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Sobolev space. Via an appropriate randomization of the supercritical initial data, both local and small data global well-
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1. Introduction

A mathematical model for the incompressible magnetohydrodynamics (MHD) with Hall effect is given
by

u + (u-V)u— (B-V)B+ VII = Au,
Bi+ (u-V)B—(B-V)u+V x ((VxB)xB)=AB, (1.1)
V-u=0

on T3 x [0,00). The unknowns u, B and II are the velocity field, magnetic field and scalar pressure
respectively. Note that V- B(z,t) = 0 remains true for all the time ¢ > 0 if V- B(z,0) = 0. The nonlinear
term with the highest derivative is the Hall term V x ((V x B) x B) which is posed to capture the
rapid magnetic reconnection phenomena in plasma physics. The presence of the Hall term makes (1.1) a
quasilinear system which is usually more challenging than semilinear systems.

The well-posedness of the Hall MHD system (1.1) in various functional spaces has been studied
extensively, for instance, see [1,6,7,10,11]. In these works the initial data and solution reside in the same
spaces. In this paper, we are interested in the Cauchy problem for the Hall MHD with rough initial
data yielding solutions with higher regularity. This can be achieved by randomizing the initial data
properly. Such scheme for Cauchy problem with rough initial data was first developed in [3-5,16] for
treating dispersive equations. It has been applied to the Navier—Stokes equation in [17] to obtain global
weak solutions when the initial data is in Sobolev space with negative index. Other applications can be
found in [8,12-14,18] for both dispersive and dissipative systems. It is notable that the randomization
strategy has the advantage to study Cauchy problems with supercritical feature, either the system being
supercritical or the initial data being supercritical.

In the author’s previous work [9], we investigated the electron MHD with generalized diffusion (—A)*
for suitable @ > 1 in the supercritical regime. By randomizing the initial data in H*® with s < 0, we
established global existence of weak solutions. When « > 1, the generalized electron MHD is no longer
quasilinear, but semilinear. One major observation in [9] is that there are obstructions to apply the
approach of randomization of initial data for quasilinear equations, although the method is robust in
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analyzing supercritical equations. In this paper, we continue to study the full system of the Hall MHD
with generalized diffusion,

us + (u-Viu— (B-V)B+ VI =— (—A)%u,
B+ (u-V)B—(B-V)u+V x((VxB)xB)=—(—A)"B, (1.2)
V-u=0.

We only consider 1 < a < %, in which regime system (1.2) is still supercritical, but restrict to the case

of initial data in H® with s > 0 as to distinguish the current work from [9]. We point out that the
coefficients of the diffusion terms in (1.2) are set to be 1 for the purpose of simplifying notations; the
diffusion coefficients do not play a role in the analysis of the paper. Unlike the classical MHD without
Hall term, system (1.2) does not have a natural scaling. We extend the discussion on this aspect in the
following.

When B = 0, system (1.2) reduces to the hyperdissipative Navier—Stokes equation (NSE)

ug + (u- Vi)u+ VII = — (=A)%u,
Vou=0

which has the scaling property: if (u(z,t),II(z,t)) solves (1.3) with initial data ug(x), the rescaled pair
(ua,IIy) as

(1.3)

ux(x,t) = N2 tu(e, A20t), T (z,t) = A2 DI\, A20)
solves (1.3) with initial data ug = A?*~lug(Az). Among other scaling invariant (critical) spaces, the
critical Sobolev space for (1.3) in 3D is H2 2, In view of the prior energy estimate in L? = H°, (1.3) is
critical for a = %; it is supercritical for a < % and subcritical for o > g.
With static background flow u = 0 the Hall MHD system (1.1) reduces to the so-called electron MHD
B+ Vx ((VxB)xB)=—-(-A)B,

V-B=0. (14)

System (1.4) has the scaling
By(z,t) = A2*72B(\x, \**t).

The critical Sobolev space for (1.4) on T3 is H2 2%, Again it follows from the basic energy law that (1.4)
is critical for o = Z, supercritical for a < % and subcritical for o > %.

In the full system (1.2), the scaling of the magnetic field equation plays a dominant role since it
contains the highest degree nonlinear term. Thus it is referred to be supercritical when o < %. Ifa> %,
global regular solution is expected for (1.2) through standard energy method. The purpose of the paper is
to study the Cauchy problem of (1.2) in the regime 1 < a < 7 and with initial data (uo, By) € H** x H*2,
0 <51 < % — 20 and 0 < s9 < % — 2. By randomizing the initial data, we show the existence and
uniqueness of solution to (1.2) in the space H3 2 x H2 2% As mentioned previously, the Hall term has
the highest derivative in the system and poses the most challenges in our analysis. Therefore, we first
investigate the hyperdissipative electron MHD (1.4) and tackle the difficulties caused by the Hall term
separately. We then study the full coupled system (1.2), in which step the major difficulty comes from
the coupling terms (u-V)B and (B - V)u. The key ingredient to overcome the obstacles coming from the
Hall term and coupling terms is the improved LP estimate for the free evolution of the randomized initial
data. Details will be unfolded in later sections. We state the main results respectively on the standard
probability space (2, A, P) for the electron MHD (1.4), the hyperdissipative NSE (1.3) and the full Hall
MHD system (1.2) below.

Theorem 1.1. Let a € [1,1). Let By = f € H*(T?) with s > max{3 — 4a,0}. For any m € (0,1), there
exists a set ¥ C Q with P(X) > m such that for any w € X the electron MHD (1.4) with the randomized
initial data < on T® has a unique solution B = Bjo + H with Bpo = e *=2)" f and

H e C([0,T]; H22*(T?))
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for some time T > 0. Moreover, there exists a constant ¢ > 0 such that if | f|lxscrs)y < ¢, T can be
arbitrarily large.

Remark 1.2. The gain of the derivative for the solution due to randomization of the initial data is
(f-20)— (5 —4a)=2a-2, if 1<a<i,
(Z-20), if Y<a<i.
In particular, when o — 1, the gain of the derivative is 2a — 2 — 0. This corresponds to the classical
well-posedness result in the critical space H? with initial data in the same space for the electron MHD
with a = 1. Therefore the approach of randomization of the initial data seems not yield improvement in
the quasilinear situation.
Theorem 1.3. Let o € [1,%). Let ug = g € H*(T?) with s > max{%Z — Za,0}. For any m € (0,1), there
exists a set ¥ C Q with P(X) > m such that for any w € X the NSE (1.3) with the randomized initial
data g* has a unique solution u of the form

U= ugo +V
and
V € C((0,T);H32(T%)).

for some time T' > 0. Additionally, there exists a constant c such that if ||g||3 13y < ¢, T can be arbitrarily
large.

Remark 1.4. When o = 1, Theorem 1.3 demonstrates almost sure well-posedness of the NSE in space
Hz(T?) for initial data in L2(T?). It recovers the result of [12].

Theorem 1.5. Let o € [1,%). Let ug = g € H**(T?) and By = f € H*2(T?) with s; > max{I — Za,0}
and sy > max{4 — 4a,0}. For any m € (0,1), there exists a set & C Q with P(X) > m such that for
any w € ¥ the Hall MHD (1.2) with the randomized initial data (g%, f*) has a unique solution (u, B) on
[0,T] for some T > 0 in the form

u=1ug +V, B=DBp.+H
with uge = e =2)"g% and By = e M2 f¥ and
V e C(0, T HE72(T%)), H e C((0,T]; H2>(T%).

