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Abstract—Using real-world data from Waveform Measurement
Units (WMUs), this paper proposes novel data-driven methods to
model the dynamic response of inverter-based resource (IBR) to
the high-frequency disturbances that occur in practice in power
systems. WMUs are an emerging class of smart grid sensors.
They can capture the fast sub-cycle dynamics in power systems,
which are overlooked by phasor measurement units (PMUs).
After extracting the differential voltage and current waveforms
from the raw waveform data, we develop multiple methods that
include data-driven model library construction and proper model
selection. One class of methods is proposed in frequency domain,
which is based on modal analysis. Another class of methods is
proposed in time domain, which is based on regression analysis
of time-series. Experimental results based on real-world WMU
data demonstrate the of performance the proposed methods.

Keywords— Inverter-based resources, data-driven, dynamic re-
sponse, WMU, modal analysis, regression, disturbance, waveform
measurements, synchro-waveform measurements, solar inverters.

I. INTRODUCTION

With the increasing penetration of inverter-based resources
(IBRs), power systems are becoming more complex and more
dynamic. Further, the recent incidents with the unexpected
responses of IBRs to system-wide disturbances, such as in
California, have underlined the need to monitor and character-
ize the dynamic behavior of IBRs at high-resolution waveform
levels, such as within the short period of one AC cycle [1].

However, the measurements from phasor measurement units
(PMUs) that are commonly used in this field do not provide
the type of data that is needed for this kind of analysis.

Instead, we need to use the measurements from waveform
measurement units (WMUs). WMUs are a new class of smart
grid sensors that have emerged only recently [2, Section 4.6].
WMUs provide time stamped waveform measurements.

In this paper, we use WMU data from a pilot project in
California to address the above open problem. Specifically,
we develop new data-driven methods to estimate the dynamic
response of IBRs to system-wide sub-cycle disturbances.

To the best of our knowledge, this is the first study of its
kind. In fact, as it is recently surveyed in [3], the existing
methods in this field can be divided into two categories. First,
there are methods that use the internal physics of the IBR.
Clearly, such methods require access to the internal physical
systems for each IBR. Second, there are methods that are data-
driven. However, so far, the focus has been primarily on using
data from PMUs. In this paper we rather use data from WMUs.

II. PROBLEM STATEMENT

Fig. 1 shows the real-world waveform measurements during
a system-wide disturbance that is captured by a WMU at a
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Fig. 1. An IBR’s response to a real-world system-wide sub-cycle disturbance:
(a) the disturbance causes momentary distortions in voltage waveforms; (b) the
dynamic response by the IBR is in form of momentary agitations in current.
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Fig. 2. Another IBR’s response to the exact same real-world system-wide sub-
cycle disturbance: (a) the voltage distortion at the second IBR; (b) the dynamic
response of the second IBR in form of momentary agitation in current.

three-phase PV unit. The disturbance causes a voltage event
at the location of the PV inverter. This in turn, causes an
agitation (response) in the PV inverter’s current waveforms.

The impact of the exact same disturbance on another PV
unit is shown in Fig. 2. The measurements in this figure are
from another WMU. They are time-synchronized with the
measurements at the first WMU. Thus, the measurements in
Figs. 1 and 2 provide us with synchro-waveform measure-
ments, to enable us compare the dynamic response of the
two PV inverters (i.e., the two IBRs) to the same disturbance;
see [4]. Importantly, the second IBR is located on a different
feeder. Notice that, the response of the IBR in Fig. 2(b) is
different from the response of the IBR in Fig. 1(b). Whether
in Fig. 1 or in Fig. 2, the disturbances as well as the responses
of the IBRs are all very short, lasting only about half of a cycle.

A. IBR as a Dynamic System at Waveform Level

Based on the above examples, each IBR can be seen as a
dynamic system that responds to the very fast and very short
disturbances in the power system. Each IBR responds to the
disturbances based on its own unique internal dynamics.

Accordingly, we can model the behavior of each IBR at
waveform level as a dynamic system. Such dynamic system
can be represented as an input-output box, as shown in Fig. 3.
Here, the input signal is the disturbance in voltage waveform at
the terminals of the IBR, and the output signal is the agitation
in the IBR’s current waveform in response to the disturbance.
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Fig. 3. The waveform-level input-output dynamic model of an IBR.

