
PRIVE: Efficient RRAM Programming with
Chip Verification for RRAM-based In-Memory

Computing Acceleration
Wangxin He1, Jian Meng1, Sujan Kumar Gonugondla2, Shimeng Yu3, Naresh R. Shanbhag4 and Jae-sun Seo1

1Arizona State Univeristy, Tempe, AZ, 2Amazon, New York, NY, 3Georgia Institute of Technology, Atlanta, GA,
4University of Illinois Urbana-Champaign, Urbana, IL

Abstract—As deep neural networks (DNNs) have been success-
fully developed in many applications with continuously increasing
complexity, the number of weights in DNNs surges, leading to
consistent demands for denser memories than SRAMs. RRAM-
based in-memory computing (IMC) achieves high density and
energy-efficiency for DNN inference, but RRAM programming
remains to be a bottleneck due to high write latency and energy
consumption. In this work, we present the Progressive-wRite In-
memory program-VErify (PRIVE) scheme, which we verify with
an RRAM testchip for IMC-based hardware acceleration for
DNNs. We optimize the progressive write operations on different
bit positions of RRAM weights to enable error compensation and
reduce programming latency/energy, while achieving high DNN
accuracy. For 5-bit precision DNNs, PRIVE reduces the RRAM
programming energy by 1.82×, while maintaining high accuracy
of 91.91% (VGG-7) and 71.47% (ResNet-18) on CIFAR-10 and
CIFAR-100 datasets, respectively.

Index Terms—Deep neural network, resistive RAM (RRAM),
in-memory computing, RRAM programming, write-verify.

I. INTRODUCTION

Deep neural networks (DNNs) have been successfully devel-
oped in many applications including computer vision, speech
recognition, and others. As the complexity of DNN tasks
increases, the number of weights or parameters in DNNs surges
as well, leading to consistent demands for denser memories
than SRAMs. Conventional DNN accelerator systems have used
DRAM to store a large number of DNN weights, but DRAM
requires cumbersome refresh operations and off-chip memory
access consumes very high energy consumption [1]. Instead of
using off-chip memory, several recent accelerators employed
embedded non-volatile memory (NVM) such as resistive RAM
(RRAM) [2], [3] and magnetic RAM (MRAM) [4], to store a
large amount of weights fully on-chip and reduce the energy
consumption for overall memory access.

While these works [2]–[4] demonstrated on-chip integration
of embedded NVMs, the NVMs only served the purpose
of storage, and physically-separate processing engines (PEs)
performed the computation. In this case, the DNN weights
are accessed row-by-row from the NVM array and commu-
nicated to the PEs. To further improve this bottleneck, in-
memory computing (IMC) [5] has emerged as a promising
scheme to embed computation inside the memory, thereby

This work is partially supported by NSF grant 1652866, JUMP C-BRIC and
ASCENT programs (SRC programs sponsored by DARPA). This work was
done outside of Amazon. (E-mail: jaesun.seo@asu.edu)

largely reducing the data transfer. Several different memory
technologies, such as RRAM [6], [7], SRAM [8], and phase
change memory (PCM) [9] have been investigated for IMC.
Non-volatile resistive devices such as RRAM can naturally sup-
port IMC operations with multiple rows turned on, where the
weighted sum current between the wordline voltage (represent-
ing DNN activations) and RRAM conductance (representing
DNN weights) represents the dot-product result.

Most RRAM-based IMC works employ a weight stationary
scheme, but still the RRAM devices need to be programmed
often, to execute inference of different DNN models over
time, or to run workloads that require frequent weight updates
(e.g. DNN training). Efficient programming is one of the critical
bottlenecks for RRAM, since RRAM write operation requires
high voltage and latency. More importantly, a single write
operation is insufficient to program a target conductance value
to the RRAM device due to device and voltage variation.

A popular method to address this challenge is to iterate the
process of writing the targeted value to an RRAM cell and
reading the RRAM cell conductance for verification, which
is referred to as write-verify or program-verify method [10],
[11]. Besides RRAM, the conventional write-verify (CWV)
method has been also employed for other devices to compute
analog matrix-vector multiplications (MVMs) such as PCM [9]
and MRAM [12]. The CWV method can minimize the write
uncertainty and RRAM conductance variation, but multiple
iterations are required for each cell, which incurs large latency
and energy overheads. Furthermore, frequent writing operations
can hurt the cell endurance and possibly limit the lifetime of
the memory device [13].

