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ABSTRACT: Phosphorylation is one of the most important post-translational
modifications and plays a pivotal role in various cellular processes. Although there
exist several computational tools to predict phosphorylation sites, existing tools
have not yet harnessed the knowledge distilled by pretrained protein language
models. Herein, we present a novel deep learning-based approach called
LMPhosSite for the general phosphorylation site prediction that integrates
embeddings from the local window sequence and the contextualized embedding
obtained using global (overall) protein sequence from a pretrained protein
language model to improve the prediction performance. Thus, the LMPhosSite
consists of two base-models: one for capturing effective local representation and
the other for capturing global per-residue contextualized embedding from a
pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite
achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined
serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent
test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational
tool for the prediction of the general phosphorylation sites in proteins.
KEYWORDS: post-translational modification, protein language model, phosphorylation, deep learning, stack generalization,
score-level fusion, embedding

■ INTRODUCTION
Protein phosphorylation is one of the most studied post-
translational modifications (PTMs) that plays essential roles in
many vital biological processes like cell metabolism, cell motility,
apoptosis, replication, transcription, environmental stress
responses, DNA repair, immunological responsiveness, and
cell cycle control.1−7 As much as 30% of all eukaryotic proteins
are phosphorylated and disruption in the pathway of
phosphorylation is associated with the pathological progression
of diseases such as Parkinson’s, Alzheimer’s, cancer, and heart
disease,6,8−10 phosphorylation is commonly found on serine (S),
threonine (T), tyrosine (Y), and histidine (H) residues of
proteins.11

Experimental techniques like low throughput 32P-labeling12,13

and high throughput mass spectrometry14,15 are used to detect
phosphorylation sites in proteins. However, these techniques are
time-consuming and labor-intensive. In this regard, several
computational approaches for the prediction of the general
phosphorylation sites have been developed. NetPhos16 is an
artificial neural network (ANN)-based approach for prediction
of phosphorylation sites. RF-Phos17 is a random forest-based
approach for prediction of general phosphorylation sites.

Similarly, PhosPred-RF18 is another phosphorylation site
predictor based on random forest.
Recently, deep learning (DL) architectures have been used to

predict various PTMs in proteins. Unlike machine learning
(ML)-based models, the DL architecture does not require
manual feature extraction. For example, MusiteDeep19 is a DL-
based approach that utilizes one-hot encoding and convolu-
tional neural network (CNN) with an attention layer to predict
phosphorylation sites. Likewise, DeepPhos20 uses densely
connected CNN (DCCNN) blocks with different filter sizes
and windows to learn multiple representations of sequences to
predict phosphorylation sites. Furthermore, Wang and Xu
devised a capsule network (CapsNet)21 -based architecture for
prediction of protein phosphorylation sites.
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Furthermore, DeepPSP22 merges local window (51) and
global window (2000) information using squeeze-and-excitation
blocks and LSTM blocks to further improve the phosphor-
ylation PTM site prediction. Among the existing approaches,
DeepPSP is quite unique in the sense that this approach
integrates both local and global information for predicting the
phosphorylation sites. Note that these deep learning methods
utilize a one-hot encoding scheme for representation of amino
acids. Chlamy-EnPhosSite23 is an organism-specific phosphor-
ylation site predictor forChlamydomonas reinhardtii based on an
ensemble approach that combines long short-term memory and
convolutional neural network models in which a supervised
word embedding scheme is used to encode the protein
sequences. Similarly, PhosIDN24 uses an integrated deep
learning architecture to improve phosphorylation prediction
by combining local sequence (using one-hot encoding) and
protein−protein interaction (from the STRING database)25

information. Admittedly, considerable progress has been made
in the development of general phosphorylation site prediction
methods. However, for all current predictors of phosphorylation
sites, the input features are either one-hot encoding (each amino
acid is represented with a binary vector), embedding encoding
(a learned representation where amino acids that are similar
have similar representation), or handcrafted features (physio-
chemical features extracted from protein sequence).
Recently, the transformer-based26 language model has shown

huge potential to unfold the meaningful latent representation of
the sentences/language by implementing a multihead self-
attention-based mechanism with masking. By considering the
protein sequences as sentences, Elnaggar et al. (ProtTrans)27

