that the parameters specified in the lemma satisfy the as-
sumptions of Lemma 4.2. The proof follows from an analogous argument as that
of Lemma 4.5.

O

5. A PRIORI ESTIMATES FOR H

In this section we establish a priori estimates for the nonlinear part H which
solves the Cauchy problem (3.1). Notice that By~ appears in the quadratic nonlin-
ear terms of (3.1) and the estimates of By« in (4.2) and (4.3) exhibit a singularity
at t = 0. To avoid this singularity, we choose to perform the estimates near time
zero by working with the integral form of (3.1). Away from time zero, the estimates
can be obtained from (3.1). Therefore, before starting the estimates we introduce
the mild formulation of (3.1) and show that the two formulations are equivalent
under appropriate assumptions.
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Denote
Qa.1) = V x [B(H + Byo, H + By)].
Q(x,t) = (H + Byo) ® (H + Byo)(x,t).
Since V- H =0 and V - By = 0, we have that following several vector identities
Qz,t) =V x V-Q(x,t).

Thus we can write

t ~
H(z,t) = —/0 e~ U= O (e, 5) ds
(5.1)

¢
== / e~ =AY V. Q(x, 5) ds.
0

Lemma 5.1. Assume By satisfies the assumptions (8.8) and (3.4). Then H is a
weak solution to (3.1) if and only if H € L>((0,T); H(T™)) N L2((0,T); Va(T™)) is
a solution to (5.1).

Proof: We follow the lines of [14]. First we assume H € L°°((0,7T); H(T™)) N
L2((0,7); Vo (T™)) is a solution to (5.1). Denote

M(H)(z,t) = — /Ot e =AY « V. Q(x, 5) ds. (5.2)

Thanks to the assumptions (3.3) and (3.4) and the fact H € L*°((0,T); H(T™)) N
L2((0,T); Vo(T™)) we have Q € L*((0,T); L*(T™)) and hence

VxV-QecLY(0,T);D).
It then follows

eI v Q e LY((0,T); C(T™)).
Thus by Leibniz rule we have
OM(H)(z,t) = —(—A)*M(H)(2,t) =V X V-Q

in the distributional sense. On the other hand, we see

lim H(z,t) =0.
t—07t

Therefore H = M(H) is a weak solution of (3.1).
Conversely, we assume H is a weak solution of (3.1). Define M(z,t) as in (5.2).
Applying the estimates from Proposition 5.2 below near time zero we obtain
M € L=((0,T); H(T™)) N L*((0,T); Va(T™)),
d
A e (0.1 v ().
Hence we deduce by Leibniz rule again

oM —H)=—(-A)*M(H) =V XV:-Q+ (-A)*H+VxV-Q
=—(-A)*(M(H) - H)
which is satisfied in the distributional sense. Note that
lim+(./\/l(H)(t) — H(t)) =0.

t—0

It then follows from the uniqueness of the generalized heat flow that M = H and
hence H is a weak solution of (5.1).
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O
Denote the basic energy functional
SO = HOIsrny +2 | t [ e deds
and the higher oder energy functional for some [ to be determined
Ea(H)(t) = E(H)(1) + E((—A)* H)(2)
Oy +2 [ [ HGPards -

t
O / [ v s

Proposition 5.2. Assume By. satisfies the conditions (3.3) and (3.4). Let H €
L((0,T); H(T™)) N L2((0,T); Va(T™)) be a solution to (5.1). Then there exists a
constant C(T, \, s) such that

E(H)(t) < C(T, A\, s) forall tel0,T], (5.4)
and

< C(T, A 9),

i
dt |20, mym-20(12))

(5.5)

< C(T, A, s).

d
a1,
dt L% (0,7)H-20(T2))