In addition, there exists a constant ¢ > 0 such that if ||gl[3sr 3y + || fll#s2(rsy < ¢, T can be arbitrarily
large.

Remark 1.6. A special case of Theorem 1.5 is the almost sure well-posedness of (1.2) in the critical space
H329 % H272% with initial data (ug, By) € H*™! x H® for s > max{4 — 4a,0}. When o = 1, that
indicates almost sure well-posedness of the classical Hall MHD (1.1) in the critical space H2 x H2 with
initial data (ug, Bo) € H2 x H2. In the deterministic case in [10], well-posedness of (1.1) was established
in nearly critical space Hz1¢ x H? with arbitrarily small € > 0. As pointed out in [10], there is some
essential obstacle to remove € due to the coupling feature of the Hall MHD system and different scalings
for the velocity and magnetic field. The current result thus suggests that the randomization of initial
data can be employed to remove such obstacle.

Evidence of randomness providing certain form of regularization for the Hall-MHD system is also
seen in previous work [15,19]. In [15] the author proved a stochastic law of flux conservation for various
models including the Hall-MHD system with diffusion; in [19] the authors showed that the noise in the
Hall-MHD system induces damping effect.

The rest of the paper is organized as: (i) in Sect. 2 we lay out the notations to be used and recall the
standard randomization procedure; (ii) Sect. 3 is devoted to establishing improved estimates for the free
evolution ugw and By; (iil) we present a proof for Theorems 1.1, 1.3 and 1.5 in the last three sections
respectively.
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2. Preliminaries
1. Notations

We denote a general constant by ¢ which may differ in different estimates. Conventionally we denote
f < g for an inequality f < cg with some constant ¢ > 0. For brevity, the Lebesgue space LP(T?)
is sometimes denoted by LP. It applies to Lebesgue spaces with respect to other variables as well, for
instance, LP(0,T) = LY.

We introduce the weighted (in time) Lebesgue space

. g
Lo f:< [ ||trf(.,t)||igdt> <oo
0

1

T s
IfIILg,@L,;:(/O ||t7"f(-,t)||igdt> :

equipped with the norm

2.2. Randomization

We recall the probabilistic estimates obtained in [5], which are valid for both Gaussian and Bernoulli
variables.

Lemma 2.1. Let (I;(w))$2, be a sequence of real-valued, zero-mean and independent random variables on
a probability space (0, A, P) with associated distributions (p;)2,. Assume that there exists ¢ > 0 such

that
‘ / e’ dp;i(x)

Then there exists 3 > 0 such that

P (w: icili(w) >

Consequently, there exists another constant ¢ > 0 such that

Z cili(w)

We adapt the standard diagonal randomization on the Sobolev space H*(T").

Sec'yz VyeR Vi>1.

__Ba?
,\) <2 TET O OYAS0 V()2 €

1
2

<ecvg <Z cf) Vg>2 V()2 €
i=1

L1(Q)

Definition 2.2. Let (Ix(w))kezn be a sequence of real-valued and independent random variables on the
probability space (2,4, P) as in Lemma 2.1. Let ej(z) = ¥ for any k € Z". For a vector field
f=(f1, fas ey fn) € H*(T™) with Fourier coefficients (ax)gez» and aj, = (a}, a3, ...,a}), the map

R (Q,A) — H (T

w — fw7 fw(.%‘) = (Z lk( akek Z lk akek ) (2.1)

kezn kezn
equipped with the Borel sigma algebra is introduced. The map R is called randomization.

It is worth to mention that the Leray projection P commutes with the randomization map R, see [17].
In view of Lemma 2.1, we see that R is measurable and f* € H*(T") if f € H*(T™). We also have

foe L2 HN(T™), [l ~ [1F 1l
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3. Estimates of the Free Evolution with Randomized Initial Data

Let u(z,0) = g and B(z,0) = f and their randomization ¢* and f“ are given by

(Z lk bkek Z lk bkek >

kezn kezn
fe(x) = (Z le(w)ager (@), .y > lk(w)aZEk(x)> .
kezn kezn
We denote the free evolution of g and f* according to the operator —(—A)® by uze = e~ “{=2)" g% and

Bjo = e H=A)" f« respectively.
We first recall the Hardy—Littlewood—Sobolev lemma.

Lemma 3.1. [2] Let K(z) = |z|=¢ for x € R" and ¢ € (0,n). Let g € LP(R™). Then we have
[ K *QHLG(R") S ”g”LP(]R")

with1<p<q<ooand(zn(l—%—&—%).

The following two estimates will be used extensively in later sections.

Lemma 3.2. Let >0, p > 0 and m > 0. Then

n

< ¢ %%,

He—t\ﬁ\“ ™

L2(R™)

Proof. Straightforward computation shows

1
_ 2a m o 20 m P
H HE g ‘LP(R" = (/ e PHER |¢|p d§>
1

L (/ e PHE 1 B |eppm d(t2"€)) '

m _ n
2

2pa

St

since the integral fR" e~ Py yP™ dy is bounded for a > 0, p > 0 and m > 0. It is obvious that the estimate
holds on Z™ as well since Z™ C R".
O

Lemma 3.3. Let 0 < r,s <1 andr+ s = 1. There exists a constant ¢ > 0 independent of the time t such
that

t
/ (t—7)""r%dr <ec.
0
Proof. Changing variable 7 = ¢/ in the integral gives

/O(th)frTfsdT:/O 1-7)"(") dr"=B(1l—-s,1-r)<c

where B(1 — r,1 — s) is the Beta function.

We establish some probabilistic estimates for By. and uge in the following.
Lemma 3.4. Letr > q>p>2 and s > —=%. The free evolution By. satisfies
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Proof. Recall
Bpo(z,t) = e 0N f(2) = 3 e W (w)ager ().
kezn

By Minkowski’s inequality and Lemma 2.1, we have
IBselloypory S I1Bsellpgrery
1

2
_ 2a
S (3 e
kezn Lorr
1
2
_ 2a
= V| X e e
kezm Lt% Lf
We continue the estimate with Minkowski’s inequality again
%
1Brelligpgez S VF || D2 e > jaxllewl
kezn L§ Lt%
1
2
_4a
SV D kT fan]?lex]?
kezn L§
1
2
_4a
< (3 W ol

kezZm

where we used the estimate
2 t 2
— « _ «@
e 2k 4 = (/ e~ amIk] dr)
0

L¢
da ' K[> 2
= 7 ([ e e
0
SIHT
Note that for the basis {e;} we have
lerllZe < llexlZa-
1
2

_4a
> Ik Iak2||ek||%g>

Thus we further deduce
HBf“"HL;L?Lf; S \/;<
kezn

N

4o

5ﬁ<zqu

kezn

SV 20
Hae ¢

ak:2||€k||i§>

Lemma 3.5. Let r > % >p>2and é + 2%1 +206=1. Assume s > 2 — 2a + %, The estimate
SVl fllae

1Bl e

is valid.
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Proof. 1t is a special case of Lemma 3.4. Indeed, taking ¢ = %, the assumptions of Lemma 3.4 become
(3.1)

r2%2p22and
2
sZ——a:—zlaﬁ.
q

3198 =1 that

2pa

On the other hand, it follows from the assumption é +

—4af =2 - 20+ —.
p
O

Thus (3.1) is valid under the assumption s > 2 — 2a + %; and the estimate follows from Lemma 3.4.

