L)

Check for
updates

Algorithm-hardware Co-optimization for Energy-efficient
Drone Detection on Resource-constrained FPGA

HAN-SOK SUH and JIAN MENG, Arizona State University, USA
TY NGUYEN and VIJAY KUMAR, University of Pennsylvania, USA
YU CAO and JAE-SUN SEO, Arizona State University, USA

Convolutional neural network (CNN)-based object detection has achieved very high accuracy; e.g., single-
shot multi-box detectors (SSDs) can efficiently detect and localize various objects in an input image. How-
ever, they require a high amount of computation and memory storage, which makes it difficult to perform
efficient inference on resource-constrained hardware devices such as drones or unmanned aerial vehicles
(UAVs). Drone/UAV detection is an important task for applications including surveillance, defense, and multi-
drone self-localization and formation control. In this article, we designed and co-optimized an algorithm and
hardware for energy-efficient drone detection on resource-constrained FPGA devices. We trained an SSD ob-
ject detection algorithm with a custom drone dataset. For inference, we employed low-precision quantization
and adapted the width of the SSD CNN model. To improve throughput, we use dual-data rate operations
for DSPs to effectively double the throughput with limited DSP counts. For different SSD algorithm mod-
els, we analyze accuracy or mean average precision (mAP) and evaluate the corresponding FPGA hardware
utilization, DRAM communication, and throughput optimization. We evaluated the FPGA hardware for a
custom drone dataset, Pascal VOC, and COC0O2017. Our proposed design achieves a high mAP of 88.42% on
the multi-drone dataset, with a high energy efficiency of 79 GOPS/W and throughput of 158 GOPS using
the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version 3 (OVC3) platform. Our design
achieves 1.1 to 8.7x higher energy efficiency than prior works that used the same Pascal VOC dataset, using
the same FPGA device, but at a low-power consumption of 2.54 W. For the COCO dataset, our MobileNet-V1
implementation achieved an mAP of 16.8, and 4.9 FPS/W for energy-efficiency, which is ~1.9x higher than
prior FPGA works or other commercial hardware platforms.

CCS Concepts: « Computer systems organization — Neural networks; Reconfigurable computing;

Additional Key Words and Phrases: FPGA accelerator, object detection, algorithm-hardware co-design, neural
networks

ACM Reference format:

Han-Sok Suh, Jian Meng, Ty Nguyen, Vijay Kumar, Yu Cao, and Jae-Sun Seo. 2023. Algorithm-hardware
Co-optimization for Energy-efficient Drone Detection on Resource-constrained FPGA. ACM Trans. Reconfig.
Technol. Syst. 16, 2, Article 33 (May 2023), 25 pages.

https://doi.org/10.1145/3583074

This work is partially supported by NSF grant 1652866, and C-BRIC, one of six centers in JUMP, a SRC program sponsored
by DARPA.

Authors’ addresses: H.-S. Suh, J. Meng, Y. Cao, and J.-S. Seo, Arizona State University, Arizona, 781 E Terrace Road, ISTB4
591, Tempe, AZ 85287, USA; emails: {hsuh6, jmeng15, Yu.Cao, jaesun.seo}@asu.edu; T. Nguyen and V. Kumar, University
of Pennsylvania, 220 S. 33rd Street, Philadelphia, PA 19104, USA; emails: {tynguyen, kumar}@seas.upenn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1936-7406/2023/05-ART33 $15.00

https://doi.org/10.1145/3583074

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

https://orcid.org/0000-0002-4466-4824
https://orcid.org/0000-0002-7703-5020
https://orcid.org/0000-0002-6351-8865
https://orcid.org/0000-0002-3902-9391
https://orcid.org/0000-0001-6968-1180
https://orcid.org/0000-0002-4551-7789
https://doi.org/10.1145/3583074
mailto:permissions@acm.org
https://doi.org/10.1145/3583074
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583074&domain=pdf&date_stamp=2023-05-10

33:2 H.-S. Suh et al.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been very successful for many computer vision
applications including image recognition, object detection, and localization. Object detection is
a core computer vision task that is critical for autonomous driving, smart robotics, unmanned
aerial vehicles (UAVs), and more. Particular to UAVs, drone detection is an important task for ap-
plications including surveillance, defense, and multi-drone self-localization and formation control.
While the state-of-the-art CNNs for object detection achieve very high mean average precision
(mAP) for datasets such as Pascal VOC and Microsoft COCO, they still require millions of weights
and billions of operations to obtain high mAP. On the other hand, UAVs operating on a battery
exhibit stringent power/energy requirements, which prohibits a high degree of parallelism or a
massive amount of storage for the compute hardware on UAVs. Nevertheless, a close to real-time
object detection operation is required for making proper decisions for autonomous flights.