developed a pretrained protein language model (pLM), namely,
ProtT5-XL-UniRef50 trained on 2.5 billion protein sequences
from the UniRef50 database. The representation learned by this
model has been used in various prediction tasks, and the results
demonstrate that the information on the evolutionary context of
a sequence, contact map, taxonomy, long-range dependencies,
protein structure, subcellular localization, physicochemical
properties, and function is encoded in their distributed
representation.28−34 Thus, a more effective model of phosphor-
ylation site prediction may be established by using the
knowledge distilled by this language model.
In this work, we present a novel general phosphorylation site

prediction tool named LMPhosSite that integrates per-residue
contextualized embedding (aka embeddings that are obtained
based on its context) from the pretrained protein language
model (ProtT5) with local word embedding. LMPhosSite
utilizes stacked generalization to improve the prediction of
phosphorylation sites by combining two different models
trained using embeddings obtained from the supervised
embedding layer and embeddings from the ProtT5 language
model. Initially, these two modules are passed to their
corresponding deep learning architectures, and finally, the
stacked generalization of these two models is performed using a
meta-model. When compared with the other existing phosphor-
ylation site prediction tools, LMPhosSite exhibits an improved
prediction performance.

■ MATERIALS AND METHODS

Data Set

To train and evaluate our models, we used the data set from
DeepPSP.22 The data set in DeepPSP were experimentally
identified phosphorylation sites collected from the SWIS-

SPROT,35 dbPTM,36 phosphoELM,37 and PhosphoSite-
PLUS.38 Subsequently, the CD-HIT39 tool was used to remove
the homologous sequences using a cutoff threshold of 0.5.
Finally, the sequences were randomly divided into the training
and test set in a ratio of 9:1. The annotated phosphorylation sites
from these sequences were defined as positive sites, and any
remaining S, T, and Y sites that were not annotated as
phosphorylated within the same protein sequence were defined
as negative sites. To extract the local information, positive
windows were generated with the annotated phosphorylated
sites in the middle and an equal number of amino acids on both
sides flanking the phosphorylated sites. Negative windows were
generated in a similar manner. When the site of interest was
located near the N- or C-termini of the protein, pseudoresidues
“-” were added to make the window sizes to be of the same
length. Duplicates were removed from both the positive and
negative data sets. Additionally, we also experimented with a
CD-HIT cutoff of 0.3 on the homologous sequences and the
corresponding data set and the results are presented in the
Supporting Information (Tables S5−S9). However, for
comparison purposes with the existing approaches, we use the
data set obtained using a CD-HIT cutoff of 0.5.
As S and T residues can be phosphorylated by the same

specific kinase (hydroxyl groups in their side chains), the S andT
data sets were combined. However, as Y residues undergo
different enzymatic processes because of pi-electron and the
conjugated electrons40 (phenol ring on the side chain), the Y
data set was kept separate. Like many existing approaches, we
developed one model for the combined S and T residues and a
separate model for the Y residues. Table 1 shows the total

number of positive and negative sites in the training and
independent test data sets. To avoid overestimation, we made
sure that no protein sequences from the independent test data
set are present in the training data set as ProtT5 can learn
representation for other sites from the same protein. Also, the
number of positive ST sites is slightly different than the original
DeepPSP data set as some protein sequences have been updated
in the UniProt.
Feature Encoding
In developing a statistical model for the discrimination of
protein phosphorylation sites, one pivotal step is numerical
encoding through an encoding scheme that assigns a numerical
representation to each amino acid that can accurately reflect the
intrinsic correlations with the desired targets.41 In this study,
similar in spirit to DeepPSP, we employed both global and local
sequence information for the prediction of protein phosphor-
ylation sites. For extracting global information, we used the
entire protein sequence that includes the site of interest as input
to a pretrained protein language model to extract per-residue
contextualized word embedding. Additionally, for encoding the
local information, we utilized a supervised embedding layer to
obtain word embedding for the window sequence centered

Table 1. Positive and Negative Phosphorylation Sites for
Training and Independent Testing

data set residues number of proteins positive negative

training ST 12,238 165,483 878,133
Y 8,742 28,965 134,997

test ST 1,361 18,551 101,944
Y 968 3,248 14,503
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around the site of interest in a supervised manner. We described
in detail these two types of embeddings below.
Local Sequence Feature Encoding Using the Supervised
Embedding Layer