Lemma 3.6. Letr > q>p>2 andn > 0. Then the estimate
L;LE"’Q)LE 5 \ﬁ”f”?-ti

[ Bye|

holds for s > —2amn — 2;‘.
Proof. Thanks to Minkowski’s inequality and Lemma 2.1 again, we infer

LnLILE

|

Z t”efﬂklhlk(w)akek(gﬂ)

kezn

<

HBf“’ HLZLi""’)Lg
> e g P

kezn

> e g P

kezn

2a
Z t2ne—2t|k\ |ak|2|€k|2

kezZm

The norm in time can be estimated as
t 20 a

(/ 1ane—arlk| dT)
0

e M g
L,?
t
e ([ (elbeymen b i) )

< KTt
T Birkhauser
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Therefore we continue the estimate as

1Bpell e pomgp S V|| D #2120 fay e
kezn Lirk
1
2
4
3 kT e

kezm

kezm
< W(Z ||~ a2 ||ek|Lp>

SVr ( S IR g llexl 72
kezn

SV —zan—2a
Ha E

p>2and = + Toa +28=1. Let s > 2 —2a + %. We have the estimate
SV Flls -

Lemma 3.7. Let r %
B w —

Proof. This is a special case of Lemma 3.6 with n = g and ¢ = =

Lemma 3.8. Letr > 2 and n > 0. Assume s > —2an — 3a + 11 The estimate
||Bf ||L’" L(" Q)HT—Za ~ f||f||'Hs

[#7(1 = A)s

holds.
Proof. Tt follows from Minkowski’s inequality and Lemma 2.1 that
114
By ||L;L§Lg

11 —2«

—ee M (W) ager ()

”Bfu”LLL,(s"’Q)H?
= |Y e+ kP
= L13L2
2
11 _ 2a
SV (Zt2"<1+|k|> 22 gy |ek|2>
kezn L2r2
2
2
= V(| D7 P R E e 0y e
keznr L%Lalc
2
-~ 20
5\/; Zth 1+‘/€| —2a, 2t|k| |ak|2|ek‘
kezm L;L%

We estimate the norm in time as before
t
_ 2a _ 2c
Hth 2t|k| HLl _ / 720, 27|k| dr

0
t
—4an—2a o —27|k|? @
[§] o2 / (r[ k{22206~ 27 M k22

S ‘k|f4anf2a.
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Thus we infer

=

1Bl oo SV DD AR e g e

Lo kezn

LiLy

=

S\/; Z|k|—4an—2a+11—4a|ak|2|ek|2

kezn L.
1
pl
SV ( > |k|4a"6a+11|ak2||€k||ig>
kezm

5 \/,F”f” —2an—3a+%.
Hw

It completes the proof of the lemma.

Remark 3.9. Recall H3 2% is a critical space for (1.4). We observe for p > 2 and 5 > 0,
2—2a—|— <7—2a for a>1,

{ 2an — 3a+11 <Z—2a7 for a > T +1

Therefore Lemmas 3.5, 3.7 and 3.8 hold for initial data f in supercritical and critical regime.

Denote

B o) = {we Bl y >}

E2(faﬂaa7A): {WEQ:HB]C“’H ([3,%) EA}a
L, LY

(n 2)H 2

Es(f, B, a,\) = {weQ: 1B || b 2)\}.

Lemma 3.10. Let o, 3, n and p satisfy the parameter conditions in Lemmas 3.5, 3.7 and 3.8. Assume
feH; fors> max{2 — 20+ § S —2am — 3a}. There exist constants ¢y > 0 and cz > 0 such that

coA?
T2
P(El(f7ﬁaa7A)) S c1e HfHHg" 5 f07” = 1,2,3.

Proof. We only show the estimate for F1(f, 5, «, \), since the other two can be handled analogously. In
view of Bienaymé-Tchebishev’s inequality, we deduce

P(EL(f,B,a,0)) = P ({w €Q:|Bpell g , 2 A}) < (cov/TAT M| Fllrs )" (3.2)

for some constant ¢y > 0. If
(waime) =7
- Z —
coell fllxs 23

2
. It then follows from (3.2) directly

—_— #
we take r = (coe\lfl\ng>

A2

P(Ei(f,B,0,\) < e Ol

(i) <3
cwoellflws ) = 28°

If otherwise

T Birkhauser
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then there exists a constant ¢; such that we have from (3.2)

A2

TR
P(EL(f,B,a,N) <cie @7 e,
by using the fact that y~" < ¢;e~¥" for small y > 0. -

Note that the estimates in the lemmas above hold for ug. with slight modifications. Applying Lem-
mas 3.4 and 3.6 gives

Lemma 3.11. Let i + 2(}% +2v=1. Assume s > 1 — 2a + %. We have
1

w < N
l[2g ”Lgﬁmg SVrlgllme, for r> o >q>2,
1
lugell .1y SVrligllas, for r>=>qg>2.
LyL, 7 Li y

Lemma 3.12. Letr >4, (>0 and s > —2a( — ga + % Then

[[ge| 20 S VTNl

Lo L2
Proof. Tt follows from Minkowski’s inequality and Lemma 2.1 that

T_
1Brll, e, gose = 0= 8T Bl rape
w Tt x

S+ KR T (w)agex (x)
kez™

Ly L{L3

1
2
7_ _ 2a
SV (Zt“(lﬂk?)z 206 =2tlk| |ak|2lekl2>

kezm L%L?

2

7_ _ 20
:\/; thg(1+|k|2)2 20 2t|k| |ak|2|ek|2

kezm L2L}
N 2
7 «@
SV DD P+ (kP2 ag ey
keZn L1L2
z

We estimate the norm in time as before
[ P L

Thus we infer
1
2

Bl 20 SVT

Z t2C(1 + |k‘2)%—2ae—2t\k|2°‘|ak|2|ek|2
kezZm

7_
Lr L&Y N2 2
LiL?

(S

5\/; Z|k|74acfa+7f4a|ak‘2|ek|2

kezn Ll
1
2
SV ( > |k|4agsa+7|ak|2|€k||ig>
kezn

S \/;HfH —20¢§—%a+%.
Ha

) Birkhauser
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Denote

E4(fvﬂaaa)‘): {WEQ:||ugw|L > }

E5(f’6vav)‘>: {WEQ Huq“’H (7 l>Lq )\}

x

Balf. o) = o Qi llugel g on 2 A}

Lemma 3.13. Let «, 7, ( and q satisfy the parameter conditions in Lemmas 3.11 and 3.12. Assume f € H3
for s > max{l — 2« —|— —2a( — 704} There exist constants cz > 0 and cs > 0 such that

(34)\2

T llelZs .
P(E;(f,B,a,))) < cze e, for 1 =4,5,6.

