
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023 1885

A 28-nm 8-bit Floating-Point Tensor Core-Based
Programmable CNN Training Processor With

Dynamic Structured Sparsity
Shreyas Kolala Venkataramanaiah, Member, IEEE, Jian Meng , Student Member, IEEE,

Han-Sok Suh , Student Member, IEEE, Injune Yeo , Member, IEEE, Jyotishman Saikia, Student Member, IEEE,
Sai Kiran Cherupally , Member, IEEE, Yichi Zhang , Student Member, IEEE, Zhiru Zhang , Fellow, IEEE,

and Jae-Sun Seo , Senior Member, IEEE

Abstract— Training deep/convolutional neural networks
(DNNs/CNNs) requires a large amount of memory and iterative
computation, which necessitates speedup and energy reduction,
especially for edge devices with resource/energy constraints.
In this work, we present an 8-bit floating-point (FP8) training
the processor which implements: 1) highly parallel tensor
cores (fused multiply–add trees) that maintain high utilization
throughout forward propagation (FP), backward propagation
(BP), and weight update (WU) phases of the training process; 2)
hardware-efficient channel gating for dynamic output activation
sparsity; 3) dynamic weight sparsity (WS) based on group
Lasso; and 4) gradient skipping based on the FP prediction
error. We develop a custom instruction set architecture (ISA)
to flexibly support different CNN topologies and training
parameters. The 28-nm prototype chip demonstrates large
improvements in floating-point operations (FLOPs) reduction
(7.3×), energy efficiency (16.4 TFLOPS/W), and overall training
latency speedup (4.7×), for both supervised and self-supervised
training tasks.

Index Terms— Activation sparsity, CNNs, convolutional neural
network (CNN) training processor, energy-efficient accelerator,
weight sparsity (WS).

I. INTRODUCTION

ARTIFICIAL intelligence technology has been adopted
in many applications such as autonomous driving,

Manuscript received 9 January 2023; revised 14 April 2023;
accepted 17 April 2023. Date of publication 15 May 2023; date of
current version 28 June 2023. This article was approved by Associate Editor
Massimo Alioto. This work was supported in part by the National Science
Foundation (NSF) under Grant 1652866; and in part by the Center of
Brain-Inspired Computing (C-BRIC) in JUMP 1.0 and the Center for the
Co-Design of Cognitive Systems (CoCoSys) in JUMP 2.0, Semiconductor
Research Corporation (SRC) programs sponsored by the Defense Advanced
Research Projects Agency (DARPA). (Corresponding author: Jae-Sun Seo.)

Shreyas Kolala Venkataramanaiah was with the School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe,
AZ 85281 USA. He is now with Apple, Cupertino, CA 95014 USA.

Jian Meng, Han-Sok Suh, Jyotishman Saikia, and Jae-Sun Seo are with
the School of Electrical, Computer and Energy Engineering, Arizona State
University, Tempe, AZ 85281 USA (e-mail: jaesun.seo@asu.edu).

Injune Yeo was with the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ 85281 USA. He is now
with the Department of Electrical Engineering, Chosun University, Gwangju
61452, South Korea.

Sai Kiran Cherupally was with the School of Electrical, Computer and
Energy Engineering, Arizona State University, Tempe, AZ 85281 USA. He is
now with TI Kilby Labs, Dallas, TX 75243 USA.

Yichi Zhang and Zhiru Zhang are with the School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY 14850 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2023.3269148.

Digital Object Identifier 10.1109/JSSC.2023.3269148

smart drones, face recognition, natural language processing,
and so on. Training deep/convolutional neural networks
(DNNs/CNNs) for these applications involves a very large
amount of memory accesses and computations and has been
typically performed in high-performance cloud servers with
graphics processing unit (GPUs). Once DNN/CNN models
are trained on the cloud server, such models are downloaded
on edge devices to perform inference. But what if we want
to fine-tune the models with user-specific data? Then user-
specific or personal data would have to be uploaded to the
cloud, which raises privacy and security concerns. In addition,
the updated model would have to be communicated again to
the edge devices, adding considerable latency. To avoid this,
if we can train the model on edge devices, then we obtain
enhanced personalization and the data would be secure,
as it never leaves the device. However, training the complex
DNN/CNN models on resource-/energy-constrained platforms
is challenging, and this requires an energy-efficient hardware
design for the CNN training processor.

A number of prior works reported DNN/CNN training
processor designs [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. In [4],
a DNN training processor with 8-bit floating-point (FP8)
precision and shared exponent bias was reported, targeting
nonsparse neural networks. A programmable CNN learning
processor is proposed in [5] that utilizes off-the-shelf static
random access memory (SRAMs) to perform nontranspose and
transpose operations in 16-bit fixed-point precision. However,
the proposed SRAM demands complex read/write control and
incurs area overhead compared to conventional SRAMs. Bit-
slice input–output sparsity is exploited in [6], but did not
consider weight sparsity (WS) during training, and variable
fixed-point precision was used, which typically shows lower
accuracy than floating-point counterparts. In [7], the sparse
channels are randomly selected, and the hardware design is
simplified without sparsity similarity comparison, resulting in
training accuracy loss. A global magnitude threshold is used
in [8] to generate the element-wise sparse masks without sort-
ing, but the nonstructured sparse elements are not skippable.
An input load balancer is proposed in [9] to support irregular
sparsity but did not consider low utilization of PEs during
small kernel weight gradient computation.

Fu et al. [12] presented a filtering scheme to achieve struc-
tured/unstructured sparsity and compress the sparse activation

0018-9200 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7703-5020
https://orcid.org/0000-0002-4466-4824
https://orcid.org/0000-0002-4596-6170
https://orcid.org/0000-0002-6305-1935
https://orcid.org/0009-0005-1156-5538
https://orcid.org/0000-0002-0778-0308
https://orcid.org/0000-0002-4551-7789

1886 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

data for DNN training, but they did not generate/exploit
WS. Tu et al. [13] propose on-device quantization voltage
frequency (QVF) tuning to improve the performance and
energy efficiency of the deep-learning processor. In addition,
block-floating-point precision was employed in [12] where
the actual computation occurs in fixed-point precision and
integer precision was employed in [13], which generally limits
the achievable training accuracy compared to floating-point
precision. TSUNAMI [14] introduces dynamic pruning to
create sparsity in the weights and activations of CNNs during
training. However, the activation pruning unit they propose
involves processing all activations through a multilayer per-
ceptron (MLP) unit, which incurs hardware/computation over-
head. SRAM-based processing-in-memory architecture has
been presented for on-device DNN training [15], but employs
custom 8T SRAM which incurs area overhead compared
to off-the-shelf foundry SRAMs. Denser RRAMs have been
employed in [16] for AI training, but RRAM is not available
in the latest CMOS technologies and exhibits limitations in
endurance, on–off ratio, reliability, and so on compared to
SRAM counterparts. IBM presented a series of AI processors
that can support both training and inference workloads with
different precision values [17], [18], [19], [20], but these works
did not exploit sparsity during training.