Several prior works investigated reducing the RRAM pro-
gramming energy for IMC macros/systems, by reducing the
number of write iterations and compensating the induced error
(due to the smaller number of write iterations) by different
methods. SWIPE [14] proposed to perform programming from
MSB to LSB, and compensate for the write error from MSBs
by adjusting the programming of LSBs. Probabilistic early
termination was proposed in [15], and the programming process
was partitioned into the coarse predictive phase (with fewer
write iterations) and the fine-tuning phase in [16]. However,
[14]–[16] all reported only simulation results with behavioral
RRAM models, and included unrealistic assumptions such
as single-pulse programming for RRAM devices [14], [16].

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

Therefore, the claimed programming energy reduction of ∼10×
likely will not be possible for actual RRAM hardware.

[17] is one of the few works that reported programming
energy reduction with measurements of multi-level RRAM de-
vices, but only row-by-row RRAM device readout was reported
without turning on multiple rows as done for IMC and did not
report accuracy results for DNNs.

In this work, we propose the Progressive-wRite In-memory
program-VErify (PRIVE) scheme that is compatible with
RRAM-based IMC hardware that has been prototyped in a
commercial RRAM process. We performed RRAM program-
ming with the PRIVE scheme and obtained measurements of
the RRAM prototype chip, which was evaluated for VGG-7
and ResNet-18 DNNs on CIFAR-10 and CIFAR-100 datasets.
To the best of our knowledge, this is the only work to date that
reports RRAM programming energy reduction with an actual
RRAM chip for IMC operation targeting DNN workloads. The
main contributions of this work are:

• A new progressive write-verify scheme (PRIVE) is pro-
posed for multi-bit weight programming using 1-bit-per-
cell RRAM hardware. While inspired by prior work on
RRAM programming energy reduction [14], we identify
impractical aspects of [14] such as single-pulse program-
ming and present a practical progressive programming
scheme from MSB to LSB that is verified by RRAM chips.

• PRIVE implementation does not exhibit any overhead,
e.g. DNN model re-training on the algorithm side [15]
or any additional circuits on the hardware side, as only
the RRAM programming method has changed compared
to the CWV scheme.

• We determine optimal configurations to apply PRIVE
by investigating two different low resistance state (LRS)
values for RRAM programming and evaluate the trade-offs
and corresponding DNN accuracy values.

• 1.82× energy reduction is achieved for the overall RRAM
programming compared to the CWV scheme, while main-
taining high DNN accuracy for VGG-7/ResNet-18 models
on CIFAR-10 and CIFAR-100 datasets, based on RRAM
chip measurements.

II. BACKGROUND AND RELATED WORKS

A. RRAM based in-memory computing

Recently, non-volatile memory (NVM) based IMC prototype
chips have been reported in [6], [7] and SRAM-based IMC
prototype chips have been reported in [8]. Although the NVM
technology is less mature than CMOS, they have advantages
such as non-volatility, low power consumption, CMOS com-
patibility, and exhibit higher density compared to SRAMs at
the same technology node. To that end, we focus on RRAM-
based IMC design in this work.

Fig. 1 shows the high-level overview of the RRAM prototype
chip reported in [18], [19]. Each 1T1R cell can be programmed
to a low resistance state (LRS) or a high resistance state
(HRS). The RRAM conductance represents DNN weights and
the wordline (WL) voltage represents the activations. When
multiple WLs are activated, the number of RRAM cells driven

Fig. 1: High-level overview of the RRAM prototype chip [18].

by LRS versus HRS determines the analog bitline (BL) voltage,
which is digitized by the analog-to-digital converter (ADC).

B. Prior works on efficient RRAM programming

A number of prior works pursued efficient and accurate
programming with the write-verify schemes on RRAM de-
vices and arrays. Early research [10], [11] proposed write-
verify method for RRAM programming. [13], [20] proposed
write-verify method for multi-level RRAM devices, by tuning
multiple parameters (e.g. bitline voltage, gate voltage, etc.) for
set/reset processes. Building upon [13], [20], a two-step 2-
bit-per-cell write-verify scheme was presented in [21]. Similar
programming method such as POST [22] was proposed, which
splits the write pluses into several small pulses for single-cell
programming in the RRAM array. However, these works only
focused on the accurate programming of a single RRAM cell,
while multi-bit weight programming involving multiple RRAM
cells has not been investigated.