Remark 3.14. Note that H272 is a critical space for the hyperdissipative NSE (1.3). We have for ¢ > 2
and ¢ > 0,
{1—2a+ <35 2a, for a>0,

f—2aC—fa< 5 _2a, for a>4<+1

Thus Lemmas 3.11, 3.12 and 3.13 are valid for initial data g in supercritical and critical regime.

4. Well-Posedness of the Electron MHD

We prove Theorem 1.1 for the electron MHD (1.4) in this section. As discussed earlier, the electron MHD
contains the nonlinear term with the highest derivative from the Hall MHD system. Hence we encounter
the most challenging estimates in this part.

To take the advantage of the improved L? estimates for the free evolution By. = e =) v we look
for a solution of (1.4) with initial data f¢ in the form

B=DBp. +H
with the nonlinear part H solving the Cauchy problem
H+VxV.-(Bpo +H)®(Byo + H)) =— (—A)*H,
V-H =0, (4.1)
H(z,0) = 0.
Here we used the rewriting
V x [(Vx (Bfo+H))x (Bpo +H)| =V xV-((Bjo+H)® (B + H))
since V- H =0 and V- B =0.

Obviously Theorem 1.1 follows from the well-posedness of (4.1) in a suitable subspace of

C([0, T); Hz2(T3)). Therefore we only need to show:
Theorem 4.1. Let 1 < a < %, 0<pB< i, 0 <np<1andp > 2. Moreover, the parameters satisfy

L + 2pa + 20 =1. Assume [ has zero-mean and

. 3 11
fer® for s>max{2-2a+ -, 5 2am — 3a}. (4.2)
p

For any m € (0,1), there exists a set & C Q with P(X) > m such that for any w € ¥ system (4.1) has a
unique solution H satisfying

H e C([0,7]; 12 72*(T%) N L% (0,75 L (T*)) 1 L3 (0, T; LP(T%))

T Birkhauser
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for some T > 0. Moreover, there exists a constant ¢ > 0 such that if || flln= < ¢, T can be arbitrarily
large.

Proof. We proceed by employing a fixed point argument. Denote
Q(z,t) = (B + H) @ (By + H)(x,1t).

The integral form of (4.1) is given by
t
H(x,t)=— / e~ NENTY V- Q(a, 7) dr (4.3)
0
Denote the map

¢
O(H)(t) = —/0 PRl VAN VA Q(x,7)dt.

Define the subspace Y C C([0,T]; HZ ~2%(T?)) as
Y = 00, T} H272(T%) 0 L5 (0,75 L (T%)) 1 L# (0, T; LP(T*)),
We claim that the map ® is a contraction on ) by showing that:

(i) ® maps Y onto itself;
(ii) For any Hy; € Y and Hy € Y, we have

[®(Hy1) — ®(Ha)|ly < cl[H1 — Hzy.

In order to show (i), we estimate ||<I)(H)HH%,QQ(T3), |®(H) and |®(H)||

| B.5) 0 3 25 . 3
L7 57(0,T;LP(T3)) L?25(0,T;L?(T3))

respectively in the following. We first expand ®(H) as
t [e3
O(H)(t) = —/ e A X V- (H(z,7) @ H(x, 7)) dr
0
t
. / PG dICr Vil vAVE vAS (H(z,7) ® Byo(x, 1)) dr
0
t
_/ e~ AT Ve (Byo (w,7) ® H(x, 7)) dr
0
t
. / P ICrV il vV vAS (Byw(z,7) ® Byo(z, 7)) dr
0
= —®; — Py — D3 — Dy.

We estimate ®; in H2~2%(T3) as

||‘I)1HH%—2Q(T3)

L3

= H(l —A)i /te_(t_T)(_A)aV xV-(H(z,7)® H(z,7))dr
0
= te*(t’T)(*A)a — _ %,QV X Ve T, T x, 7)) dr
\A (~8)(1 = )T R (H ) © i) d

s /Ot e (Ca)a - A (H @ @ H(x’T))HLz N

L3

t
N _A)i-e
S [ et s (0 - s o Ha ) ar

) Birkhauser
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where Plancherel’s theorem was applied in the last step. Using Holder’s inequality and Lemma 3.2 we
obtain

e TIEP 2 7 ((1 ~ A T(H (2, 7) ® Hx, T)))‘

2
LE

_2p_

T Y A (RSP o

S(t—7)" @ e (1—A)%—G(H(m,7)®H(a:,T))’ 2
LY
S@-nmme [avizen|| .,
LEt?
_1_ 3 T _2q
S(t—7) e @ |H|, |V H L

It follows from the last two inequalities that

||(I)1||H%72°‘(11‘3)

t q
< / (t—7)" 5% |H

7_
Vi QO‘HH dr
0 L2

t
— ) e mar B (8
Sl oo [ (6= )5 () ar

t ) 1-8 t 1
Sl g e ([ -3 sar) ([}, ar)
LeH2 0 0 *

Based on the assumptions on the parameters, we observe that for 0 < 8 < %

13 1 8
— _ — — =1
(a+2pa>l— Jrl—ﬁ ’

B

and

1 3 1 B
0 -4 — | —<1, 0<—< 1.
<<a+2pa>1—,6<’ <15 <

Hence Lemma 3.3 implies the time integral is bounded. Therefore we conclude

<
||®1||H%72Q(T3) ~ HH”L?OHéfZa ||H||L:5,%)L£ . (44)
. . (B
We continue to estimate ®; in L, Lr,
LR

t
_ Htﬁ/ e NENY V- (H(z, 1) @ H(x, 7)) dr
0

T Birkhauser
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Applying Holder’s inequality and Lemma 3.2 yields
et (a)(H (2 m) @ Hiw, 7))\ y

1

< et g E (H @) @ H o)) e
£

< He—(t—f)\s\“

| NF (H@n) @ Ha, ) e,
¢ Le
S(t—7)a we |Hie,r) @ Hz,7)|| g

_1_ 3 2
S(t—=7) e [Hp

Combining the last two inequalities we infer

[} 1
|| 1”LE,B"1’)L’§
t P
< / Pt — 1) ||| dr|
0 * L?
%
S| [ e -name gy ar
0 * Ltf%
tﬁ _1_ 3 2
+ t7(t — )"« || H7p dT )
% LF

=1+ L.

The term I; can be estimated by using Young’s inequality

t

2 P
|- m g ar

0 Lt%
%
1__3
S| [e-nrtse g, ar
0 Ltﬁ

t 1-3p8 ¢ ) 48
2 2 L
S /(t—f)“*%w%)(l—lwdf / |HI[; 2 dr
0 0 z
t 1-338
([ e=-ntar)  HP.
~ 0 zﬁLp

While the term I is estimated by employing Holder’s inequality and Hardy—Littlewood—Sobolev lemma

t2(t — )" "= ||H|, dr

LP

I\JH\
2

t
_1__3
(t =) 2 70| H| || H| .y d7

N
wxu\

L

t A t 1-8
5 1 3 1 _1
</ THHng dT) </ (t—T)(*Efzpa)kgHHHz;ﬁ d7'>
t @ A P 1
]

2 2
Lt

Tk

A

) Birkhauser
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JMFM

t 1 3 1 _1 s

SUHI 3 / (t—7) s L7 dr|

L, L% i 5
Lt

I

< ||H Hl %

IR (L

<

S o I,

Putting together the estimates above we get
< 2
H(I)IHLEB%)LI; ~ ”HHLE%"L” + ||HHL£5%>L§ HH”Lf%Lg : (4.5)

x

1
While to estimate ®; in L;” LP, we start with

191l
L

2y

t
/ e NN VL (H(z,7) @ H(z, 7)) dr
0

L2 L?