In this work, we present a new sparse CNN training
accelerator [21] with FP8 precision that exploits structured
activation sparsity, structured WS, and gradient skipping to
dynamically reduce the unimportant operations and achieves
high hardware speedup. Hardware-efficient sparse training
algorithms have been developed corresponding to the custom
sparse training accelerator with programmable instructions.
The sparse training accelerator has been evaluated for six
different CNN models from <0.3 to >11 M parameters and
for both supervised training and self-supervised training tasks.
The 28-nm prototype chip demonstrates large improvements
in floating-point operations (FLOPs) reduction (7.3×), energy
efficiency (16.4 TFLOPS/W), and overall training latency
speedup (4.7×).

II. HARDWARE-EFFICIENT SPARSE TRAINING ALGORITHM

We present a novel and comprehensive hardware-aware effi-
cient training algorithm (see Fig. 1) that is highly compatible
with the proposed hardware training accelerator. Different
from the prior works that solely considered WS or activa-
tion sparsity, the proposed algorithm simultaneously exploits
weight, activation, and gradient sparsity in all phases of the
training process.

A. Stochastic Gradient Descent (SGD)

SGD [22] minimizes the local loss with respect to different
mini-batches. Instead of optimizing the model based on the
entire dataset, deploying data to the training hardware with
dedicated batch sizes leads to high memory efficiency and
comparable accuracy. In general, each iteration of the SGD-
based batch-by-batch training can be divided into Forward
Propagation (FP), Backward Propagation (BP), and Weight
Update (WU) phases. In the FP phase, the output activations

Fig. 1. Proposed efficient sparse training techniques.

are computed sequentially in a layer-by-layer manner, while
the training loss is computed based on the distance between
the final output logits and the target label. In the BP phase, the
local gradients are computed at every layer in the backward
direction. During BP, the incoming gradients are convolved
with the transposed kernels, and the pooling (downsampling)
operations are replaced by upsampling units. In the WU
phase, weight gradients are computed with respect to all the
components of the loss function, including both vanilla loss
(e.g., cross-entropy and mse) and regularization penalty term.
Based on the local gradient of the current mini-batch, the
weights are updated to minimize the loss.

B. Regularization-Based Weight Sparsification (WS)

Prior works have shown that DNNs can still retain perfor-
mance even if many network weights are removed [23], [24],
[25], [26]. Pruning the neural network entails generating a
sparse model f (W ⊙ M), where M ∈ {0, 1} is the binary
mask that forces a certain amount of “unimportant” weights
to zero and W is the weight of the DNN model.

The granularity of the sparsity has a significant impact
on the efficiency of the hardware computation. Unstructured
pruning generates high element-wise sparsity with the cost
of a large amount of sparse index storage. Subsequently, fine-
grained redundancy skipping requires frequent memory access,
leading to high energy consumption and increased computation
latency. Such performance overhead will be amplified during
the on-device training due to the iterative and intensive com-
putation for both forward and backward computation. On the
other hand, structured pruning exploits the WS in a group-wise
fashion. The coarse-grained sparsity enables the hardware to
skip computation with respect to the size of the processing
element (PE), elevating the energy efficiency and accelerating
the training.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1887

Evaluating the redundancy of the weight groups has been
widely investigated in prior works [23], [24]. Score-based
sparsification prunes the weights based on the deterministic
or relative L1 norm threshold. The recently proposed sparse
training algorithm removes the unimportant weight channels
and feature map pixels based on the Top-K L1 norm weight
scores [27] or gradient scores [28]. However, the popu-
lar Top-K selection requires complex sorting and percentile
computation, especially for element-wise feature map spar-
sification. On the hardware side, the “sorting-and-pruning”
algorithm would introduce a massive amount of comparators
for the accelerator design, which is computationally expensive
for resource-constrained hardware.

Unlike the score-based redundancy evaluation, this work
formulates the structured in-training WS based on the
regularization-aided weight penalty. Specifically, the regular-
ization process penalizes the weights with the small magni-
tude (L1 or L2 norm) without using the magnitude sorting.
Furthermore, the weight penalty can be asserted in both
a structured and unstructured manner. Group Lasso [23]
penalizes the weight groups based on the group-wise
L2-regularization during DNN training. The loss function can
be formulated as

L̂ = L
(

f
(
x, {W }

L
l=1

)
, y
)
+ λ

L∑
l=1

Gl∑
g=1

∥∥Wl,g
∥∥

2 (1)

where L represents the loss of the DNN model f respect to the
ground-truth y, and Gl represents the number of predefined
groups in layer l. The intensity of the structured pruning is
controlled by the tunable parameter λ. Penalizing the weight
groups Wl,g reduces the weight magnitude but generating
the hardware-skippable group sparsity requires the subsequent
sparsification operation to set the penalized weight values
to “0.” In this work, we sparsify the weights by comparing
the weight elements with the predefined threshold value δ,
resulting in the sparsification mask M . The structurally sparse
masks are applied to both FP convolution and backward weight
gradient computation during training. Mathematically, we have

Forward convolution: Y = X ∗ W ⊙ M (2)
Weight gradient: ∇W = ∇W ⊙ M. (3)

Specifically, for each individual weight group Wl,g , adding the
regularization terms to the loss function introduces the extra
penalty in the gradient computation. For an individual weight
element wi,g ∈ Wl,g , the gradient ∇wi,g is

∇wi,g =
∂L̂

∂∇wi,g
=

∂L
∂∇wi,g︸ ︷︷ ︸

Normal gradient

+ λ
∂
∥∥Wl,g

∥∥
2

∂∇wi,g︸ ︷︷ ︸
Group Lasso penalty

. (4)

The weight gradient with respect to the loss L can be com-
puted directly in the normal fashion, while the group Lasso
penalty can be expanded as

∂
∥∥Wl,g

∥∥
2

∂∇wi,g
=

∂

∂∇wi,g

√∑
i

w2
i,g =

1∑
i w2

i,g
· wi,g. (5)

Combining (4) and (5), the WU process can be formulated
with the learning rate η as

w∗

i,g = wi,g − η

(
∂L

∂∇wi,g
+

λ∑
i w2

i,g
· wi,g

)
(6)

=

(
1 − η

λ∥∥Wl,g
∥∥

2

)
︸ ︷︷ ︸

GLscale

wi,g − η
∂L

∂∇wi,g︸ ︷︷ ︸
Normal gradient

. (7)

In addition to the normal gradient computation, the old weight
value wi,g will be scaled down by the decay factor, namely
GLscale. Since the L2 norm of the weight group Wl,g is constant
at each iteration, the scaling is mainly controlled by the mag-
nitude of wi,g . In other words, the small magnitude weights
tend to be gently scaled down, while the large weight values
will be penalized harder. As a result, the overall magnitude of
Wl,g decreases during training, and the element-wise threshold
can easily force the entire group to zero. The simplicity of the
designed group Lasso pruning algorithm creates high feasibil-
ity in the hardware design, leading to superior computation
efficiency.