Proof: As discussed earlier, in order to obtain the estimate (5.4) we split the time
interval into two regimes [0, tg] and [to, T] for a small time 5 > 0 to be determined
later. On [0, tg] we work with the integral form (5.1) and take the advantage of the
fact H(x,0) = 0; while on [to,T] we work with the differential form (3.1) since no
time singularity presents on this interval. Achieving the estimates on [0, o] turns
out to be more challenging. We apply the higher order energy method to overcome
the obstruction by estimating the energy functional &, instead of £. We choose
to treat the 2D and 3D cases separately. Thus the proof consists four parts: (i)
estimate of &, on [0,to] in 2D; (ii) estimate of &, on [0,%p] in 3D; (iii) estimate of
€ on [tg, T) for any spatial dimension; (iv) estimate of %H .

(i) Estimates on [0,ty] in 2D. By Lemma 4.4 we have for @ > 1 and any
0<t<t

IH Ol L2(r2) S 1QllL2((0,80):L2(T2)) 5 (5:6)
[H ()l (r2) S NQll22((0,80)5715 (12)) -
In view of the second line of (5.1) we have

(—A)2H(a,t) = - /Ote‘“‘s)““"(—mav X V- (=A)"3Q(x,s)ds

t
(~A) 3" H(x,t) = — / e IENT (LAY X V- (—A) T Q(a, 5) ds
0
and hence we have from Lemma 4.3
IH ()| 2 (0,t0)512 (12)) S 1@ L2((0,80);22- = (12)) 5 (5.7)

IH (Nl L2((0,00)510+8 (12)) S N QI £2((0,80)512-+8 (12)) -
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In view of (5.6) and (5.7), we need to estimate ||Q||L2((O,t0);L2(T2))7 ||Q||L2((O,t0);H2—a(T2))7
||Q||L2((0$t0);7_[5(11~2)), and HQ||L2((0,t0);?-t2fa+6(1r2))- With the restriction Of 1 <« S %
and >0, we have 2 —a <2—a+ f and 8 <2 — a+ 3. Thus it is sufficient to
estimate the last one, i.e. [|Q||12((0,t0):22—+5(T12))-
Note that
1@ 2 ((0.t0):m2 45 (72))
S HH @ Hl L2(0,t0)522-0+8(12)) + [1H @ Bol| L2 (0,032 45 (12)) (5.8)
H1Bre @ Brell2((0,10)m2 -5 (12))-

It follows from Hoélder’s inequality that if « — 5 > 1
[ H & H||12((0,t0)512—o+8(T2))
S IHVZ P H | 12 (0,41 2272))

S IH| V2= et2H|

L4([0,t0];L7ﬂ—%—1 (T2)) L4([O,t0];L73—§+ﬂ (T2))’

Since by Sobolev embedding

1H#

| . SVt H||
LA(0,to}s LT (12))

LA([0,to}sL T (12))’
we only estimate the latter for 1 < a — 5 < 3:
V2= tPH|

LA([0,t0);L =27 (T12))

to 1
- (/ NG 2 i dt)
0 L3—a+B (T2)

to
< ( [ I 9742 dt)

% to i
< ( sup ||vﬁH<t>||ig> ([ ooz, ar)
t€(0,t0) 0 )

< E2(H)(to)

1
1

with m = 3 —a — 8 < «a provided 8 > 3 — 2a. Hence, if 1 < a—f < 3 and
8 > 3 — 2a we have

| H @ Hl| L2 ((0,t0);12-+5(12)) S EalH)(t0)- (5.9)

The conditions 1 < a— < 3 and > 3 — 2« imply

4< <3
3_a_2.