The post-translational classification approaches such as Deep-
IPs,42 LMSuccSite,43 DeepRMethylSite,44 and pLMSNOSite45

showed improved prediction performance using supervised
word embedding encoding46 obtained using a supervised
embedding layer (SEL). The SEL learns the representation
from integer-encoded sequences through back-propagation in a
supervised manner. We used the SEL to encode the local
window sequence. First, the 20 canonical amino acids and one
pseudoresidue “-” were converted into specific integers ranging
from 0 to 20. Thesemake the inputs for the embedding layer that
lies at the beginning of our DL architecture. Initially, the weights
in the embedding layer were randomly initialized, and these
weights were updated during the training process. The key
arguments in the embedding layer are vocabulary size,
output_dim (size of vector space), and input_length (size of
input windows). The output from the embedding layer has the
dimension of input_length × output_dim. Based on the 10-fold
cross-validation results, for our case, we used a vocabulary size of
23, output_dim of 21, and size of input windows to be 51. This
embedding was fed into one of the base-models.
Contextualized Per-Residue Embedding from ProtT5

Recently, embeddings from protein language models (pLMs)
were utilized to predict binding residues,47 signal peptides,48

subcellular localization,49 and protein structural features.50 In
this regard, here, we employ a protein language model (pLM)
called ProtT5-XL-UniRef50 (ProtT5)27 to obtain contextual-
ized per-residue embedding for the site of interest. ProtT5 is
based on the T5 architecture51 and trained solely on unlabeled
protein sequences fromBFD (Big Fantastic Database; 2.5 billion
sequences including meta-genomic sequences)52 and Uni-

Ref50.53 To obtain the contextualized per-residue embedding
for the site of interest from ProtT5, the overall protein sequence
containing the site of interest was fed into a pretrained ProtT527

model and the fixed-length per-residue features were extracted
from the last encoder layer. This contextualized (1024 length
feature vector) embedding of the site of interest produced by
ProtT5 was then fed into the other base-model.
Architecture of LMPhosSite

LMPhosSite integrates two base-models: a model for learning
encoding from local sequence information obtained from the
window sequence and anothermodel for learning contextualized
embedding from the global sequence information obtained
using the overall protein sequence, using stacked generalization.
Initially, these base-models are trained independently. Finally,
score-level fusion of these two models is performed by using a
meta-classifier based on a fully connected network. The
proposed architecture of LMPhosSite is shown in Figure 1.
Model for Supervised Word Embedding

The input to this model is the (local) window sequence with the
site of interest in the middle. For the embedding layer, a window
sequence of size 51 (as shown in Figure 2) was taken around the
site of interest, and features were extracted subsequently for
classification based on this window. The architecture of this
model starts with a supervised embedding layer followed by two
layers of a one-dimensional convolution neural network (1D-
CNN) and a fully connected layer. The first and second layer
1D-CNNwere configured to 128 and 64 filters, respectively, and
the size of the filter was set to 3. Additionally, the 1D-CNN layer
uses the ReLU activation function and a dropout probability of
0.3. All generated feature maps from 1D-CNN were then sent
into theMaxPooling layer with a pool size of 2. TheMaxPooling
layer samples the output feature map of the convolution layers
and extracts the most obvious features. Subsequently, the output
feature maps from 1D-CNN were flattened and sent to a fully

Figure 1. Overall architecture of LMPhosSite: the output scores of two base-models (word embedding (SEL) and ProT5 embedding) are combined
using a concatenation layer followed by a basic ANN. The site of interest 'T' is shown in red.
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connected layer with 256 neurons that has a ReLU activation
function and a dropout probability rate of 0.4. The output of this
model is a probability (of being phosphorylated) score between
0 and 1.
Note here that the architecture and the associated hyper-

parameters for this base-model were obtained using 10-fold
cross-validation with grid-search. Essentially, several DL
architectures such as 1D-CNN, 2D-CNN, LSTM, and BiLSTM
were implemented for this model, and 1D-CNN was selected
based on the 10-fold cross-validation results.
Model for Contextualized Embedding Obtained from
ProtT5