C. Structured Channel Gating

In addition to the weight sparsification, our proposed design
also exploits the activation sparsity by skipping the unsalient
features during the forward pass of training. Some prior
works employed an auxiliary neural network to predict the
uninformative features or channels [29], [30], [31], [32], which
is equivalent to projecting the high-dimensional input, to the
latent feature space. The resultant low-dimensional salience
vectors will be used to formulate the binary feature masks
during supervised training. However, during the FP phase of
the training, the convolution operation has to wait until the
salience prediction is complete. Implementing the additional
neural networks (e.g., CNN) retards the on-device training
with the increased FP phase latency and complicated backward
computation.

Motivated by CGNet [33], this work proposes structured
channel gating (SCGNet), which divides the total convolution
into “base” and “conditional” paths. The base path compu-
tation involves the fully dense input feature map channels
and the corresponding weights. The resultant partial sum will
be gated for the computation skipping map of the condi-
tional path. The high correlation between convolution channels
implies the commutative property between the base path and
conditional path. Since the feature salience prediction is part
of the convolution operation, the latency and energy overhead
are minimal.

On the hardware side, embedding the nonlinear Sigmoid
gating function and the learnable gating threshold of the
CGNet could be expensive for the hardware designation.
In this work, we mimic the nonlinearity of the Sigmoid gating
function with the scaled and shifted HardTanh

G
(
y∗b
)
= HardTanh

min=0,max=1

(
0.25 ×

(
y∗b + 2

)
− 0.5

)
(8)

where y∗b represents the normalized and shifted base path
output, and the offset of the shifting is the learnable gating

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

1888 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

TABLE I
HIGH HARDWARE COMPATIBILITY AND NEGLIGIBLE ACCURACY DROP OF

THE SCGNET WITH RESNET-18 MODEL ON CIFAR-10

threshold τ of the CGNet, which can further control the
conditional path sparsity

y∗b = normalize(yb − τ). (9)

In practice, we found out that the magnitude of τ is gradually
ramping throughout the training, which can be modeled as an
epoch-based deterministic schedule function

τe = τfinal −

(
etotal − 1 − ecurrent

etotal

)p

(τfinal − τinitial). (10)

We set the initial threshold initial to zero and keep the
final threshold final and the ramping power p as the tunable
parameters. The deterministic threshold schedule is employed
as the lookup table for each epoch of the training. Combining
(8)–(10), the binary feature salience mask can be computed as

Mc = H
(
G
(
y∗b
))

∈ {0, 1} (11)
y∗b = normalize(yb − τe) (12)

where H is the Heaviside step function for the binary mask
computing.

To avoid the expensive fine-grained sparse indexes of the
element-wise sparsity, we generate structured sparsity of fea-
ture maps by computing the group salience scores of the base
path output features y∗b via 3-D average pooling and HardTanh
(see Fig. 1). The group salience scores determine the structured
computation skipping of the conditional path. Table I shows
the negligible accuracy degradation of the highly hardware-
compatible SCGNet.

D. Confidence-Based Gradient Computation Skipping (GS)

Under the context of supervised learning with the classifi-
cation tasks, the output logits of FP represents the confidence
with respect to each class. Since the convergence time and
sample complexity varies between different inputs, the softmax
score of the logits indicates the prediction confidence of the
given sample, which can be utilized to justify whether the
image should be learned again.

Specifically, inputs with high confidence scores during FP
will have minimal WU in the training process and thus can be
skipped from the BP and WU phases [34]. As shown in Fig. 1,
we exclude inputs with high softmax confidence from the BP
and WU phases. Combined with the structured weight/gradient
sparsity, the proposed scheme achieves high energy efficiency
in both gradient accumulation and the gradient itself.

TABLE II
DETAILED DATA PRECISION OF THE PROPOSED

FP8 PRECISION TRAINING SCHEME

Fig. 2. Continuous progress in low-precision FP training. FP8 precision pro-
vides minimal accuracy drop with sizable computation reduction/acceleration.

E. Low-Precision Training

For the entire training process, we use FP8 precision (FP8)
to represent weight, activation, gradient, and other hyperpa-
rameters (e.g., learning rate and thresholds). The FP8 data is
configured with a 1-bit sign, 5-bit exponent, and 2-bit mantissa
(1-5-2) [35]. The 16-bit floating-point precision (FP16) has a
(1-5-10) format and is employed to represent the intermediate
accumulation results of convolution in both FP and BP phases.
Table II summarizes the detailed data precision in FP, BP, and
WU phases. Fig. 2 summarizes the performance of the recent
SoTA low precision training algorithms, where the employed
FP8 training [35] scheme balances the speedup-accuracy trade-
off for DNN training.

F. Self-Supervised Learning

In addition to the supervised sparse learning algorithm,
the proposed training accelerator also supports the recent
contrastive self-supervised learning (SSL), achieving both
high energy efficiency and low labor intensity. In this work,
we adopt the SimCLR [36] as the basic SSL training method to
exploit the hardware-aware weight and feature sparsity during
training. Specifically, SimCLR [36] preprocesses the original
input into two separate images with different augmentation
techniques (X → X∗). Two different versions of the same
image are considered as positive pairs (X∗

i , X+

j), while the

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1889

Algorithm 1 The Proposed SimSkip Algorithm for SSL
Require: Encoder f , projector g, temperature of loss

function τ , skipping threshold γ . Batch size N
1: Initialize Fixed skipping threshold γ

2: for sampled minibatch X i do
3: Forward Pass:
4: for contrastive branch at ∈ {1, n} do
5: Draw data augmentation tai ∼ T
6: Xat

i = tat (Xk)

7: Get the encoded output: vi = g(f (X i))

8: end for
9: Compute the similarity matrix S between latent vectors

of two contrastive paths (effective batch size = 2N).
10: S∗

= Softmax(S) ∈ R(2N ,2N−1)

11: Skip the batch with positive pair similarity > γ .
12: Compute the contrastive loss based on Eq. 13 with the

truncated similarity matrix.
13: Backward Pass: Skip the gradient computation with

respect to the skipped contrastive samples.
14: Weight Update: Skip the gradient averaging with

respect to the skipped contrastive samples.
15: end for

rest of the mini-batch is considered as negative pairs (X∗

i , X−

k).
The augmented images are encoded separately with a shared
DNN, leading to the latent vector v.

Compared to conventional supervised learning, SSL learns
visual representation by increasing the similarity between the
positive pairs while repelling the negative pairs. Mathemati-
cally, we have

L = − log
exp

(
sim

(
vi , v

+

j

)
/τ
)

∑2N
k=1 1k ̸=i exp(sim(vi , vk)/τ)

(13)

where sim indicates the similarity between the encoded latent
vectors and τ represents the temperature hyper-parameter.