GPU is a popular hardware platform to perform object detection, benefiting from its massively
parallel processing cores. However, due to high price and low energy efficiency, GPU is not an
ideal solution for CNN inference acceleration, especially for edge devices or customized applica-
tions. ASICs have the highest energy efficiency, but their limited configurability can introduce a
significant risk of premature obsolescence. With Al algorithms evolving at a fast pace, ASICs usu-
ally lag behind the cutting edge due to the long design cycle. To that end, FPGAs have a unique
advantage with higher energy efficiency than GPUs, while offering faster time to market and
potentially longer life cycle than ASICs.

The Open Vision Computer (OVC) platform was designed to support high-speed, vision-
guided autonomous drone flight [20]. The particular objective was to develop a system that would
be suitable for relatively small-scale flying platforms where size, weight, power consumption, and
computational performance were all important considerations. Both the software and hardware
resources are open sourced. Targeting drone detection tasks in this work, we employ the OVC
version 3 (OVC3) system that can be attached onto UAVs. OVC3 includes a Xilinx Zynq Ultra-
scale+ SoC, with a quad-core ARM application processor and ZU3EG FPGA fabric. Compared to
large-scale FPGAs that have thousands of DSP slices and hundreds of Mb of block RAM (BRAM),
ZU3EG is a resource-constrained FPGA that includes only 360 DSP slices, 7.6 Mb BRAM, and 70,560
look-up tables (LUTSs).

For the object detection algorithm, we employ the widely used single-shot multi-box detector
(SSD) [13], which uses VGG-16 as the backbone CNN. In recent algorithm works [4], VGG-style
CNNs have been revived to show favorable accuracy-speed tradeoff compared to state-of-the-art
CNNs, where the regularity of using only 3 X 3 convolution kernels aids faster hardware speed.
In addition, we also implemented the compact MobileNet-V1 backbone network to show object
detection results on Pascal VOC and COCO datasets.

To that end, we first use the SSD model with VGG-16 as the backbone CNN in our experi-
ments, while we explore different widths of VGG-16 CNN to show the tradeoff of model size,
mAP, throughput, and energy efficiency. In addition, we implemented MobileNet-V1 in the same
resource-constrained FPGA to evaluate and compare our design to prior works that used similar
FPGAs or other commercial embedded hardware. For the VGG-16 backbone network, we trained a
hardware-friendly variant of the original SSD model using the drone dataset presented in [17]. For
the MobileNet-V1 experiment, we retrained the MobileNet-V1 SSD baseline model presented in [6]
with the COCO dataset. For low-precision quantization, we propose UniPOT, a uniform/unified
quantization algorithm with power-of-two (POT) quantization boundary, which avoids the use
of high-precision scaling factors throughout the CNN model and simplifies the FPGA hardware
implementation. Considering the SSD model mapping onto the resource-constrained FPGA, we

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:3

observed that using 8-bit precision with the UniPOT scheme results in better tradeoff in hardware
utilization and mAP, compared to 4-bit or lower quantization with more complex quantization
schemes such as additive-power-of-two (APOT), [11] which requires high-precision scaling fac-
tors that consume precious hardware resources.

On the hardware side, we also performed a number of optimizations with the resource-
constrained Xilinx ZU3EG FPGA device. We first maximized the utilization of parallel convolu-
tions within the available 360 DSP slices and employed a dual-data rate DSP design to double
the throughput. Subsequently, across three SSD models with different widths, we optimized the
maximum amount of on-device activation/weight storage by using both BRAM and LUTs.