For multi-bit weight programming, instead of iterating the
programming of single RRAM cells excessively, SWIPE [14]
proposed to compensate for the programming errors of more
significant bits by adjusting the programming values of less
significant bits. RRAM write energy reduction of up to 10×
was reported, but only simulation results with behavioral device
models were reported and incorrect assumptions such as single-
pulse programming were made. [15] presented probabilistic
early termination on programming single devices and optimized
re-programming a subset of multiple RRAMs that constitute the
multi-bit weight, reporting >3× programming cost reduction
based on simulation results. [16] partitioned the programming
process into predictive phase and the fine-tuning phase, reduc-
ing the RRAM programming energy by ∼90% based on simu-
lation. Simultaneously programming multiple RRAM cells was
assumed in the simulation, while this has not been verified with
actual RRAM hardware. RADAR [17] performed multi-level
RRAM programming with a coarse resistance control phase
and a fine-tuning control phase and reported 2.4× programming
energy reduction with actual RRAM hardware, but it did not
perform IMC or evaluate the accuracy of DNN workloads.





Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: RRAM chip measurements on the RRAM conductance
with the number of pulses for set and reset processes.

III. PROPOSED PRIVE SCHEME

A. Limitations of prior works for RRAM hardware

Several important discrepancies exist between actual RRAM
hardware and the assumptions used in simulation-based prior
works to reduce RRAM programming energy [14]–[16]. The
main discrepancy is in the number of pulses needed for the
RRAM crossbar programming. In [14], [16], it is assumed
that a single write pulse could be sufficient to program the
RRAM devices for a target conductance. However, in practice,
programming each RRAM device with an acceptable error
rate requires multiple programming pulses, as illustrated from
the RRAM chip measurement results in Fig. 2. The RRAM
programming results in Fig. 2 are based on multiple pulses
repeatedly writing RRAM cells to LRS and HRS on chips
from [18]. Programming with multiple pulses is necessary for
real RRAM hardware for three reasons:

1) The conductance error after the single-write pulse is too
high, and this can be largely reduced and fine-tuned by
programming using multiple pulses.

2) Due to the cell-to-cell variation, the single-write program-
ming can result in a high variation of programming value.
With adaptive multiple pulses of programming, cell-to-cell
conductance variation can be reduced to a smaller value
during multiple write-verify pulses, improving the stability
against device non-ideality.

3) Aggressive high-voltage or wide pulses for single-write
operations can potentially hurt the cell endurance, and
increase the chances of breaking down the RRAM cell.

In addition, SWIPE assumes that the RRAM conductance
programmed with single write pulses could either overshoot
or undershoot the target LRS value. The existence of both
positive and negative conductance errors at more significant
bits could enable more error compensation capabilities at lower
significant bits. However, especially with target LRS values that
are configured to achieve a high on/off ratio, Fig. 2 shows that
the intermediate conductance values during programming for
LRS do not overshoot the target LRS value, which can limit
the error compensation capabilities of SWIPE for certain weight
values of DNNs.

Fig. 3: The algorithm and RRAM programming flow of the
proposed progressive write-verify algorithm (PRIVE). The less
significant bits are employed to compensate for the RRAM
programming error in more significant bits.

B. Proposed progressive write-verify algorithm
To address the limitations described in Section III-A, we

propose a progressive write-verify algorithm called PRIVE, as
shown in Fig. 3. The PRIVE scheme is based on 1-bit-per-cell
RRAM devices, where a low resistance state (LRS) represents
“1”, and a high resistance state (HRS) represents “0” as binary
storage. For a positive N -bit weight, we employ N RRAM
cells and program each RRAM cell with LRS or HRS.