Compared to other recent SSL algorithms [37], [38], Sim-
CLR [36] utilizes a shared encoder for both augmented
images, and the loss is computed collectively based on
similarity. Therefore, the proposed group-Lasso-based weight
pruning and gating-based feature skipping are compatible with
SimCLR. As a result, it is feasible to deploy the shared encoder
to the proposed accelerator while exploiting sparsity during
training.

Since the deterministic labels are absent in SSL, the raw
confidence becomes inaccessible in SSL. To enable gradient
skipping in SSL, we propose SimSkip, a similarity-based train-
ing sample skipping algorithm designed with simplicity and
high hardware compatibility. As introduced in [36], the NT-
Xent loss of SimCLR [36] is computed based on the similarity.
The high similarity between the positive pairs indicates the
well-learned matches during training, which are safe to be
skipped for the current training iteration. Algorithm 1 summa-
rizes the proposed SimSkip method based on the SimCLR [36]
with a shared encoder.

Fig. 3. Overall architecture of the CNN training processor.

Fig. 4. Central core architecture with a detailed view of the WU unit.

III. OVERALL ARCHITECTURE

Fig. 3 shows the overall architecture of the sparse train-
ing processor, which consists of four sparse compute cores
(SpCC), a central core (CC), a global controller, and an
external I/O interface to FPGA. Each SpCC is a programmable
core that can be configured individually using the custom ISA.

A. Central Core

Fig. 4 depicts the top-level architecture of the CC, which
coordinates all the SpCCs and processes off-chip DDR3 access
requests. When the SpCC encounters a DDR3 memory access
instruction, it decodes all the required parameters, such as the
number of memory access, start address, and so on and sends a
DDR3 access request to the CC. The CC processes the DDR3
access requests from the four SpCCs employing a round-
robin arbiter. Once the DDR3 resource is granted, the central
core sends an acknowledgment signal to the granted SpCC
to process the incoming/outgoing data. The FPGA DDR3
controller divides the requested total memory accesses into
smaller blocks that the IO interface can handle. It includes
a state machine that monitors each small block transaction
and initiates a new transaction when the prior transaction is
complete.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

1890 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

The central core configures all SpCCs by loading instruc-
tions to their respective instruction memories. The instructions
generated from the training compiler (more details in Sec-
tion III-C) are sent to the central core through the chip IO inter-
face. The central core processes the WU instructions (compute
and memory) and SpCCs process all the other instructions. The
global instruction decoder interprets the incoming instructions
and dispatches them to one of the SpCCs or the central core.

Fig. 4 shows the detailed view of the WU unit. The WU
unit: 1) performs the weight gradient (WG) accumulation;
2) generates the structured WS by adopting the group Lasso
algorithm; and 3) performs the WU at the end of the batch
based on stochastic gradient descent. The WGs are efficiently
computed in the SpCCs and stored in their weight buffers.
After all four SpCCs complete the WG computations, a gradi-
ent accumulation instruction is dispatched to the central core
controller. The central core controller loads the WU memory
with the previous WGs and reads all the computed WGs from
the SpCCs. The WG accumulator obtains all the gradients (old
WGs and WGs from all four SpCCs) and accumulates them
using an FP16 adder tree, as shown in Fig. 4. The WU memory
of the central core and weight buffers of the SpCC store 8 ×

8 (K × C) weights in each row. These 64 weight gradients
are accumulated in parallel using the WG accumulator array.

The group Lasso unit (GLU) computes the inverse L2 norm
of the weight group (8 × 8) and scales it with the GLscale,
as described in Section II-B. GLU reuses the dot product
engines of the SpCC PE array. By sending the same inputs
to the multipliers of the dot product engine, GLU produces
a squared sum of 8 weights. The squared sum of the entire
weight group is computed in parallel using an eight-dot
product engine cascaded with an FP16 adder tree. Finally,
an FP32 inverse square root module computes the L2 norm
to generate a GLscale.

The WS controller controls and schedules all the submod-
ules in the WU unit. The controller generates the WS mask
when the data (weights or weight gradients) is being written to
the WU memory. The memory accesses and the computations
of the sparse weight group are entirely skipped in the WU
unit, thereby saving latency and power.

B. Sparse Compute Core

Fig. 5 shows the overall architecture of the SpCC. The SpCC
includes: 1) a 16 × 8 PE array where each PE is a dot product
engine with eight FP8 multipliers and one FP16 adder tree; 2)
SRAMs to store activations, weights, instructions, and sparsity
masks; 3) vector processing units for non-MAC operations; 4)
sparsity controllers to exploit the structured sparsity of output
activations/weights; and 5) data scatter/gather units to store
the data in the buffers in the required format.

1) PE Array: As shown in Fig. 6, the PE array consists of
eight PE columns, where each PE column has 16 PEs and a PE
load balancer. Each PE is a configurable dot-product engine
with eight FP8 (1-5-2) multipliers and one FP16 (1-5-10)
adder tree. The PE column shares the weight vectors obtained
from the weight register and the PE row shares the input acti-
vations during FP and BP. The dot product engine comprises

Fig. 5. Architecture of the sparse compute core (SpCC).

Fig. 6. PE array consisting of 16 × 8 PEs and a PE load balancer. The
PE array follows OSD during FP/BP and KSD during WU, overall achieving
high PE utilization.

eight FP8 multipliers and the products are aligned by matching
the exponents and shifting the mantissa. The aligned mantissa
products are sent to an 8-way FP16 adder tree. The output
of the adder tree is normalized and quantized back to FP8
precision using nearest neighbor rounding.

The PE array supports standard, transposed, and WU con-
volutions required for training. During FP and BP phases,
it follows output stationary dataflow (OSD) and computes
16 output pixels of eight output channels in parallel with high
PE utilization. However, OSD leads to low PE utilization for
weight gradient computation in the WU phase, because the
typically small kernel size (e.g., 3 × 3) makes it difficult for
the 4-D tensor weight gradient [K , C , R, S] (K /C : number of
output/input channels, R × S: kernel size) to efficiently utilize
the PE array. To overcome this, we propose a kernel stationary
dataflow (KSD) during WU, where each PE computes one
output kernel (R × S) and the PE array computes 8/16
output/input channels (K /C) in parallel. The PE load balancer
unit dynamically switches from OSD to KSD during the WU
phase, improving the PE utilization (see Fig. 6).

2) Structured WS and Skipping: Fig. 7 shows the FP/BP
operation with structured WS. WS is dynamically generated
during training by group Lasso regularization. Weights are

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1891

Fig. 7. Dynamic weight zero skipping dataflow.