Overall, the main contributions of this work are:

e We present an energy-efficient drone detection accelerator on a resource-constrained FPGA,
which is part of the OVC3 platform built for autonomous drone flight.

e On the algorithm side, we trained VGG-based SSD with multi-drone dataset, using a uni-
form/unified quantization scheme (UniPOT) for efficient FPGA mapping.

e As a comparable result to other work, we offer results from MobileNet-V1 with the COCO
dataset experimented with our hardware.

e On the hardware side, we optimized the DSP/memory utilization in resource-constrained
FPGA across different SSD models, employed dual-data rate DSP design to double the
throughput, and reduced DDR latency aided by DMA descriptor buffer design.

e We demonstrated drone detection on the Xilinx ZU3EG FPGA and analyzed mAP, through-
put, and energy across three SSD model widths (1.0%, 0.5%, and 0.25X).

e Our 0.5X model implementation achieves 57.8 GOPS/W energy efficiency, 150 GOPS through-
put, and 83.9% mAP, showing favorable tradeoff compared to prior works.

o For general objection detection on the COCO dataset, our FPGA design shows ~1.9 to 14.94X
higher FPS/W compared to prior FPGA works and commercial embedded hardware with
minimal mAP degradation.

2 ALGORITHM OPTIMIZATION
2.1 Custom SSD Model Adaptation

In this work, we adopt SSD300-HW [15], a variant of SSD300x300 [13] with small modifications
for hardware-friendly purposes. Particularly, in layer fc6, the dilation value is changed from 6 to 1
to focus more on small objects, which also account for the majority of objects in our target drone
dataset [17]. At the end of the conv4_3 layer, a single scale factor for the layer normalization step is
shared among all channels to avoid complexity in the hardware implementation. On top of these
modifications, we additionally remove layers conv9_1 and conv9_2, as well as other layers that
take only the output of these two layers as the input because the receptive field after conv9_2 is
300x300, which is too large for our application.

Although the full-size SSD model showed high accuracy, since the model had a high number
of operations (>60 billion operations), we also investigated shrinking the size of the model by
adopting the width multiplier [6] to the VGG CNN, toward achieving better, higher throughput.
In particular, we first trained the narrower VGG-16 model (e.g, 0.5%, 0.25X) with the ImageNet
dataset and subsequently cascaded the pre-trained CNNs to the full-size (1.0x) SSD model. Table 1
shows the SSD300HW network structure.

To obtain optimal prior boxes for the SSD model, we also use k-nearest neighbor (KNN) clus-
tering as suggested in [13]. We increase the number of clusters from 1 to 20, cluster the dimension
values of ground-truth boxes in the training dataset, and calculate corresponding clustering accu-
racies. This procedure is stopped when the clustering accuracy starts becoming saturated. Based

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:4 H.-S. Suh et al.

Table 1. SSD300HW Network Structure with the Number of Input/Output Channels

Layer Type | Kernel | Output Channel | Input Channel | Feature Size
Input 3 300
Convl_1 3 64 3 300
Convl_2 3 64 64 300
Conv2_1 3 128 64 150
Conv2_2 3 128 128 150
Conv3_1 3 256 128 75
Conv3_2 3 256 256 75
Conv3_3 3 256 256 75
Conv4_1 3 512 256 38
Conv4_2 3 512 512 38
Conv4_3 3 512 512 38
Conv5_1 3 512 512 19
Conv5 2 3 512 512 19
Conv5_3 3 512 512 19
Fc6 3 1024 512 19
Fc7 1 1024 1024 19
Conve6_1 1 256 1024 19
Conv6_2 3 512 256 19
Conv7_1 1 128 512 10
Conv7_2 3 256 128 10
Conv8_1 1 128 256 5
Convs_2 3 256 128 5
Conv9_1 1 128 256 3

on this procedure, we select the set 13 boxes that achieves 86.60% in clustering accuracy. We fur-
ther remove 2 boxes whose dimensions are almost identical, resulting in 11 prior boxes. Unlike the
implementation in [13], we do not flip these prior boxes because it is unnecessary.

2.2 MobileNet-V1 Model

In the case of mobile devices like drones, it is necessary to compress a network model further, since
the number of parameters in the SSD300 model might not fit on the target device. In this respect,
we also implemented the MobileNet-V1 with fewer parameters in our FPGA, which will aid a more
compact hardware implementation. Table 2 shows the MobileNet-V1 network structure.

