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Realizing spin squeezing with Rydberg 
interactions in an optical clock

William J. Eckner1, Nelson Darkwah Oppong1, Alec Cao1, Aaron W. Young1, William R. Milner1, 
John M. Robinson1, Jun Ye1 & Adam M. Kaufman1 ✉

Neutral-atom arrays trapped in optical potentials are a powerful platform for studying 
quantum physics, combining precise single-particle control and detection with a 
range of tunable entangling interactions1–3. For example, these capabilities have been 
leveraged for state-of-the-art frequency metrology4,5 as well as microscopic studies  
of entangled many-particle states6–11. Here we combine these applications to realize 
spin squeezing—a widely studied operation for producing metrologically useful 
entanglement—in an optical atomic clock based on a programmable array of 
interacting optical qubits. In this demonstration of Rydberg-mediated squeezing  
with a neutral-atom optical clock, we generate states that have almost four decibels  
of metrological gain. In addition, we perform a synchronous frequency comparison 
between independent squeezed states and observe a fractional-frequency stability  
of 1.087(1) × 10−15 at one-second averaging time, which is 1.94(1) decibels below the 
standard quantum limit and reaches a fractional precision at the 10−17 level during a 
half-hour measurement. We further leverage the programmable control afforded  
by optical tweezer arrays to apply local phase shifts to explore spin squeezing in 
measurements that operate beyond the relative coherence time with the optical  
local oscillator. The realization of this spin-squeezing protocol in a programmable 
atom-array clock will enable a wide range of quantum-information-inspired techniques 
for optimal phase estimation and Heisenberg-limited optical atomic clocks12–16.

The field of metrology has emerged as a compelling frontier for 
quantum-enhanced technologies17. For example, the use of entangled 
states of light has already led to enhanced searches for dark matter18  
and improved detection rates in gravitational-wave sensors19. 
Ground-breaking advances in optical-frequency metrology have also 
positioned atomic clocks as a promising platform for practical applica-
tions of entangled states20, as leading optical-clock technologies are 
now limited by the so-called standard quantum limit (SQL), which is 
a fundamental bound on the precision of unentangled sensors. Engi-
neering metrologically useful entanglement could therefore lead to 
more precise time-keeping, as well as improved studies of fundamental 
symmetries21, searches for dark matter22 and measurements of gravity 
at smaller length scales23,24.

The pursuit of quantum enhancements in optical-frequency 
measurements introduces a variety of experimental hurdles, as the 
manipulation of useful entangled states places stringent demands on 
experimental capabilities. These include high-fidelity atomic-state 
control, isolation from noise, and either controlled interactions or 
collective measurements17. In the face of these challenges, a particu-
larly robust class of entangled states—known as spin-squeezed states 
(SSSs)—has emerged as a powerful and effective resource for achieving 
sub-SQL performance in neutral-atom clocks operating in the micro-
wave domain1,25–27. Pioneering experiments have pushed spin squeez-
ing into the optical domain using collective atom-cavity coupling to 

generate SSSs on the clock transition in atomic ytterbium28,29. Recently, 
a cavity-quantum-electrodynamics-based strontium lattice clock 
showed enhanced angular resolution below the SQL, along with a dif-
ferential clock measurement between two transportable spin-squeezed 
ensembles with precision below the quantum-projection-noise limit 
at the 10−17 level30. Such experiments with all-to-all cavity-mediated 
interactions are a promising route towards scalable spin squeezing. So 
far, these realizations do not harness microscopic control or detection, 
or access high-fidelity rotations, which are important ingredients in 
many proposals for engineering optimal quantum sensors and can aid 
in reaching performance below the SQL during clock operation12–14,14–17.

Here we experimentally generate and study spin squeezing in a  
programmable atom-array optical clock to realize measurement  
performance below the SQL in a differential clock comparison (Sup-
plementary Information). The squeezing protocol we use is based on 
interactions between atoms that are off-resonantly coupled to a 
Rydberg state31,32. Using this technique, known as Rydberg dressing33–36, 
we are able to observe finite-range interactions in arrays of up to 
140 atoms. We use the resulting Ising-like Hamiltonian to generate spin 
squeezing on the optical-clock transition in 88Sr (refs. 32,37; Fig. 1a). 
We characterize this squeezing with the Wineland parameter ξW

2 , which 
serves as an entanglement witness38 and quantifies metrological gain39. 
Assuming an ideal optical local oscillator, one practical way of under-
standing the Wineland parameter is that a clock with N atoms and ξW

2  
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will be able to operate with the same precision as an unentangled, SQL-
limited (that is, ξ = 1W

2 ) clock with N ξ/ W
2  atoms. Therefore, states with 

ξ < 1W
2  (ξ <0 dBW

2 ) contain metrologically useful entanglement. We also 
perform an exploration of the impact of squeezing on differential clock 
measurements at times beyond the atom-laser coherence, for which 
we leverage local single-qubit gates to impart well controlled clock 
phase shifts for unbiased phase estimation40–43 (Supplementary  
Information).

We create spin squeezing between the 1S0 ground (denoted g�∣ ) and 
3P0 clock (denoted e�∣ ) electronic states (Fig. 1a), which are of interest 
due to their long lifetimes, insensitivity to environmental perturbations 
and optical carrier frequency. For example, coherent superpositions 
of these states can persist on the half-minute timescale4,23,40, support 
long-lived entanglement44 and are the foundation for state-of-the-art 
neutral-atom optical clocks23,45. We generate spin-squeezed ensembles 
with ξ = − 3.8(6) dBW

2  and ξ = − 3.4(3) dBW
2  in subarrays of N = 16 atoms 

and N = 70 atoms, respectively. We then incorporate this spin squeez-
ing into a differential clock comparison between two independent 
subarrays of atoms. For a measurement time of τ, we observe that the 
fractional-frequency uncertainty in this comparison averages down 
with a rate of τ1.087(1) × 10 / / s−15  for SSSs with N = 70 atoms, and 
reaches an ultimate fractional uncertainty below 3 × 10−17 after a 
27.6-min-long measurement. This stability is 2.30(1) dB better than the 
same measurement performed with coherent spin states (CSSs), and 
1.94(1) dB below the SQL in a differential clock comparison.

