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The physics of solar flares occurring on the Sun is highly complex and far
from fully understood. However, observations show that solar eruptions are
associatedwith the intense kilogauss fields of active regions, where free energies
are stored with field-aligned electric currents. With the advent of high-quality
data sources such as the Geostationary Operational Environmental Satellites
(GOES) and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic
Imager (HMI), recent works on solar flare forecasting have been focusing
on data-driven methods. In particular, black box machine learning and deep
learning models are increasingly being adopted in which underlying data
structures are notmodeled explicitly. If the active regions indeed follow the same
laws of physics, similar patterns should be shared among them, reflected by the
observations. Yet, these black box models currently used in the literature do not
explicitly characterize the heterogeneous nature of the solar flare data within
and between active regions. In this paper, we propose two finite mixture models
designed to capture the heterogeneous patterns of active regions and their
associated solar flare events. With extensive numerical studies, we demonstrate
the usefulness of our proposedmethod for both resolving the sample imbalance
issue and modeling the heterogeneity for rare energetic solar flare events.

KEYWORDS

solar flare prediction, mixture models, hierarchical models, sample imbalance,
regression

1 Introduction

Solar flares originate from explosions of magnetic energy caused by tangling, crossing,
or reorganizing of magnetic field lines. Flares can last from minutes to hours and can
disrupt space–Earth radio communications, increasing satellite drag when reaching certain
thresholds. An example is the October 2003 superstorm event, where the Sun unleashed
powerful solar flares and coronal mass ejections that impacted the space environment of
Earth. In late 28 October 2003, the Sun produced the “Halloween Storms of 2003,” as
dubbed by NASA (NASA, 2003), whose impact on Earth caused airplanes to be rerouted,
impacted satellite systems, and created power outages in Sweden.The Solar andHeliospheric
Observatory (SOHO) was temporarily overwhelmed during the solar onslaught.

The energy release mechanism of solar flares is yet to be fully characterized.
Observations have established that they are strongly associated with nonpotential magnetic
fields, which store necessary free energy (Chen et al., 2019). Most flares originate from
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localized intense kilogauss photospheric fields, which produce active
regions (ARs). The accurate photospheric measurement of these
fields has been greatly enhancedwith theHelioseismic andMagnetic
Imager (HMI) instrument on the Solar Dynamics Observatory
(SDO) launched in February 2010 (Schou et al., 2012). The HMI
provides high-quality data in the form of high-cadence, high-
resolution vector magnetograms, which span the entire solar disk.
These data are saved at a 12-min cadence. The analysis and storage
are subdivided into HMI Active Region Patches (HARPs), which are
cutouts of the magnetograms. Time series of HARP data track the
evolution of eachAR from the time it appears until its disappearance,
either by emergence/dispersion or rotating on/off the visible disk.
From the 2D HARP data field, scalar quantities referred to as
Space-weather HARP (or SHARP) are calculated, which includes 16
indices computed from the full 3-component vector magnetic field.
These parameters are automatically calculated for HARPs and made
available, along with the HARP magnetogram data, by the Joint
Science Operations Center (JSOC) located at Stanford University
(Bobra et al., 2014).

Machine learning (ML) algorithms have become increasingly
common among space weather practitioners. At first, the line-of-
sight (LOS) component of the photosphericmagnetic fieldmeasured
using the Michelson Doppler Imager (MDI) instrument (launched
in 1995 as part of the Solar and Heliospheric Observatory) was used
by several research groups to forecast solar flares using ML models
(Song et al., 2009; Yu et al., 2009; Yuan et al., 2010; Ahmed et al.,
2013; Huang et al., 2018). Later studies used SDO/HMI data, which
provide the full vector magnetic field data with twice the spatial
resolution and eight times the data cadence as the MDI. Bobra
and Couvidat (2015) used the support vector machine (SVM)
trained with SHARP parameters for active region classification tasks
(Bobra et al., 2014; Barnes et al., 2016; Leka et al., 2018; Camporeale,
2019). Recently, deep learning models such as long short-term
memory (LSTM) networks, recurrent neural networks (RNNs), and
convolutional neural networks (CNNs) have also been adopted
to exploit the correlated structure among the time series data
(Chen et al., 2019; Liu et al., 2019; Jiao et al., 2020;Wang et al., 2020;
Landa and Reuveni, 2022). While these black box models have
enjoyed predictive performance gains, their limitation is typically
not being able to shed light on the underlying structures of the raw
data, which can be utilized to gain new insights into the physics of
solar flares.

Chen et al. (2019) built an LSTM neural network classifier
with the parameters of HMI/SHARP patches from 1 May 2010
to 20 June 2018 as their covariate data. For the corresponding
response variables, they took advantage of the data from theNational
Oceanic and Atmospheric Administration (NOAA) Geostationary
Operational Environmental Satellites (GOES) flare list during the
same time period (Garcia, 1994). GOES flare data are provided both
as a time series of soft X-ray intensities and a list of flare events,
including start time, peak time, and peak X-ray intensity, recorded
by space weather satellites. The GOES satellites are managed by the
NOAA, and its spacecraft is located at a height of approximately
35,800 km, providing an uninterrupted view of the Sun. The
main objective of GOES is collecting infrared radiation and solar
reflection from Earth’s surface (Garcia, 1994).

The work in this paper closely follows the above data
framework laid out by Chen et al. (2019), with some differences.

To make the task of binary classification manageable with an
LSTM network, Chen et al. (2019) considered only the B and M/X
flares and excluded the prevalent C flare, because their intensities
straddle between the range of strong and weak flares, making the
classification harder. In contrast, here, we account for all data,
including the C flares, as we wish to model the intensities of the
flares as continuous values to closely resemble the observed data.
Moreover, Chen et al. (2019) treated SDO/HMI stream data as time
series where ARs are recorded from their initial appearance to
disappearances. Here, we consider each flare only at its peak time
(at the highest intensity). As such, our data are not time series and
should be considered a collection of discrete events occurring at
different time points.

In our work, we are interested in the shared properties of active
regions. Studies on the space weather have appliedmachine learning
methods to classify active regions (Nguyen et al., 2004; Colak and
Qahwaji, 2008; Maloney and Gallagher, 2018; Smith et al., 2018).
The methods used in these works include support vector machines,
random forest classification, K-nearest neighbor classification, and
neural networks, which do not explicitly take into account the
rich statistical structure of the data. In addition, these black box
models typically do not yield more insights into the underlying data
structure. Most recently, Baeke et al. (2023) applied unsupervised
learningmethods such as K-means and the Gaussianmixturemodel
to cluster active regions. However, the authors clustered active
regions on the data covariates. Our work in this paper clusters
active regions based on the interaction between the response and
the covariate of the data. We believe model-based clustering at this
level would be more interesting and meaningful to space weather
scientists.

It is scientifically reasonable to believe that solar flares across
the Sun’s active regions follow similar laws of physics, and so
SHARP parameters of active regions should share some common
data patterns. Nevertheless, to the best of our knowledge, the
heterogeneous nature of solar flare data has not been characterized
or exploited in the space weather literature. Our contribution in
this paper, which marks its difference from other works, is to
apply mixture models to detect and elucidate the heterogeneous
patterns of active regions. The idea of mixture modeling is to
describe a complicated data distribution as a weighted combination
of simpler distributions (Titterington et al., 1985; McLachlan and
Peel, 2000). They are especially useful in a setting where data
naturally come from a number of “homogeneous” subgroups within
a population. For example, human height data can be considered a
mixture of two subgroups, male and female. Mixture models have
played a central role in machine learning and statistics, with broad
applications, including bioinformatics, natural language and speech
processing, and computer vision (Bishop, 2006). A challenge of
mixturemodeling is the technical difficulty in parameter estimation.
Finding the maximum likelihood estimates of the model often
involves solving a non-convex optimization problem (Bishop, 2006).
In practice, maximum likelihood estimation via the expectation-
maximization (EM) algorithm has been the workhorse for these
models (Dempster et al., 1977). In the solar flare prediction problem,
different active regions across the surface of the Sun seem to share
certain common characteristics and are, thus, a good candidate for
mixture modeling. We propose two types of mixture models. The
first model is designed to characterize the heterogeneous pattern of
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active regions, as mentioned. The second model goes further and
allows for the heterogeneity of individual flare events within an
active region. As demonstrated later, usingmixturemodels for active
regions does improve the predictive performance and confirms the
validity of the empirical observation that active regions share similar
patterns. The second proposed mixture model further improves
the performance, albeit marginally, implying that heterogeneous
patterns are not only restricted to active regions but also potentially
extend to flare events within action regions. Since energetic solar
flares are extremely rare events compared to low-energy flares, which
occur orders of magnitude more frequently, statistical inference
for this type of data needs to address the data imbalance issue
(Bobra and Couvidat, 2015). So, another contribution of this paper
is showing how to deal with the imbalance problem using the
expectation-maximization framework.

The paper is organized as follows: Section 2 describes the data
preprocessing procedure; Section 3 proposes two types of mixture
models designed to capture the heterogeneous properties of solar
flare data; Section 4 provides the detailed data analysis results and
interpretation; and Section 5 concludes and briefly touches on future
work. Table 1 lists all notations used within the text.

2 Data preprocessing and feature
selection

2.1 Raw data

For response variables, we take advantage of the recorded
log intensities of flare events in the GOES data set (Garcia, 1994)
ranging from 2 June 2010 to 29 December 2018. The flare events
are recorded at their peak time (time at the highest flare intensity).
Although the theoretical distribution of the flare events should be a
power law distribution, the observed distribution is different from
the theoretical distribution because flares in lower-energy levels
are lost in the background and go undetected (Jiao et al., 2020).
In this paper, we focus on the observed information. By scientific
convention, solar flares belong to category B if their log intensity
(log10) is within (−∞,−6), category C if [−6,−5), category M if
[−5,−4), and category X if (−4,∞). Figure 1D shows that the M/X
flare events are far fewer than B/C. The data imbalance issue is
addressed in Section 3.1.