The input to this model is the contextualized embedding of the
site of interest (size = 1024) obtained from ProtT5 extracted
using the overall sequence. Initially, we extracted a static
embedding of size n × 1024, where n is the size of the overall
sequence, from the last hidden layer of the ProtT5 architecture.
However, we only used embedding of the “site of interest” for
our purpose. For instance, given a protein sequence of length of
100 and the site of interest located at the 25th position in the
sequence, the ProtT5 will output a contextualized feature vector
of size of 1 × 1024 for every 100 amino acid positions (totaling
100 × 1024 size feature matrix). We only utilized the feature
vector (dimension: 1 × 1024) corresponding to the site of
interest, i.e., 25th amino acid. In our case, the sites of interest are
S, T, and Y where they can either belong to the positive set or a
negative set. We presented a schematic representation of the
overall architecture and how features are extracted for the site of
interest using ProtT5 in the Figure 1. The input sequence of
length n with the site of interest ("T", denoted in red) was fed to
ProtT5. From these embeddings, we only used the 1024 length
feature vector of the site of interest ("T") for classification
purposes.
The architecture of this model consists of an ANN with two

hidden layers and one output layer. The first hidden layer has
128 neurons, and the second hidden layer has 32 neurons. The
output of this model is also a probability (of being
phosphorylated) score between 0 and 1. Similarly, various
architectures such as RF, SVM, XGBoost, logistic regression,
and ANNwere implemented for this model, and an ANN-based
architecture was selected based on 10-fold cross-validation
results.

Meta-Classifier for Score-Level Fusion

Next, stacked generalization of the two base-models was
performed to obtain a meta-classifier using score-level fusion.
The input to this classifier is the two probability outputs from
the base-models: the supervised embedding layer model and the
ProtT5-based model. The architecture for this model used a
basic ANN with one hidden layer having two neurons. All the
hyperparameters of individual base-models and the meta
classifier used in LMPhosSite are presented Table 2.

Note here that the architectures and the associated hyper-
parameters for the meta-classifier were also obtained using 10-
fold cross-validation with grid-search.
Model Evaluation and Performance Metrics
In this study, phosphorylated sites are considered as positives
sites, and nonphosphorylated sites are considered as negatives
sites. Additionally, phosphorylated sites and nonphosphorylated
sites predicted correctly by the model are true positive (TP) and
true negative (TN), respectively. The negative sites misclassified
as positive sites are false positive (FP) and positive sites
misclassified as negative sites are false negative (FN). Ten-fold
cross-validation was utilized to evaluate the performance of the
models. For the results of 10-fold cross-validation, unless
otherwise noted, all performance metrics are reported as the
mean value ± one standard deviation. Four metrics including
precision (Pre), recall (Rec), F1-score, and Matthew’s
correlation coefficient (MCC) were used to evaluate the
performance of the models (with a probability decision
threshold = 0.5). Furthermore, the area under the receiver
operating characteristics (ROC) curve and area under the
precision-recall curve (PrAUC) were also used as performance
metrics. Equation 1 describes precision, recall, F1-score, and
MCC where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

Pre
TP

TP FP
=

+ (1)

Rec
TP

TP FN
=

+ (2)

F1 2
PRE RE
PRE RE

= × ×
+ (3)

Figure 2. Ten-fold cross-validation mean MCC of the combined ST
phosphorylation data set for different window sizes.

Table 2. Hyperparameters of the Proposed Deep
Architecture

model layer

hyperparameters

activation
function sizeb filters

drop-
out

MaxPool
1D (pool)

ProtT5 densea ReLU 128 0.4
ReLU 32 0.4
sigmoid 1

embedding
encoding

1D
CNN

ReLU 3 128 0.3 2
ReLU 3 64 0.3 2

flatten
dense ReLU 256 0.4

sigmoid 1
stacked
generalization

dense ReLU 2
SoftMax 2

aDense layers represent the fully connected layers in TensorFlow.
bThe size of convolution layers means the kernel sizes, and the size of
dense layers denotes the number of neurons in hidden states.
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MCC
(TP)(TN) (FP)(FN)

(TP FP)(TP FN)(TN FP)(TN FN)

=

+ + + +
(4)

■ RESULTS
As discussed in the Materials andMethods section, LMPhosSite
integrates two types of embeddings using stacked generalization

by performing score-level fusion. Using 10-fold cross-validation,
we first find the best architectures and hyperparameters for the
individual models and subsequently find the best hyper-
parameters for the meta-classifier using the 10-fold cross-
validation strategy.
Essentially, we analyzed the comparative performance of

various architectures for base-models and the meta-classifier
using 10-fold cross-validation techniques. Finally, we compare
the performance of LMPhosSite against existing phosphor-
ylation tools using independent testing. Below, we discuss the
results in detail.
Window Size Selection and Embedding Dimension
Selection for Local Sequence Feature
The recent studies54−56 unravel that neighboring residues can
influence the phosphorylation status of the site of interest (in
this case serine, threonine, and tyrosine residues). In that regard,
to capture local sequence information for the site of interest, a
local window sequence centered around the site of interest (S, T,
or Y) surrounded by an equal number of flanking residues on
both sides is generally taken as input. However, the window size
is also a parameter. To determine the window size, we
performed a 10-fold cross-validation for the supervised
embedding layer model. Essentially, we experimented with
various window sizes ranging from 15 to 61 in an increment of 2