Our experiments require a combination of global, laser-driven clock 
rotations—with a typical Rabi frequency of Ωc ≈ 2π × 250 Hz on the 
∣ ∣g e� � � transition—and Rydberg-mediated interactions. We turn on 
these interactions by applying a high-power 316.9-nm laser that 
addresses the e r s s� � � = (5 47 ) S3

1∣ ∣  transition with a typical Rabi fre-
quency Ωr ≈ 2π × 5.5 MHz and detuning Δ ≈ 2π × 11 MHz. When Δ ≫ Ωr 
(‘weak dressing’), this dresses the excited state ∣e�  with an admixture 
of the Rydberg state r�∣  and creates a new eigenstate e e β r� ≈ � − �dr.∣ ∣ ∣ , 
where β = Ωr/(2Δ). Because pairs of Rydberg atoms interact through a 
van der Waals potential with coefficient C6, an effective Hamiltonian 
for the pseudo-spin states ∣ ∣g e{ �, �} can be written as a sum of the two 
independently controlled terms H H Hˆ = ˆ + ˆ

c Ryd (refs. 32,36,46)

∑ ∑

H ħ Ω S

H V σ σ δ σ

ˆ = ˆ ,

ˆ =
1
4

ˆ ˆ +
1
2

ˆ ,
(1)

x

i j
ij z

i
z
j

i
i z

i

c c

Ryd
<

( ) ( ) ( )

where the indices i and j label the atoms in the array, ħ is the reduced 
Planck constant, and σ̂x y z, ,  are the Pauli operators. We also denote the 
collective spin operators S σˆ = ∑ ˆγ i γ

i1
2

( ) with γ ∈ {x, y, z}, and associated 
Bloch vector S S S S= ( , , )x y z , where S S= � ˆ �γ γ . The parameter δi describes 
a longitudinal field term arising in the effective Hamiltonian32. In the 
weak-dressing limit, the strength of the interactions is given by a poten-
tial V V r R= /[1 + ( / ) ]ij ij0 b

6  where rij is the distance between atoms i and j, 
V0 = ħβ3Ωr, and Rb = |C6/(2Δ)|1/6. Using pairs of atoms with variable spac-
ing, we can directly measure the shape of the potential36,44. As shown 
in Fig. 1b, we observe a two-particle interaction that has a spatial 
dependence consistent with the weak-dressing model, yet with quan-
titative deviation that is partly attributable to violation of the weak-
dressing approximation (Methods).

The spin-squeezing protocol we use largely follows that proposed 
in ref. 32, illustrated in Fig. 1c, which applies the interaction Hamiltonian 
ĤRyd in a spin-echo sequence. This procedure thereby isolates the inter-
action V V σ σˆ = ∑ ˆ ˆi j ij z

i
z
j

int
1
4 <

( ) ( ), which is applied for a total time tint (Meth-
ods). We can understand the interaction V̂int by noting that it has a form 
similar to the one-axis twisting Hamiltonian, but with a finite interaction 
range set by Rb (ref. 47). We study the squeezing generated with V̂int for 
small systems by preparing atoms in four square subarrays of 
N = 4 × 4 = 16 atoms (with an interatomic spacing of 2 alat, where alat is 
the lattice spacing). By ensuring that the separation between subarrays 
is larger than the interaction range Rb, we can treat them as independ-
ent populations. This allows us to extract information about their 
intrinsic quantum noise by performing differential comparisons, which 
reject most forms of technical noise4,41. The observable for this dif-
ferential measurement is d S N S Nˆ = ˆ / − ˆ /z z z

(AB) (A)
A

(B)
B , where A and B each 

label a subarray of atoms, with atom numbers NA and NB, respectively 
(Methods). We can assume that each subarray is a preparation of the 
same atomic state, and then treat all measurements of d̂ z

(AB)
 as a probe 

of the same observable, which we call d̂z. The variance in d̂z, denoted 
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Fig. 1 | Spin squeezing in a Rydberg-dressed array of 88Sr atoms. a, Atomic 
states (black lines) and transitions (coloured arrows) of 88Sr relevant for clock 
interrogation and Rydberg dressing. Rabi frequencies Ωr and Ωc indicate the 
laser coupling between the different states in the experiment and Δ denotes 
the detuning from ∣r�. b, Schematic of the experimental set-up. 88Sr atoms in 
the states ∣g �  (blue circles) and e�∣  (red circles) are trapped in an optical lattice 
(grey lines), with a lattice spacing of alat ≈ 575 nm, and arranged into multiple 
subarrays. Interactions between atoms at a distance rij are described by Vij 
shown in the top plot. Here, black circles are data points (error bars are smaller 
than the marker size) and the solid black line is a numerical fit (Methods).  
Laser beams coupling the states in a are indicated by coloured arrows and 
correspond to Ĥc and ĤRyd (see main text). Optical tweezers (green double cone, 

wavelength 515 nm) enable application of the operator σ̂ z
i( ) to an individual atom i.  

c, Illustration of the experimental sequence for preparing SSSs. In the pulse 
sequences for II and III, clock and Rydberg laser pulses are shown in red and 
purple, respectively. Here, α denotes the relative clock laser phase. It is noted 
that the pulse duration tint/2 is visually enlarged by a factor of about 103. 
Single-shot images are taken after state preparation (bottom left) and to read 
out the atomic populations (bottom right). Here, the red circles indicate atoms 
in ∣g �, which are intentionally removed before the final image. It is noted that 
the distance between the four subarrays is larger than displayed. Generalized 
Bloch spheres (bottom centre) illustrate the evolution of the atomic state for a 
subarray with N = 4 × 4 = 16 atoms (the reduction of the Bloch-sphere radius is 
not shown to scale).
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σα
2, generally depends on the measurement quadrature, which is set 

by the angle α, and describes the orientation of the atomic noise dis-
tribution. However, in the absence of entanglement or technical noise, 
σα
2 will be independent of α, and governed by quantum-projection noise 

(QPN), given by
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where we assume NA, NB = N, as we prepare NA ≈ NB for all experiments. 
Var[·]CSS denotes the variance of an ideal CSS with Sz = 0 for both subar-
rays A and B.