To optimize the final result, we take the smallest 8 = 3 — 2« from now on.
We continue to estimate

||H®Bfw||L2((0,t0);H2*°‘+5(T2))
SNHV? P Bio || L2 0,t0):2(x2)) + 1B V2P H|| L2 ((0,00):22(12)) -



ALMOST SURE EXISTENCE FOR EMHD 16

The first term is estimated as follows by applying Holder’s inequality and (3.4)
IHV? % B o || 2 ((0.40):22(12))
S ||HHL""((O,to);LP(W))||V270[+ﬁ3fw HL2((O,t0);LP’(’]I‘2))
S H N Loe 0,028 @2 V24 Broll 120,40 10" (72))
< M€ (H) (to)
with Il] + i = % and p = 2+ € such that the Sobolev embedding holds. The second

term is estimated as
1B V2~ F P H | 12 (0,10):2 (12)

SAVE P Hl o (0,000 r2) Bl 1o ((0,00):0 (12

with %—Fi = %, %+ 1% = %, p' < ¢ and p > q. By Gagliardo-Nirenberg’s inequality
we know

192 H | ey S IV H[ [P H b,
with ¢ = ﬁ and pd = 2. Take ¢ = 2 + ¢ for some small constant € > 0, we

obtain p’ = 2@3‘;_6 for another small constant € > 0, and analogous computation

as before shows
V2= H| 1o (0,t0); L0 (12))

1
to P
(/0 ||va+5H||iz(T2)||v5H||§;(2T2) dt)

p—2 1
2p to P
( sup |vﬂH||i2(T2)> (/ ||Va+ﬁHH%2(T2) dt)
0

0<t<to

A

A\

< & (H)(to).
Hence we have
1
|Bo V2~ P H | 2 ((0,00)s12(12)) S Mg "EE (H)(to).
Collecting the estimates above we obtain
1
|H ® Bye || L2((0,10): 2o +5 (12)) S Mo € (H)(to)- (5.10)
In the end the condition (3.4) again implies

1By ® By || L2((0,t0);2-0+8 (12))
S NBpe VP Bro || L2 ((0,10):22(12))

_ (5.11)
S IBsellLe .tz @ IV P Broll Lo (0.10): 10" (12))
SN ™
with % + z% = % This estimate needs to be optimized such that
2—a+p+s S
I (57) <1, p(ffv) <1
2ce 2ce
for the largest possible value of s and some v < 0. The optimization results in
4o , 4o 2a 1
— - = < — 420y ==2a—5-2)+2an.
P=5a 52 P=gio 5, 2 5(20 =5 —2) +2ay
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Combining (5.3), (5.6), (5.7) and the estimates (5.8)-(5.11) we obtain for ¢ €
[0, o], some v < 0 and «, 8 and s satistying

4

azg, B =3-2a, 0<s<2a—g+2ay

that

1
E3 (H)(to) S I1H | Lo ((0,t0);2(12)) + [H || oo (0,20 )12~ (12))
+ H | £2((0,t0)572 (12)) + HH | 22((0,0);02-0+5 (72))
< Ea(H)(to) + M "E2 (H)(to) + Ntg >
< C1Ea(H)(to) + Cadtg Y2 (H)(to) + C3A2tg >

for some constants C7,Ce and C5. By a continuity argument we conclude that for
small enough o such that C3A\%t, 7«1,

E(H)(t) < E(H)(t) < C Vi € [0,tq].

(ii) Estimates on [0,%y] in 3D. The estimates will be carried on analogously
as in the 2D case. Differences come in when we apply Gagliardo-Nirenberg’s in-
terpolation inequality and Sobolev embedding inequality. It is again sufficient to
estimate

QI L2((0,t0);12-+5 (19))
S H © Hl|z2(0.t0)02-o48 (1)) + [1H © Bye || L2 ((0.0):22- 45 (19) (5.12)
+ ||Bfw ® Bfw ||L2((0’t0);7_[27a+5(11~3)).
By Holder’s inequality the first term on the right hand side of (5.12) is estimated
fora—p>1/2
1 H @ HI| L2 ((0,t0)512~+8(T3))
SHY?™ TP H| 12 0,10):22(13)

5 ”H” 4 [ T&=35=T (T3 ||V27a+ﬁH” 4 [ T=ZeFTE (T3))
LA([0,to]; L 2> =25 =1 (T3)) LA([0,to]; L 7=22F25 (T?))