Fig. 8. Proposed SCG base path dataflow for dynamic activation sparsity.

divided into 8 × 8 × 1 × 1 (K × C × R × S) groups
and a regularizer term is added to the loss function, which
scales the weight groups based on the group L2 norm. The
CC generates 8 × 8 group sparsity in weights during the WU
phase using the GLU. The weight memory stores the weights
in groups of 8 × 8 with R × S elements. WS controller selects
a weight group, stores it in the weight register, and compares
the weights with a deterministic threshold to generate the
sparsity mask. The input/weight buffer controllers use the
sparsity mask to generate the read addresses by skipping
the sparse weight groups.

3) Structured Channel Gating (SCG) Dataflow: Figs. 8
and 9 illustrate the SCG dataflow. We first compute all outputs
of a given CNN layer using the base input channels in
the SCG-enabled convolutions. Upon a base path instruction,
the SpCC reads the parameters required to compute only the
base path from input/weight memory and enables the SCG
decision unit to compute an SCG sparsity mask, a 16 ×

8 average pooling module, and a comparator, as depicted in
Fig. 8. Structured activation sparsity is achieved by performing
16 × 8 average pooling instead of element-wise comparison.
The SpCC reads the sparsity mask for the conditional path
and enables structured output activation skipping, as shown
in Fig. 9. The conditional path outputs are accumulated with
base channel outputs stored in the partial sum memory. Since

Fig. 9. Proposed SCG conditional path dataflow for dynamic activation
sparsity.

Fig. 10. Proposed custom instruction set architecture that configures the
SpCC.

the 16 × 8 block structure exactly matches the PE array size,
the SCG sparsity controller efficiently eliminates input/weight
memory accesses as well as the computations associated with
the skipped 16 × 8 conditional path blocks, largely reducing
training latency and energy.

C. Custom ISA

Fig. 10 shows the 128-bit instruction set architecture (ISA)
used in CNN training, which is highly flexible and capable of
supporting all operations needed for end-to-end CNN training.
Although most instructions are shorter than 128 bits, we chose
to support instruction lengths up to 128 bits in our design,
which is the nearest power of 2 numbers to the longest
instruction. This decision was made for the sake of design
simplicity, but it can be optimized in future work.

The DDR3 access instruction facilitates off-chip memory
accesses during training. With DDR3 access, we can easily

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

1892 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

read and write activations, gradients, and weights stored in
off-chip memory. When accessing big chunks of data, we can
specify the burst length and the number of bursts required
using the “number of access” and the “number of loops”
fields, respectively. Additionally, the DDR3 access instruction
provides feature map and kernel size information that the data
scatter/gather unit uses to reorganize the DDR3 data in the
on-chip SRAMs.

The convolution instruction supports normal convolutions,
transpose convolutions, and convolutions with intratile accu-
mulations (for weight gradient computation). With each of
these convolutions, we have the option to enable or disable
activation sparsity, channel gating, WS, and to specify the
data flow, such as KSD. To efficiently process big convolution
layers in CNN models, each layer is divided into smaller
tiles based on the size of the on-chip SRAMs. Each tile
is then represented using a single convolution instruction.
Depending on the size of the layer, there may be multiple con-
volution instructions cascaded between several DDR3 access
instructions to read/write new data from/to the DRAM. This
approach is particularly useful for mapping large convolution
layers whose parameters cannot fit into the on-chip SRAMs.
By dividing the layer into smaller tiles and using multi-
ple convolution instructions cascaded between DDR3 access
instructions, we can efficiently process the convolution layer
without requiring the entire set of parameters to be loaded into
on-chip memory.

Nonconvolution layers, such as residual connections, pool-
ing layers, fully connected WUs, and upsampling layers,
typically have shorter instruction lengths than convolution
layers, as they require less information to be processed. These
layers consume less than 1% of the overall training latency.
The majority of the training latency is consumed by convolu-
tions and memory accesses. Like convolution instruction, each
nonconvolution layer instruction is padded with DDR3 access
instructions. For element-wise addition operations, we read
one row of 128 bits (32 pixels) from both the input and output
buffers, where the two feature maps, read from DDR3, are
stored by the data scatter unit. We add the two feature maps
using a 32 × 1 element-wise adder array and store the result
in the output memory. Once all the processing is complete,
the DDR3 instruction writes the output memory data back to
the DRAM.

The WU instruction is a central core instruction that collects
all the computed weight gradients from SpCC, scales them
with the specified learning rate, and computes new weights.
Additionally, the sparsity instruction field can be used to
enable or disable sparsity during this process. We can also
specify the group Lasso threshold and the learning rate in
the instruction fields. Each instruction takes several cycles to
complete based on the type of operation, sparsity, and layer
size.

D. Sparse Training Compiler

Fig. 11 shows the sparse training compiler (STC). STC
takes two inputs: frozen CNN model graph in protobuf (.pb)
format from TensorFlow/PyTorch and user-provided hardware

Fig. 11. Compiler for the sparse training processor.

configurations. The hardware configurations consist of three
categories: 1) training parameters, such as SCG threshold,
learning rate, group Lasso parameters, the number of SCG
base channels, and so on; 2) hardware configuration details,
such as SpCC selection, the number of memory banks, and the
start address of a layer in the off-chip memory; and 3) on-chip
memory and PE array size. To begin, the STC parses the entire
graph to extract CNN model details and parameters from the
frozen graph. With the extracted details and the user-provided
hardware configurations, the STC performs optimizations,
such as quantizing the parameters and optimizing memory
layouts for on/off-chip memories. Additionally, the STC per-
forms loop optimizations by unrolling convolution loops and
dividing the convolution into smaller tiles. If the CNN model
contains convolutions with channel gating, the STC divides the
convolutions into the base channel and the conditional chan-
nel groups and enables activation sparsity for the condition
channel group. During the backward pass, the STC parses the
graph in reverse order and enables transposed convolutions and
upsampling layers. Once the forward pass, backward pass, and
WU pass are traversed in the graph, the STC schedules the
operations/layers to minimize memory access and generates
instructions using the ISA discussed in Section III-C. These
instructions are then used to program the training processor
for different CNN models.

To achieve the best training performance, the training
parameters such as gradients, activations, and weights follow a
predefined data layout in on-chip memory. The STC performs
memory layout transformations on the raw inputs obtained
from the neural network frameworks or the training dataset.
This step includes compressing the data layouts to improve
memory bandwidth utilization. The transformed data is stored
in the FPGA DDR3 memory using the generated memory
initialization files. The STC performs the memory allocations
for each CNN layer, generates DDR3 descriptors, and embeds
them in the instructions. The STC generates instructions based
on loop/memory optimizations and divides them into small
groups to facilitate the limited instruction memory of the
accelerator. Each instruction group can carry one or multiple
CNN layers’ information depending on the layer size. These
instruction groups are loaded one by one to the accelerator
using FPGA.