B. Waveform Representation in Differential Form

The disturbance in voltage waveforms as well as the IBR’s
dynamic response in the current waveforms can be best
anlyzed once they are represented in differential form. Let time
t0 denote the moment when the disturbance starts. We can
express the differential waveform corresponding to waveform
x(t) with respect to the event as follows [2, Section 4.2.5]:

∆x(t) = x(t)− x(t− T ), ∀ t ≥ t0, (1)

where T = 1/60 seconds is the waveform interval. Time t0
can be obtained by using the existing methods in [2, Section
4.2]. Fig. 4 shows the differential waveforms corresponding to
the disturbance in Fig. 1. Only Phase A is shown here. We can
now clearly see the fast dynamic behavior of the IBR at this
short interval; which is caused in response to the disturbance.

C. Our Objective

For the rest of this paper, our objective is to develop data-
driven models to capture the dynamic response of the IBR, i.e.,
to predict the IBR’s injected current in differential waveform in
response to a disturbance in voltage in differential waveform.

III. MODEL CONSTRUCTION IN FREQUENCY DOMAIN
USING MODAL ANALYSIS AND LIBRARY DEVELOPMENT

Consider the differential voltage waveform (input signal) in
Fig. 4(a) and the differential current waveform (output signal)
in Fig. 4(b). We refer to them as ∆v(t) and ∆i(t). By applying
the modal analysis, such as the Prony method [2, Section
2.6.3], we can express these two differential waveforms as:

∆v(t) =
M∑

m=1

Ame
σmt cos(ωmt+ ϕm), (2)

∆i(t) =
M∑

m=1

Bme
σmt cos(ωmt+ ψm), (3)

where M denotes the number of dynamic modes. Each dy-
namic mode m is represented by angular frequency ωm and
damping factor σm. The differential voltage waveform at mode
m is represented by magnitude Am and phase angle ϕm. The
differential current waveform at mode m is represented by
magnitude Bm and phase angle ψm. Accordingly, at each
mode m, we can define the equivalent admittance of the IBR
at that particular mode as the following complex number:

Hm =
Bm∠ψm

Am∠ϕm
=
Bm

Am
∠ (ψm − ϕm) at ωm + jσm. (4)

A. Data-Driven Library Construction

Suppose the voltage and current waveforms are avail-
able from a WMU at an IBR during K disturbances. Let
∆v1(t), . . . ,∆vK(t) denote the differential voltage wave-
forms and ∆i1(t), . . . ,∆iK(t) denote the differential current
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Fig. 4. Differential waveforms for Phase A of the waveforms in Fig. 1.

waveforms during disturbances k = 1, . . . ,K . By applying the
analysis in (2)-(4) to the above measurements, we can obtain:

Hk
m at zkm = ωk

m + jσk
m,

k = 1, . . . ,K,
m = 1, . . . ,M.

(5)

Each model in (5) corresponds to one dynamic mode that is
derived from the analysis of one disturbance; thus adding up
to build a library of K ×M models using modal analysis.

B. Data-Driven Model Selection

Let ∆vtest(t) denote the differential voltage waveform for
the given disturbance. Let ∆itest(t) denote the differential cur-
rent waveform for the response of the IBR to this disturbance.
Given ∆vtest(t), we seek to estimate ∆itest(t) based on the
model library in (5). We denote our estimate by ∆̂itest(t).