In every write epoch, the error of each RRAM cell can be
presented as Ei = Gi − GiW , where Gi is the programmed
conductance for the i-th cell. Suppose Diϵ{0, 1} is the desired
state of i-th bit, and Wiϵ{0, 1} is the actual state that RRAM is
programmed with. By default, Wi is identical to Di. Depending
on the value of Wi, GiW would be GHRS or GLRS , the typical
conductance value of HRS or LRS value, respectively. The
write iteration will stop when the |Ei| is smaller than the
maximum error threshold, or when the epoch loop number
exceeds the maximum epoch limit. Then, for a n-bit weight
programming, the error of the i-th bit is accumulated as:

E ←− E+Ei×2(n−i)+(GLRS−GHRS)×(Wi−Di)
(n−i) (1)

The accumulated error E is used to determine if the error in
the current bit requires compensation in the next bit program-
ming. If the error is larger than (GLRS −GHRS) conductance
gap, the binary value for the next bit position is available for
a bit-flipping compensation. This means that Wi+1 will be
effectively programmed as Wi+1 = 1−Di+1, and this change
will be reflected in the error accumulation for the (i+1)-th bit
in Eq. (1).

In this work, we mapped the 4-bit weights with four 1-bit-
per-cell RRAM devices. To analyze the effectiveness of the
PRIVE scheme, we quantify the equivalent weight (Weq) for
each 4-bit weight as formulated in Eq. (2), and compare it with
the ideal value.

Weq = [

3∑
i=0

(Gi × 2i)−GHRS × 15]/GLRS (2)

For an ideal RRAM device with GHRS = 0, the equivalent
weight will be identical to the 4-bit weight value.





Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: (a) Hardware implementation of PRIVE for the 5-bit
weights. (b) Signed programming method truth table applied
in this work with PRIVE. (c) Software quantization model
mapping of PRIVE.

With the PRIVE scheme, the number of pulses required for
write-verify iterations on each RRAM cell can be progressively
reduced to an appropriate number, in order to balance the trade-
off between precise RRAM programming and the energy reduc-
tion of RRAM programming. Note that PRIVE still follows the
traditional write-verify at each pulse, and the proposed changes
are made on the decision levels during each programming stage.
Therefore, compared to the conventional write-verify progress,
there does not exist any additional overhead or extra energy
consumption to implement the PRIVE scheme on RRAM chips.

In this work, we set the default number of write-verify
pulses to be 25 for the programming of each RRAM cell,
since the error saturates after ∼25 iterations of CWV (Fig. 2)
for the RRAM chips [18]. For multi-bit programming, MSB
contributes the highest amount of write error, so we keep the
number of programming pulses for MSB at 25. Then, we
progressively reduce the number of pulses from MSB to LSB
for the 4-bit weight programming in the PRIVE scheme, to
balance the programming energy reduction and the program-
ming accuracy. In particular, we use 25 pulses for bit 3 (MSB),
15 pulses for bit 2, 10 pulses for bit 1, and 5 pulses for bit
0 (LSB). These number of pulses (25-15-10-5) were chosen
as they provided a good energy/accuracy balance, based on
a coarse sweep of different pulse configurations (e.g. 25-10-
5-2). Compared to the CWV scheme of using 25-25-25-25
pulses for 4-bit weights, the PRIVE scheme with 25-15-10-
5 pulses reduces the total number of programming pulses by
45%, and this translates into proportional write latency and
energy savings.

The main trade-off of PRIVE is the correctness of the single
RRAM cell. As an example in Fig. 6(b), the errors on less
significant bits can increase due to the reduced programming

iterations, which may not get properly compensated (e.g. no
LSBs available). However, this will only occur to a small por-
tion of the weight levels, such as “7” and “15”, and the overall
DNN-level effect will be further discussed in Section IV.

IV. EXPERIMENT RESULTS AND ANALYSIS

The PRIVE scheme is evaluated with RRAM prototype
chips [18], [19] (Fig. 1), which were fabricated in a commercial
CMOS process that monolithically integrates HfO2 RRAM. For
RRAM programming, we use SET voltage of 2.1V, SET pulse
width of 100ns, SET gate voltage of 2.6V/2.3V for 6kΩ/9kΩ
LRS, RESET voltage of 3.8V, RESET pulse width of 250ns,
and RESET gate voltage of 4.0V.

We programmed 5-bit weights onto eight 1T1R RRAM cells
with positive and negative columns [6] as shown in Fig. 4(a),
throughout the entire RRAM array for both conventional and
PRIVE schemes. The truth table of each 1-bit RRAM is shown
in Fig. 4(b). The programmed value on even or odd columns
will determine the sign of the weight, and all RRAM cells in
the other columns will be programmed with HRS for analog
subtraction according to Eq. (2). As a result, the RRAM-based
IMC inference is performed with the signed weight values
without introducing auxiliary offset columns [23]. Furthermore,
the weights of the IMC inference are directly represented by the
measured conductance values, which fully incorporate the non-
idealities of the actual RRAM devices. The column-wise partial
sum will be scaled by the difference between the typical HRS
and LRS values, so arithmetic correctness will be preserved in
the algorithm-level simulation.