As shown in Fig. 2a, we can measure σα
2 after applying the squeezing 

protocol to N = 4 × 4 subarrays. We find that the ratio σ σ/α
2

QPN
2  oscillates 

sinusoidally with α, and dips below unity near α ≈ 30°. This measure-
ment demonstrates that SSSs in the system have noise below the QPN 
limit. However, we must also ensure that this variance reduction is not 
offset by a reduction in contrast, which could in net reduce the 
signal-to-noise ratio (Supplementary Information). To verify this, we 
measure the contrast C of the Ramsey fringe associated with each of 
these states, and thus the magnitude of the single-ensemble Bloch 
vector S = CN/2.

From the measured quantities σα
2 and C, we can determine the Wine-

land squeezing parameter
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where σmin
2  denotes the minimum of σα

2, and Var[·]min is the minimum 
variance with respect to α. We determine the optimal α by fitting a 
cosine to the signal σα

2 (Fig. 2a). The parameter ξW
2  is then calculated 

from the variance of an additional, high-statistics dataset taken at the 
optimal α, as well as the fitted contrast C (see inset of Fig. 2a). Figure 2b 
shows ξW

2  versus interaction time tint for N = 4 × 4 subarrays. By fitting 
the measured Wineland parameter ξW

2  versus tint, we observe a minimum 
value of ξ = − 3.8(6) dBW

2 , which is comparable to state-of-the-art dem-
onstrations in other optical clocks29,30.

Using site-resolved imaging, we can also probe the microscopic 
structure of the generated states by analysing the two-particle correla-
tor g σ σ σ σ= � ˆ ˆ � − � ˆ �� ˆ �z
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z
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z
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r , where r is a spatial displacement vec-
tor between lattice sites i and j. We measure rg

(2) in larger subarrays to 
reduce finite-size effects. For N = 5 × 14 = 70 (with spacing 3 alat along 
x and 2 alat along y), we find that the measured rg

(2) agrees qualitatively 
with theoretical predictions at the optimal interaction time (Methods). 
In particular, we observe correlations that extend over a range that is 
similar to the characteristic length scale Rb ≈ 5 alat of the interaction 
potential Vij shown in Fig. 1b. For |r| < Rb, we observe correlations that 
change from negative to positive as a function of α. As expected, the α 
with minimum Wineland parameter ξW

2  exhibits strong negative  
correlations.

An important question concerns how the Wineland parameter ξW
2  

changes with increasing atom number N. For the finite-range interac-
tions realized by Rydberg dressing, we expect ξW

2  to saturate when the 
mean interatomic distance becomes much larger than Rb (ref. 32). To 
probe this regime, we perform additional measurements of the optimal 
ξW
2  with subarrays of N = 4, N = 9, N = 25 and N = 70 atoms. For each, we 

employ an empirical fit (Fig. 2b) to determine the optimal Wineland 
parameter ξW

2 , shown in Fig. 2d (Methods). We do not observe a strong 
dependence on N in the achievable squeezing ξ1/ W

2 , which saturates to 
about 4 dB for N = 9 and N = 16, and is slightly reduced for larger subar-
rays of N = 25 and N = 70.

So far, we have focused on the preparation of SSSs. Next, we bench-
mark their performance in a synchronous optical-frequency com-
parison between independent atomic ensembles, labelled A and B  

(see insets in Fig. 3). We interrogate both CSSs and SSSs in a Ramsey-
interferometry sequence with a variable dark time Tdark (see diagram 
in Fig. 3b). During the dark time, the phases of ensembles A and B pre-
cess at their angular clock frequencies ωA and ωB, respectively. At the 
end of the dark time, we then measure the differential phase ϕ between 
the two ensembles, which is related to the previously defined obser-
vable d̂ z

(AB)
 by
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Fig. 2 | Characterization of spin squeezing and finite-range interactions. 
Unless noted otherwise, the displayed data correspond to N = 4 × 4 = 16 atoms. 
a, Variance reduction σ σ/α

2
QPN
2  of the CSS (grey squares) and the SSS (purple 

circles) for variable phase α of the final clock laser pulse and tint = 2.4 μs. Data 
points for the CSS are binned and the solid purple line is a cosine fit to the data. 
The top left inset shows Sz/N of the CSS (grey points) and SSS (purple points) for 
variable phase θL, and averaged over subarrays. The solid lines represent fits 
yielding the contrast C = 0.97(1) for the CSS and 0.83(2) for the SSS. b, Wineland 
squeezing parameter ξW

2  (purple circles) measured for variable tint. The dark 
purple line shows an empirical fit to determine the optimal ξW

2 . c, Two-particle 
correlator g (2)

r  (see main text) in a subarray with N = 5 × 14 = 70 atoms and close 
to the optimal interaction time, tint = 1.6 μs, for variable phase α and horizontal 
(vertical) displacement rx (ry). The bottom rows show the weak-dressing theory 
at optimal interaction time for an offset angle α → α − 9.9° determined from a fit 
to the experimental data. We note that the optimal interaction time differs for 
the experiment and theory shown here (Methods). d, Large purple circles 
correspond to the optimized Wineland squeezing parameter ξW

2  measured in 
square arrays with N N N= ×  atoms. The triangular marker corresponds to 
data taken in a rectangular array with N = 5 × 14. The small circles connected by 
a solid purple line show the theoretical prediction based on weak dressing 
(dashed purple line indicates subarrays with N = 5 × m for N > 25). The solid and 
dotted grey lines indicate the Heisenberg limit (HL) and the asymptotic scaling 
for the one-axis twisting (OAT) Hamiltonian, respectively.