When we use 8-bit precision for activation/weight quantization, the storage requirement for
the weights of SSD300HW is 22.0 MB and for the weights of MobileNet-V1 it is 3.15 MB. Com-
pared to SSD300HW, MobileNet-V1 reduces the weight storage requirement by ~86% and also
largely reduces the computational complexity, which overall helps reduce the FPGA resource
utilization.

2.3 Low-precision Quantization

The VGG-based SSD model with the ImageNet-trained convolutional feature extractor has been
the best off-the-shelf SSD model, achieving >77% mAP on the Pascal VOC dataset. Such superior
inference performance involves a large amount of computation and storage (~60 GOPs and ~138M
weights), which makes it expensive for hardware deployment. To bridge this gap, we applied the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:5

Table 2. MobileNet-V1 Network Structure with the Number of Input/Output Channels

Layer Type Kernel | Output Channel | Input Channel | Feature Size
Input 3 224
Conv1/s2 3 32 3 224
Conv1 dw/s1 3 32 32 112
Conv2/sl 1 64 32 112
Conv2 dw/s2 3 64 64 112
Conv3/sl 1 128 64 56
Conv3 dw/s1 3 128 128 56
Conv4/s1 1 128 128 56
Conv4 dw/s2 3 128 128 56
Conv5/s1 1 256 128 28
Conv5 dw/sl 3 256 256 28
Convé6/s1 1 256 256 28
Conv6 dw/s2 3 256 256 28
Conv7/s1 1 512 256 14
Conv8 dw/s1 x5 3 512 512 14
Conv8/s1 x5 1 512 512 14
Conv9 dw/s2 3 512 512 14
Conv9/s1 1 1,024 512 7
Conv10 dw/s2 3 1,024 1,024 7
Conv10/s1 1 1,024 1,024 7
FC/s1 1 1,000 1,024 1

low-precision quantization to the entire SSD model to alleviate the hardware resource consump-
tion while maintaining high inference accuracy.

Generally, given the floating-point weight W, in-training uniform quantization can be formu-
lated into the steps below:

W, = min(max(W, —a), a) Clipping (1)
2" -1
S= —— Scaling (2)
a
Wo = round(W, x S) Quantization (3)
Wo o
Wor = < De-quantization (4)

Many recent quantization algorithms aggressively reduce the bit precision (e.g., sub-4-bit) to
lower the total storage and number of operations. However, the low-precision uniform quan-
tization algorithms in the literature often require high-precision scaling [3, 7, 18] or extra pre-
processing steps [12], which causes hardware resource over-utilization when such algorithms are
fully implemented onto hardware devices.

In comparison to uniform quantization, the POT quantization converts the multiplication into
a shifting operation and substantially simplifies the hardware. However, the lopsided resolution
of the POT quantization degrades the accuracy. To address the accuracy degradation, APOT [11]
has been proposed to quantize the weight and activation into 2" levels where each level is the sum
of multiple POT terms. Given the number of additive terms, the digitized levels are deterministic,
which can be saved into LUTs. Then, we need to place a high-precision comparator to choose the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:6 H.-S. Suh et al.

Quantization with layer-wise scaling

Quant. RelU L Quant. Conv L Quant. RelU L+1 Quant. Conv L +1

Wor Wor
w w
. g . o
|

oo | Sk | Sk [SW[sE oo
16-bit
Individual scaling factor for each layer_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________.
UniPOT
Quant. RelU L Quant. Conv L Quant. RelLU L+1 Quant.Conv L +1

Wor | Wor
w w-
R o . o

| N Weight Quantization module

Activation Quantization module
12-bit Sw Quantization scaler for weight

Unified scaling factors for all the layers Sy Quantization scaler for activation

Fig. 1. Comparison of other low-precision quantization and the proposed UniPOT quantization schemes.

Table 3. mAP Evaluation of SSD Model (1.0x Width) on the Multi-drone
Dataset with Different Weight/Activation Quantization Schemes

Method W/A | Precision | mAP (%) Scaling
Baseline 32/32 32 bit 89.64 -
PACT [3] 4/4 4 bit 82.37 Layer-wise
APOT [11] 4/4 5-7 bit 87.42 Layer-wise
UniPOT . .
(This work) 4/4 4 bit 69.47 Unified
UniPOT . .
(This work) 8/8 8 bit 89.40 Unified

quantization level of each variable. Furthermore, layer-wise learnable scaling factors that require
a high-precision multiplier are employed in the APOT scheme.