With its tile-based convolution support, hardware compiler
with custom ISA support, and off-chip memory communica-
tion capabilities, the training processor is well-equipped to

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1893

TABLE III
FLOP REDUCTION AND ACCURACY TRADEOFF ACROSS DIFFERENT SPARSITY VALUES/SCHEMES FOR RESNET-18 TRAINING ON CIFAR-10 DATASET

TABLE IV
ALGORITHM PERFORMANCE COMPARISON OF THE PROPOSED METHOD ON CIFAR-10 DATASET WITH RESNET-110 MODEL

Fig. 12. Chip micrograph and the test setup.

handle the three training phases of widely deployed CNN
models, including those with residual connections, kernel sizes
up to 7 × 7 (normal and transpose), and stride of 1 and
2. However, depthwise convolutions are not supported in the
current design, which remains as future work. The processor
architecture is scalable and can support larger models by
increasing the size of the PE units and on-chip memory. For
example, when we double the overall hardware capacity (com-
pute and memory), we estimate that the training latency will
improve by approximately 2× without requiring any hardware
or dataflow changes. However, for much larger scaling factors
(≫2×), the performance can saturate due to 1) lower PE
utilization and 2) high on-chip bandwidth requirements to feed
the PE units. To achieve higher PE efficiency, the workload
will need to be efficiently distributed among a large number
of PE units to achieve optimal performance.

IV. RESULTS

The prototype chip was fabricated in 28-nm CMOS, and
Fig. 12 shows the prototype chip micrograph and the chip
testing setup. We employed XEM 7360 Opal Kelly FPGA
to load the weights, training image, and compiler-generated
instructions to the chip through an external IO
interface.

Fig. 13. Validation accuracy, sparsity, and skipping ratio of ResNet-18 FP8
training on CIFAR-10 dataset.

A. Sparse Training Algorithm Performance Evaluation

We evaluate the proposed efficient training algorithm on
the CIFAR-10 dataset with various DNN model architec-
tures, including both VGG and deep ResNet architectures.
We trained the selected models with both supervised and
SSL [36] methods with our chip programed using custom ISA.

Table III summarizes the efficiency-accuracy tradeoff of
the proposed efficient training algorithm for different sparsity
on the CIFAR-10 dataset with ResNet-18 model architecture.
Compared to the FP8 baseline, the proposed sparse training
algorithm achieves 3.31× reduction in the number of FLOPs
with 0.07% accuracy degradation and 7.32× reduction in
FLOPs with 0.24% accuracy loss. Fig. 13 demonstrates the
CIFAR-10 training progress of FP8 ResNet-18 with the pro-
posed efficient training algorithm.

Compared to the recent SoTA efficient training algo-
rithms [24], [39], [40], the proposed method exploits both
weights and activation sparsity during low-precision (FP8)
training, while dynamically skipping the BP with the aware-
ness of the dedicated training accelerator. As shown in
Table IV, the comprehensive exploration of sparse training
leads to superior performance. Without using the pretrained

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

1894 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

Fig. 14. Total/layer-wise sparse training latency breakdown of VGG-8 (a)/(b)
and ResNet-18 (c)/(d) CNNs at 340 MHz.

Fig. 15. Power, maximum frequency, and sparse/dense energy efficiency
measurements with voltage and frequency scaling.

model, the proposed algorithm achieves up to 7.32×/5.43×
computation reduction for training ResNet-18/ResNet-110
models.

B. Chip Measurement Results

Fig. 14 shows the total/layer-wise sparse training latency
breakdown for VGG-8 and ResNet-18 CNNs at 340 MHz.
GS enables us to efficiently skip the operations of BP/WU for
low-confidence inputs thereby reducing the BP/WU training
latency compared to FP.

Fig. 15 shows power, maximum frequency, and energy mea-
surements of the prototype chip with voltage and frequency
scaling. Including the skipped operations, a throughput of
3.76 TFLOPS is achieved at 1.1 V, and a peak sparse energy
efficiency of 16.4 TFLOPS/W is achieved at 0.6 V for VGG8
training. Excluding the skipped operations and only enabling
the KSD, we achieve 1.24 TFLOPS throughput at 1.1 V and
a peak dense energy efficiency of 5.4 TFLOPS/W at 0.6 V

Fig. 16. Sparse energy efficiency improvement breakdown with the proposed
techniques.

Fig. 17. Reduction in FLOPs, hardware speedup, and accuracy on the
CIFAR-10 dataset with various model architectures.

for VGG8 training. Fig. 15 shows both the sparse energy
efficiency and dense energy efficiency across different supply
voltages.

The proposed architecture efficiently exploits the structured
weight/activation sparsity (WS/SCG) and improves PE utiliza-
tion (KSD) during the overall training process, achieving large
improvement in the sparse energy efficiency across different
CNNs as shown in Fig. 16 (up to 9.8×), compared to the
baseline of training dense CNNs without any of the proposed
schemes.

We trained various CNNs for both supervised and SSL [36]
tasks with our chip programed using custom ISA. As shown
in Fig. 17, most of the FLOP reduction (up to 7.3×) results
in corresponding training speedup (up to 4.7×) with minimal
accuracy degradation. Training speedup corresponds to the
improvement in chip latency when sparsity is enabled. The
training speedup depicted here only represents training proces-
sor latency and does not include any off-chip memory access.
We achieve high training speedup with minimal accuracy loss.

Table V shows the comparison to prior works, where
our work achieves higher energy efficiency for actual CNN
training, including and excluding the skipped operations.
Han et al. [6] provide ∼3× more throughput than what
we achieve however, their approach uses variable fixed-point

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1895

TABLE V
COMPARISON WITH PRIOR WORKS

precision, which typically results in lower accuracy compared
to floating-point representations. Our training speedup at FP8
precision is ∼2.7× higher than that of the state-of-the-art
work [8].

V. CONCLUSION

In this work, we present an energy-efficient FP8 training
processor with a custom ISA. Hardware-compatible, low-
precision, global threshold-based channel gating is proposed
to generate structured sparsity with negligible (<2%) accuracy
degradation. We integrated the proposed hardware-efficient
channel gating/group-Lasso algorithms into the training pro-
cessor and enabled dual-zero skipping. A highly parallel fused
multiply–add tree with dual data flow support (OSD, KSD) is
implemented and yields high PE utilization during all three
phases of the training. We employed a gradient skipping
scheme that eliminates the need for BP and WU based on
the FP prediction error. We evaluated our processor training
various DNN benchmarks including supervised and SSL. The
28-nm prototype chip demonstrates a peak energy efficiency of
16.4 TFLOPS/W at 0.6 V. The proposed training optimization
schemes collectively achieve up to 7.3× FLOPs reduction,
up to 6.4× improvement in energy efficiency, and up to
4.7× improvement in training latency compared to the dense
models.

REFERENCES

[1] J. Lee and H.-J. Yoo, “An overview of energy-efficient hardware
accelerators for on-device deep-neural-network training,” IEEE Open
J. Solid-State Circuits Soc., vol. 1, pp. 115–128, 2021.