For covariates/features, we consider SHARP data (Schou et al.,
2012) from 860 HARPs during the same time period (2 June 2010
to 29 December 2018). Approximately 7,000 HARPs are observed,
many occurring without flares. From these, to maintain the quality
of the data, we down-select the HARPs to a group of 860 based
on the criteria that 1) the longitude of the HARP should be within
the range of ±68° from the central meridian of the Sun to avoid
projection effects (Bobra and Couvidat, 2015; Chen et al., 2019) and
2) the missing SHARP parameters should be fewer than 5% of all in
the HARP to make sure that the missing data are not significantly
large to cause any bias in model training.

For this type of data, an important practical goal of any model
is to forecast the future flare intensity, given an observed value
of SHARP parameters. As such, for each point in our dataset, we
match the corresponding SHARP covariates with the GOES flare list
(response variable) at the time point that is equal to the peak time

TABLE 1 Summary of notations used in the paper.

Notation Description

I Index of a flare event

r Index of an active region

k Index of a mixture component (linear mechanism)

K Total number of mixture components (linear mechanisms)

n Total number of flare events

nr Number of flare events in active region r

Xi SHARP parameter covariates of flare event i

yi Log-intensity response of flare event i (in log10)

zr Mixture latent variable of Active region r

zi
r Latent variable of Active region r’s event i

βk Linear regression coefficient of the kth mixture component

αk
2α Linear regression variance of the kth mixture component

wi The weighted linear regression weight for data point i

subtracted by Δt, where Δt is the prediction time window and can
take values in {6,12,24,36,48} h.

2.2 Feature selection and preprocessing
procedure

All covariates in the raw data are shown in Table 2. These are the
same features used by Chen et al. (2019) and Bobra and Couvidat
(2015). However, we only use a subset because our correlation
analysis showed that some features are extremely highly correlated.
Specifically, TOTUSJH/TOTUSJZ (0.9959), SIZE_ACR/NACR
(0.9999), SHRGT45/MEANSHR (0.9969), and SIZE/NPIX (0.9999)
are extremely highly correlated. For each of these features, we
keep one feature and leave out the other. After removal, we
are left with 16 covariates: TOTUSJH, SAVNCPP, USFLUX,
ABSNJZH, TOTPOT, SIZE_ACR, MEANPOT, SIZE, MEANJZH,
SHRGT45, MEANJZD, MEANALP, MEANGBT, MEANGAM,
MEANGBZ, and MEANGBH. Their correlation matrix is displayed
in Figure 1B.

A key aspect of our models is modeling the flare intensities
by ARs. Consequently, we need to ensure similar sets of ARs in
both training and testing. To facilitate this, we randomly split data
into a training set and testing set, the latter containing 20% of
the total across all the ARs with two or more events. For those
with only one event, we flip a biased coin with probability 0.2,
assigning to the testing set if the result was true and, otherwise,
to the training set. This random split scheme guarantees a fair
representation of each AR in both the training set and testing set.
Each feature in the training set was then standardized to have
a zero mean and a standard deviation of one. We used these
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FIGURE 1
Description of the HMI/SDO SHARP dataset.

parameters to normalize the testing set. Additionally, we further
randomly divided the training set by ARs into a sub-train set and
a validation set, with the latter equal to 20% of the original set. We
used this validation set for the model selection process discussed
in Section 4.

3 Methodology

In this section, we describe our methodology for modeling the
solar flare data described in the previous section. We begin by
discussing a strategy to handle the data imbalance issue because
space weather practitioners are mostly interested in catastrophic
flare events (M/X), which occur less frequently than weak (B/C

class) flares. Then, we apply mixture models to characterize the
heterogeneity of solar flare mechanisms. Specifically, we describe
the mixture models, mixture model over active regions (MM-R)
and mixture model over flare events (MM-H), which characterize
the heterogeneous patterns among active regions, with MM-H an
extension of MM-R.

3.1 Approach to dealing with the data
imbalance issue

Weighted likelihood and weighted maximum likelihood
estimation (MLE) have been used in the literature for robust
estimations, especially when outliers exist in the data (Carroll
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TABLE 2 List of SHARP parameters and their brief descriptions.

Parameter Description

TOTUSJH Total unsigned current helicity

TOTUSJZ Total unsigned vertical current

SAVNCPP Sum of the modulus of the net current per polarity

USFLUX Total unsigned flux

ABSNJZH Absolute value of the net current helicity

NACR Number of strong LOS magnetic field pixels in the patch

MEANPOT Proxy for mean photospheric excess magnetic energy density

TOTPOT Proxy for total photospheric magnetic free energy density

SIZE ACR Deprojected area of active pixels

SIZE Projected area of the image in microhemispheres

MEANJZH Current helicity (Bz contribution)

SHRGT45 Fraction of the area with shear >45o

MEANSHR Mean shear angle

MEANJZD Vertical current density

MEANALP Characteristic twist parameter, α

MEANGBT Horizontal gradient of the total field

MEANGAM Mean angle of the field from radial

MEANGBZ Horizontal gradient of the vertical field

MEANGBH Horizontal gradient of the horizontal field

NPIX Number of pixels within the patch

aSHARP, Space-weather Helioseismic and Magnetic Imager-Active Region Patch; LOS, line
of sight.

and Pederson, 1993; Field and Smith, 1994; Markatou et al., 1998).
The idea is to down-weight the outlier data points so that they do
not deteriorate the performance of the model too much. A similar
principle can be applied here to handle the imbalance problem, i.e.,
down-weighting the “majority” data points and/or up-weighting the
“minority” points.

To illustrate, we consider a simple example of a standard linear
regression setting. Assume that the response yi given covariate
Xi follows the normal distribution yi|Xi ∼ N(X

T
i β,1), i = 1,…,n,

where β is the linear regression coefficient. The least squares
estimate for β is given by β̂ = argmaxβ∑

n
i=1 − (yi −X

T
i β)

2. With
highly imbalanced data like the solar flare data given in Section 2,
standard linear regression would not work well, and weighted
linear regression may be used instead. In that case, we need to
calculate the weighted estimator ̃β = argmaxβ∑

n
i=1 −wi ⋅ (yi −X

T
i β)

2

for known weights wi that may depend on the data. Moving beyond
this simple example, the modeling we propose in the next sections

is based on mixture models. Consider a simplified generative model
as follows:

yi|Xi,zi = k ∼N(yi|X
T
i βk,σ

2
k) , k = 1,…,K, i = 1,…,n,

where K denotes the number of mixture components and
zi is a categorical variable with P(zi = k) = πk for all k;
∑kπk = 1. Applying the weighted likelihood idea, we aim
to find the optimizer argmaxθ∑

n
i=1wi ⋅ log p(yi|Xi,θ), where

θ≔ {βk,σ
2
k,πk}

K
1 . Recall that the original log-likelihood is

l(θ) ≔ ∑ni=1 log p(yi|Xi,θ). For mixture models, it is not
straightforward to directly maximize l(θ). The expectation-
maximization (EM) algorithm is needed (Dempster et al., 1977).
Typically, the EM algorithm works with the logarithm of
the complete data likelihood, which is defined as l(π,β,σ2) ≔
∑Kk=1∑

n
i=11(zi = k) ⋅ [logπk + logN(yi|X

T
i βk,σ

2
k)]. In the E-step, the

EM algorithm computes τi,k ≔ p(zi = k|Xi,yi) ≔
πkN(yi|X

T
i βk,σ

2
k)

∑Kj=1πjN(yi|X
T
i βj,σ

2
j )
,

k = 1,…,K; then, it maximizes the expected complete log-
likelihood, argmaxβ,σ2,πQ(β,σ

2,π) ≔ argmaxβ,σ2,π∑
n
i=1∑

K
k=1τi,k ⋅

[logπk + logN(yi|X
T
i βk,σ

2
k)], in the M-step. That yields π̂k =

∑ni=1τik
n

and μ̂k =
∑ni=1τi,kXi

∑ni=1τi,k
and σ̂2

k =
∑ni=1τik⋅(Xi−μ̂k)

2

∑ni=1τik
; k = 1,…,K.

To adapt the EM framework to find the MLE for the weighted
likelihood, we note that under the EM algorithm, the log-likelihood
is lower-bounded by the expected complete log-likelihood, i.e.,
l(θ) ≥ Q(θ), and by optimizing the lower bound Q(θ), the EM
algorithm yields the (local) maximum of the likelihood l(θ) (Bishop,
2006). Under the weighted likelihood setting, we can also find a
lower bound as follows:

n
∑
i=1

wi log p(yi|Xi,θ)

=
n
∑
i=1

wi log
K
∑
k=1

p(yi,zi = k|Xi,θ)

=
n
∑
i=1

wi ⋅ log[
K
∑
k=1

q(zi = k) ⋅
p(yi,zi = k|Xi,θ)

q(zi = k)
]

≥
n
∑
i=1

wi ⋅
K
∑
k=1

q(zi = k) log(
p(yi,zi = k|Xi,θ)

q(zi = k)
) .