for combined ST and Y phosphorylation training data sets
(Figure 2) and 3 showed the mean Matthew's correlation
coefficient (MCC) produced using different window sizes on
the combined ST and Y phosphorylation training data set using
10-fold cross-validation. The detailed results of the analysis are
presented in Tables S1 and S2. Further window sizes were not

Figure 3. Ten-fold cross-validation mean MCC of the Y phosphor-
ylation data set for different window sizes.

Table 3. PerformanceMetrics for TwoBase-Models (Embedding (Em) and ProtT5 (PrT5)) andMeta-Model (PrT5 + Em)Using
10-Fold Cross-Validation on the Combined ST Phosphorylation Training Data Seta

encoding scheme MCC precision recall F1-score

ProtT5 (PrT5) 0.461 ± 0.005 0.746 ± 0.008 0.697 ± 0.014 0.720 ± 0.004
embedding (Em) 0.434 ± 0.004 0.715 ± 0.021 0.721 ± 0.046 0.717 ± 0.012
PrT5 + Em (LMPhosSite) 0.502 ± 0.004 0.766 ± 0.006 0.721 ± 0.007 0.743 ± 0.002

a± refers to standard deviation.

Table 4. Performance Metrics for Two Base-Models (Em and
ProtT5) and Meta-Model (PrT5 + Em) on the Combined ST
Phosphorylation Independent Test Set

encoding scheme MCC precision recall F1-score

ProtT5 (PrT5) 0.3693 0.3733 0.6538 0.4752
embedding (Em) 0.3496 0.3377 0.7029 0.4562
PrT5 + Em (LMPhosSite) 0.3905 0.3878 0.6712 0.4915

Figure 4. ROC curves of LMPhosSite (PrT5 + Em) and base-models
on the combined ST independent test data set. For eachmodel, the area
under the ROC curve is also reported.

Figure 5. Precision-recall curves of LMPhosSite (PrT5 + Em) and base-
models on the combined ST independent test data set. For each model,
the area under PrAUC is also reported.
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analyzed due to the sheer size of the windows and the
corresponding increase in the number of pseudoresidues "-"
that were required at higher window sizes (for residues near N-
and C-termini).
From Figure 2, it can be observed that the best performing

window size was 51 (highest MCC, 0.434 for ST and highest

MCC, 0.3041 for Y) for the combined ST and Y phosphor-
ylation training data set. Hence, 51 was selected as the value of
window size for the combined ST and Y phosphorylation
residue for subsequent analysis. Interestingly, the DeepPSP22

phosphorylation prediction method also uses the same window
size (= 51).
Subsequently, the model architectures for the two base-

models and the meta-model are selected based on 10-fold cross-
validation results.
10-Fold Cross-Validation Results of Base-Models and
Meta-Classifier

Here, we discuss the comparative performance of the base-
models and the meta-classifier using 10-fold cross-validation on
the ST phosphorylation training data set. The results are
presented in Table 3. The performance metrics used are
precision, recall, MCC, and F1-score.
As mentioned above, the training set consists of 165,483

phosphorylated sites and 165,483 (under sampled from
878,133) nonphosphorylated sites. Consequently, the 10-fold
cross-validation was performed on the combined ST phosphor-
ylation training data set (330,966 training examples) to choose
the best performing meta-classifier (PrT5 + Em). We also
performed experiments using cost-sensitive learning by using all
the negative sets, and the result of this analysis is shown in Table
S4. The mean MCC of the supervised word embedding base-
model (Em) is 0.434± 0.004, and the meanMCC of the ProtT5
base-model (ProtT5) is 0.461 ± 0.005. Additionally, it can be
observed from Table 3 that the meta-classifier produces a mean
MCC, mean precision, mean recall, and mean F1-score of 0.502
± 0.004, 0.766 ± 0.006, 0.721 ± 0.007, and 0.743 ± 0.002,
respectively. Thus, the MCC of the meta-classifier is higher than
the MCC of both base-models for the prediction of
phosphorylation site prediction, indicating that meta-classifier
performs better than the base-models for phosphorylation
prediction. Hence, we select this meta-model that combines the
two base-models as the final model for the prediction of
phosphorylation sites and we call this model as LMPhosSite. As
described earlier, the architecture of the meta-classifier is a basic
ANN with one hidden layer having two neurons. In conclusion,
the meta-model (PrT5 + Em) that combines the local sequence
information from the supervised embedding layer (embedding
(Em)) and the global information from the ProtT5 model
(ProtT5 (PrT5)) produces the best MCC. Note that the
architecture for the base-models was independently optimized
using 10-fold cross-validation.
Independent Test Results