In this work, we propose UniPOT, a uniform and unified quantization algorithm with the
POT quantization boundary. Given the pre-trained DNN model, the weight and activation will
be clipped by a tunable POT value, a,,,a, € {1/2,1/4,1/8,...,8,16}. The selected quantization
boundary will be applied to all the layers of the network. Therefore, the quantization scaling factor
will have limited data precision and get broadcast to the entire DNN model (Figure 1). Constraining
the distribution of weights and activations by the unified POT value can avoid the high-precision
scaling in Equation (2) and subsequently simplifies the hardware implementation.

Table 3 summarizes the software performance of VGG-based SSD on the multi-drone dataset [17]
by applying different quantization strategies. Uniformly quantizing the model down to 4-bit [3]
leads to significant accuracy degradation. Deploying the APOT-quantized model requires layer-
wise scaling and high data precision with noticeable accuracy degradation.

Table 4 summarizes the hardware resource consumption of supporting different layer-wise
scaling schemes, based on our experimental implementation on the ZU3EG FPGA device. The

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:7

Table 4. PE-wise Hardware Resource Consumption for Layer-wise
High-precision Scaling with the Proposed UniPOT Algorithm

Method LUTs | FFs | DSPs | Cost/Multiplier
UniPOT

(This work) 111 100 1 1X

APOT [11] 345 | 159 | 1 2.38x

UniPOT I Lw layer convolution module |

Wint biasyr

1
1
1
1
1
1
1
i Quant.
1 —yn
QReLU 1) B % + - X Conv L+1
L-1 i
i
1 ! Sy _ 1
2o =1
Sw | Simplified & Unified SxXSw Sw
1
1

Post-Conv Scaling

Sx: Unified & Efficient quantization scaler (12-bit) for activation
Sw: Unified & Efficient quantization scaler (12-bit) for weight

Quantization

Conv L+1

sk-1 St X Sly Sk
S}(: Layer-wise high-precision quantization scaler (16-bit) for L-th
layer activation
Sk Layer-wise high-precision quantization scaler (16-bit) for weight

Fig. 2. Hardware implementation of two quantization methods.

APOT [11] quantization algorithm treats the layer-wise quantization boundary as the trainable
parameters to minimize the quantization error. Such layer-wise adaptive quantization boundary
further leads to the distinct post-convolution scaling factors, as depicted in Figure 1 (top). However,
implementing the layer-wise high-precision multiplication of APOT [11] exceeds the on-chip re-
source budget of the selected ZU3EG FPGA device, as summarized in Table 4. On the contrary, the
proposed UniPOT algorithm simplifies the post-convolution scaling process with unified scaling
factors, as shown in Figure 2. With the 8-bit precision for both activation and weights, UniPOT
achieves the optimal tradeoff between accuracy and reduction of hardware resource consumption.
Compared to the APOT-based [11] layer-wise scaling, the proposed UniPOT algorithm reduces the
resource consumption by 2.38X.

We use our own version of APOT quantization in Table 4 because we wanted to show that our
UniPOT is more hardware friendly than any other quantization method in the literature while
quantization is the key to successful implementation of the digital hardware accelerator, which
must use limited bit-width to represent any values in the neural network. To properly compare our
implementation to other works, we need to get the resource utilization of 1 PE in LUTs and RAMs
with the same type of FPGA. However, this has not been reported in most prior works. Thus, we
used our own version of APOT quantization in the comparison, which we implemented by finding
the best optimized quantization algorithm because even hardware-friendly APOT quantization

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:8 H.-S. Suh et al.

that only uses shift registers for multiplication was not enough to be fitted into our target FPGA
device due to the existence of a high-precision extra multiplier for the scaling factors.

Noticeably, supporting the layer-wise high-precision multiplication of APOT [11] causes 2.38%
resource overhead compared to the proposed UniPOT algorithm. Given a total of 360 DSPs with
limited resources, it becomes very challenging to support the expensive APOT algorithm with
the ZU3EG FPGA device. Therefore, we select UniPOT with 8-bit precision for both weight and
activation to guarantee high inference accuracy while maintaining the hardware simplicity.