The last inequality is due to Jensen’s inequality. Since the
logarithm is a concave function, and ∑kk=1q(zi = k) = 1, we moved
the log inside and left q outside. Here, we can follow the usual
EM procedure to find the optimal q(z). The E-step sets q(zi = k) =
ℙ(zi = k|Xi,yi), and then, the M-step maximizes the subsequent
expression.Therefore, we observe that the weighted log-likelihood is
bounded below by the weighted expected complete log-likelihood.
In other words, to find the weighted log-likelihood estimator with
the EM framework, we can optimize the lower bound ∑ni=1∑

K
k=1wi ⋅

τi,k ⋅ [logπk + logN(yi|X
T
i βk,σ

2
k)]. Moreover, since wi(⋅) is a known

weight function, if we ensure that 0 < wi ≤ C <∞ for all i for some
constantC free of parameters, then, by noting that logπk < 0,we have

n

∑
i=1

K

∑
k=1

wi ⋅ τi,k ⋅ [logπk + logN(yi|X
T
i βk,σ

2
k)]

=
n

∑
i=1

K

∑
k=1

τi,k ⋅ [wi ⋅ logπk +wi logN(yi|X
T
i βk,σ

2
k)]

≥
n

∑
i=1

K

∑
k=1

τi,k ⋅ [C ⋅ logπk +wi logN(yi|X
T
i βk,σ

2
k)] .
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Because ∑Kk=1πk = 1, it is easy to derive that

argmax β,σ2,π

n
∑
i=1

K
∑
k=1

τi,k ⋅ [C ⋅ logπk +wi logN(yi|X
T
i βk,σ

2
k)]

= argmax β,σ2,π

n
∑
i=1

K
∑
k=1

τi,k ⋅ [logπk

+wi logN(yi|X
T
i βk,σ

2
k)] .

Therefore, the above expression is the lower bound of the
weighted complete log-likelihood, and optimizing it, in turn,
increases the data likelihood. The final expression is the lower
bound to be optimized for our mixture models, which is proposed
in the subsequent sections. The justification of the algorithm
comes from the fact that the EM-based inference algorithm
will converge to a local maximum of the weighted likelihood
function (Wu, 1983).

3.2 Dealing with the sample imbalance
problem: weighting schemes

In this section, let wi be denoted by w(yi) to emphasize the
fact that the weights only depend on yi(s). By scientific convention,
the log intensity is (in log10) yi ∈ (−∞,−6) for flare category B,
yi ∈ [−6,−5) for flare category C, yi ∈ [−5,−4) for flare category M,
and yi ∈ (−4,∞) for flare category X. We propose the following
scheme for w(yi):

w(yi) =

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

1
n

∑
i=1

1(yi ≥ −4)/n
ifyi ≥ −4

1
n

∑
i=1

1(−5 ≤ yi < −4)/n
if − 5 ≤ yi < −4

1
n

∑
i=1

1(−6 ≤ yi < −5)/n
if − 6 ≤ yi < −5

1
n

∑
i=1

1(yi < −6)/n
ifyi < −6

.

Note that as n→∞, by the strong law of large numbers,

w (y)
a.s.
→

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

1

∫
∞

−4
p0 (y) dy

ify ≥ −4

1

∫
−4

−5
p0 (y) dy

if − 5 ≤ y < −4

1

∫
−5

−6
p0 (y) dy

if − 6 ≤ y < −5

1

∫
−6

−∞
p0 (y) dy

ify < −6

,

where p0y) is the marginal distribution of y. The justification for
choosing w(y) this way is as follows. As the number of data points
goes to infinity, and it is assumed that (X,y) follows the “true”

distribution p0(X,y), by the law of large numbers, the weighted score
function becomes

1
n

n
∑
i=1

w(yi) log p(yi|Xi,θ)
a.s.
→∫w (y) log p (y|x,θ)p0 (x,y)dxdy

= ∫w (y) ⋅ (∫ log p (y|x,θ) p0 (x|y)dx) ⋅ p0 (y)dy.

r(y,θ) ≔ ∫ logp(y|x,θ)p0(x|y)dx and
IB ≔ (−∞,−6), IC ≔ [−6,−5), IM ≔ [−5,−4), IX ≔ [−4,∞) are
defined. These intervals correspond to the scientific thresholds of
flare categories B, C, M, and X, respectively. As the number of data
points goes to infinity, the weighted log-likelihood function can now
be written as

∫w(y) log p(y|x,θ)p0(x,y)dxdy

= ∫w(y)r(y,θ)p0(y)dy

= ∫
IB
w(y)r(y,θ)p0(y)dy+∫

IC
w(y)r(y,θ)p0(y)dy

+∫
IM
w(y)r(y,θ)p0(y)dy+∫

IX
w(y)r(y,θ)p0(y)dy.

As mentioned previously, the number of data points of M and X
are fewer than that of B and C (Figure 1D), i.e., p0y) places negligible
masses on IM and IX compared to IB and IC. As a consequence, the
four terms in the last expression are of different scales. As such,
setting w(y) to the above-proposed choice effectively “normalizes”
and places these four components on the same scale and balances
them out. Explicitly,

∫w(y) log p(y|x,θ)p0(x,y)dxdy

=
∫
IB
r(y,β)p0(y)dy

∫
IB
p0(y)dy

+
∫
IC
r(y,β)p0(y)dy

∫
IC
p0(y)dy

+
∫
IM
r(y,β)p0(y)dy

∫
IM
p0(y)dy

+
∫
IX
r(y,β)p0(y)dy

∫
IX
p0(y)dy

.

Finally, to tie this back to the last section, w(y) is then
used as the weights in the weighted complete log-likelihood.
For instance, in the example given in the previous section, the
weighted complete log-likelihood is l(π,β,σ2) ≔ ∑Kk=1∑

n
i=11(zi = k) ⋅

w(yi) ⋅ [logπk + logN(yi|X
T
i βk,σ

2
k)].

3.3 Mixture model over active regions

As described in Section 2, Xi and yi denote the SHARP
parameter covariates and the corresponding log flare intensity
response variable, respectively. We reiterate that the value of yi is
measured at timeΔt h behind the values ofXi sincewewant tomodel
yi as the forecasted flare intensity at Δt h after observing SHARP
values ofXi. Here, we use mixture modeling to characterize both the
heterogeneity and shared patterns among active regions. Let K > 1
be the number of mixture components. We model the heterogeneity
to be shared across ARs by the global parameters βk and σ2

k for
k = 1,2,…,K. For r = 1,…,R, each active region r is equipped with a
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FIGURE 2
Model selection’s metrics for MM-R and MM-H. The x-axis is the
number of mixture components to be selected.

FIGURE 3
MM-R and MM-H’s log intensity and estimated variance of
each cluster.

discrete latent variable zr taking values in {1,2,…,K}. If zr = k, then
all the flare events {Xr

i ,y
r
i } in the active region r follow the normal

distribution yri ∼N(⋅|β
T
k ⋅X

r
i ,σ

2
k). Latent variable zr is introduced

to capture the “intrinsic” categories of flaring mechanisms from
SDO/HMIdata.The values of zr donot necessarily correspond to the
scientific B/C/M/X categories but, rather, are the inferred “clusters”
from the data. One important constraint under MM-R is that all the
events under the same active region must have the same regression
pattern parameterized by βzr ,σ

2
zr .

Mathematically, the model is defined as follows. For AR
r = 1,…,R,

zr|π1:K ∼ Cat (⋅|π)

yri |z
r = k ∼N(⋅|βTkX

r
i ,σ

2
k) , i = 1,…,nr.

The model can also be represented as a probabilistic graphical
model (Koller and Friedman, 2009), as shown in Figure 2. There are
2K+ 1 “global” parameters {βk,σ

2
k}

K
k=1 and π. Using the plate notation

in this figure, there areR conditionally i.i.d. latent variables {zr}Rr=1 for
each of the unique active regions. Under each active region r, there
are nr flare events {(Xr

i ,y
r
i )}

nr
i=1.

Parameter estimation is achieved through an expectation-
maximization algorithm (Dempster et al., 1977), with the lower
bound as a weighted complete log-likelihood, as defined in
section 3.2, and we optimize the weighted complete log-likelihood
to remediate the data imbalance problem. Under this model,
rather than the standard expected complete log-likelihood, our EM
algorithm optimizes the weighted expected complete likelihood
optimization problem,

argmaxπ,σ2,β

K
∑
k=1

R
∑
r=1
𝔼[zr = k|Xr,yr][logπk −

nr
∑
i=1
(wi

2 log σ2
k

+ wi
2σ2

k
⋅ (yri − β

T
kX

r
i)

2)].

The E-step computes

τrk = p (z
r = k|Xr,yr) =

πk ⋅
nr
∏
i=1

N(yri |β
T
kX

r
i ,σ

2
k)

K

∑
j=1

πj ⋅
nr
∏
i=1

N(yri |β
T
j X

r
i ,σ

2
j )

.

The M-step yields

π̂k =

R

∑
r=1

τrk

R
,

β̂k = [
R

∑
r=1

τrk

nr
∑
i=1

wiX
r
i(X

r
i)
T]
−1

[
R

∑
r=1

τrk

nr
∑
i=1

wiy
r
iX

r
i],

σ̂2
k =

R

∑
r=1

τrk

nr
∑
i=1

wi ⋅ (y
r
i − β̂

T
kXi,r)

2

R

∑
r=1

nr ⋅ τ
r
k

.

Next, for prediction, on one hand, if the region of a new
data point X̃i is not known, we estimate the log intensity ŷi|X̃i =
∑Kk=1πk ⋅ X̃

T
i βk. On the other hand, if its region is ri, then ŷi|ri, X̃i =

∑Kk=1τri,k ⋅ X̃
T
i βk.

3.4 Mixture model over flare events

The mixture model MM-R given in Section 3.3 requires all the
flare events of an active region to follow the same regression pattern.
This condition can be too restrictive. Note that in our dataset, each
flare occurs at a different location and time within an active region,
and we can think of the entire data being a collection of events
from many active regions. Now, it is reasonable to accommodate
the possibility that the heterogeneous nature extends further into
each individual flare event within an active region. To model this
behavior, we can assign a latent variable zri to each data point i
but impose that zri ∼ Cat(⋅|πri ), where πr ∈ ℝK and ∑Kk=1π

r
k = 1. The

parameter πrk captures a regional inclination for certain categories of
the flaring mechanism. If πr(s) are extreme, e.g., taking value 1 in
one coordinate and zeros elsewhere, the model MM-H is reduced to
the mixture model MM-R given in the previous section. Note that
this type of model is sometimes called a mixed membership model
in the statistical learning literature (Airoldi et al., 2014), where an
active region is a group ofmembers, where themembers, in this case,
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FIGURE 4
Selected subset of covariate X under each cluster of MM-R.
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FIGURE 5
Mixture model over ARs estimated {β̂K1 } and each active region’s mixing proportions of these values.

are its flare events. As discussed previously, the weighted complete
log-likelihood is optimized to combat the unbalanced data.