In view of Sobolev embedding
I1H

we only need to estimate for o — § > 1/2

| SIveetam ,

12 12
||L4([0,t0];L 2a—2B5—1 (TS L4([0,t0];L T—2a+238 (Ts))

12
LA([0,t0]; L T=2+2B (T#))

to
:(/ [VEoPH|* L, dt>
0 L7=2aF25 (T3)

to
< ( ISP H 0 197 dt)

to i
</ Vo8 H| 2, dt)
0 *

V22|

Bl

1
1

.

S ( sup ||V5H(t)||%g>

te(0,t0)

S E2(H)(to)
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with m = %—a—ﬁ < « provided g > %—204. Hence for a—f3 > 1/2 and 8 > %—
(which imply « > 4/3) we have

[ @ H|[L2((o, to)'HQ*O‘JrB(’JI‘L" S Ea(H)(to)- (5.13)

As before, we choose the smallest § = £ — 2« from now on.
Following the inequality

[ H @ Bye |l L2 ((0,t0)512—+8 (12))
S IHV2= Bpol| 12 ((0,0):22 (19)) + 1B V2 TP Hl| 12 ((0,10): 22 (19
we proceed to estimate the former one on the right hand side as
IHV?= P By || 2((0,00) L2 (1%))
S IH Lo (0.t0):o @) V2T Broll 12 ((0,10): 17" (15
S |z (0,002 x2)) V25 Bro [l 2 (0 1010 (7))
< Mo EE (H)(to)

with zl) + 1% = % and p = 2 + € such that the Sobolev embedding holds. The latter
one is estimated as

1Bo V2~ H| 12((0,40):22(19))
SV P H | Loqo.to):pamen 1Bre | o ((0,10):14' (19

with % + i =1 and % + i = 1,9 < ¢ and p > q. We use Gagliardo-Nirenberg’s
inequality
92~ | sy S 19 H | gy | VP 5

% and pf = 2. Taking ¢ = 2+ € for some small constant € > 0, we
for a different small constant € > 0. It follows that

with ¢ =
obtain p’ =

ale

IV B H| 1o ((0,80);19(T2))

1
(A Hvaﬂﬁﬂh%wNVﬁHHstdQ

pT—p2 to 9 P
(s 192 w)) T ([ IV Ay )
0<t<tg 0
S ebno)

Consequently it leads to
1
1By V2= P H | 12((0.10):22(13)) S Mo "EZ (H)(to)-

In conclusion we get

A

A

Nt
1H @ Bye||12((0,10);m2-a+5(18)) S Ao ' €& (H)(to)- (5.14)
Thanks to condition (3.4), the last term in (5.12) can be estimated
1B © Bye |l L2((0,t0) 25 (13)

S NBps VP P Bro || L2 ((0,00):22 (1%)) (5.15)
S IBrellLe.t)ze @ IV Broll Lot (0.00): 10" (1)) '

<N
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with % + i = L. In order to obtain the largest possible value of s such that for

5
some v < 0

2 —
p/(aﬂwv)@ p(-4) <1

20 20
we choose
_ %Y ;Ao
P=9%—p-2 P~ 512
and hence

2 1
s < —a—|—2a7: 5(2a—ﬂ—2)+2a7.
p
Recall that g = % — 2a.. Requiring s > 0 leads to 2ae — 5 — 2 > 0 which implies
1
a> 4.
Therefore, for a € (18—1, g], 0<s<2a— % + 2y with some v < 0, we have from
(5.3) and (5.12)-(5.15) that
1 1
EZ(H)(to) < Ea(H)(to) + My TEZ (H)(to) + N2ty >, for ¢ € [0,tg].

Similarly a continuity argument yields that for small enough ¢y, we have

EH)(t) < EL(H)(t) <C Vit e [0,t).