Nature | Vol 621 | 28 September 2023 | 737

d
C

φ
C

ω ω T≈
2

=
2

( − ) , (4)z
(AB)

A B dark

when ϕ ≪ 1 (Methods). For ensembles with N = 32 (each comprised of 
two 4 × 4 subarrays) and Tdark = 26.0 ms we observe a fractional- 
frequency stability of τ2.829(4) × 10 / / s−15  between two SSSs (Fig. 3a). 
This corresponds to a 3.52(1) dB enhancement over the SQL in a dif-
ferential clock comparison (Supplementary Information), and a 
3.69(2) dB improvement compared with the same measurement per-
formed with CSSs. With ensembles of size N = 5 × 14 = 70 and 
Tdark = 54.5 ms we realize a stability of τ1.087(1) × 10 / / s−15  between 
two SSSs. Assuming the data continue to average as white frequency 
noise, this implies a final instability below 3 × 10−17 when extrapolated 
to the full measurement time of 27.6 min. This stability is 1.94(1) dB 
(2.30(1) dB) below the SQL (CSS) for a differential clock comparison 
(Supplementary Information). The smaller metrological gain for N = 70 
could be attributed to a slightly reduced ξ1/ W

2  as observed in Fig. 2d. 
However, the larger-atom-number arrays still allow us to reach a lower 
absolute measurement uncertainty at fixed averaging time. To the best 
of our knowledge, these measurements are the first to achieve a frac-
tional-frequency precision below the SQL for a differential clock com-
parison in a neutral-atom optical clock (Supplementary Information).

One can extend differential frequency comparisons beyond the 
atom-laser coherence time4,23,40,41. In this regime, the phase of the sec-
ond π/2 pulse in a Ramsey interferometer is completely randomized. 
However, the measured clock-state fractions PA and PB of the two ensem-
bles A and B can be plotted parametrically, and trace out an ellipse with 
an opening angle set by the differential phase ϕ. Given an appropriate 
atomic noise model, maximum-likelihood estimation (MLE) can be 
employed to directly measure ϕ. We refer to this as ‘ellipse fitting’43.

We explore the ellipse-fitting approach using two N = 70 SSSs. 
We repeat this measurement for a few different Ramsey dark times 
and compare the precision to that achieved with comparable CSSs.  
To extract the measurement uncertainty achieved with CSSs and SSSs, 
we calculate an Allan deviation σϕ of the measured phase ϕ through a 
jackknifing procedure41 (Supplementary Information). The inset in 

Fig. 4c shows one such Allan deviation obtained for Tdark = 1.16 ms. At 
this short dark time, the SSS provides an inferred measurement uncer-
tainty that is about 2 dB better than that reached with a CSS. These 
results suggest that SSSs could improve the precision of ellipse-fitting 
measurements, yet there remain open theoretical questions regarding 
the choice of statistical model for the SSSs (Methods). Furthermore, 
indications of a potential enhancement are gone by Tdark = 150 ms. There-
fore, this procedure and the associated modelling do not currently 
allow for higher-precision differential Ramsey measurements than 
those presented in ref. 4. We leave a detailed study of the technical 
limitations on squeezing lifetime and how this performance could be 
extended to longer dark times as a subject for future work. However, 
we speculate that inhomogeneous light shifts from the optical lattice 
and the consequent dephasing could play an important role44.

In summary, we have employed a Rydberg-dressing protocol to gen-
erate up to 3.8(6) dB of spin squeezing on the optical-clock transition 
in 88Sr. This has allowed us to perform a synchronous clock compari-
son with a stability that is up to 3.52(1) dB below the SQL. The dem-
onstrated protocol establishes an effective approach for reaching 
entanglement-enhanced optical atomic clocks, and is compatible with 
other existing experiments5,23,40,45. Looking to the future, a number of 
questions and avenues of investigation remain. Although the CSS and 
SSS maintain relative atomic coherence for long Ramsey times out 
to 5 s, as noted, we observe signs of an inferred enhancement only at 
short dark times; correcting this disparity could yield improvements, 
particularly with refined modelling of the underlying distribution of 
the experimentally produced entangled states. Another important 
consideration is whether the reported stability enhancements can be 
combined with state-of-the-art accuracy. To this end, the switchabil-
ity of the Rydberg interactions allows the entangling operations and 
Ramsey-based metrology to be fully decoupled, which should reduce 
systematic effects related to Rydberg excitations. This work sets the 
stage for fundamental investigations of more sophisticated protocols 
for generating metrologically useful entangled states for quantum 
sensing, including protocols that leverage dynamics under more com-
plex spin models48,49, Floquet engineering50 or variationally optimized 
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Fig. 3 | Atom–atom stability for CSSs and SSSs. a,b, Overlapping Allan deviation 
for the differential clock comparison between two subarrays after preparing a 
CSS (grey squares) or an SSS (purple circles). The subarrays A and B are 
illustrated in the top right inset of each main panel with N{A,B} = 2 × (4 × 4) = 32 (a) 
and N{A,B} = 5 × 14 = 70 (b). The atoms are interrogated with a dark time of 
Tdark = 26.0 ms (a) and 54.5 ms (b) between two π/2 pulses with the laser phase αopt 
optimized for the measurement quadrature with lowest noise (see bottom left 
inset of main panel in b). The solid lines show numerical fits to the data yielding 
differential stabilities of τ2.829(4) × 10 / / s−15  and τ1.087(1) × 10 / / s−15  for the 
SSS in a and b, respectively. These stabilities are respectively 3.52(1) dB and 
1.94(1) dB below the SQL for a differential clock comparison (Supplementary 
Information), and correspond to a 3.69(2) dB and 2.30(1) dB enhancement over 

the CSS. The two right panels in a and b show the excitation probabilities PA and 
PB of subarrays A and B. The light purple and light grey points correspond to a 
separate measurement, in which the phase of the final π/2 pulse is varied over 
360° to determine the contrast C = 0.97(1) (0.87(1)) in a and C = 0.96(1) (0.86(1)) 
in b for the CSS (SSS). The Allan deviations in a (b) are calculated from the results 
of 500 (1,200) measurements, with a cycle time of approximately 1.4 s. In the 
smaller plots on the right, the dark purple and grey points correspond to results 
of the first 200 measurements for each dataset. The spread of these data 
illustrates how much of the Ramsey fringe is sampled when locking the clock 
laser to the atomic signal (Methods). It is noted how the reduced variance of  
the SSS compared with the CSS can be seen close to PA ≈ PB ≈ 0.5 along the 
anti-diagonal of this plot.
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quantum circuits, even in the regime where the resulting many-body 
dynamics are challenging to simulate with classical resources13,14,51. 
Lastly, the single-particle readout and rearrangement demonstrated 
here could be used to perform mid-circuit measurements in an entan-
gled optical atomic clock to reach Heisenberg-limited performance 
that is robust to local oscillator noise10,15,16,52.