Mathematically, the model is parameterized by
β1,…,βK,σ

2
1,…,σ

2
K,π

1,…,πR, where K is the number of global
parameters and R is the number of active regions. For active region
r = 1,…,R,

zri ∼ Cat (⋅|πr) , i = 1,…,nr
yri |z

r
i = k,X

r
i ∼N(⋅|β

T
kX

r
i ,σ

2
k) .

Figure 3 is the probabilistic graphical model representation of
model MM-H. There are 2K “global” parameters {βk,σ

2
k}

K
k=1. With

the plate notation, there are now n = ∑Rr=1nr latent variables zri for
each flare event (Xr

i ,y
r
i ) of active region r. Under each active region

r, the latent variable zri is a discrete random variable which takes
values in {1,…,K} with probability weight πr . Compared to the
model described in Section 3.3, MM-R only has R latent variables
zr , with one “global” weight π. MM-H provides each active region
the flexibility of having its own categorical weight πr over K linear
mechanisms.

Similar to the previously discussed model, the likelihood is
p(yri |x

r
i ;π,β,σ

2) = ∑Kk=1π
r
k ⋅N(⋅|β

T
kx

r
i ,σ

2
k), and the weighted expected

complete log-likelihood optimization problem is equivalent to

argmaxβ,π,σ2

K
∑
k=1

R
∑
r=1

nr
∑
i=1
𝔼[zri |y

r
i ,X

r
i] ⋅ (log π

r
k −

wi
2 log σ2

k

− wi
2σ2

k
⋅ (yri − β

T
kX

r
i)

2).

Under these specifications, for parameter estimation, the
iterative E-step computes

τri,k = ℙ(z
r
i = k|y

r
i ,X

r
i) =

πrk ⋅N(y
r
i |β

T
kX

r
i ,σ

2
k)

K

∑
j=1

πrj ⋅N(y
r
i |β

T
j X

r
i ,σ

2
j )

,

while the M-step performs the updates

π̂rk =

nr
∑
i=1

τri,k
nr

β̂k = [
R
∑
r=1

nr
∑
i=1

τri,k ⋅wi ⋅X
r
i(X

r
i)
T]
−1
[

R
∑
r=1

nr
∑
i=1

τri,k ⋅ y
r
iX

r
i]

σ̂2
k =

R

∑
r=1

nr
∑
i=1

τri,kwi ⋅ (y
r
i − β̂

T
kXi,r)

2

R

∑
r=1

nr
∑
i=1

τri,k

.
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FIGURE 6
Active Region 11967’s SHARP parameters and HMI image during its strongest flare event and bar plots of regression coefficients on the right. AR 11967
existed from 2014/01/30 to 2014/02/08. The dash lines are the times at their peak intensities. The solid lines are the 6-hour-before for covariates’
regression.

Finally, to perform prediction for a new data point X̃i of the
region ri, given ri, ̃Xi, we take ŷi ≔∑

K
k=1π

r
k ⋅ β

T
k . ̃Xi.

4 Model selection and data analysis
discussion

The model selection for mixture models concerns the choice of
K, the number of mixture components. In this section, we focus
our investigation on the dataset with a prediction time window
Δt = 6 h. Recall that with Δt = 6 h, each response yi is matched with
SHARP parameters Xi 6 h before in the data. Similar results can be
obtained with other prediction time windows Δt = 12,24,36,48 h.
For general regression problems, a common evaluation metric

for model performance is the root mean squared error (rmse) =
√∑ni=1(yi −X

T
i β̂)

2. However, this metric can be misleading if the
primary concern is the predictive performance ofM/X future events
because the data are imbalanced, with M/X events being rare.
To assess the proposed models in a more balanced fashion, we
can first discretize each of the continuous-valued yi into binary-
valued ̃yi ∈ {0,1}, where ̃yi = 1(yi > −5), which then takes advantage
of standard classifier metrics such as precision, recall, and f1 score
(the harmonic mean of precision and recall) (Goutte et al., 2005).
If a model attempts to improve the overall rmse performance by
over-optimizing B/C events at the expense of M/X, the recall will
be affected and lead to a low f1 score. The higher the f1 metrics (i.e.,
closer to 1), the better the performance. This approach also allows
us to compare our models with other methods in the solar flare
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FIGURE 7
The left two images are radial components and right two ones are horizontal filed in AR 12242 (H label) at its strongest (2014.12.20_00:28:00) and
weakest flare events (2014.12.16_00:05:00) during its existence. AR 12242 existed from 2014/12/14 to 2014/12/21.

forecasting literature, which are mostly black box machine learning
classifiers. We also recall that in Section 2, we split the original
training set into a sub-training set and a validation set.

The validation set is utilized to determine the optimal number
of componentsK) and the above discretization binary threshold. For
the 6-h dataset, the threshold −5.0 yields the best f1 performance in
the validation. Next, we explain in detail how to choose the best K.

4.1 Model selection

Note that when mixture componentK = 1, both models given in
Section 3.3 and Section 3.4 reduce to a weighted linear regression
model. To perform model selection, the test set is fixed, and the
original train set is randomly split into a sub-train set and a
validation set for 100 repetitions. For each repetition, we train
weighted linear regression (Section 3.1), MM-R (Section 3.3), and

MM-H (Section 3.4) on the sub-training set and then apply them
to the validation set to obtain the box plots given in Figure 4. In the
figures, each box plot visualizes theminimum, first quartile, median,
third quartile, and maximum of the collection of generated metrics
over 100 repetitions. The averages are also depicted as green dots.
The numbers in the x-axis are the number of mixture components
to be selected. For MM-R, setting K = 3 yields the best f1 score. A
similar conclusion for K can be observed from the breakdown of the
rmse for B/C and M/X categories.

The B/C rmse is at the lowest for K = 3,4,5, and the M/X
rmse is at the lowest for K = 3,4, as shown in Figures 4C, D.
Taking all observations into consideration, we pick K = 3 for MM-
R. Following a similar reasoning, we pick K = 3 for MM-H. Note
that we combine the rmse of M/X categories and B/C categories
since the M/X represents strong flares and B/C represents weak
flares. In addition, we are most interested in early warnings of
strong flares.
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FIGURE 8
Active Region 12242’s SHARP parameters. AR 12242 existed from 2014/12/14 to 2014/12/21.

TABLE 3 (Unweighted) linear regression test performance.

Metrics/prediction window 6 h 12 h 24 h 36 h 48 h

Root mean squared error 0.4543 0.4535 0.4569 0.471 0.46945

Accuracy 0.9315 0.9310 0.9336 0.9340 0.8972

Precision 0.28 0.200 0.16 0.15 0.3333

Recall 0.051 0.0294 0.032 0.03 0.03508

f1 score 0.086 0.0512 0.0533 0.061 0.06349

4.2 Analysis of mixture model fittings

In this section, we demonstrate the clustering results of
the mixture model MM-R discussed in Section 3.3 and MM-H

discussed in Section 3.4 after training on the observed data. We
inspect clustering effects on themarginal space of response y and the
marginal space of covariate X, and then we explore what clustering
structure entails the interactions between y and X.

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2024.1229092
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Do et al. 10.3389/fspas.2024.1229092

TABLE 4 Weighted linear regression test performance.

Metrics/prediction window 6 h 12 h 24 h 36 h 48 h

Root mean squared error 0.5873 0.5383 0.5572 0.5646 0.5798

Accuracy 0.8613 0.8990 0.896 0.8971 0.8972

Precision 0.3563 0.2158 0.2265 0.1840 0.2054

Recall 0.37825 0.2729 0.2622 0.2116 0.2212

f1 score 0.3639 0.2407 0.2428 0.1967 0.212

TABLE 5 Test performance of the mixture model over ARs. Note: the f1 score is computed based on K = 3,3,3,3,5, and classification threshold =
−5.0,−5.0,−5.05,−5.1,−5.15.

Metrics/prediction window 6 h 12 h 24 h 36 h 48 h

Root mean squared error 0.4849 0.5140 0.5539 0.5419 0.5074

Accuracy 0.8487 0.8745 0.8729 0.8497 0.8574

Precision 0.3636 0.8594 0.2156 0.1959 0.2

Recall 0.4057 0.3839 0.3882 0.3372 0.2970

f1 score 0.383 0.2935 0.2773 0.2479 0.2390

TABLE 6 Test performance of the mixture model over flare event. Note: the f1 score is computed based on K = 3,3,3,6,5, and classification threshold =
−5.0,−5.0,−5.05,−5.05,−5.1.

Metrics/prediction window 6 h 12 h 24 h 36 h 48 h

Root mean squared error 0.4732 0.5058 0.5321 0.5338 0.5586

Accuracy 0.8433 0.8621 0.8663 0.84543 0.8485

Precision 0.3446 0.2486 0.2344 0.2 0.2

Recall 0.4693 0.4017 0.4 0.4875 0.3366

f1 score 0.3933 0.3071 0.29 0.2708 0.2509

4.2.1 Response space y
Examining the log intensities of each cluster provides hints on

the interpretation of the clustering structures of the trained models.
Specifically, by the above model selection procedure, we choose
K = 3 for the mixture model MM-R. The red line in Figure 5A is
the average of the response y over the entire training dataset. The
median of cluster 1 is below the line. On the other hand, the median
of cluster 2 is very close to it, and the median of cluster 3 is above
it. This suggests that cluster 1 mostly consists of regions producing
weak flares, and cluster 3 contains those with strong flares, while
cluster 2 is in between. A similar conclusion is made regarding the
mixture model over flare events MM-H with K = 3.