[2] D. Han, S. Kang, S. Kim, J. Lee, and H.-J. Yoo, “Energy-efficient DNN
training processors on micro-AI systems,” IEEE Open J. Solid-State
Circuits Soc., vol. 2, pp. 259–275, 2022.

[3] J. Park, J. Lee, and D. Jeon, “A 65-nm neuromorphic image classifi-
cation processor with energy-efficient training through direct spike-only
feedback,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 108–119,
Jan. 2020.

[4] J. Park, S. Lee, and D. Jeon, “A 40 nm 4.81TFLOPS/W 8b floating-
point training processor for non-sparse neural networks using shared
exponent bias and 24-way fused multiply-add tree,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 1–3.

[5] S. Yin and J.-S. Seo, “A 2.6 TOPS/W 16-bit fixed-point convolutional
neural network learning processor in 65-nm CMOS,” IEEE Solid-State
Circuits Lett., vol. 3, pp. 13–16, 2020.

[6] D. Han et al., “HNPU: An adaptive DNN training processor utilizing
stochastic dynamic fixed-point and active bit-precision searching,” IEEE
J. Solid-State Circuits, vol. 56, no. 9, pp. 2858–2869, Sep. 2021.

[7] S. Kim, J. Lee, S. Kang, J. Lee, and H.-J. Yoo, “A 146.52 TOPS/W deep-
neural-network learning processor with stochastic coarse-fine pruning
and adaptive input/output/weight skipping,” in Proc. IEEE Symp. VLSI
Circuits, 2020, pp. 1–2.

[8] Y. Wang et al., “A 28 nm 276.55TFLOPS/W sparse deep-neural-network
training processor with implicit redundancy speculation and batch nor-
malization reformulation,” in Proc. Symp. VLSI Circuits, Jun. 2021,
pp. 1–2.

[9] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “7.7 LNPU:
A 25.3TFLOPS/W sparse deep-neural-network learning processor with
fine-grained mixed precision of FP8-FP16,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 142–144.

[10] S. Kang et al., “GANPU: An energy-efficient multi-DNN training
processor for GANs with speculative dual-sparsity exploitation,” IEEE
J. Solid-State Circuits, vol. 56, no. 9, pp. 2845–2857, Sep. 2021.

[11] S. Kim, J. Lee, S. Kang, J. Lee, W. Jo, and H.-J. Yoo,
“PNPU: An energy-efficient deep-neural-network learning proces-
sor with stochastic coarse-fine level weight pruning and adaptive
input/output/weight zero skipping,” IEEE Solid-State Circuits Lett.,
vol. 4, pp. 22–25, 2021.

[12] Z.-S. Fu, Y.-C. Lee, A. Park, and C.-H. Yang, “A 40-nm 646.6TOPS/W
sparsity-scaling DNN processor for on-device training,” in Proc. IEEE
Symp. VLSI Technol. Circuits (VLSI Technol. Circuits), Jun. 2022,
pp. 40–41.

[13] F. Tu et al., “Evolver: A deep learning processor with on-device
quantization-voltage-frequency tuning,” IEEE J. Solid-State Circuits,
vol. 56, no. 2, pp. 658–673, Feb. 2021.

[14] S. Kim, J. Lee, S. Kang, D. Han, W. Jo, and H.-J. Yoo, “TSUNAMI:
Triple sparsity-aware ultra energy-efficient neural network training
accelerator with multi-modal iterative pruning,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 69, no. 4, pp. 1494–1506, Apr. 2022.

[15] J. Heo, J. Kim, S. Lim, W. Han, and J.-Y. Kim, “T-PIM: An energy-
efficient processing-in-memory accelerator for end-to-end on-device
training,” IEEE J. Solid-State Circuits, vol. 58, no. 3, pp. 600–613,
Mar. 2023.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

1896 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 58, NO. 7, JULY 2023

[16] K. Prabhu et al., “CHIMERA: A 0.92-TOPS, 2.2-TOPS/W edge AI
accelerator with 2-MByte on-chip foundry resistive RAM for efficient
training and inference,” IEEE J. Solid-State Circuits, vol. 57, no. 4,
pp. 1013–1026, Apr. 2022.

[17] B. Fleischer et al., “A scalable multi-TeraOPS deep learning processor
core for AI trainina and inference,” in Proc. IEEE Symp. VLSI Circuits,
Jun. 2018, pp. 35–36.

[18] J. Oh et al., “A 3.0 TFLOPS 0.62 V scalable processor core for high
compute utilization AI training and inference,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2020, pp. 1–2.

[19] A. Agrawal et al., “A 7 nm 4-core AI chip with 25.6TFLOPS hybrid FP8
training, 102.4TOPS INT4 inference and workload-aware throttling,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2021, pp. 144–146.

[20] S. Venkataramani et al., “RaPiD: AI accelerator for ultra-low precision
training and inference,” in Proc. ACM/IEEE 48th Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2021, pp. 153–166.

[21] S. K. Venkataramanaiah et al., “A 28 nm 8-bit floating-point tensor
core based CNN training processor with dynamic activation/weight
sparsification,” in Proc. IEEE 48th Eur. Solid State Circuits Conf.
(ESSCIRC), Sep. 2022, pp. 89–92.

[22] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747.

[23] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 29, 2016, pp. 1–9.

[24] M. A. Raihan and T. Aamodt, “Sparse weight activation training,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 15625–15638.

[25] N. Lee, T. Ajanthan, and P. Torr, “SNIP: Single-shot network pruning
based on connection sensitivity,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2018, pp. 1–15.

[26] J.-S. Seo et al., “Digital versus analog artificial intelligence accelerators:
Advances, trends, and emerging designs,” IEEE Solid StateCircuits
Mag., vol. 14, no. 3, pp. 65–79, Summer 2022.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Peter Graf, “Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

[28] S. Liu et al., “Sparse training via boosting pruning plasticity with
neuroregeneration,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 34, 2021, pp. 9908–9922.

[29] X. Gao, Y. Zhao, L. Dudziak, R. Mullins, and C.-Z. Xu,
“Dynamic channel pruning: Feature boosting and suppression,” 2018,
arXiv:1810.05331.

[30] F. Li, G. Li, X. He, and J. Cheng, “Dynamic dual gating neural net-
works,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 5330–5339.

[31] B. E. Bejnordi, T. Blankevoort, and M. Welling, “Batch-shaping for
learning conditional channel gated networks,” 2019, arXiv:1907.06627.

[32] Z. Su, L. Fang, W. Kang, D. Hu, M. Pietikainen, and L. Liu, “Dynamic
group convolution for accelerating convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 138–155.

[33] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel
gating neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1–11.

[34] D. Shin, G. Kim, J. Jo, and J. Park, “Prediction confidence based
low complexity gradient computation for accelerating DNN training,”
in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020,
pp. 1–6.