(iii) Estimates on [tp,T] in both 2D and 3D. For ¢ € [tg,T], taking inner
product of (3.1) with H and integrating over T" yields

3O+ [ IV HPdo
:—/n [V x V- ((H + Bpe) @ (H + By.))| - Hdz
:—/n [VxV-((H+Bjf)® (H+ Byf))] - (H+ Bjo) dx
4 [ IVXV((H+ By (H + Bpo)) - By da.
Note that the first integral on the right hand side above is zero due to the fact
/n [VxV-(u@u)]-udx:/n IV x (V x ) x w)] - udz = 0
for any vector field u with V - u = 0. For the same reason, we have
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Therefore it follows that

1d
—— N H®)|]? 2 +/ VeH]? dx
2dtll Ol 22 Tnl |

— [ (X V- ((H 4 Bp) @ (H + Bye)) - Byeda

:/n [V x V- (H&H)]- By d (5.16)

+/ [VXV'(Bfm@H)]-Bfwda?
=: K1+K2—|—K3.

Applying integration by parts we obtain
K, = —/ (H®H)VV X Bfwdl‘

It then follows from Hoélder’s inequality and condition (3.3)

K1l < [H| 720 IVV % Byoll oo ey

44n+2s

< (max{t™2 4775 ) H |3 ).

~

(5.17)

Similarly we have from (3.3)

[Ko| + | K| S [[H|[ 200 | By |22 [VV X B || Lo (m)

44n+2s

s 1 1 (518)
S (T+tm2e ) (max{t™ 2, 2o })2||H||p2(pn)-

Putting (5.16), (5.17) and (5.18) together we obtain

d 1 _44mt2s 1
ZEH)() S (max{t™2, 7= })2E(H)(t) (5.19)

(1 + ¢ % ) (max{t 2t~ e })2E2 (H)(1).

Note that

T 1 T
/ (max{t™2,¢t" 2a })7dt :/ T dt+/ 3 dt
to 1

to

(5.20)
S C(t07 Ta «, n, 8)

and similarly

T
/ (1473 ) (max{t %, =2 ) di < Clto, Toaymys). (5.21)

to

It follows from (5.19), (5.20) and (5.21) that

E(H)(t) < C(to, T,a,m,s) Vi€ [tg, T).
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(iv) Estimates of 4 in both 2D and 3D. It follows directly from (3.1) that

H L ([0,T];H—20(T"))

S N(=A)* Hl| oo, myp-20(roy) + IV X V- (H @ H)|| oo, 1,0-20(n)) - (5.22)
+ |V x V- (H® By)|| Lo (0,171~ 22 (1))
+ IV X V- (Bfo © Bpo)| Lo (0,153 (17)) -

When n = 2, we take p = 2. It is obvious that

o 1
[(=A)*H|| 20, 11:1-2(12)) S 1H |22 00,73:22(72)) S T2 | H || L0 ([0, 732 (T2)) -
Holder’s, interpolation and Sobolev embedding inequalities yields for o > 1
IV x V- (H & H)|| L2 (0, 7)1 20 (T2))
S IH @ Hl| 22 (po.ry:L2(12)

T
< ( / ||H||%2(T2)||H|%oc(1r2)dt>

S

Nl

A

||H||L2('JI‘2 1 130 2 dt)

T 2
(sup 1H (1) |mz>> ( / ||H||%amz>dt>
te(OT) 0

S EH

A

It follows from Holder’s inequality and condition (3.4) that for p, p’ and m satisfying

1 1 1 , 4o _da—5

p Ty T P Ty "5

we have
[V x V- (H® Bye)||2(0,1];1-20 (12))
S [H @ Bye || L2 (jo,1);12(12))
S H |z o,rysLe 2 | Bl Lo (o,735107 (72)

p—2

2p 2
2 m D
(300, V@) ™ I 81 oy Vs oo oy

S AER(H)T,

A

where we used the fact m < « for % <a< % Moreover, the condition (3.4) implies
[V X V- (Bpe ® Bye)||L2(j0,77;1 20 (12))
S [I1Bye @ Byellzzoryiz2(r2)
S ||Bf‘“ ||2L4([O T] L4(T2))
C)IBs-1?
<C(T )AQT—27