4.2.2 Covariate space X
The same clustering interpretation can be extracted by

inspecting covariate values for each cluster given in Figures 6A–F.
It has been scientifically observed that the flare intensities are

connected to the magnetic properties of the active region. Using
model MM-R, by inspecting the relevant magnetic covariate
features, we found that cluster 1 has lower numeric values under
both weak (B/C) and strong (M/X) events than the others. In
contrast, cluster 3 has the highest values. This further corroborates
the interpretation that cluster 1 mainly has weak flare events, cluster
3 is populated with strong events, and cluster 2 is in between.
Similarly, we can reach the same conclusion for the model over flare
events, MM-H; the corresponding plots are provided in Figure 17.

4.2.3 Interaction between the covariate X and
response y

Under the standard multivariate linear regression setting, the
coefficient β ∈ ℝd indicates how much the response y is expected
to increase when an independent variable increases by one unit,
holding all other independent variables constant. For heterogeneous
regression responses, the interaction between covariates X and y
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FIGURE 9
The left two images are radial components and right two ones are horizontal filed in AR 11261 (I label) at its strongest (2011.07.30_02:09:00) and
weakest flare events (2011.07.30_19:41:00) during its existence. AR 11261 existed from 2011/7/28 to 2011/8/5.

is, to a certain extent, more delicate. In particular, for MM-R,
three global coefficient parameters exist: β1,β2,β3. Now, how do we
interpret them and talk about the interaction between y and X?

Recall that under MM-R, the predicted ŷ for flare event i in AR
r is given by

ŷri =
K

∑
k=1

τrkβ
T
kX

r
i = [

K

∑
k=1

τrkβk]
T

⋅Xr
i

= [
K

∑
k=1

p(zr = k|Xr
1,…,X

r
nr ,y

r
1,…,y

r
nr
)βk]

T

⋅Xr
i ≕ (β

r)TXr
i .

Thus, under active region r, βr indicates how much the response
yri is expected to increase by increasing an independent variable by
one unit, holding other variables fixed. Furthermore, {τrk}

K
1 controls

the influence of each βk on βr, the interaction coefficient between
y and X for region r. If we visualize β1,β2, and β3 as three extreme
points, e1,e2,e3 = (0,0;1,0;0,1) in a 2D unit simplex, and plot each

AR r at the coordinate ̃cr ≔∑3
k=1τ

r
kek (note that all flare events i

under AR r have the same βr), then, the position of AR r in the
simplex indicates visually how much it is influenced by each of the
global {βk}

3
k=1. Furthermore, we can inspect the mixture component

assignments for all active regions under the trained model MM-R
as illustrated in Figure 7. Figure 7B shows the coefficient βr of
each AR r under the influence of clusters 1 (green), 2 (yellow),
and 3 (blue). Each AR is visualized as a colored dot in the unit
simplex, and its size corresponds to the number of flare events
recorded in that AR. In Figure 7B, we observe that active regions
under cluster 1 (green) are mainly affected by β̂1, but β̂2 still
plays some role, while β̂3 has a negligible impact. By the same
manner of reasoning, cluster 2 (yellow) is mainly influenced by
β̂2, and β̂1 plays a relatively minor role. Cluster 3 (blue) is mostly
affected by parameters β̂3. Figure 7A shows the magnitudes of
each feature for β̂1, β̂2 and β̂3. Each has 17 bars. The first bar is
the linear regression intercept coefficient, and the following bars
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FIGURE 10
Active Region 11261’s SHARP parameters. AR 11261 existed from 2011/7/28 to 2011/8/5.

FIGURE 11
Active Region 11117’s SHARP parameters. AR 11117 existed from 2010/10/21 to 2010/10/31.
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FIGURE 12
MM-H’s estimated {β̂K1 } and the mixing proportion w.r.t these β̂ for each flare event.

are the coefficients of features: TOTUSJH, SAVNCPP, USFLUX,
ABSNJZH, TOTPOT, SIZE_ACR, MEANPOT, SIZE, MEANJZH,
SHRGT45, MEANJZD, MEANALP, MEANGBT, MEANGAM,
MEANGBZ, and MEANGBH. Their descriptions are given in
Table 2. The same line of interpretation can be applied for MM-
H, for which similar plots are included in Figures 8A, B of the
appendix.

4.3 Prediction performance

Note again that when the number of mixture components
K = 1, the models discussed in Section 3.3 and Section 3.4 are
just the weighted linear regression model. To produce the figures
given in Tables 3–6, we train standard linear regression, weighted
linear regression, and models MM-R (Section 3.3) and MM-H
(Section 3.4) on the training data, as described in the data section.
We runMM-R andMM-H for 100 replications, under each of which
training and testing datasets are randomly split, as described in
Section 2. We then take the averages as the final results. For each
replication, we run our EM procedures five times and select the one
with the highest likelihood as the fittedmodel.We use the validation
set to pick the best number of components K. Even though the
models predict continuous responses, and we can assess their rmse,
to help illustrate the model performances against data imbalance,
of which the rmse is not particularly helpful, we compute the f1
score. Since this is a classificationmetric, continuous responses need
to be converted into binary outcomes. We use the same validation
set to pick the best binary splitting thresholds. The estimated binary
responses are compared with the true labels of strong flares (M/X)
and weak flares (B/C) in the data.

The numbers given in Tables 3–6 show that mixture models
MM-H (Section 3.4) and MM-R perform similarly, although the
former is marginally better. MM-R and MM-H (Section 3.4)
significantly outperform the weighted linear regression. This result
implies that adding more components improves the performance
and, thus, supports the heterogeneous nature of the data. Model
MM-Hoffersmore flexibility by extending the heterogeneity pattern
to individual flare events. However, interestingly, this flexibility
does not noticeably improve the defined metrics. This suggests
that the heterogeneity signal is most noticeable at the active
region level. We also observe that the performance degrades as
the predicting time windows increase, which is expected. Finally,

we remark that our predictive performance in the f1 metric
(0.383) for 6-h data is lower than that observed by Chen et al.
(2019). This is not surprising as we assume linear relationships
between covariates and responses and do not account for the
temporal nature of solar flares, where future events may correlate
with past events. In contrast, Chen et al. (2019) constructed a
sophisticated LSTM neural network to extract complex nonlinear
signals from the data. We describe potential future directions for
improving model performance in the last section. However, the
main contribution of this work is demonstrating how mixture
models can cluster solar active regions based on the interaction
mechanisms between their SHARP covariates and corresponding
intensity responses, thus characterizing the heterogeneous nature of
active regions.

4.4 Case studies

Both models MM-R 3.3 and MM-H 3.4 perform similarly
regarding f1 metrics, even though MM-H is marginally better.
As mentioned in the last section, this result seems to suggest
that flares from the same AR are intrinsically homogeneous in
nature or homologous, as known to the solar physics community
(Manchester, 2003; Sui et al., 2004; Liu et al., 2014; Romano et al.,
2018). In contrast, individual ARs are most often heterogeneous. As
such, we use MM-R for the case studies in this section. As stated
in the introduction, the goal of this project is to characterize the
heterogeneity among ARs. The cluster membership of the fitted
models is particularly interesting, because the model MM-R groups
similar active regions together in each cluster.

Because the training and testing sets are created randomly,
mixture memberships might change in different replications of the
model fitting procedure. Thus, to analyze the cluster assignment in a
robust manner, we run the model fitting procedure for MM-R for
100 repetitions. In each repetition, active regions are allocated to
different mixture clusters. To standardize the meaning of clusters
across repetitions, we assign labels “H,” “L,” and “I” to mixture
clusters of which the first quartile of its collections of log intensities
is greater than −5.75, smaller than −6.0, and between [−6,−5.75],
respectively. By the design of the log intensity threshold for “H,” “I,”
and “L,” active regions allocated to “H” labels should be reasonably
active in terms of strong flare events, active regions to allocated “L”
should be relatively quiet, and “I” in between.
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FIGURE 13
Selected subset of covariate X under each cluster of MM-H.

We observe that some active regions have the same labels for all
100 repetitions. For example, ARs 11,124 and 11,109 are assigned
to the label “L” in each of the 100 iterations. On the other hand,
other active regions might be allocated to different labels over 100
repetitions. For instance, AR 11,967 is assigned to cluster “H” 87%
and “I” 13% of the 100 repetitions or AR 1219285% “H” and 15%
“I.” The reason why an active region may have different labels for
different repetitions has to do with the randomness of data splitting.
In particular, AR 11153 has 28 flare events, of which only one
is M class and the rest are B and C ones. As such, if the M-
class event is included in the training, it will skew the average

log intensities higher than otherwise, and so, it affects its mixture
cluster assignment.

The complete list of active region membership is provided in
SupplementaryMaterial. Here, wemention the top twoARs for each
of the labels “H,” “I,” and “L” in terms of the highest number of
label assignments in 100 repetitions. Regarding the “L” label, ARs
11,117 and 11,109 are assigned to “L” 99% and 100% of the times,
respectively. For “H,” ARs 11,967 and 12,242 are assigned to “H”
87% and 88% of the times, respectively. For “I,” ARs 11,261 and
11,087 are allocated to “I” 62% and 59% of the 100 repetitions,
respectively. Some existing works in the space weather literature
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FIGURE 14
The left two images are radial components, and the right two images are horizontal, filed in AR 11,117 (L label) at its strongest (2010.10.31_04:31:00)
and weakest (2010.10.22_07:59:00) flare events during its existence. AR 11,117 existed from 2010/10/21 to 2010/10/31.

corroborate that ARs 11,967 and 12,242 were known to produce
strong flares (Solovev et al., 2019; Durán et al., 2020; Joshi et al.,
2021). A common trait of ARs with the “I” label is that they have
few strong flares among a majority of quiet flare events. In contrast,
ARs with “L” labels have only quiet flare events.