During the completion of this work, we became aware of related 
works using Rydberg interactions in a tweezer-array platform53 and 
long-range interactions in an ion string54.
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Fig. 4 | Exploring metrology with SSSs in the limit of randomized atom-laser 
phase. In all panels, we study two subarrays with N = 5 × 14 = 70 each. a, Schematic 
of the phase-shifting procedure. Dynamic optical tweezers (light green circles) 
collocated with the optical lattice (grey lines) apply local operators σ̂ z

i( ) onto the 
atoms (green and grey circles). At the bottom, together with a fit (solid lines), an 
example Ramsey measurement of the phase shift ϕ between subarrays A and B 
is shown. b, Measurements of the probabilities PA and PB for variable Ramsey 
dark time Tdark = 1.16 ms, Tdark = 150 ms and Tdark = 5 s. Here, the relative phase 
shift takes a value of ϕ ≈ 30° (Tdark < 5 s) or ϕ ≈ 40° (Tdark = 5 s). The first and third 

rows show the experimental data for the CSS (grey squares) and the SSS (purple 
points), respectively. The other rows show the numerically fitted probability 
mass functions (PMFs; Methods). c, Purple circles correspond to the inferred 
relative variance of the SSS compared with the CSS for variable dark time Tdark. 
Each data point is determined by comparing the Allan deviation σϕ of the 
estimated-phase uncertainty after averaging over a variable number of 
measurements. Here, the inset shows an example for Tdark = 1.16 ms (error bars 
smaller than the marker size), and the bottom right schematic illustrates part  
of the pulse sequence in this measurement.
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Methods

Hybrid optical-clock platform
The core elements of the programmable clock platform are shown in 
Fig. 1b, and are based on a recently demonstrated hybrid tweezer-lattice 
architecture42,44. We can trap atoms in both a dynamically configurable 
optical tweezer array and a collocated two-dimensional (2D) optical 
lattice, each of which exhibits distinct and enabling features for the 
work presented here. In particular, the optical tweezer array allows for 
rapid initial loading, deterministic rearrangement into nearly arbitrary 
patterns within the 2D lattice and the application of controlled, local 
light shifts, shown schematically in Fig. 1b. The 2D lattice, in contrast, 
offers several thousand sites in which we can perform ground-state 
cooling, single-site-resolved imaging and high-fidelity global rotations 
on the clock transition.

Array initialization
In this work, atom arrays in the optical lattice are initialized via a combi-
nation of stochastic loading, detection, deterministic rearrangement 
with optical tweezers and high-fidelity optical cooling. First, an array 
of 515-nm tweezers is stochastically loaded from a cold atomic cloud. 
Light-assisted collisions result in an occupation of zero or one atoms 
in each tweezer with approximately equal probability55. These atoms 
are implanted into a single 2D layer of a three-dimensional (3D) opti-
cal lattice operated close to the clock-magic wavelength of 813.4 nm, 
and imaged with a combined loss and infidelity of <0.5% (refs. 42,44). 
The loading procedure, beginning from a hot thermal gas and end-
ing with atoms near the motional ground state of single lattice sites, 
takes approximately 300 ms, and each image takes about 150 ms. On 
the basis of these images, and using the optical tweezers, the atoms 
are rearranged into nearly arbitrary patterns in the lattice56–58. The 
per-atom success probability for filling a given target pattern can 
be as high as 99.5%; however, 98% is typical for the data appearing 
throughout this work. As a representative case, we note that, for the 
data in Fig. 3, the addition of rearrangement lengthens the sequence 
by roughly 200 ms. However, this could be improved in future work59. 
After rearrangement, an additional image confirms that the target  
pattern has been prepared successfully. It is noted that we do not always 
enforce that the atom array is free of defects, as summarized in the 
‘Post-selection’ section. Finally, the rearranged atoms are cooled to their 
3D motional ground state via resolved sideband cooling on the 1S0 ↔ 3P1  
transition42,44.

In all measurements presented in Figs. 1–4, we prepare the atomic 
array with a square or rectangular pattern that corresponds to 2 or 4 
individual subarrays of size N = 4 atoms up to N = 70 atoms. By spac-
ing the subarrays sufficiently far apart (≥12 alat), we can treat them as 
independent atomic ensembles. The spacing between atoms in a subar-
ray is generally chosen to be 2 alat. For N = 4 and N = 70, the spacing is 
increased to (3, 2) alat along the (x, y) directions. We note that this choice 
is motivated by a slightly improved fidelity of the array initialization, 
but does not significantly affect the attainable squeezing performance.

Post-selection
For the data in Figs. 1 and 2, we post-select on the fraction of target sites 
in a subarray that are successfully loaded with an atom (‘Array initializa-
tion’), which we refer to as the fill fraction. The post-selection criterion 
for all datasets is an initial fill fraction of ≥92%. As we initialize multiple 
subarrays on each run of the experiment, we note that subarrays are 
post-selected on an individual level; that is, for a given experimental 
trial, we only exclude pairs of subarrays with at least one subarray that 
has a fill fraction below the 92% threshold.