%5 (0,7]:L 75 (12))
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3 <a < 3. Combining the estimates above with (5.22) we have

S EMHNT) + AEF(HNT™" + XN2T~27 < C(T, A, s).
L2(0T JH 29 (T2))

When n = 3, take p = %a. First we have

3
H(_A)(XHHL%"([07T];H72Q(T2)) 5 ||H||L4Ta([O,T];L2(T2)) 5 Tae ||H||L°°([O,T]§L2(T2))'

Similarly following the application of Hoélder’s and Gagliardo-Nirenberg’s interpo-
lation inequalities we infer

IV %V (Ho )|,
SIH @ H|| s

([0,T);H=2(T3))

3 ([0,T)L2(T2))
3

T Bx_g =
< ( / ||vaH|%2<Ts>||H;2<T3>dt>
3
4o
N ( 1 H 122 o) || H 134 ) dt)
4a—3 3
do T ey
S < sup |[[H(t ||L2(T3)> (/ [Pzale dt)
te(o T) 0
E(H
For p,q,p’ and m satisfying
1 1 3 1 1 1 , 8a 3(8a —11)

p P 4 ¢ p sa—11" "7 2017~ 8a)’
we apply Holder’s inequality and condition (3.4) to deduce
||VXV(H®B}¢ )H da

S |IH@ Byl 4

3 ([0,T;H—2(T?))

L ([0,7);12(T?))

S H | zeqo,rynacronl| By o (o, m:07 (12))

p—2

“2p 2
(300, V@) I 812 o oy Vs oran oy

A

Sagh (T

thanks to the fact that m < « for %1 <a< %. In the end, it follows from Holder’s
inequality and (3.4) that

IV XV - (B @ By

S I1Bye @ Bye||, s

L5 ([0,T);H 2 (T3))

L ([0,7);L2(T3))

< || Bye
HBf HL 55 ([0,T);LA(T3))

Bro N o
( )” f ”Lﬁ([O,T];Lﬁ(TQ))
< C(MNT™>
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since %‘)‘ < Sag%n for a < 2. Again collecting the estimates above with (5.22) we
get

d
<
HtH S C(T, A 8).

LF ([0,T];H-22(T3))

6. EXISTENCE OF WEAK SOLUTIONS TO (3.1)

We are ready to establish the existence of weak solutions to (3.1) by using the
standard Galerkin approximating approach (c.f. [9, 13]) and the a priori estimates
obtained in the previous section. Namely we will prove Theorem 3.2 by constructing
a sequence of Galerkin approximating solutions and passing to a limit.

Recall the Fourier transform and its inverse on torus T",

Flk,t)y= [ flz,t)e 2™ " de, kez"
']I’Vl,

fat)="3" Flk,t)e?mhe.
kezn
Denote Px by the Fourier projection operator
Pef= Y Fenem

{k:|ki| <K 1<i<n}

and HX = P H. For any fixed K € N we consider the truncated system
Hf = (=A)"H" — Py [V x (B(H®,H*) + B(H®, B{.))]
— Pk [V x (B(Bf, HY) + B(Bf., BL))]

6.1
V-HY =0, (61)
H%(x,0) = 0.
Taking Fourier transform on (6.1) yields
HE, = (=1)° [k[** H (k, 1)
ik x 3 HE( ) - K HE (K", t)
(k'R =k, |} | <K, |k | <K}
— ik x > HK (K, t) - k" BE (K1)
{k'+k" =k, k)| <K,|k/|<K}
— ik x 3 BE(K,1) - K'HE(K',1)  (62)
{k'+k" =k, k)| <K,|k/|<K}
— ik x > BE(K',t) - k" BE (K", 1),