L2P

< ‘ /Ot He*(t*T)(*A)a(—A)(H(x,T) @uar(gc,T))HLg dr

Similarly as before, we deduce by applying Holder’s inequality and Lemma 3.2
et ) H (@) @ Hw, )|
< e g2 (H ) © Ha)| e,
3

—(t—1 2a
< He (t=7)Iél ‘£|2‘ . |F (H(z,7) @ H(z,7))l| =2,
g Le

< (t— T)—é—z,,% |H(z,7) @ H(x,7)||

Brors

L
S (t—7) 70w | H] |7y
Invoking Hardy—Littlewood—Sobolev lemma again, the last two inequalities together imply

< 2
SHHE (4.6)

t
o </t77_é_2‘%aH2 dr
e TR T

The estimate of ®, is analogous to that of ®;. We sketch some details below. Regarding the estimate

in H22(T3), we split Oy as

||(I)4||H%’2"‘(T3)

t
/ e~ AT X V- (Bjo (2, 7) ® Byo(x,7)) dr
L2

s
0
6 2 7
< / eI g2 E (B (a,7) © Bru(@,7)) | | dr
0 £

dr

2
£

+ /; He_(t—r)lflza}' ((_A)(l — A (B (2,7) @ By (x’T)))‘ )

= 13 —|— I4.
T Birkhauser
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where 6 € (0,t) is a fixed small constant. Applying Lemma 3.2 we infer for 2 < p < 4
(b |e2e 7_9q
[et=1e™ b2 R By .y © By )|
g

< He—(t—7)|£|2“ |§|2+%—2a

p
p—

2 || F (Bpe(z,7) @ Bpo (z,7))|| 2,
LE® L¢

< (t—7) 4T 5% || B (2, 7) @ By (@, 7l 5
S (t _ 7—)_%-"_1_% HBfw H%g

Thus, applying Holder’s inequality and Lemma 3.3 leads to

3(

)
—p)
I < / (t—7) B B2, dr
0

t
2 (4=p)
/ ((t—r)_‘%"'l_gpr wa) (TﬁHBwaLg)Q dr
0

s 1-2p3
5 / (t7T)(_%+1_$(fp_(1p))1—12£37_2B'ﬁ dT ||Bf“’||2(g 1y
; L, 7Lk

5 1-28
B / (t_T)_H_%T_% dr ||Bf“||2(a 1)
0 L, P'LE

< 2
~ HBf“’ HLiﬁ%)Lﬁ.

On the other hand, for p > 4 we have
He*(t*ﬂlglmv |§|2+%72a.7: (Bjw(z,7) ® By (x, 7'))‘

2
L&

< He—(t—TNfI?‘1 |€|2+%—2a

Lo 1T (Bre(2,7) @ Byo (2, 7))l 2
3

_1u
(t =) || Bpo(z,7) @ Byo (@, 7) 2

_1
(t—7)" = Bpollis

N N

and hence

é
e N LS
’ —41_—28) (B 2
= [ (=) =) (P Bpalns)” dr
0

5 1-28
< </ (t—7) itV m s d7-> 1B+ a1
0 L, P14

< || B ||? .
N|| f ”LEB%)L‘}E

In the estimate above, the time integral is handled as
s
/ (t— T)(_%'H)ﬁT_% dr
0
< -+ / 7T gr

0
<1

) Birkhauser



JMFM Almost Sure Well-Posedness for Hall MHD Page 17 of 30 13

since t > 0 > 0 and observing that for 1 < a < % and 0 < 8 < i

We continue to estimate I4. Again invoking Holder’s inequality and Lemma 3.2 we obtain

He*(th)\f\h]-‘ ((~a)(1 = a)i=*(B(2,7) @ Bya(a, T)))‘

2
3

F((-2)1 - 2)F By (2.7) @ Bpo (7)) | 2,

< He—(t—ﬂm“ ]
LP~
3

P
L

S (- 7)75 || (-A) (1 - AT By () @ Byow, 7)) 2

Lyt

< (t—7) 2% |V 2By |12 || Byl e

~

Therefore we have for 1 < a < % and 0 <np <1

t
L < / (t— )" [V 2B | 2| Bye | o dr
)

t
- /5 (t=7) 72 (27| VE 2 Bpallya ) ()| By lg) dr
1-283

t . 2

< </ (¢ — 1) s 1) dT> | Bl L | o || By Lo
é

S By

Lﬁ

L) 3 L -2a HBf“’ H (/3

L.’é

where the time integral is estimated as
t 3 2 2
/ (t—7) @ T (1A= gr
s

t
S 5 (n+5) / (t _ 7—)_2;%'1722,6 dr
5
<1
since t > 6 > 0 and p > ﬁ (hence 0 < m < 1). Summarizing the estimates above leads to

[@all,,z-2a jra;)<||Bfw||2(ﬁ b, +||Bfw|| S
: (4.7)
+ 1Byl

1 20| Bye|| Loh

L(" 2)H LP

1 L
The estimates of ®4 in Liﬂ’ﬁ )Lg and L;” L? are identical to that of ®;. Hence we collect the estimates

2
[[all JRCEap S Byl L + ||Bf“)|| LOF) ||Bfw|| LBy
’ ’ ’ (4.8)
Il SIBI
Obviously @2 and ®3 can be estimated similarly. Moreover, we observe that ||| shares an

H%72a(vjr3)
while [ @2 (51, ~and |[®2f . enjoy analogous estimates
L, °'Le L2 LY

x

analogous estimate with ||<I>4HH%,QQ(T3),

T Birkhauser
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with [|@1]] (5 1) and [[@1] 1 respectively. Therefore we claim
L, P'L? L2

L%
121,500y + 151,50
< w w
1Bl oy IH oo, + 1B o I oy,
+||Bf ||L<" 2)H772QH || (ﬁ ﬁ)L
921 3, + 1] )
2 (B,B)Lg 3 (B,B)Lg
1Bl VI gy 0B g I
[Pl EBLx + (|3 HLE%LQE S HBf“’H 2[5Lw ”HHLf%LE
It follows from the estimates (4.4)—(4.9) and Lemma 3.10 that for almost every w € Q
le(H)[ly < [1H]I3 + A* (4.10)

which verifies condition (i) that ® maps the subspace ) onto Y.
Regarding (ii), straightforward algebra shows that for Hy, Hy € )

O(H,)(t) — ®(Hy)(t) = — /Ote—“—ﬂ(-efv x V- (H, ® (H, — Hy))dr

t
- / e~ UIEATY VL (Hy — Hy) @ Hy) dr
0
t
—/e(tT VXV (Bfw@(Hl—Hg))dT
0

t
—/ e~ =AY V. (Hy — Hy) ® Byo) dr.
0

One notices that ®(H;) — ®(Hs) can be estimated similarly as ®(H) in the space ) and
|®(H1) — ®(H2)lly < ([Hilly + [ Ha2lly + A) [|[Hy — Helly. (4.11)