We do not post-select on fill fraction for the stability and ellipse-fitting 
datasets shown in Figs. 3 and 4. However, for the CSS shown in Fig. 3b, 
there was a single experimental trial in which all subarrays had a fill 
fraction of zero (that is, no atoms were initialized in the target pattern), 

and we exclude this trial from our analysis. Similarly, in Fig. 4b,c—and in 
ascending order with Ramsey dark time—the SSS (CSS) data have (zero, 
one, two, one) ((zero, two, two, one)) experimental trials in which all 
subarrays had fill fractions of zero; these trials are removed from the 
corresponding datasets. As we calculate the Allan deviation versus 
number of binned data points M (as opposed to averaging time τ), 
neglecting these points in the analysis does not affect the inferred 
stabilities.

Clock rotations and state detection
After initializing the atom array, a magnetic field of about 275 G is turned 
on to allow the g e� � �∣ ∣  transition to be resonantly driven with a typi-
cal Rabi frequency of Ωc ≈ 2π × 250 Hz (refs. 44,60). We note that for 
the data shown in Fig. 1b and the N = 2 × 2 = 4 data in Fig. 2d, we employ 
a smaller magnetic field of about 55 G. The ultra-narrow clock laser is 
stabilized to a cryogenic silicon cavity, as described in refs. 61,62. Arbi-
trary clock rotations can be performed by controlling the duration and 
phase of pulses from this drive laser using an acousto-optic modulator. 
We typically measure a π-pulse fidelity of ≥99%. After preparing a SSS 
or CSS and interrogating the atoms, we detect their electronic state. 
To this end, we apply 461-nm blowaway light, resonant with the dipole- 
allowed ∣g� � P1

1 transition, which heats ∣g� atoms out of the trap. This 
procedure projects each atom into either the ∣g�  state (detected as 
loss) or e�∣  state (detected as survival). For further details on state 
detection and imaging, see ref. 44.

To sample the squeezed quadrature of a SSS, we need to align it with 
projective measurements of the Ŝz-basis states ∣g�  and e�∣  . To achieve 
this, we change the phase of the drive Ωc by a variable angle α after the 
Rydberg-dressing pulse sequence (II in Fig. 1c). At this stage the Bloch 
vector is aligned parallel to the z axis, that is, S S= ± (0, 0, 1), and a phase 
change of the drive can be understood as a global Ŝz rotation by α, which 
does not change the magnitude or direction of the Bloch vector. After 
applying another π/2 pulse, the atomic noise distribution is rotated by 
α with respect to the equatorial plane of the generalized Bloch sphere 
(as illustrated in Fig. 1c). To maximize the metrological gain in stability 
and ellipse-fitting measurements, we experimentally determine the 
optimal α before each measurement and choose the clock laser phase 
for the final two π/2 pulses in the Ramsey sequence appropriately (III 
in Fig. 1c).

Local σ̂z operations
We use 515-nm optical tweezers to introduce locally controlled light 
shifts across the array. These operations can also be understood as 
local σ̂z rotations. It is noted that in combination with arbitrary global 
single-qubit rotations, this technique provides access to a universal 
set of single-qubit gates. For the data presented in Fig. 4, and as 
described in the main text, we demonstrate this control by creating a 
homogeneous light shift across a 70-atom subarray. To realize this 
operation, a single column of tweezers is turned on and the desired 
light shift is applied to one column of atoms. This is iterated 
column-by-column across the 2D array (Fig. 4a). The primary motiva-
tion for only applying one-dimensional columns of tweezers at any 
given time is to ensure that we have a sufficient number of degrees of 
freedom to independently and arbitrarily tune the phase shift at each 
site. For a further discussion of the performance of this protocol, see 
Supplementary Information.

Rydberg drive and parameters
Our ultraviolet laser system for addressing the ∣ ∣e r� � �  transition is 
detailed in ref. 44. We switch on (off) this laser by simultaneously ramp-
ing Ωr to its maximum (minimum) value and Δ to its minimum (maxi-
mum). Typically, Ωr ramps from 0 to about 5.5 MHz, and Δ ramps from 
about 2π × 33 MHz to about 2π × 11 MHz. These ramps have a duration 
of 225 ns, and are implemented by linearly sweeping the radio-frequency 
power and frequency to an acousto-optic modulator, following the 



procedure in ref. 44. We note that the interaction times tint quoted in 
this work do not include the duration of the ramps.

For each measurement in this work, we characterize the relevant 
parameters of the Rydberg drive ĤRyd: Ωr and Δ. As the Rydberg laser is 
locked to a high-finesse cavity, we control Δ directly by changing the 
radio frequency of a cavity offset lock. The Rabi frequency Ωr is deter-
mined by driving on-resonance (Δ = 0) Rabi oscillations for isolated 
single atoms.

For theoretical calculations (‘Weak-dressing theory’), we assume 
C6 ≈ 2π × 9.1 GHz μm6. We estimate this value from experimental meas-
urements of the two-photon ee�∣  to rr�∣  transition frequency for 
interatomic distances rij between 3 alat and 7 alat. However, this measure-
ment is susceptible to a variety of systematic effects, such as stray 
electric fields, which we do not characterize. Therefore, this value for 
C6 may not be representative of Rydberg interactions in conditions 
that differ from those used in this work.

Interaction potential
Figure 1b shows a measurement of the soft-core potential Vij that 
describes the two-particle interactions in the system. For this measure-
ment, we initialize the atom array with a few isolated pairs of atoms at 
variable distance r01 = (1, 2, 3, 4, 5) alat. We then apply the Rydberg-
dressing pulse sequence (II in Fig. 1c) followed by an additional π/2 
clock pulse. A subsequent measurement of the atomic population 
corresponds to a measurement of the Ŝz observable that oscillates with 
the frequency ω. We extract ω from a damped cosine fit and relate it to 
V(r01) by diagonalizing the two-particle Hamiltonian (i, j = 0, 1; equa-
tion (1)). Finally, a numerical fit to ∼

ω r R[1 + ( / ) ]01 b
6 −1

 yields the relevant 
fitted parameters V ħω h= 2 = × 46.4(4) kHz0

∼  and ∼R a= 4.9(2)b lat. Nota-
bly, the interaction strength V0 deviates significantly from the one 
obtained from the relations V0 = β3Ωr ≈ h × 80.6 kHz and the indepen-
dently determined parameters Ωr and Δ. This could be attributed to 
the relatively large β = Ωr/(2Δ) ≈ 0.25 employed throughout this work. 
In particular, we find that the results from an exact-diagonalization 
calculation (Supplementary Information) are much closer to V0

∼ .