LR/ k! =k | R <R | < K}
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Note that (6.2) is a finite ODE system for any fixed K € N. From the integral form
of (6.2) we define the map

O(HR)(k, 1) ;—/Ot(1)a|k|2aﬁT<(k,s) ds

t —_— ——

—/ ik x > HX(K ,t) - K"HK (K", ) ds
0 (k! 4k =k, | ! | <K |RY | <K}
t — —

- / ik x > HE (K, t) - K" BE (K, 5) ds
0 (k' k" =k, |k} | <K |k | <K}
t — —

— / ik x > BE (K, t) - K" HE (K", 5) ds
0 {k/+k' =k, [k} |[< K|k} [ <K}
t —_— —_—

7/0 ik x > BE(K',t) - kK" BE (K", s) ds

LR/ R =k, [k <K K| <K}
=: Oy (k,t) + Po(k,t) + P3(k,t) + Py(k,t) + P5(k,t).
Denote the function space
Xp =C([0,T];*) N L*([0, T); H*), for T > 0.

We first show that the map ® has a fixed point on X, for a small time ¢; by
showing that ® is a contraction map on a ball of X;,. We then claim that this
process can be iterated to reach time T

For t € [0,t1] one has

1@1(t)llez S K21l HE || ow 0,01:02)-
Applying Plancherel’s theorem and Sobolev imbedding gives
|2(t)llez < I F 0 HR G 0,0,1500)-

Using Plancherel’s theorem and Sobolev imbedding again and the estimate (4.2)
we have

n 1—5= 77
[@s(t)lle2 + [[Pa()le S K22y 27 | HE | oo 0,1,:02)-
It follows from Plancherel’s theorem and Lemmas 4.5 and 4.6 that
B+2
195 ()l S KNt 7,

where we recall =3 — 2a in 2D and § = % — 2« in 3D, and we observe 52—'22 > 0.
Thus combining the estimates above leads to

IR(HR)(O)llez S K>t HE | Lo (o,032) + B2 2t HE | (10,0, 12)

6.3)
n 11— T 812 _o (
+ K2+ 0] t] 2a ||HKHL°°([O,1’1]7€2) + K2>\2t12a 'Y.
Analogously we obtain
1[I @ (H ) () L2 (0,021:02)
S K30 | HE | Lo o,3:02) + K220 | HE 1o 10,1102 (6.4)

o l-2£ T Btz _o
RO e ey + KON
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Take R = K. Note that v < 0, s < 2a and 62—';2 > 0; hence all the index of t; are
positive in (6.3)-(6.4). Thus we can choose t; small enough such that the estimates
(6.3) and (6.4) imply that ® maps the ball Br(0) C X, to itself continuously.
Analogous analysis/glarantees that the map & is a contraction. Hence there exists

a unique solution H¥ to (6.2) in X;,. Consequently, there exists a unique solution
HE to (6.1) in L>°([0,1]; L*(T™)) N L2([0, t1]; H*(T™)). Note that since the energy
estimate (5.4) holds for system (6.1) on [0,7] as well, iterations of the previous
process can yield a solution of (6.1) up to time 7. Automatically the solution H*
satisfies estimates (5.4) and (5.5). Note that Pk is a bounded operator in LP for any
1 < p < oo and hence B;ﬂ converges strongly to By in LP as K — oco. Therefore

the estimates (5.4) and (5.5) are sufficient for us to extract a subsequence of HX
which converges to a weak solution H of (3.1) on [0, 7.

7. APPENDIX: PROOF OF UNIQUENESS

In this section, we show the uniqueness of the weak solutions for critical and
subcritical values of a. Let B! = Bfo + H! and B? = Byo + H? be two weak
solutions obtained in Theorems 2.4 and 2.5 in 2D and 3D respectively, for system
(1.3) with the same initial data f. Thus both H' and H? satisfy (3.1). In order to
fully explore cancellations in the estimates later, we write the equations of H' and
H? as

H! +V x (V x (H" + By)) x (H* + By)) = —(=A)*H*,
H? +V x (V x (H? + Bpo)) x (H? + Bpo)) = —(—A)*H?.