To complete our case study, we provide the HMI image and the
temporal evolution of each SHARP parameter for the strongest and
weakest flare events for AR 11,967 during its existence from January
27 2014 to February 09 2014 in Figure 16. Appendix B provides the
same plots for all ARs 11,117,11,261,11,967, and 12,242.

a) The left two images are radial components, and the right
two ones are horizontal field components in AR 11967 (H label)
at its strongest (2014.01.30_16:11:00) and weakest (2014.01.30_
13:36:00) flare events during its existence. Arrows show the
direction and relative magnitude of the horizontal magnetic
field component.

b) (Left) Evolution of SHARP parameters during the strongest
(red) and weakest (green) flare events in AR 11967 (H label) and
(Right) MM-R estimated β̂k values. The dashed lines are the times
at their peak intensities. The solid lines are the 6-hour-before for
covariates’ regression. The green color is the weakest flare, and red is
the strongest one.

All flaring active regions share common basic features, which
is a nonpotential magnetic field forming a filament channel
over a well-defined polarity inversion line (Green et al., 2018).
Beyond this basic feature, there are many possible avenues to
eruption. Here, we summarize the observed magnetic structure
and evolution of cluster members to determine whether there
are features or processes responsible for the heterogeneity of
the mixture models. The H cluster contains numerous X-class
flares, which received considerable attention in the published
literature. The conditions of AR 12,242 leading to the X1.8
flare on December 20 2014 are particularly well described. For
example, Solovev et al. (2019) describes the convergence of
magnetic flux toward the polarity inversion line leading to both
a local and a total maximum gradient of the magnetic field at
the time of the flare. Solovev et al. (2019) further described the
formation of a magnetic flux rope by reconnection between the
converging/colliding sunspots, which erupts to produce the flare.
This flaring process has been developed by numerous authors,
e.g., Chintzoglou et al. (2019) and Liu (2020). In the case of AR
11,967, a series of flares occurred at a sunspot light bridge, a

region of extremely intense and highly sheared magnetic fields
produced by flux emergence (Kawabata et al., 2017; Durán et al.,
2020). In both examples, we find an intensification of the
magnetic field.

For the I cluster, we again find well-described events showing
consistent patterns of evolution leading to the flares. The strongest
flare from AR 11,087, a C2.7 event, occurred on July 13 2010 at
10:51:00 UT, which is described by Joshi et al. (2015). The flare is
characterized by the activation and partial eruption of an active
region filament that produces a pair of flair ribbons. Another
member of the I cluster, AR 11,261, produced a series of flares,
including 4 M-class events, which arose from a complex system of 4
sunspots, one being in a delta configuration (Thalmann et al., 2016).
Ye et al. (2018) found that shearing of the photospheric magnetic
field associated with flux emergence was a key driver of flares.
These observations are consistent with Lorentz force-driven shear
flows powering solar eruptions (Ward, 2001; Manchester, 2003;
Manchester et al., 2004; Ward, 2007; Fang et al., 2010). Similarly,
Sarkar et al. (2019) found that the free energy necessary for flares
from active region 11,261 was provided by the shearing motion of
moving magnetic features of opposite polarities near the polarity
inversion line. The authors also found patterns in the time evolution
of the net Lorentz force associated with solar flares.

As stated earlier, the L cluster is dominated by weak flares, which
poses two challenges. First, the events are so low in energy that
they often occur without significant changes in the photospheric
magnetic field and without clear precursors. Second, these low-
energy events are far less documented in the literature. However,
active region 11,117 is an exception being described in detail in
a series of papers by Jiang et al. (2012); Jiang et al. (2016); and
Jiang et al. (2017), which we recount here. This region produced a
series of small B-class flares observed on October 25 2010 (a date in
between our strong and weak flare events), culminating in a C2.3-
class event. As described by Jiang et al. (2012), the coronal loops
of active region 11,117 (observed by AIA-171) remained largely
unchanged, but a flare reconnectionwas observed at the location of a
magnetic null derived from their nonlinear force-free field (NLFFF)
model. This eruption event is consistent with topologically driven
reconnectionmodels (Titov et al., 2010; Liu et al., 2016). In this case,
observations show shear and rotational motions at the photosphere,
providing a clear buildup of energy preceding the flares, but no
sudden changes precipitate a flare.
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FIGURE 15
SHARP parameters of active region 11,117. AR 11,117 existed from 2010/10/21 to 2010/10/31. (A) (Left) Evolution of SHARP parameters during the
strongest flare event in AR 11,117 (L label) and (Right) MM-R-estimated β̂k values. (B) (Left) Evolution of SHARP parameters during the weakest flare
event in AR 11,117 (L label) and (Right) MM-R-estimated β̂k values.

5 Conclusion and future work

In this paper, our goal is the characterization of the
heterogeneous patterns shared by different active regions on the
surface of the Sun based on data-driven approaches.We propose two
types of mixture models: MM-R and MM-H. The first model, MM-
R, is designed to specify the heterogeneity across active regions. The
second model, MM-H, goes beyond to specify the heterogeneity
for flaring patterns within an active region. As demonstrated,
using mixture modeling improves the performance of the solar

flare prediction. The second model, MM-H, performs marginally
better. Since the extension of heterogeneity to individual flare events
within an active region, as explained in Section 3.4, does not yield
conclusive gains, the heterogeneous nature of the mixture seems to
be strongly due to active regions, while flaring events within active
regions tend to be more homogeneous. Another contribution of this
paper is showing how to deal with the imbalance problem using the
expectation-maximization framework.

Significantly, our work demonstrates the clustering results of the
mixture model MM-R. We observed three clusters, namely, “H,” “I,”
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FIGURE 16
SHARP parameters and HMI image of active region 11,967 during its strongest flare event. The bar plots of regression coefficients are on the right. AR
11967 existed from 2014/01/30 to 2014/02/08. The dashed lines are the times at their peak intensities. The solid lines are the 6-hour-before for
covariates’ regression. (A) Mixture model over flare events estimated {βˆ}K1. (B) Mixture model over flare events mixing proportion of estimated {βˆ}K1
for each flare event. This plot shows the influence of each of the K-linear mechanisms of the flare events on ARs. The closer an event is to a vertex of
the simplex, the stronger its influence.

and “L.” As our mixture model is designed to perform clustering at
the level of interaction between covariates and responses, it implies
three distinct linear mechanisms for three clusters. Moreover, the
“H” group of ARs produces significantly more strong flares, while
ARs in group “I” have few strong flares and a majority of weak flare
events. In contrast, ARs with “L” labels have only weak flare events.

An equally important result is based on the fact that MM-H
is marginally better than MM-R, which demonstrates that flares
from the same AR are intrinsically homogeneous. This result is fully
consistent with what was already known about homologous flares:
the magnetic configuration remains similar between successive

flares and is reformed between flare events. Such flares are readily
explained by the reconnection of coronal magnetic fields, resulting
in flare ribbons in the chromosphere (Sui et al., 2004; Liu et al., 2014;
Janvier et al., 2023), which is now considered the standard model in
solar physics. The energized field is in the form of a sheared core
or filament channel, which persists or reforms by shearing motions
after subsequent flares (Manchester, 2003; Romano et al., 2018).

The mixture model also discerns heterogeneity between active
regions in three distinct clusters. The H cluster is representative
of the most energetic events. These flares follow the sudden
intensification of magnetic fields and their gradients, which can
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FIGURE 17
Selected subset of covariate X under each cluster of MM-H. (A) Mixture Model over flare events MM-H (3.4) sum of the absolute value of the net
currents per polarity in amperes. (B) Absolute value of the net current helicity in G2/m. (C) Total photospheric magnetic energy density in ergs per
cubic centimeter of MM-H. (D) Total unsigned flux in maxwells. (E) Total photospheric magnetic energy density in ergs per cubic cm. (F) Projected area
of patch on image in micro-hemisphere. (G) Projected area of active pixels on image in micro-hemisphere. (H) Mean photospheric excess magnetic
energy density in ergs per cubic cm.
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follow from the emergence of intense magnetic fields or large-scale
collisions of opposite polarities. This evolution comes with clear
and distinct signatures of the covariates. The I-class events follow
a buildup of energy from shear and rotational flows associated with
lower levels of emergingmagnetic fields. At lower energies, a buildup
of energy eventually activates flares from a topological feature. The
I and L classes show more similarity with shear and rotational flows
producing an energy buildup.However, while the I class is associated
with flux emergence, the least energetic L-class events follow an
energy buildup, with little emergence occurring over the time scale
of the flare events. In this sense, a clear pattern is related to the
relative disruption of the photospheric magnetic field driving the
flare events.

In this work, we assume an independent linear relationship
between Xi and yi for each data point in a mixture cluster. This
does not take into account the fact that flares occur through time,
and there may be a temporal correlation between a future event and
past events. The next step is to adopt more sophisticated regression
methods, such as Gaussian process regression. Moreover, we can
also apply a more powerful approach to determine the number
of mixture components. Existing methodologies like the Dirichlet
process or hierarchical Dirichlet process seem to be a promising
direction to pursue.

6 EM algorithm derivation

For mixture model MM-R defined in Section 3.3, we can write
the complete likelihood as
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So, the complete log-likelihood can be written as
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Now, as explained in previous sections, to combat the data
imbalance issue, we optimize a weighted version of the complete
log-likelihood:
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For the M-step, taking derivatives w.r.t each parameter and
setting to zeros, it can be seen that
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τrk = 𝔼(z
r = k|Xr,yr)

= πkp (y
r|Xr,zr = k)

K

∑
j=1

πjp (y
r|Xr,zr = j)

=
πk

nr
∏
i=1

p(yri |X
r
i ,z

r = k)

K

∑
j=1

πj
nr
∏
i=1

p(yri |X
r
i ,z

r = j)

=
πk ⋅

nr
∏
i=1

N(yri |β
T
kX

r
i ,σ

2
k)

K

∑
j=1

πj ⋅
nr
∏
i=1

N(yri |β
T
j X

r
i ,σ

2
j )
.