Based on the RRAM chip measurement data, we evaluate
the DNN inference accuracy of RRAM IMC hardware with the
pre-trained quantized DNN models on VGG-7 and ResNet-18
frames with CIFAR-10 and CIFAR-100 datasets. We program
the quantized weights on the prototype chip and the measured
conductance weight values are used to evaluate the overall
DNN accuracy. We performed the overall experiments in the
following steps:

1) Map the DNN weights onto existing RRAM chips with a
given LRS target for both CWV and PRIVE schemes

2) Retrieve programmed conductance data from RRAM chips
3) Validate inference accuracy on pre-trained quantization

models of VGG-7 and ResNet-18 DNNs for CIFAR-10
and CIFAR-100 datasets.

A. Effectiveness of PRIVE programming

We experimented with two LRS values for RRAM program-
ming: (1) the default 6kΩ (1.67×10−4S) that achieves the
highest on/off ratio of ∼100, and (2) a higher LRS value of 9kΩ
(1.11×10−4S) that achieves a lower on/off ratio but consumes a
lower current and could exhibit better error compensation capa-
bility by PRIVE. 9kΩ LRS can have better error compensation
with PRIVE, because both overshoot and undershoot can occur
during target conductance programming. As shown in Fig. 2,
programming for 6kΩ LRS will only exhibit undershoot with
the write pulses.

The effectiveness of the PRIVE scheme is depicted in Fig. 5
(with 6kΩ LRS) and Fig. 6 (with 9kΩ LRS), where we selected





Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)
Fig. 5: RRAM programming for three samples of 4 RRAM cells for weight value of 8 (“1000”) with 6kΩ LRS: (a) conventional
write-verify scheme, (b) the PRIVE scheme, and (c) effective 4-bit weight conductance comparison.

(a) (b) (c)
Fig. 6: RRAM programming for three samples of 4 RRAM cells for weight value of 8 (“1000”) with 9kΩ LRS: (a) conventional
write-verify scheme, (b) the PRIVE scheme, and (c) effective 4-bit weight conductance comparison.

three samples of four RRAM pairs that are programmed to
represent the 5-bit weight value of “+8” (“1000”).

The conventional write-verify scheme will always program
LRS for a ‘1’ binary bit and HRS for a ‘0’ binary bit with many
iterations, and could achieve relatively more accurate program-
ming on the RRAM devices. However, even if the programmed
LRS conductance after write-verify iterations cannot reach the
target LRS conductance as shown in Fig. 5(a) and Fig. 6(a),
no further improvement or compensation can be made.

In contrast, the PRIVE scheme is aware of the errors during
the programming from MSB to LSB, and is able to compensate
for the programming error or conductance deviation in more
significant bits by rearranging the programming states of less
significant bits, as shown in Fig. 5(b) and Fig. 6(b). Fig. 5(c)
and Fig. 6(c) show that the equivalent conductance of the
PRIVE scheme is maintained very close to the ideal value for
both 6kΩ and 9kΩ LRS cases, while noticeable deviations exist
for the conventional write-verify scheme.

In Fig. 7, the differences between the equivalent weight Weq

(Eq. (2)) measured from the RRAM chip and the ideal positive
4-bit weight are compared for (1) CWV scheme with the default
25-25-25-25 programming, (2) CWV scheme with progressive
25-15-10-5 programming, and (3) PRIVE scheme with 25-15-
10-5 programming, with target LRS of 6kΩ and 9kΩ. The result
of each datapoint is averaged from >100 measurements of 4
RRAM pairs. Larger Weq errors are shown when we perform
CWV with 25-15-10-5 epochs, but such errors are largely
reduced in the PRIVE scheme owing to error compensation.
While Fig. 6 shows that overshoot possibilities can provide
better error compensation for 9kΩ LRS in certain cases, Fig. 7

Fig. 7: The deviation of measured Weq from ideal positive
4-bit weight for CWV and PRIVE schemes with different
programming epochs.

shows that the average programming error of many RRAM
devices is still lower for the 6kΩ LRS.