Let us denote the dynamic modes of the test input signal
∆vtest(t) by zn,test = ωn,test+jσn,test, where n = 1, . . . ,M . For
any such dynamic mode n, we define k⋆n and m⋆

n as follows:

[ k⋆n,m
⋆
n ] = argmin

k,m

∣∣zn,test − zkm
∣∣2 . (6)

Here, we select one dynamic mode from the library in (5) that
has the minimum distance from dynamic mode n of the test
input signal. We estimate the IBR’s response to ∆vtest(t) as:

∆̂itest(t) =
M∑
n=1

Cne
σn,testt cos(ωn,testt+ φn), (7)

where

Cn = An,test

∣∣∣Hk⋆
n

m⋆
n

∣∣∣ , φn = ϕn,test + ∠Hk⋆
n

m⋆
n
. (8)

Here, An,test and ϕn,test are the magnitude and phase angle for
modal representation of ∆vtest(t) at its dynamic mode zn,test.
We use the magnitude and phase angle of the proper equivalent
admittance from the model library to obtain Cn and ϕn in (8),
which we use in (7) to estimate the IBR’s response, denoted by
∆̂itest(t). As for indices k⋆n and m⋆

n that are used in (8), they
are defined in (6) and are used in order to select the proper
model among the equivalent admittances in the model library.
Notice that matrix H is defined in (4). In order to select the
proper choice of H from the library of models in (5), we use
indices m⋆

n and k⋆n, which are defined in (6).

IV. MODEL CONSTRUCTION IN TIME DOMAIN USING
REGRESSION ANALYSIS AND LIBRARY DEVELOPMENT

Again consider the differential waveforms in Fig. 4. In
this section, we represent ∆v(t) as ∆v[1],∆v[2], . . . ,∆v[N ],
which is a discrete time-series, where N is the number of sam-
ples. Similarly, we represent ∆i(t) as ∆i[1],∆i[2], . . . ,∆i[N ].
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A. Data-Driven Library Construction

Next, we use two different time-domain models, with and
without auto-regression, to build the data-driven model library:

1) Approach 1: Using FIR Models: The response of the
IBR is constructed by a Finite Impulse Response (FIR) model:

∆i[τ ] = b1∆v[τ ]+b2∆v[τ−1]+. . .+bnb
∆v[τ−nb+1]. (9)

The above FIR model estimates each sample of the output
signal as a weighted sum of the nb most recent samples of the
input signal. Here, nb denotes the order of the model.

2) Approach 2: Using ARX Models: The IBR’s response is
constructed by an Auto-Regressive eXogenous (ARX) model:

∆i[τ ] = a1∆i[τ − 1] + · · ·+ ana∆i[τ − na] + b1v[τ ]

+ b2∆v[τ − 1] + ...+ bnb
∆v[τ − nb + 1].

(10)

This ARX model estimates each sample of the output signal
as a weighted sum of the nb most recent samples of the input
signal and the na most recent samples of the output signal
itself. Here, na and nb denote the order of the model.

Given the K training data sets, we can use (9) or (10) to
build a library of K FIR models or K ARX models. For each
model, we need to estimate the corresponding unknowns as:

θFIT = [b1, · · · , bnb
]⊤, (11)

θARX = [a1, · · · ana
, b1, · · · , bnb

]⊤. (12)

Vectors θFIT and θARX can be obtained using methods such as
Least Square (LS) optimization, e.g., [5, Section 3.2].

B. Model Selection

Similar to the analysis in Section III-B, we need a method
to select the proper model from the library. However, since we
do not use modal analysis in Section IV, we select the model
based on directly comparing the time series of the test input
signal and the time series of the training input signals:

k⋆ = argmin
k

∑N
τ=1

∣∣vk[τ ]− vtest[τ ]
∣∣2 . (13)

Given k⋆, we can estimate ∆itest(t) by using either the FIR
model in (9) and (11) or the ARX model in (10) and (12).

V. POTENTIAL APPLICATIONS

The analysis in this paper can be used in various potential
applications. First, the models for the dynamic response of
IBRs can be used for diagnosis purposes to enhance the life
span of IBRs. This can be done by comparing the derived
data-driven models with the nominal/reference models that
are provided by the IBR manufacturers. Another option is to
regularly monitor the dynamic behavior of each IBR over time.
A major change can potentially indicate an incipient failure
that may suggest the need for inspection or maintenance.
Second, modeling the sub-cycle dynamic behavior of IBRs
may also help with developing digital twins for different types
of IBRs to predict how different IBRs may respond to various
disturbances in power systems. This can ultimately help with
identifying the type and magnitude of disturbances that are
likely to cause undesirable tripping of IBRs; see [1] for a
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Fig. 5. Performance comparison with the corresponding baseline methods:
(a) for the method in Section III; (b) for the method in Section IV.

related discussion. Third, the analysis in this paper can also
be used to compare the dynamic response of a large group of
IBRs in a given geographical region. Such analysis may also
shed light on potential ripple effects in the power system that
may follow a system-wide disturbance due to the agitations in
power production or even momentary secession of IBRs.