Subsequently, we assessed the performance of LMPhosSite and
the base-models on the independent test set for ST and Y sites.
The results of LMPhosSite on independent ST sites are
presented in Table 4. As seen from the table, LMPhosSite
produces a precision, recall, Matthew's correlation coefficient
(MCC), and F1-score of 38.78%, 67.12%, 0.390, and 49.15%,
respectively. The LMPhosSite was able to classify 82,275
samples as true negative, 12,452 samples as true positive, 19,650
samples as false positive, and 6,099 as false negative for the ST
independent data set. Similarly, when we tested the LMPhosSite
on Y phosphorylation sites and tested on the Y phosphorylation
test data set, it achieved a precision, recall, Matthew's correlation
coefficient (MCC), and F1-score of 34.90%, 62.03%, 0.298, and
44.67%, respectively. The LMPhosSite was able to classify
10,735 samples as true negative, 2,010 samples as true positive,
3,748 samples as false positive, and 1,230 as false negative for the

Figure 6. ROC curves of LMPhosSite (PrT5 + Em) and base-models
on the Y independent test data set. For each model, the area under the
ROC curve is reported.

Figure 7. Precision-recall curves of LMPhosSite (PrT5 + Em) and base-
models on the Y independent test data set. For each model, the area
under the PrAUC is also reported.

Table 5. Prediction Performance of LMPhosSite Compared
to Other Existing Predictors on the Combined ST and Y
Phosphorylation Independent Data Seta

residues predictors MCC precision recall
F1-
score

combined ST LMPhosSite 0.3905 0.3878 0.6712 0.4915
DeepPSP 0.3790 0.3741 0.6769 0.4819
MusiteDeep 0.3342 0.3241 0.7041 0.4439
Musite 0.2006 0.2237 0.7552 0.3451
CapsNet 0.2743 0.2405 0.8855 0.3783

Y LMPhosSite 0.2984 0.3490 0.6203 0.4467
DeepPSP 0.2605 0.3095 0.6561 0.4206
MusiteDeep 0.2029 0.3488 0.3485 0.3487
Musite 0.1400 0.2353 0.6786 0.3494
CapsNet 0.1954 0.2329 0.8861 0.3688

aHighest values in each column (and category, ST/Y) are highlighted
in bold.
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Y independent data set. The independent test results for base-
models are shown for informative purposes only, and the final
model (meta-classifier) is selected based on 10-fold cross-
validation.
Figure 4 shows the receiver operating characteristic (ROC)

curve for base-models and LMPhosSite on the combined ST
independent test data set. It can be observed that LMPhosSite
(PrT5 + Em) has the highest area under the curve (0.823)
compared to the base-models. Additionally, we also plotted the
precision-recall curve for the base-models and LMPhosSite on
the combined ST independent test data set, and the results are
shown in Figure 5. It can be observed that LMPhosSite also has
the highest precision-recall area under the curve (PrAUC =
0.532).
Moreover, we also plotted ROC and precision-recall curve of

the phosphorylation Y independent data set, and the
corresponding ROC and precision-recall curves are shown in
Figures 6 and 7, respectively. The AUC and PrAUC of
LMPhosSite are the highest compared to the base-models for
the Y phosphorylation independent data set too.
Comparison with Other Widely Available General
Phosphorylation Predictors Based on Independent Testing

We further compared the performance of LMPhosSite with
some publicly available predictors including DeepPSP,22