For a few weight values, the PRIVE scheme cannot improve
the Weq error of the 25-15-10-5 conventional scheme, and
notably, these weight values, such as “7” (“0111”), have more
‘1’ bits in the binary representation. Although 9kΩ LRS allows
some amount of conductance overshoot during programming,
as shown in Fig. 6(b), conductance undershoot is still more
dominant during programming. Conductance undershoot needs
to get compensated by flipping less significant bits from ‘0’
to ‘1’, but if the less significant bits are already filled with
‘1’ (e.g. “0111”, “0011”), the compensation capability of the
PRIVE scheme is limited within the 5-bit weight programming.





Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The inference accuracy of the PRIVE scheme across
different DNN models and datasets.

Model Dataset LRS
Value

Baseline
Accuracy

CWV
Accuracy

PRIVE
Accuracy

VGG-7 CIFAR-10 6kΩ 92.53% 90.78% 91.91%
9kΩ 87.20% 91.44%

VGG-7 CIFAR-100 6kΩ 69.90% 66.92% 69.17%
9kΩ 56.02% 67.65%

ResNet-18 CIFAR-10 6kΩ 93.16% 91.56% 92.61%
9kΩ 86.00% 91.97%

ResNet-18 CIFAR-100 6kΩ 72.56% 67.26% 71.47%
9kΩ 56.60% 70.17%

TABLE II: Comparison to prior works.

[14] [16] [15] [17] This work
Hardware

Verfication? No No No Yes Yes

Weight
Precision 2-to-9 bit N/A 8-bit 3-bit-

per-cell 5-bit

DNN
Dataset

MNIST,
CIFAR-10

MNIST,
CIFAR-10

CIFAR-10,
CIFAR-100 N/A CIFAR-10,

CIFAR-100

Network
Type

LeNet-300-10,
8-Layer CNN

FC-NN,
LeNet5,

ResNet-20

ResNet-18,
ResNet-34 N/A VGG-7,

ResNet-18

Accuracy
Change − <1% −2-4% +0.23% N/A −1-2%

Write Energy
Reduction 5-10× up to 19× ∼3× 2.4× 1.82×

On the other hand, for weight values that have more ‘0’ bits,
e.g. “8” (“1000”), since fewer errors are produced at HRS, the
PRIVE algorithm will have more capability to compensate the
conductance undershoot error of programming “1” or LRS at
more significant bits, by flipping the ‘0’ bits at less significant
bits to ‘1’. This leads to the result that, the PRIVE compen-
sation works better in levels with more ‘0’ bits (e.g. “8”) than
the levels with more ‘1’ bits (e.g. “7”), as shown in Fig. 7.

B. DNN accuracy evaluation and comparison to prior works

Based on the RRAM chip measurements, we tested the
inference accuracy of VGG-7 and ResNet-18 models for
CIFAR-10 and CIFAR-100 datasets, and the results are shown
in Table I. PRIVE provides 45% (1.82×) improvement in
programming energy and latency reduction. Compared to the
software baseline accuracy with the same precision, 1-2%
accuracy degradation exists for CIFAR-10/100 datasets but the
accuracy values are still higher than those of the CWV scheme
for identical models/datasets.

We also compared the proposed PRIVE scheme and other
works on RRAM programming energy reduction in Table II.
Due to the reasons mentioned in Section III-A, the claimed
energy reduction in [14], [15] likely will not be possible with
real RRAM hardware. PRIVE employs RRAM chip measure-
ment data to evaluate the effectiveness of realistic programming
techniques for IMC designs. The universal optimization results
shown in Table I and the flexibility of the PRIVE algorithm
during the programming stage indicate the potential of PRIVE
on more practical and efficient programming for the multi-bit
RRAM array, which can be used on top of other multi-bit-per-
cell approaches such as [17].

V. CONCLUSION

RRAM-based IMC accelerators can achieve high density and
high energy-efficiency for DNN workloads, but programming
RRAM devices consume high energy. To effectively reduce
the RRAM programming energy for IMC accelerators, this
work demonstrated a progressive write-verify algorithm called
PRIVE, which was verified with RRAM chip measurements.
We measured two different LRS values during the RRAM pro-
gramming to verify the PRIVE error compensation effective-
ness. We tested PRIVE hardware measurement data on several
different inference models and achieved 1.82× write energy
and latency improvement with minimal accuracy degradation.