[35] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 31, 2018, pp. 1–10.

[36] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2020, pp. 1597–1607.

[37] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9729–9738.

[38] J.-B. Grill et al., “Bootstrap your own latent—A new approach to self-
supervised learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2020, pp. 21271–21284.

[39] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2016, pp. 646–661.

[40] Y. Wang et al., “E2-train: Training state-of-the-art CNNs with over 80%
energy savings,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 32,
2019, pp. 1–13.

Shreyas Kolala Venkataramanaiah (Member,
IEEE) received the B.Tech. degree in electronics
and communication from the Siddaganga Institute
of Technology, Tumakuru, India, in 2016, and the
M.S. and Ph.D. degrees in electrical engineering
from the Arizona State University, Tempe, AZ, USA,
in 2018 and 2021, respectively.

He is currently working as a Power Modeling
Engineer, Apple Inc., Cupertino, CA, USA. His
research interests include energy-efficient hardware
design for machine learning, high-performance com-

puting on FPGA/ASIC, and deep-learning compilers.

Jian Meng (Student Member, IEEE) received the
B.S. degree from Portland State University, Portland,
OR, USA, in 2019. He is currently pursuing the
Ph.D. degree with the School of Electrical, Com-
puter and Energy Engineering, Arizona State Uni-
versity, Tempe, AZ, USA.

His current research focuses on deep neural
network compression optimization, self-supervised
learning, hardware–software co-design with neuro-
morphic hardware acceleration, neuromorphic algo-
rithm design for event-based vision and spiking

neural networks, and energy-efficient object rendering.

Han-Sok Suh (Student Member, IEEE) received the
B.S. degree (summa cum laude) from Inha Univer-
sity, Incheon, South Korea, in 2017, and the M.S.
degree in computer engineering from the Viterbi
School of Engineering, University of Southern Cali-
fornia (USC), Los Angeles, CA, USA, in 2019. He is
currently pursuing the Ph.D. degree with Arizona
State University, Tempe, AZ, USA, working on
computer architecture design on FPGA.

His area of research spans from software–hardware
co-design to energy-efficient computing for machine
learning applications.

Injune Yeo (Member, IEEE) received the B.S.
degree in semiconductor science from Dongguk Uni-
versity, Seoul, South Korea, in 2011, and the M.S.
degree in mechatronics engineering and the Ph.D.
degree in electrical engineering from the Gwangju
Institute of Science and Technology, Gwangju,
South Korea, in 2014 and 2020, respectively.

From 2020 to 2022, he was a Post-Doctoral
Scholar with the School of Electrical, Computer
and Energy Engineering, Arizona State University,
Tempe, AZ, USA. Currently, he is an Assistant

Professor with the School of Electrical Engineering, Chosun University,
Gwangju, South Korea. His current research interests include an analog-to-
digital converter, PUF, and in-memory computing.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

VENKATARAMANAIAH et al.: 28-nm FP8 TENSOR CORE-BASED PROGRAMMABLE CNN TRAINING PROCESSOR 1897

Jyotishman Saikia (Student Member, IEEE)
received the B.Tech. degree in electronics and
telecommunication engineering from KIIT Univer-
sity, Bhubaneswar, India, in 2016, and the M.S.
degree in computer engineering from Arizona State
University (ASU), Tempe, AZ, USA, in 2019, where
he is currently pursuing the Ph.D. degree in electrical
engineering.

His research interests include the design of mem-
ory systems, low-power design, and in-memory
computation-based implementation of deep neural
network algorithms.

Sai Kiran Cherupally (Member, IEEE) received
the B.Tech. degree in electronics and communica-
tions engineering from Jawaharlal Nehru Techno-
logical University, Hyderabad, India, in 2015, the
M.S. degree in electrical and computer engineering
from Portland State University, Portland, OR, USA,
in 2017, and the Ph.D. degree from the School
of Electrical, Computer and Energy Engineering,
Arizona State University, AZ, USA, in 2022.

He is currently working as a Research and Devel-
opment Systems Engineer at Kilby Labs, Texas

Instruments, Dallas, TX, USA. His research interests include machine-
learning-assisted hardware security system design and energy-efficient hard-
ware design.

Dr. Cherupally was a recipient of the Best Master’s Student Award from
Portland State University in 2017.

Yichi Zhang (Student Member, IEEE) is currently
pursuing the Ph.D. degree with the Computer Sys-
tems Laboratory, Cornell University, Ithaca, NY,
USA, advised by Prof. Zhiru Zhang.

His research interests align with the area of
efficient ML model-hardware co-design. His work
spans neural network quantization and binarization
algorithms, ML accelerators, and building learning
systems at hyperscale.

Zhiru Zhang (Fellow, IEEE) is an Associate Pro-
fessor with the School of ECE, Cornell University,
Ithaca, NY, USA. Before joining Cornell, he was
a Co-Founder of AutoESL, a high-level synthesis
startup later acquired by Xilinx (now AMD). His
current research investigates new algorithms, design
methodologies, and automation tools for heteroge-
neous computing.

Dr. Zhang’s research has been recognized with a
Facebook Research Award, Google Faculty Research
Award, the DAC Under-40 Innovators Award, the

Rising Professional Achievement Award from the UCLA Henry Samueli
School of Engineering and Applied Science, a DARPA Young Faculty Award,
and the IEEE CEDA Ernest S. Kuh Early Career Award, an NSF CAREER
Award, the Ross Freeman Award for Technical Innovation from Xilinx, and
multiple best paper awards and nominations.

Jae-Sun Seo (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Seoul National University, Seoul, South Korea,
in 2001, and the M.S. and Ph.D. degrees in
electrical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2006 and 2010,
respectively.

From 2010 to 2013, he was with IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA, where he worked on cognitive computing
chips under DARPA SyNAPSE Project and

energy-efficient integrated circuits for high-performance processors. In 2014,
he joined the School of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ, USA, where he is now an Associate
Professor. He has held Visiting Researcher positions at Intel Circuits
Research Laboratory in 2015 and Meta Reality Labs from 2022 to 2023.
His current research interests include efficient hardware design of machine
learning and neuromorphic algorithms and integrated power management.

Dr. Seo was a recipient of the Samsung Scholarship in 2004 and 2009, the
IBM Outstanding Technical Achievement Award in 2012, the NSF CAREER
Award in 2017, the Intel Outstanding Researcher Award in 2021, and the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS Best Paper Award in 2022. He has been a Technical Program
Committee Member for ISSCC, DATE, DAC, ICCAD, and MLSys. He serves
as an Associate Editor for IEEE OPEN JOURNAL OF THE SOLID-STATE
CIRCUITS SOCIETY and IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS
AND SYSTEMS.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 31,2024 at 19:28:02 UTC from IEEE Xplore. Restrictions apply.