We are ready to finish the proof the theorem by applying a fixed point argument. Indeed, following
from (4.10) and (4.11), there exists a constant C' > 0 such that

[2(H)lly < C(IH5 + %),
[®(Hy1) — @(Ha)lly < C([[Hilly + [|Hally + A) [[H1 — Hal|y.
For such C, we then choose A such that
C ((20X*)2 4+ X%) <20X%, C (40N + ) <1

which are satisfied for C*A? < 1. Thus a suitable choice is A = A = 7. Therefore thanks to (4.12), for
such C and A, the map ® is a contraction on the ball B(0,2CA?) = B(0, 55) C Y. Denote

E(f. B0, A T)
—{wea: B

(4.12)

1Bl g, + 1B g0 20 > 5}

Take Qr = E(f, 8,0, A\, T) and ¥ = U—_oo<j<oof22i. One can see that
E(f’/gaoQXaTl)CE(f7ﬂ7a75\7T2) for TlSTQ

1
L2P L2

and hence Qp, C Q.
We first show the existence on [0,00) with smallness assumption on || f[|3. Indeed, for any 7" > 0
there exists k such that 251 < T < 2% and

QQk C QT C QQk—l.

) Birkhauser
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Therefore we infer from Lemma 3.10 that
o2

P(Qr) = P() =1 = P(E(f, 3,0,1,25) 21 = 3ere 5.

It follows that for any m € (0,1), if

2 2
s < 5
11l < 9C2(In(3¢;) — In(1 — m))

we have P(Q2r) > m and hence P(X) > m.
Regarding the local existence without assumption on the size of || f||3, (4.13) indicates P(27) > m
holds for

(4.13)

co
2. (In(3¢1) —In(1 —m))’

s
x

C2

= 9171 (4.14)

In view of the integral form (4.3) and H(x,0) = 0, we know the constant C' appeared in (4.12) satisfies
(4.14) for small time T > 0.
Noting 2 — 2a + % = —4af < 0 and taking n = % in (4.2), we know the conclusion of Theorem 1.1
holds for s > max{+4 — 4a,0}.
O

5. Well-Posedness of the Hyperdissipative NSE

This section concerns the well-posedness for the hyperdissipative NSE (1.3). Namely we will prove The-
orem 1.3. The proof is analogous to that of Theorem 1.1 presented in Sect.4. We only include limited
details to reveal the requirement on the parameters as stated in Theorem 1.3.
We consider a solution to (1.3) in the form v = uge +V with uge = e t=2)" g« and V satisfying
Vi+ (uge +V) -V (uge +V)+ VIL=— (=A)*V,
V.-V =0, (5.1)
V(z,0) = 0.

Denote the map through the integral form of (5.1)

W(V)(t) = - / e ETPY - ((uge +V) @ (uge + V) dr.

For 1 < o < I, define the subspace X C C([0,T); H372%(T?3)) as

X = O([0,T); HE22(T?)) N L7 (0, T; LU(T?)) N L7 (0, T3 L9(T%))

3

where 0 < v < 3 and ¢ > 2 satisfy 5~ + e

We only need to show that
W) x SN +[IVIER ¥V Vear,
[T(V1) =¥ (V2)x S A+ [IVillx + [[Vallx) [Vi = Vallx ¥V Vi, Vo € X,

+ 2y =1 as in Lemma 3.11.

(5.2)

Then a similar probability analysis combined with the fixed point argument as in the previous section
provides a proof of Theorem 1.3.

Note that it is sufficient to prove the first inequality of (5.2) since the second one can be obtained
similarly. Moreover, we only show details to estimate terms involving V' @ V' and uge ® uge as the mixed
terms uge ® V and V ® uge can be estimated analogously.

T Birkhauser
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We first estimate fot e A PY (V1) @ V(x, 7)) dr in H22(T3),

t
/ DA DY L (V1) @ V(7)) dr
0

H%’QQ(W)

t
= H(l — A)i_o‘/ e~ (=N (=2)"py . (V(z,7)@V(x,7))dr
0

t
< / Hefo&#)(fma (—A)
0

< [ g (0 - H e o V) oy

L2

=

1-A)i*(V(z,7)® V(:C,T))HL?E dr

followed by applying Holder’s inequality and Lemma 3.2

eI g7 (- Ayt (Vi) @ Vi)

2
Lg

< He—<t—7>lf|2°‘|g|HLg |7 (-2 weneven)| =

S(E—m) = mm

1- A V(z,7)® V(x,r))‘

_2q_
Lit?
<(t—7) T T VV%*QQV’ 2
~ LF
< 13 5 o4
S (t=r) 3w Vg VRV
Combining the last two inequalities yields
19111, 5 20
t 1 _ 3 5_9
g/ (t—7) 22w ||V [V av\ dr
0 ‘ L3

t

-1 __3 _

SIVI, oo | =735 (2 |V] ) dr
HE 0

t 1 3 1 v ! t 1 v
SV e (/ (t—T)(Mm)MTMdT> (/ VI, dT> .
L} 0 0 :

Noticing that

1 3 1
—+-— 7+L=1,
20 2qav) 1—v  1—v
1 3 1
0<(—+-2)——<1, 0<—— <1,
20 2qae ) 1 —7 1—7v
It follows from Lemma 3.3 that
t
/@_7)(—%—%&)&7—& dr < 1.
0

Therefore we have

t
/ e~ CDENPY L (V(, 1) © V(x, 7)) dr
0

M3 20 (T)

SWVI,pgoee IV gy,

) Birkhauser
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The estimate of || fot e~ =EAPY L (Vie, 1) @ Vi, 7)) dr| (b
L, 7L

x

is given by

1

L) L%

t
t”/ e ENENPY (Ve 1) @ Ve, 7)) dr
0

t
< ﬂ/ H;(H)(fma(_m%(V(m)®V(x,7))HLq dril s
0 ’ b
and
e~ =N (LAY (V(a, 1) @ Vi, 7))‘ .
< e D g7 (Vi 1) @ Ve, 7)) LT
3
SHe—u—rna“K“ 1F(V(z,7) @ Ve, ) g,
% L¢
S(E—r)ywmE Vi r) o Vel
_1_ .3 $
S(t—r) ||V,
Therefore it follows
t «
‘ / e TNEAPY L (V(w, T) @ Vi, 7)) dr||
; L, 7Ly

t
5] [ o= mm i ]
0 * Ly
%
< / Ot — )3T V2, dr|
0 Lj
¢ 1 __3 2
+ /ﬂ(t—f) s V|2, dr
i LF