Similarly, with model MM-H defined in Section 3.3, the
expected complete log-likelihood is
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i ). Again, to deal with the data imbalance,

we work with the weighted optimization instead:
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For the M-step, it is easy to derive
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For the E-step,
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7 Case study plot and additional plots

Figures 9–15 display the radial components and horizontal field,
along with the evolution of SHARP parameters, during the strongest
and weakest flare events observed under AR 11967, 12242, 11261,
and 11117.

a) The left two images are radial components, and the right
two ones are horizontal, filed in AR 11,967 (H label) at its
strongest (2014.01.30_16:11:00) and weakest (2014.01.30_13:36:00)
flare events during its existence.

b) (Left) Evolution of SHARP parameters during the strongest
(red) and weakest (green) flare events in AR 11,967 (H label) and
(right) MM-R estimated β̂k values. The dashed lines are the times
at their peak intensities. The solid lines are the 6-h-before for
covariate regression. Green denotes the weakest flare, and red is the
strongest flare.

Data availability statement

All data used in the study, both SHARP parameters and
magnetograms are available from Stanford University’s Joint Science
Operations Center (JSOC) http://jsoc.stanford.edu/.

Author contributions

BD conducted all the derivations and numerical studies under
the guidance of YC and XLN, in collaboration with WM who

addressed the interpretation of the physical processes for the flare
events. All authors contributed to the article and approved the
submitted version.

Funding

YC is funded by NSF DMS 2113397 and NSF PHY 2027555,
WM is funded by NSF SWQU Grant PHY-2027555 and NASA
LWS Strategic Capability (SCEPTER) 80NSSC22K0892, and XLN is
partially supported by the NSF grant DMS-2015361 and a research
gift from Wells Fargo.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fspas.2024.
1229092/full#supplementary-material

References

Ahmed, O. W., Qahwaji, R., Colak, T., Higgins, P. A., Gallagher, P. T., and Bloomfield,
D. S. (2013). Solar flare prediction using advanced feature extraction, machine learning,
and feature selection. Sol. Phys. 283 (1), 157–175. doi:10.1007/s11207-011-9896-1

Airoldi, E. M., Blei, D. M., Erosheva, E. A., and Fienberg, S. E. (2014). “Introduction
to mixed membershipmodels andmethods,” inHandbook of mixed membership models
and their applications (Boca Raton: Chapman and Hall/CRC), 37–48.

Baeke, H., Amaya, J., and Lapenta, G. (2023). Classification of solar flares using data
analysis and clustering of active regions.

Barnes, G., Leka, K. D., Schrijver, C. J., Colak, T., Qahwaji, R., Ashamari, O.,
et al. (2016). A comparison of flare forecasting methods. I. Results from the all-clear
workshop. Astrophysical J. 829 (89), 89. doi:10.3847/0004-637x/829/2/89

Bishop, C. M. (2006). Pattern recognition and machine learning (information science
and statistics). Berlin, Heidelberg: Springer-Verlag.

Bobra, M. G., and Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector
magnetic field data with a machine-learning algorithm. Astrophysical J. Astrophysical J.
798 (135), 135. doi:10.1088/0004-637x/798/2/135

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., et al.
(2014). The helioseismic and magnetic imager (HMI) vector magnetic field pipeline:

SHARPs –Space-Weather HMI active region patches. Sol. Phys. 289 (9), 3549–3578.
doi:10.1007/s11207-014-0529-3

Camporeale, E. (2019). The challenge of machine learning in space
weather: nowcasting and forecasting. Space weather. 17 (8), 1166–1207.
doi:10.1029/2018sw002061

Carroll, R. J., and Pederson, S. (1993). On robustness in the logistic regression
model. J. R. Stat. Soc. Ser. B Methodol. 55 (3), 693–706. doi:10.1111/j.2517-6161.1993.
tb01934.x

Chen, Y., Manchester, W. B., Hero, A. O., Toth, G., DuFumier, B., Zhou, T., et al.
(2019). Identifying solar flare precursors using time series of SDO/HMI images and
SHARP parameters. Space weather. 17 (10), 1404–1426. doi:10.1029/2019sw002214

Chintzoglou, G., Zhang, J., Cheung, M. C. M., and Kazachenko, M. (2019). The
origin of major solar activity: collisional shearing between nonconjugated polarities
of multiple bipoles emerging within active regions. Astrophysical J. 871 (1), 67.
doi:10.3847/1538-4357/aaef30

Colak, T., and Qahwaji, R. (2008). Automated McIntosh-based classification of
sunspot groups using MDI images. Sol. Phys. 248, 277–296. doi:10.1007/s11207-007-
9094-3

Frontiers in Astronomy and Space Sciences 23 frontiersin.org

https://doi.org/10.3389/fspas.2024.1229092
http://jsoc.stanford.edu/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1229092/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2024.1229092/full#supplementary-material
https://doi.org/10.1007/s11207-011-9896-1
https://doi.org/10.3847/0004-637x/829/2/89
https://doi.org/10.1088/0004-637x/798/2/135
https://doi.org/10.1007/s11207-014-0529-3
https://doi.org/10.1029/2018sw002061
https://doi.org/10.1111/j.2517-6161.1993.tb01934.x
https://doi.org/10.1111/j.2517-6161.1993.tb01934.x
https://doi.org/10.1029/2019sw002214
https://doi.org/10.3847/1538-4357/aaef30
https://doi.org/10.1007/s11207-007-9094-3
https://doi.org/10.1007/s11207-007-9094-3
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Do et al. 10.3389/fspas.2024.1229092

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39 (1), 1–22.
doi:10.1111/j.2517-6161.1977.tb01600.x

Durán, J. S. C., Lagg, A., Solanki, S. K., and van Noort, M. (2020). Detection of
the strongest magnetic field in a sunspot light bridge. Astrophysical J. 895 (2), 129.
doi:10.3847/1538-4357/ab83f1

Fang, F.,Manchester,W., Abbett,W. P., and van derHolst, B. (2010). Simulation of flux
emergence from the convection zone to the corona.Astrophysical J. 714 (2), 1649–1657.
doi:10.1088/0004-637x/714/2/1649

Field, C., and Smith, B. (1994). Robust estimation: a weighted maximum likelihood
approach. Int. Stat. Review/Rev. Int. Stat. 62 (3), 405–424. doi:10.2307/1403770

Garcia, H. A. (1994). Temperature and emission measure from goes soft X-ray
measurements. Sol. Phys. 154 (2), 275–308. doi:10.1007/BF00681100

Goutte, C., and Gaussier, E. (2005). “A probabilistic interpretation of precision, recall
and F-score, with implication for evaluation,” in Advances in information retrieval
berlin. Editors D. E. Losada, and J. M. Fernández-Luna (Heidelberg: Springer Berlin
Heidelberg), 345–359.

Green, L. M., Török, T., Vršnak, B., Manchester, W., and Veronig, A. (2018). The
origin, early evolution and predictability of solar eruptions. Space Sci. Rev. 214 (1), 46.
doi:10.1007/s11214-017-0462-5

Huang, X., Wang, H., Xu, L., Liu, J., Li, R., and Dai, X. (2018). Deep learning based
solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophysical J.
856 (1), 7. doi:10.3847/1538-4357/aaae00

Janvier, M., Mzerguat, S., Young, P. R., É, B., Manou, A., Pelouze, G., et al. (2023). A
multiple spacecraft detection of the 2 April 2022 M-class flare and filament eruption
during the first close Solar Orbiter perihelion. Astronomy Astrophysics 677, A130.
doi:10.1051/0004-6361/202346321

Jiang, C., Feng, X., Wu, S. T., and Hu, Q. (2012). Study of the three-dimensional
coronal magnetic field of active region 11117 around the time of a confined flare
using a data-driven CESE-MHD model. Astrophysical J. 759 (2), 85. doi:10.1088/0004-
637x/759/2/85

Jiang, C., Wu, S., Feng, X., Jiang, Y., and Warren, A. (2016). Morphology and
molecular phylogeny of two freshwater peritrich ciliates, epistylis chlorelligerum shen
1980 and epistylis chrysemydis bishop and jahn 1941 (Ciliophora, peritrichia). Front.
Astronomy Space Sci. 3, 16–26. doi:10.1111/jeu.12243

Jiang, C. W., Feng, X. S., Wu, S. T., and Hu, Q. (2017). A magnetic bald-patch flare
in solar active region 11117. Res. Astronomy Astrophysics 17 (9), 093. doi:10.1088/1674-
4527/17/9/93

Jiao, Z., Sun, H., Wang, X., Manchester, W., Gombosi, T., Hero, A., et al. (2020).
Solar flare intensity prediction with machine learning models. Space weather. 18 (7),
e2020SW002440. doi:10.1029/2020sw002440

Joshi, A. D., Forbes, T. G., Park, S. H., and Cho, K. S. (2015). A trio of confined flares
in AR 11087. Astrophysical J. 798 (2), 97. doi:10.1088/0004-637x/798/2/97

Joshi, N. C., Joshi, B., and Mitra, P. K. (2021). Evolutionary stages and triggering
process of a complex eruptive flare with circular and parallel ribbons. Mon. Notices R.
Astronomical Soc. 501 (4), 4703–4721. doi:10.1093/mnras/staa3480

Kawabata, Y., Inoue, S., and Shimizu, T. (2017). Non-potential field formation in
the X-shaped quadrupole magnetic field configuration. Astrophysical J. 842 (2), 106.
doi:10.3847/1538-4357/aa71a0

Koller, D., and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. United States: MIT press.