Wineland parameter
Each value of the Wineland parameter ξ W

2  shown in Fig. 2b,d involves 
measuring the contrast C as well as the variance reduction σ σ/α

2
QPN
2 . 

Example measurements for these quantities are shown in Fig. 2a for 
the case of N = 4 × 4 = 16. It is noted that the quantity σQPN is calculated 
for the actual atom number obtained under the post-selection criterion 
explained in ‘Post-selection’. To reduce the statistical uncertainty of 
ξ W
2 , we first obtain the optimal α by a measurement and a numerical 

cosine fit like the one shown in Fig. 2a. Subsequently, the value of the 
minimum variance reduction σ σ/α

2
QPN
2  is determined from an additional 

high-statistics measurement at the optimal α. We employ this  
procedure for all atom numbers except for N = 2 × 2 = 4, where the 
minimum variance reduction is obtained directly from a cosine fit. For 
all atom numbers, we measure the Wineland parameter ξ W

2  for a range 
of different interaction times tint. To obtain the optimal ξ W

2  (and tint), we 
employ an empirical fit described by a be + eΓ t Γ t− −a bint int with fit param-
eters a, b and Γa, Γb. An example plot of this functional form together 
with experimental data can be found in Fig. 2b (dark purple line).  
The values of ξ W

2  plotted in Fig. 2d and quoted in the main text are 
obtained from the fit parameters and the resulting minimum of the 
above function.

Atom–atom stability
For the differential frequency comparisons shown in Fig. 3, we employ 
Ramsey spectroscopy. At the end of the dark time Tdark, we measure 
the signal

d
C

ω T ω T=
2

[sin( ) − sin( )] (5)z
(AB)

A dark B dark

where ωATdark (ωBTdark) is the phase accrued by ensemble A (B) during the  
dark time. As (ωA − ωB)Tdark is generally small, ω ω d CT( − ) ≈ 2 /( )zA B

(AB)
dark . 

We measure this angular frequency difference multiple times with a 
regular time interval of about 1.4 s between individual data points. This 
allows us to obtain the differential stability between A and B by calcu-
lating the overlapping Allan deviation for a variable total averaging 
time τ (Fig. 3). It is noted that we employ a low-gain digital servo to lock 
the laser onto the atomic resonance position during atom–atom stabil-
ity measurements. This servo ensures that the atomic populations 
remain near the optimal value by controlling the frequency of the clock 
laser beam using an acousto-optical modulator.

Error bars and model fitting
Throughout this work, fitted parameters corresponding to the CSS are 
extracted via MLE under the assumption that the underlying distribu-
tion is binomial, whereas the corresponding parameters for the SSS are 
extracted via least-squares fits weighted by 1/Ni, where Ni is the number 
of atoms loaded on a given shot i of the experiment. For the contrasts 
contributing to Figs. 2 and 3, confidence intervals are determined by 
non-parametric bootstrap using the basic method63. Errors in other fitted  
parameters are determined from jackknifing, that is, the displayed 
error bars correspond to the jackknife estimate for the standard error64. 
Unless noted otherwise, numerical least-squares fits weight the data 
points with their inverse variance. For the data corresponding to the 
variance reduction in Fig. 2a, error bars of the variance are also deter-
mined by jackknifing.

Weak-dressing theory
For the weak-dressing theory shown in Fig. 2d, we directly employ the 
analytical results given in ref. 32 to obtain the relevant experimental 
parameters C, σ σ/α

2
QPN and ξ W

2 . We note that the ramps of the Rabi fre-
quency and detunings (‘Rydberg drive and parameters’) are neglected 
in these calculations. The atom numbers for the weak-dressing theory 
curve shown in Fig. 2d (light purple line) are N = 1 × 2, 1 × 3, 2 × 2, …, 5 × 5 
and 5 × m with m = 6, 7, …, 20. Here, the spacing between atoms is set 
to 2 alat. Although the independently determined experimental param-
eters Ωr and Δ in each of the measurements aggregated in Fig. 2d slightly 
differ, the weak-dressing theory is calculated for the parameters of the 
N = 4 × 4 = 16 dataset.

Following ref. 65, we find the following expression for the relevant 
two-particle correlator shown in Fig. 2c (spatial correlations)

∏ ∏

g P P α α α φ

φ φ

=
1
4

( − )sin +
1
4

sin cos sin

× cos + cos
(6)

ij ij ij ij

k i j
ik

k i j
jk

(2) − + 2

≠ , ≠ ,











with the expression P φ φ= ∏ cos( ± )ij k i j ki kj
± 1

2 ≠ ,  and the interaction phase 
φij = Vijtint/(2ħ). The above quantity is then related to g (2)

r  mentioned in 
the main text using the distances rij between atoms in the experimen-
tally prepared subarray with atom number N = 5 × 14 = 70. Here the 
spacing between atoms is set to (3, 2) alat along the x and y axes to match 
the experimental realization. The theory shown in Fig. 2c is calculated 
at the optimal interaction time by first minimizing ξ W

2  calculated with 
the weak-dressing theory from ref. 32. In the limit N → ∞ and for a spac-
ing of (2, 2)alat, the results from ref. 32 predict that the Wineland squeez-
ing parameter should saturate to a value of ξ ≈ − 8 dB∞

2 .