The term I5 is estimated as by using Holder’s inequality

t

2 P
/ 1t —7) "2 " ma ||V, dr
0

/
% 1-3~ % 51 4~
s(/ (1 — )0~ s mzndT) (/ IVIZE d¢>

1

Ly

t

2
(t—7)7" 2% " ma |V|[2, dr

<

~

1
¥
L,

SIVIR .
Lt“’Lgc

T Birkhauser
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and the term Ig is estimated by applying Hélder’s inequality and Hardy—Littlewood—Sobolev lemma

m\«\
2

£/t —7)" 2 ms ||H|3, dr

1
Ly
z 1 3
S| [ - n =WV
0 L?
t N v t 1=y
< (/ T”V”zg d7'> </ (t—1) —5e~me) 1% wHV”l vdT)
3 3 L
t L=
SWVILab,, /(t—T) ~d )T |V 57 dr
Ld ||/t 5
1=y
< ||VH (’Y L) 11—
< ||V 1 \%
S HL:w,;) || HLF'YL"
The estimates above together imply
|| / SR (Vi) © Vi) dr] o,
TLs (5.4)
Svi? £ VI by HVH L
L2 L L, TLe
Finally we estimate Hfg e~ U=NEAPY L (V(z,7) @ V(x, 7)) dr||
LE’YLQ
t
|[ ey wane v |
0 LA LY
SNEN A V(@) @ V)| dr|
T LE’Y
and since
e NENT AV (V(@,7) @ V(a, 7))
—(t—1) €%
e CIF V) @ V)|
—(t—71 2a
S el 1F v @ Ve ol e,
S—7) = e Ve )@ Ve )| 4
S (¢ =7 |V,
it follows from Hardy-Littlewood—Sobolev lemma that
t
‘/ e EDEXTPY L (V(e, 1) @ V(x, 7)) dr|| |
0 L2 LY
t
<[ fe-naswig e 6:5)
0 * L2
SIVIE, -
L2 LY

) Birkhauser
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Therefore it follows from (5.3)—(5.5) that

SIVIG- (5.6)
X

t
/ e ENENPY (Ve 1) @ Ve, 7)) dr
0

Now we estimate fg e~ =R PY L (ugw ® uge) dr in X. First, we have

t
/ e TDERPY L (g @ uge) dr
0

Hg—Qa(Tg)

t
- H<1 ~A)ie / e EAPY - (4 (2,7) @ uge (2, 7)) dr
0 Lg

dr

2
LE

4
S [l g g 7) 9 g 7))
0

t
y
4
:ZI7+[8

for a small constant 0 < 6 < t. For 2 < ¢ < 4, we have from Hoélder’s inequality and Lemma 3.2

dr

2
L&

e~ (t=TE £ (@A)% (1= A) T (uge (2,7) © uge (2, T))) ’

2
Lg

—(t—7)|€]2e 5 _2a
He (t=7)IEl* g1 +5 -2 ]—'(ugw(x,ﬂ')@)ugw(%T))’

< ”67<t77>|s|%|§‘1+272a

I 2
a—

20 ||F (uge (2, 7) © uge (z,7))|
L

.
S (t—7) BT T uge (2, 7) ® uge (2, 7)||

SIS

L,

_ 7 _3(4-q)
S (t—7) 73R uge |12,

and hence

17

A

)
(4—q)
/0 (t— 7)1 e |2, dr

g _ T 43¢0 2 2
| (6= rym &R (1) dr
0

5 1—-2v
(_L+1_3(4*Q)) 1 — 2y L 2
<[ [a-nEntE e ) g
0 L, T e

J ,1+27’Y __2y 1727 2
([T el
0 L, LS

< 2
~ HUQ“’HLY%)LZ‘

For ¢ > 4, we instead have

eI e E R (g (2,7) © e 7))

2
Lg

< He—(t—‘r)|£|2°‘|£|l+%—2a

Lo I (uge (2, 7) @ uge (2, 7))l 2
3

S (=775 uge (2,7) @ uge (2,7)]| 15

A

(t— )75 luge |2

T Birkhauser
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and
8 7
I; < / (t — 7)1 uge |72 dr
0 2

0
= [ (=0 F ) (ugee)” dr
0

s 1—2y
2
S/ </ (t _ T)(—£+1)1—127 T 1—2“{ dT) ||7_Lgu ||2(%1)
0 L, 7L

< wl|? .
~ ”ug ”Li%%)L‘l

x

The term Ig is estimated as

et 7 (80 (1 = )32 e (0,7) @ g 7))

2
Lg

< Hef(tfrnsﬁﬂ

a
L£

S =) | (—2)2 (1= A) 7 (g (2. 7) @ g (@,7))|

~

3 7_
S (t—7)7 20 [V2 " uge| 12 |luge || s
and
¢ __3 T_92q
Is S | (t=7)" 25 ||V2" " uge || 12 |luge || 2 dr
5 z

t ;
= [ = (S e 12) (gl d

3—4y

A

S ”’U’Q“’ ||Li<’4>7‘l§720‘ ||u9“’ ”Li%%)L% :

The time integral above is bounded for 0 < ¢ < 1,

t
/ (t = 7) T e (Ve g
5

t
_4ACty) ___ 6
55 1—3~ /(t—fr) qa(4=37) dr

5

<1

since 0 < § <t and m < 1. Combining the estimates above gives

t
/ e~ IERPY L (e @ uge) dr
0

H%72(¥(T3)
2

S ||“gw||i(w,%) LT Hug“’HLm%)H
t x

x

+ ||ugw ||LEC'4)H.§72Q ||Ugw ||L£%%)Lg'

) Birkhauser

F((=2)50 = 0 (g (2, 7) @ ugo 7)) |

Lit?

t 4
_ AV mes i () 5
(/5 (t—7) 2ea’sivr sy dT) ”ugu”L,EC’“HI%*MHUQMHLEW'

2q

-2
L¢

1
?)LZ
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The estimates of f e~ E—T)(=2)"py . ('U,gw ® Ugw) dr in Li“?)Lg and L?Lg

(%)
L, VLY

t
/ e~ IERTPY L (ugo ® uge) dr
0

2
S I 7 e

t
/0 e~ t=T)(=2)"py . (Uge ® ugw) dr
can be obtained in an analogy way with the estimate of ®; in the previous section. Thus it follows from
(5.7), (5.8) and Lemmas 3.11, 3.12 and 3.13 that

In view of (5.7) and (5.9), we conclude the proof of the first inequality in (5.2) is complete, under

; (5.8)

< |lu
Sl

S A% (5.9)

¢
/ e IERPY L (uge ® uge) dr
0 X

the conditions on the parameters s > % — 7a —2aC, s > 1—2a —|— 2 and 0 < ¢ < 1. We observe
1—2a+ 3 = —4ay < 0. Taking ¢ = %7 we have s > max{ - 704 ,0}. The proof of Theorem 1.3 follows

from an analogous analysis as in Sect. 4.

6. Well-Posedness of the Full System of Hall MHD

We address the well-posedness of the Hall MHD system (1.2) in this final section. As before, we seek a
solution of (1.2) in the form

u=1ug +V, B=DBp +H
with (V, H) satisfying the system
Vi + (uge +V) - V(uge +V)
— (Bjo + H)-V(Bjo + H)+ VII = —(—=A)?V,
Hy + (uge + V) - V)(Bya + H) — (Bys + H) - V(uge + V)

+V xV-((Bpe +H)® (Bpo + H)) = —(—A)*H, (6.1)
vv:ov V-H= 07
V(x,()) = H(x,o) = 0.