Landa, V., and Reuveni, Y. (2022). Low-dimensional convolutional neural network
for solar flares GOES time-series classification. Astrophysical J. Suppl. Ser. 258 (1), 12.
doi:10.3847/1538-4365/ac37bc

Leka, K. D., and Barnes, G. (2018). “Chapter 3 - solar flare forecasting: present
methods and challenges,” in Extreme events in geospace. Editor N. Buzulukova
(Amsterdam, Netherlands: Elsevier), 65–98.

Liu, C., Deng, N., Lee, J.,Wiegelmann, T., Jiang, C., Dennis, B. R., et al. (2014).Three-
dimensional magnetic restructuring in two homologous solar flares in the seismically
activeNOAAAR 11283.Astrophysical J. 795 (2), 128. doi:10.1088/0004-637x/795/2/128

Liu, H., Liu, C., Wang, J. T. L., and Wang, H. (2019). Predicting solar flares using
a Long short-term memory network. Astrophysical J. 877 (2), 121. doi:10.3847/1538-
4357/ab1b3c

Liu, R. (2020). Magnetic flux ropes in the solar corona: structure and evolution
toward eruption. Res. Astronomy Astrophysics 20 (10), 165. doi:10.1088/1674-
4527/20/10/165

Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., et al. (2016). Structure,
stability, and evolution of magnetic flux ropes from the perspective of magnetic twist.
Astrophysical J. 818 (2), 148. doi:10.3847/0004-637x/818/2/148

Maloney, S. A., and Gallagher, P. T. (2018). “Sunspot group classification using neural
networks,” in Catalyzing solar connections, 92.

Manchester, I. W., Gombosi, T., DeZeeuw, D., and Fan, Y. (2004). Eruption
of a buoyantly emerging magnetic flux rope. Astrophysical J. 610 (1), 588–596.
doi:10.1086/421516

Manchester, W. (2003). Buoyant disruption of magnetic arcades with self-induced
shearing. J. Geophys. Res. (Space Phys.) 108 (A4), 1162. doi:10.1029/2002ja009252

Markatou, M., Basu, A., and Lindsay, B. G. (1998). Weighted likelihood
equations with bootstrap root search. J. Am. Stat. Assoc. 93 (442), 740–750.
doi:10.1080/01621459.1998.10473726

McLachlan, G. J., and Peel, D. (2000). “Finite mixture models,” in Probability and
statistics – applied probability and statistics section. 299 (New York: Wiley).

NASA (2003). Halloween Storms of still the scariest. United States: NASA.

Nguyen, T. T., Willis, C. P., Paddon, D. J., and Nguyen, H. S. (2004). “On learning of
sunspot classification,” in Intelligent information processing and web mining. Editors M.
A. Kłopotek, S. T. Wierzchoń, and K. Trojanowski (Berlin, Heidelberg: Springer Berlin
Heidelberg), 59–68.

Romano, P., Elmhamdi, A., Falco, M., Costa, P., Kordi, A. S., Al-Trabulsy, H. A.,
et al. (2018). Homologous white light solar flares driven by photospheric shearmotions.
Astrophysical J. Lett. 852 (1), L10. doi:10.3847/2041-8213/aaa1df

Sarkar, R., Srivastava, N., and Veronig, A. M. (2019). Lorentz force evolution reveals
the energy build-up processes during recurrent eruptive solar flares. Astrophysical J.
Lett. 885 (1), L17. doi:10.3847/2041-8213/ab4da2

Schou, J., Scherrer, P. H., Bush, R. I., Wachter, R., Couvidat, S., Rabello-Soares, M. C.,
et al. (2012). Design and ground calibration of the helioseismic and magnetic imager
(HMI) instrument on the solar Dynamics observatory (SDO). Sol. Phys. 275 (1-2),
229–259. doi:10.1007/s11207-011-9842-2

Smith, M. C., Jones, A. R., and Sandoval, L. (2018). “Automating the McIntosh
classification system using machine learning,” in AGU Fall Meeting Abstracts,
Washington, DC, December 10 – 14 2018, SM31D–3526.

Solovev, A. A., Abramov-Maximov, V. E., Borovik, V. N., Opeikina, L. V., and
Tlatov, A. G. (2019). Features of evolution of the magnetic field gradient in solar
active region before a strong flare. Astronomical Astrophysical Trans. 31 (2), 89–102.
doi:10.17184/eac.2967

Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., and Abramenko, V. (2009).
Statistical assessment of photospheric magnetic features in imminent solar flare
predictions. Sol. Phys. 254 (1), 101–125. doi:10.1007/s11207-008-9288-3

Sui, L., Holman, G. D., andDennis, B. R. (2004). Evidence for magnetic reconnection
in three homologous solar flares observed by RHESSI.Astrophysical J. 612 (1), 546–556.
doi:10.1086/422515

Thalmann, J. K., Veronig, A., and Su, Y. (2016). Temporal and spatial relationship of
flare signatures and the force-free coronal magnetic field. Astrophysical J. 826 (2), 143.
doi:10.3847/0004-637x/826/2/143

Titov, V. S., Mikic, Z., Török, T., Linker, J. A., and Panasenco, O. (2010). Sympathetic
eruptions. I. Magnetic topology of the source-surface background field. Astrophysical J.
759 (1), 70. doi:10.1088/0004-637x/759/1/70

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical analysis of
finite mixture distributions. New York: Wiley.

Wang, X., Chen, Y., Toth, G., Manchester, W. B., Gombosi, T. I., Hero, A. O.,
et al. (2020). Predicting solar flares with machine learning: investigating solar cycle
dependence. Astrophysical J. 895 (1), 3. doi:10.3847/1538-4357/ab89ac

Ward, M. I. (2001). The role of nonlinear alfvén waves in shear formation
during solar magnetic flux emergence. Astrophysical J. 547 (1), 503–519. doi:10.1086/
318342

Ward, M. I. (2007). Solar atmospheric dynamic coupling due to shear motions
driven by the Lorentz force. Astrophysical J. 666 (1), 532–540. doi:10.1086/
520493

Wu,C. F. J. (1983).On the convergence properties of the EMalgorithm.Ann. Statistics
11 (1), 95–103. doi:10.1214/aos/1176346060

Ye, Y., Korsós, M. B., and Erdélyi, R. (2018). Detailed analysis of dynamic evolution
of three Active Regions at the photospheric level before flare and CME occurrence.Adv.
Space Res. 61 (2), 673–682. doi:10.1016/j.asr.2017.09.038

Yu, D., Huang, X., Wang, H., and Cui, Y. (2009). Short-Term solar flare
prediction using a sequential supervised learning method. Sol. Phys. 255 (1), 91–105.
doi:10.1007/s11207-009-9318-9

Yuan, Y., Shih, F. Y., Jing, J., and Wang, H. M. (2010). Automated flare forecasting
using a statistical learning technique. Res. Astronomy Astrophysics 10 (8), 785–796.
doi:10.1088/1674-4527/10/8/008

Frontiers in Astronomy and Space Sciences 24 frontiersin.org

https://doi.org/10.3389/fspas.2024.1229092
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.3847/1538-4357/ab83f1
https://doi.org/10.1088/0004-637x/714/2/1649
https://doi.org/10.2307/1403770
https://doi.org/10.1007/BF00681100
https://doi.org/10.1007/s11214-017-0462-5
https://doi.org/10.3847/1538-4357/aaae00
https://doi.org/10.1051/0004-6361/202346321
https://doi.org/10.1088/0004-637x/759/2/85
https://doi.org/10.1088/0004-637x/759/2/85
https://doi.org/10.1111/jeu.12243
https://doi.org/10.1088/1674-4527/17/9/93
https://doi.org/10.1088/1674-4527/17/9/93
https://doi.org/10.1029/2020sw002440
https://doi.org/10.1088/0004-637x/798/2/97
https://doi.org/10.1093/mnras/staa3480
https://doi.org/10.3847/1538-4357/aa71a0
https://doi.org/10.3847/1538-4365/ac37bc
https://doi.org/10.1088/0004-637x/795/2/128
https://doi.org/10.3847/1538-4357/ab1b3c
https://doi.org/10.3847/1538-4357/ab1b3c
https://doi.org/10.1088/1674-4527/20/10/165
https://doi.org/10.1088/1674-4527/20/10/165
https://doi.org/10.3847/0004-637x/818/2/148
https://doi.org/10.1086/421516
https://doi.org/10.1029/2002ja009252
https://doi.org/10.1080/01621459.1998.10473726
https://doi.org/10.3847/2041-8213/aaa1df
https://doi.org/10.3847/2041-8213/ab4da2
https://doi.org/10.1007/s11207-011-9842-2
https://doi.org/10.17184/eac.2967
https://doi.org/10.1007/s11207-008-9288-3
https://doi.org/10.1086/422515
https://doi.org/10.3847/0004-637x/826/2/143
https://doi.org/10.1088/0004-637x/759/1/70
https://doi.org/10.3847/1538-4357/ab89ac
https://doi.org/10.1086/318342
https://doi.org/10.1086/318342
https://doi.org/10.1086/520493
https://doi.org/10.1086/520493
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1016/j.asr.2017.09.038
https://doi.org/10.1007/s11207-009-9318-9
https://doi.org/10.1088/1674-4527/10/8/008
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	1 Introduction
	2 Data preprocessing and feature selection
	2.1 Raw data
	2.2 Feature selection and preprocessing procedure

	3 Methodology
	3.1 Approach to dealing with the data imbalance issue
	3.2 Dealing with the sample imbalance problem: weighting schemes
	3.3 Mixture model over active regions
	3.4 Mixture model over flare events

	4 Model selection and data analysis discussion
	4.1 Model selection
	4.2 Analysis of mixture model fittings
	4.2.1 Response space y
	4.2.2 Covariate space X
	4.2.3 Interaction between the covariate X and response y

	4.3 Prediction performance
	4.4 Case studies

	5 Conclusion and future work
	6 EM algorithm derivation
	7 Case study plot and additional plots
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