Denote H = H' — H2. Taking subtraction of the last two equations gives
Hi+V x (VX H)x (H' 4+ Bo))+V x (VX (H?+By)) x H) = —(—A)*H. (7.1)

Taking inner product of (7.1) with H , integrating over T" and using integration by
parts we obtain

1d
2dt
_ _/ (V % (H2(t) + Byo)) x H(t) -V x H(t) dz

10 ey + [ VO da

(7.2)

where we used the cancellation

n

YV x ((V x ) x (Hl—i—Bfw))-fIdx:/ (V x H) x (H' + Byo)) - V x Hdz
'JT’!L
=0.

In 2D, i.e. n =2, we estimate the integral on the right hand side of (7.2) by using
Holder’s inequality, Sobolev embedding and Young’s inequality for some p and ¢
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satisfying % + é = %

/ (V x H2(t)) x H(t) -V x H(t) dz
’]1‘2
< Ol H||z2(r2) IV H? | oo IV H [ ar2)
_ -, L
< Cl|Hllz2r2)[V? 77 H? || 2(02) V275 H| 272
< CH | g2 |V H? || 202 |V H| 2 72
~ o 1 o
< OH|72 eIV H2||i2(1r2)+§||v H|[F 272

where we require 2 — % <aand2-— % < a. When a = %, we are able to find proper

p and ¢ satisfying the conditions. Analogously, in 3D we have for a = %

/ (V x H2(t)) x H(t) -V x H(t) dx

’ES

< C||H |20y IV H?[| o 73y | VH | )
i 5_3 5_3 ~

< ClH | L2(rs) IV 277 H? || g2 (rs) [ V2™« H || £2(rs)
~ o 1 o

< ClH|F 251V H2H%2(T3)+§”V HI[7 (s

providedl—i—l:%,g—égaand%—%ga.

On the other hand, we have in 2D

/ (V x Byo) x H(t) -V x H(t) da
’H‘2

< C||H||L2(r2) IV Bye | Lo (r2) [ VH | La(12)

7 2 2~
< C|H||L2(x2)IV? 7% Bgel| L2(x2) [ V275 H|| 1272
< C|H| z2(2) |V By || 12(2) |V Hl| 272

- . 1,
< O\ H|[F2r2y [V Bgel[ T2 (p2y + §HV HI[72(p2)

and in 3D

/ (V x Byo(t)) x H(t) -V x H(t)dzx

T3

< CllH| 203 IV By || Lo (03) IV H | ars)
~ 5_3 5_3 ~

< ClH|2r3) V277 Byoll2(r3) V27 Hl| L2 (73
- . 1, o~

< C||H|Z2(psy [V B |72 (ps) + IV H|[72 9

Therefore, it follows from (7.2) that

d, ~ e
GO ey + [ 9 HOP da
T (7.3)

< CIH 2y (IVH Fagomy + 19 Bro 32 ) -
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Applying Gronwall’s inequality to (7.3) we obtain
IH ()72 ()

t
< [|H(0)[172(zny exp {C/O (”VQH2”2L2(T”) + |\VanW\|%2(1rn)) d7}~

Note that H? € L2([0, T]; H*(T™)) and from (4.2)

(7.4)

a+s

t t
/ ||vanwH%2(Tn) dTS / T_%d’rgtl_ 2a
0 0

Recall that a € [, 2] and s € (0,2a—3) in 2D, and o € (&, %] and s € (0,200— 1)
in 3D. One can check that 1 < ‘Z‘Zs < 1 in both cases. Combining with the fact

2
H(0) = 0, (7.4) implies H(t) = 0 and hence H'(t) = H?(t). It follows naturally
Bl(t) = B2(t).
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