VI. EXPERIMENTAL RESULTS

In this section, we apply the proposed methods to the real-
world waveform measurements that are obtained by a WMU
at a 480 V / 100 kW PV unit, for six months. In total,
63 sub-cycle system-wide disturbances and the corresponding
responses of the IBR were recorded in this period. Out of the
63 available disturbances, we used 42 disturbances for training
the model, i.e., two third of the available disturbances in the
data set is used for training. The remaining 21 disturbances
are used for testing the accuracy of the model, i.e., one third
of the available disturbances in the data set is used for testing.
As a result, we evaluated the out-of-sample performance of
the proposed models; because the samples that we used for
performance evaluation had no overlap with the samples that
we used to obtain (i.e., train) the models.

1) Comparison with Baseline Methods: As the baseline
method to be compared with the design in Section III, we
consider a method that applies multi-signal modal analysis
to all the 42 training data sets to develop a single model
in frequency domain. That is, unlike our proposed method in
Section III, this baseline method does not involve the library
construction in (5) and the model selection in (6). The results
are shown in Fig. 5(a), in terms of the Mean Squared Error
(MSE) for each method. As we can see, both methods improve
as we increase the number of modes. However, the proposed
method always performs much better than the baseline method.

As the baseline method for the design in Section IV, we
consider a method that applies multi-signal regression to all
the 42 training data sets to develop a single model in time
domain. That is, unlike our proposed method in Section IV,
this baseline method does not involve library construction and
model selection. The results are shown in Fig. 5(b). In both
cases, we use FIR models. As we can see, the proposed method
always performs much better than the baseline method.

2) Analysis of Modal Distance: For the method in Section
III, it is insightful to examine the MSE as a function of the
modal distance between each test input signal and the training
input signals. For each ∆vtest(t), we obtain:

Modal Distance: Φ =

√∑M
n=1

∣∣∣zn,test − z
k⋆
n

m⋆
n

∣∣∣2. (14)
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Fig. 6. Plotting the individual MSE of each test case versus the modal distance
between the test input signal and the training input signals. Parameter M = 6.

TABLE I
MSE FOR USING FIR VS. ARX MODELS IN SECTION IV

nb = 2 nb = 3 nb = 4 nb = 5
FIR 13.1761 12.7091 12.5947 12.5859

ARX (na = 1) 12.4331 12.6453 12.4619 12.3848
ARX (na = 2) 12.5315 12.3748 12.4892 13.4232

The results are shown in Fig. 6. A trend is evident. In general,
a higher modal distance for a test input signal leads to a higher
MSE in estimating its corresponding test output signal.

3) Using FIR vs. ARX Model: For the proposed method in
Section IV, Table I compares the performance of using the FIR
model versus the ARX model. The FIR model shows a more
stable performance, i.e., its MSE consistently improves as we
increase the order of the model. The ARX model rather needs
proper tuning of its parameters. However, once such tuning is
done, the ARX model can perform slightly better than the FIR
model. In fact, the best result in Table I, in bold, is achieved
when we use the ARX model with na = 2 and nb = 3.

VII. CONCLUSIONS

New data-driven methods were developed and tested to
model the dynamic behavior of IBRs when they respond to
system-wide sub-cycle waveform disturbances. Experimental
results confirmed the high performance of the methods com-
pared to the baselines. They also showed the characteristics of
the models, such as in terms of modal distance. This study can
provide valuable insights to utilities and independent system
operators (ISOs) to enhance their situational awareness and
improve stability and reliability of the power system. For
example, as mentioned in Section V, modeling the sub-cycle
dynamic behavior of IBRs can ultimately help identify the
type and magnitude of regional or system-wide disturbances
that can cause significant agitation or momentary secession
in the power production by IBRs as well as any potential to
create ripple effects in the power system.
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