Ellipse fitting
One consideration in ellipse fitting is that measurements of ϕ ≈ 0 have 
biased results41 (Supplementary Information). To operate away from 
this point, we use the local control afforded by optical tweezer arrays 
to apply a homogeneous phase offset of ϕ ≈ 30° to one of the two ensem-
bles (Fig. 4a). To address residual drift in this phase-shifting protocol 
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(‘Local σ̂z operations’), we interleave measurements with the CSS and 
SSS so that they probe the same ϕ. Owing to the interleaved operation 
of ellipse measurements, we choose to parameterize the Allan deviation 
in terms of number of measurements (as opposed to averaging time τ).  
In addition, we intentionally randomize the laser phase of the final π/2 
pulse in the interferometer, which ensures uniform sampling of the 
ellipse traced out by PA and PB, independent of the atom-laser coherence 
time. Figure 4b shows how the data cluster near an ellipse with an open-
ing angle of about 30°. The rows below the data in Fig. 4b depict the 
fitted noise distributions (Supplementary Information), which show 
good agreement with the experimental data.

For the MLE in Fig. 4, we must model noise about the mean excita-
tion fractions of the two ensembles. As mentioned in the main text, 
one challenge associated with ellipse fitting is that we lack a detailed 
understanding of the noise distribution for the SSS. In this section, we 
introduce an empirical model for SSSs, which we use to perform MLE. 
However, we note that future theoretical work will be required to assess 
the accuracy of this model.

The empirical model we use to fit data in the main text is defined by

∫f p p φ C y f p p φ C y θζζ ζζ( , , , , ) =
1

2π
( , , , , ) d . (7)

θA B 0 0

2π

A B 0

Here, pA,B are specific measurement values for the observables 
P S Nˆ = /2 + ˆ /zA,B

(A,B)
A,B� , which correspond to the mean excitation fraction 

in each ensemble. In addition, fθ is the probability mass function for the 
two ensembles with a specified atom-laser phase θ, and takes the form
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In this equation, we take NA, NB = N, kA,B = pA,BN and P P= � ˆ �A,B A,B  with

P
C

θ y

P
C

θ φ y

=
2
cos( ) +

=
2
cos( + ) + .

(9)
A 0

B 0

We refer to θ as the atom-laser phase and ϕ as the differential phase; 
y0 is an offset. We take C and y0 to be the same for both ensembles. 
Finally, NA,B are normalization factors, and

ζ θ ζ θ ζ θ( ) = sin ( ) + cos ( ) . (10)2
0
2 2

1
2 2

We note that when ζζ = (1, 1), fθ is simply the product of binomial dis-
tributions and representative of a CSS. By design, ζ0 then plays an 
analogous role to the squeezing parameter in the large-N limit, where—
by the central limit theorem for the binomial distribution—fθ converges 
to the product of normal distributions (as long as PA, PB ∈ (0, 1)). How-
ever, we emphasize that the model parameters ζ ζζζ = ( , )0 1  do not directly 
correspond to the squeezing or anti-squeezing present in the state. 
Nevertheless, we define the likelihood function

∣L ∏φ C y A f p p φ C yζζ ζζ( , , , ) = ( , , , , ) (11)
i I

i i
0

∈
A
( )

B
( )

0

where p p,i i
A
( )

B
( ) are the measurement results for a given trial index i in 

the full set of measurement indices I, and ∣A p p i I= {( , ) ∈ }i i
A
( )

B
( )  is the cor-

responding set of measurements.
To extract the precision with which we are able to infer the parameter 

 ϕ, we split our data into a calibration dataset ∣A p p i I= {( , ) ∈ }i i
cal A

( )
B
( )

cal ,  

and a measurement dataset A p p i I= {( , ) ∈ }i i
m A

( )
B
( )

m∣ . Here, the set Ical con-
tains a random selection of half of the indices i from 0 to n − 1, where n 
is the total number of measurements, and Im contains the remaining 
indices. For consistency, we use the same random samplings for both 
the SSS and CSS. The role of the calibration dataset is to extract esti-
mates of the parameters C, y0 and ζ, as well as the uncertainty in these 
estimates. We characterize these uncertainties using non-parametric 
bootstrap, and resample the data in Acal a total of 50 times. For a given 
bootstrap sample AB, maximizing the likelihood φ C y Aζζ( , , , )0 B∣L  yields 
a set of inferred parameters φ C y ζζ( , , , )cal cal cal cal . We discard ϕcal, and con-
struct a new likelihood function for each C y ζζ( , , )cal cal cal :

L L ∣φ A φ C y Aζζ( ) = ( , , , ). (12)B
cal cal cal

We use the corresponding likelihood function calibrated by the 
original (not resampled) dataset Acal to extract the value of ϕ, along 
with its statistical variance and Allan deviation, from the measurement 
data Am. Repeating this procedure using each φ A( )B

mL  allows us to 
estimate the effect of calibration errors in the secondary parameters 
C, y0 and ζ, independent of statistical uncertainty in the measurement 
data. The error bars appearing in Fig. 4c correspond to the quadrature 
sum of these calibration errors with the statistical uncertainty.

To compute the overlapping Allan deviation for each bootstrap 
sample of calibration parameters, we follow the recipe for jackknifing 
described in ref. 41 and calculate the amount that each measurement i 
pulls the overall phase estimate:

φ
n

φ
n

φ=
2

′ −
2

− 1 ′ (13)i i
JK

≠
 






where n/2 is the number of points in the measurement set Am, and φ′ 
and φ′ i≠  are defined as:

L

L

φ φ A i

φ φ A

′ = argmax [ ( \ )]

′ = argmax [ ( )].
(14)

i φ

φ

≠ ∈[0,π]
B

m

∈[0,π]
B

m

Here, Am\i refers to the dataset Am with element p p( , )i i
A
( )

B
( )  removed.

The stabilities in Fig. 4c are calculated by taking the overlapping 
Allan deviation of the single-shot estimates of the differential phase, 
φi

JK. We plot the Allan deviation as a function of the number of measure-
ments m (Fig. 4c), which is related to the total measurement time τ by 
τ = mTcycle, where Tcycle is the cycle time of the experiment. For a direct 
comparison between the SSS and CSS, we use the same procedure and 
model to compute the Allan deviation in each case, and plot the ratio 
in Fig. 4c. As the distribution f converges to the model for a CSS in the 
limit where ζ0 = ζ1 = 1, this procedure should not underfit CSS data.
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