Without causing confusion, we use the same notations ® and ¥ to denote the maps

W(V, H)(t) = — / LA BY {1y + V) ® (g + V)] dr

t
4 [ TSTBY (Bt HY © (B + ) dr
0
= VYV, H) + ¥*(V, H),

t

o(V, e AV - [(uge + V) ® (Byo + H)] dr
0

+ / e~ L (Bro + H) © (uge + V)] dr
0

SN

/e (DAY« V- (B + H) @ (Bje + H)] dr

[}

= oYV, H) + ®*(V,H) + ®*(V, H).
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Define the functional spaces X and ) as in previous sections

1 1
X = C(0, T HE(T%) N L7 L A L7 L,
Y= (o, Tl i) L L0 L 1
with
1 3 1
oz+2poz+6 ’ 2a+2qa+7 (6-2)

for B,v >0 and p,q > 2.

The existence and uniqueness of solution to (1.2) is a consequence of that the map (¥, ®) is a contrac-
tion on X x Y. Thus in order to prove Theorem 1.5, the analysis of Sect. 4 suggests that it is sufficient to
show

1OV, H)|lx + |9V, H)lly SN+ |VIZ+H[} Vv (V.H) € (X,),
U (Vh, Hy) — U (Va, Ho)||x + || @(Vi, Hi) — ©(Va, Ho) ||y
S A+ [Vallx + ([Vallx + [ Hally + [|1H2ly) (IIV2 = Valla + | H1 — Ha|ly)
forall (Vi,Hy) € (X,)),(Va, Hy) € (X,)).

(6.3)

Note that the estimates regarding the highest derivative term ®? are obtained in Sect. 4 and the estimates
of the pure fluid term W' are established in Sect.5. The term ¥? has a similar quadratic structure as ®3
and it is in lower order; hence the estimates of W2 to establish (6.3) are guaranteed. Among ®! and ®?
we only need to estimate one of them, say ®!. That is the task in the following.

We start with the 72 ~2%(T3) norm of V ® H from &,

t
H(l . A)%fa/ ef(th)(*A)av . (V(:L’,T) ® H(x"r)) dr
0

12
t
5/ He—(t—r)(—A)a<_A)%(1—A)%—@(V(xn')®H(:13,7'))HL2 dr
0 x
t
—(t-m)IEl* |3 ~2a
<[ 1120 (Vi) @ He )| dr

In view of Holder’s inequality and Lemma 3.2 we infer

om0 7 (v (27 @ H G, T))HLg

< Hefafr)\a\zam%fza

2pq || F(V(z,7)® H(x,7))|| _pa__

L§2P+2quq Hqu—p—q

< (¢ — )y aetew (55 2) |V(x, 7) @ H(x, 7)

I, e
La:

S (t—7) 2w T V]| g [ H]|

~

followed by applying Hélder’s inequality and Lemma 3.3

t
/ (t— ) m s |V | H]y dr
0
t
- / (t— ) B (V] o) (7 | H ) dr
0

t 1-B—~
(/ (t — 7)ot~ 5ia ) 7= 7~ (B 15— dT)
0

WV oo I 0,

N
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The application of Lemma 3.3 is justified by the assumptions on the parameters (6.2) which imply
3 3 3 1 +
e (R e PR Y
2a 2pa 2qa) 1—F—~v 1—-0—»v
and
3 3 3 1 B+
o<|m——14+4—+— ) ——<1, 0< ——— < 1.
(204 +2pa+2qa>l—ﬂ—’y 1-0—~
Hence we have
t «@
/ e~ =Ny (Ve 1) @ H(x, 7)) dr
I _2q
0 H277(T?) (6.4)

<
SV, I1H1 o,

1
Continuing to the Liﬁ’ﬁ )Lg norm we have

t
Htﬂ/ e UTDEASY (V(w,7) @ H(x,7)) dr
0

/
0

<

e” (DAY (A (V(z,7) © H(I’T))HLP "

* i

L

and

e~ =D CAVE(V (2, 1) @ He, T>>!

@

S et g E (Vi) © Hiw, 7))

P _
Lyt
—(t—71 2a
S [l el 1F (e @ H T e

S(t—7) 2 = |V(z,7) @ H(z,7)

|
L£+q

1 s
S (—7) 2z [V g [ HIl g -

~

It follows that

t
/ e DAY (Vi 7) @ H(x, 7)) dr
0

t
5‘/ t9(t — 1)~ 25 20 ||V ]| g | H | p 7
0

<

~

t
2 .
/ t0(t — )72 2w ||V o || H | 1 dr
0

t
/ 19(t — 1) 355 |V | | H 1y dr
t

2

+

1
Lp
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By Young’s inequality we have

t

t

<

~

0

t

< (/02@7)(5_;@_

2
/t%—Tri—%HVHLgHHHLgdT
0

2 _1_ .3
[t ry s Vg e

1
LP

Ly

1-8—2v
) () dT)

S N\ s\
(/ \H|% dr> (/ vI% dr>

SIEN 5 VI .
L; L% L,ﬁW

where we used the fact

1 3

(5*%*2(]7&

)

thanks to (6.2), and hence foé (t—7)"tdr <1.

L4

1—-0—2vy

x

L

JMFM

Resorting to Holder’s inequality and Hardy—Littlewood—Sobolev lemma for the parameters satisfying

(6.2) we deduce

l\)\n\
2

t9(t — )" 22w ||V o || H | 1z dr

1
Lp

B _1l_.3 3
< (t —7) 2 2P|V pa || H| Lz dT
0 Lt%
B 1-p
¢ N ¢
S (/ T||H|zpd7> (/ (t =) V|7 d )
£ ' £ Lt%
t 1=p
_1_ s
SIH oy, || - nF w0 iR ar|
L, e || Je LB
t
1-p
<||H e 7
NH ”Liﬂ,%) v L:;’YB
< ||H 1%
S o VI
We conclude from the estimates above that
t (e
‘/ e~ tERY (V(e,7) @ H(x, 7)) dr o1
0 L, °L?
<
S A F T||V|| L,+HHHL§‘3%’ IVl A
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1
In the end, we estimate the norm of L;* L? as

t
e*@*T)(*A)“v (V(x,7) ® H(z, 7)) dr

L Ly
e (DAY LAV (V (e, T)®H(95,T))H arll
L% L2
and
et AR e o )|
< He—(t—T)\€|2a|§|}'(V(m,T) ®H($77))H 2T
Lyt
—(t—7) &> ||]-‘ (x,T)®H(va))||LEFZTq
3

—_ 1 _ 3

< (L= 1) P HV(;E,T)®H(:E,T)||L5%
1 _ .3

S(t—7)7 2 "2 | H| 2 ||V -

Again, the last two inequalities together with Hardy—Littlewood—Sobolev lemma imply

1

¢
/ e~ (t=T)(=2)y . (V(z,7)® H(z,7))dr

0 L LR
t
< 7)) 3a e
N‘/o(t 7)" 2 e [ H e |V Lg dr LH (6.6)
S MH g [V zg Lt
<
N||HHLfﬁ VI LA

Immediately from (6.4)—(6.6) we obtain

The estimates for V ® Byw, uge ® H and uge ® Bye from ®! can be achieved in an analogy way. Thus we
claim the first inequality of (6.3) is justified. As explained in Sect. 4, the second inequality of (6.3) can
be established similarly as the first one.

t
/ =Dy L (Ve 7) @ Hx, 7)) dr
0

Yy
2 2
S VI + IHI -
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