REFERENCES

[1] V. Sze et al. Efficient Processing of Deep Neural Networks: A Tutorial
and Survey. Proceedings of the IEEE, 2017.

[2] Z. Li et al. RRAM-DNN: An RRAM and Model-Compression Empow-
ered All-Weights-On-Chip DNN Accelerator. IEEE JSSC, 2021.

[3] M. Giordano et al. CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI
Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient
Training and Inference. In Symp. VLSI, 2021.

[4] D. Rossi et al. A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core SoC
for IoT End-Nodes with 1.7µW Cognitive Wake-Up From MRAM-Based
State-Retentive Sleep Mode. In IEEE ISSCC, 2021.

[5] M. Kang et al. An Energy-Efficient VLSI Architecture for Pattern
Recognition via Deep Embedding of Computation in SRAM. In IEEE
ICASSP, 2014.

[6] Q. Liu et al. A Fully Integrated Analog ReRAM Based 78.4TOPS/W
Compute-In-Memory Chip with Fully Parallel MAC Computing. In IEEE
ISSCC, 2020.

[7] J.-H. Yoon et al. A 40-nm 118.44-TOPS/W Voltage-Sensing Compute-in-
Memory RRAM Macro With Write Verification and Multi-Bit Encoding.
IEEE JSSC, 2022.

[8] S. Yin et al. PIMCA: A 3.4-Mb Programmable In-Memory Computing
Accelerator in 28nm for On-Chip DNN Inference. In Symp. VLSI, 2021.

[9] R. Khaddam-Aljameh et al. HERMES-Core—A 1.59-TOPS/mm2 PCM
on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Lin-
earized CCO-Based ADCs. IEEE JSSC, 2022.

[10] M. Cheng et al. TIME: A Training-In-Memory Architecture for RRAM-
based Deep Neural Networks. IEEE TCAD, 2018.

[11] L. Gao et al. Programming protocol optimization for analog weight tuning
in resistive memories. IEEE EDL, 2015.

[12] H. Noguchi et al. 4Mb STT-MRAM-based Cache with Memory-Access-
Aware Power Optimization and Write-Verify-Write / Read-Modify-Write
Scheme. In IEEE ISSCC, 2016.

[13] M. Zhao et al. Characterizing Endurance Degradation of Incremental
Switching in Analog RRAM for Neuromorphic Systems. In IEDM, 2018.

[14] S. K Gonugondla et al. SWIPE: Enhancing Robustness of ReRAM
Crossbars for In-Memory Computing. In ACM/IEEE ICCAD, 2020.

[15] Z. Meng et al. Write or not: Programming scheme optimization for rram-
based neuromorphic computing. ACM/IEEE DAC, 2022.

[16] G. L. Zhang et al. An Efficient Programming Framework for Memristor-
based Neuromorphic Computing. In DATE, 2021.

[17] B. Q. Le et al. RADAR: A Fast and Energy-Efficient Programming
Technique for Multiple Bits-Per-Cell RRAM Arrays. IEEE TED, 2021.

[18] S. Yin et al. High-Throughput In-Memory Computing for Binary Deep
Neural Networks With Monolithically Integrated RRAM and 90-nm
CMOS. IEEE TED, 2020.

[19] W. He et al. 2-bit-per-cell RRAM-based in-memory computing for area-
/energy-efficient deep learning. IEEE SSC-L, 2020.

[20] J. Chen et al. A parallel multibit programing scheme with high precision
for rram-based neuromorphic systems. IEEE TED, 2020.

[21] W. Shim et al. Two-Step Write–Verify Scheme and Impact of the
Read Noise in Multilevel RRAM-based Inference Engine. Semiconductor
Science and Technology, 2020.

[22] C. Wang et al. Improving Multilevel Writes on Vertical 3-D Cross-point
Resistive Memory. IEEE TCAD, 2020.

[23] X. Peng et al. DNN+NeuroSim: An End-to-End Benchmarking Frame-
work for Compute-in-Memory Accelerators with Versatile Device Tech-
nologies. In IEEE IEDM, 2019.





Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 13:52:48 UTC from IEEE Xplore. Restrictions apply.