MusiteDeep,19 Musite,57 and CapsNet,21 and the results are
shown in Table 5. DeepPSP, MusiteDeep, and CapsNet utilize
state-of-the-art deep-learning algorithms, whereas Musite

utilizes a machine-learning algorithm. The results for DeepPSP,
MusiteDeep, Musite, and CapsNet were adapted from
DeepPSP, and we use the same training and test data set as
DeepPSP. It can be observed from Table 5 that LMPhosSite
trained on a combined ST phosphorylation data set produced an
MCC, precision, recall, and F1-score of 0.3905, 38.78%, 67.12%
and 49.15%, respectively.Moreover, LMPhosSite trained on the
Y phosphorylation data set produced an MCC, precision, recall,
and F1-score of 0.2984, 34.90%, 62.03%, and 44.66%,
respectively. LMPhosSite produces the highest MCC (0.3905
for ST and 0.2984 for Y) among the compared approaches for
both ST and Y phosphorylation independent testing. Moreover,
the confusionmatrices of all the predictors are listed in Table S3.
These results demonstrate that LMPhosSite performs better

than the compared approaches across all these performance
metrics except for recall for combined ST and produces the best
results across all these performance metrics except for recall for
the Y phosphorylation data set.
t-SNE Plot

Additionally, to discern the classification effectiveness of the
features from the base-models as well as the features from the
stacked generalization model, we used t-distributed stochastic
neighbor embedding (t-SNE)58 to project these features into the
two-dimensional space (Figure 8). The main purpose of t-SNE
visualization in this work is to visually observe the separation
boundaries between classes in two-dimensional space. The t-
SNE plot was generated using 50 as the value for the learning

Figure 8. t-SNE illustration of the learned features. (A) Features extracted from the ProtT5 language model, (B) learned features from the ProtT5
base-model, (C) learned features from the embedding base-model, and (D) learned features from stacked generalization (LMPhosSite).
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rate to visualize the learned ProtT5 features and features
obtained from the penultimate dense layer of the trained model.
Note that these plots were generated using 8,274 (4,137 positive
and 4,137 negative) randomly chosen data points.
For the features extracted from the language model ProtT5 of

phosphorylated or nonphosphorylated token “S/T”, there are
some clusters for positive and negative samples; overall, the
positive and negative samples are still not distinct (Figure 8A).
Figure 8D represents the t-SNE plot of the feature vectors
generated from the concatenation layer of the trained deep-
learning architecture, which shows that negative samples (blue
points) are concentrated at the third quadrant, while positive
samples (orange points) are concentrated at the first quadrant,
which indicates that the ensembled DL architecture that
processes features from two information sources with MLP as
a meta-classifier largely clusters positive and negative samples in

2 space. For further elaboration, we also provide the t-SNE plot
generated from the penultimate layer of trained base-models
ProtT5 and embedding encoding in Figure 8B and Figure 8C,
respectively.

■ CONCLUSIONS AND DISCUSSION
Protein phosphorylation is one of the most important post-
translational modifications. In this work, we developed a stacked
generalization approach called LMPhosSite to predict protein
phosphorylation sites. LMPhosSite uses a supervised embed-
ding layer to encode local sequence information and a pretrained
protein language model (ProtT5) to encode global sequence
information and then integrates these two types of information
using a stacked generalization approach. The novelty of the
approach is the use of global information extracted from
contextualized embedding obtained from a pretrained protein
language model (ProtT5) for the site in conjunction with
supervised word embedding obtained from the local sequence
window. The independent test results show that LMPhosSite
achieves better performance than the compared approaches.
Hence, it can be concluded that LMPhosSite is a promising
general phosphorylation site prediction tool.
The improved performance of the LMPhosSite can likely be

attributed to two things: the use of contextual protein language
models to extract features from the overall protein sequence for
the site of interest and the novel architecture that uses stacked
generalization. To our knowledge, LMPhosSite is the first
approach that utilizes the distilled information from large
pretrained protein language models for the prediction of
phoshorylation sites. Similar in spirit to DeepPSP, our model
combines the global information (the ProtT5-based embed-
dings obtained for the site from the whole protein sequence)
with the local information (the supervised word embedding
obtained from the window sequence using the supervised
embedding layer). Since these pLM embeddings can be easily
extracted for any protein sequence, LMPhosSite provides robust
and fast predictions for phosphorylation sites.
The improvement in the performance of these approaches

that utilize language models may be improved by (i) fine-tuning
a pretrained protein language model using the proteins of the
same characteristics (in this case, phosphorylated proteins), (ii)
training newer protein language models using newer language
models like GPT-4, and (iii) combining language model-based
features with other physio-chemical features. Finally, with the
development of newer and more powerful protein language
models, the prediction performance of the approaches that make

use of distilled information from these language models is likely
to improve.
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