As shown in Figure 1, each quantized-ReLU (QReLU) layer including a regular ReLU function
and an activation quantization module (Equations (2) to (4)) generates the digitized convolution
output [9]. Here, we use 12 bits to represent the activation quantization scaler and 16 bits for the
weight quantization scaler.

Similar to the offline integer transformation in the prior works [7, 26], the de-quantization scal-
ing factors for activations/weights in Equation (4) can be extracted and folded into the scaler
that belongs to the next layer. This means that instead of computing Equation (5), we compute
Equation (6). We use the linearity of the QReLU layer and pass the divider operation of the scaler
to the post-QReLU layer side, so that we only have one scaler multiplication for each convolution
layer:

OFcyip = QReLU(OF (1/5)), (5)
OFc1ip/S = QReLU(OF), (6)

where OF is the output feature map and OF¢;;), is the clipped version of the output feature map.
Overall, simplifying the quantization process minimizes the number of multipliers/dividers and
reduces the total DSP usage.

3 FPGA HARDWARE DESIGN AND OPTIMIZATION

Xilinx Zynq ZU3EG FPGA in the OVC3 system is our target hardware device. ZU3EG FPGA only
has 360 DSP slices and 7.6 Mb of BRAM, and these resources are less than those of large-scale
FPGAs by an order of magnitude.

3.1 Overall Hardware Architecture

Figure 3 shows the overall hardware block diagram and dataflow. To simplify implementation and
to separate read DMA operations from write DMA operations, we are using two DMA modules
with a dedicated DMA descriptor buffer for each of them. Once the read DMA module reads input
image tiles and weights from the memory, it will be written to the input buffer and weight buffer.
Before pixels and weights are fed into MAC arrays, there is a data router that will rearrange pixels
and weights into orders to maximize the reuse of input feature maps. In our data router design,
FIFOs are employed to reuse pixels that will be fed into registers that are directly connected to
MAC arrays. Each FIFO takes pixels from a register that holds the next row of the feature map.
With this design, we just need to read pixels from input pixel buffers at the very first time of MAC
array computation. After that, we shift and load pixels within register arrays until the kernel screen
reaches the end of Poy computation. Then, the FIFO feeds pixels from the adjacent register arrays
without needing to read these pixels from the input pixel buffer. Subsequently, the MAC array will
get these data to perform convolution and accumulation. Each PE in the MAC array will calculate
one output pixel in an output stationary dataflow. The architecture of PEs that support the output
stationary dataflow is shown in Figure 4, where each PE performs one MAC operation per cycle.
We adapted the loop unrolling and loop tiling strategy introduced in [14]. Table 5 describes the
terminologies for the CNN algorithm and FPGA design parameters used in this work. Adjusting

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:9

RD DMA
descriptor

Data Router (scatter)

MAC |Pooling

WR DMA
arrays | layer

|

|

|

|

|

|

|

| descriptor
Buffer

| Data Router (gather)

|

|

|

|

|

|

Fig. 3. Overall architecture of FPGA accelerator.

) Pox * Poy
“6“‘
st al|| PE |« | PE |« | PE |« | PE |+
a
" VA A A1 A1
.y <
& PE |« | PE |+ | PE |+ | PE |+ 5
x 8 /i Z1 Z1 Z1 5
x 3 le - Qo
Sll=| =
|3z PE |+ [PE |« PE |4 |5
3 /¢ 1 [} /1 =
= - ...l
|[PE] [FE PE |-
) t L1 A4 L1
' Data router 7 cornel si
stride, kernel size,
4 = and padding
Input pixel buffer control signals

Fig. 4. Architecture of PE array for output stationary dataflow.

these hardware design parameters directly affects the throughput and latency results of our CNN
accelerator.

For input buffer tiling, we tile input feature maps in the Tiy dimension only, as shown in Figure 5.
Once the MAC operation is done, the output feature map will be stored in an output buffer with a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:10 H.-S. Suh et al.
Table 5. Description of CNN Algorithm and FPGA Design Parameters
Kernel ﬁg;t Feature I(\)Al;t;)ut Feature # of Input # of Output
(Width/Height) (Width/Height) | (Width/Height) Feature Maps | Feature Maps
Convolution
Dimensions Nkx, Nky Nix, Niy Nox, Noy Nif Nof
(N™)
i‘;ﬁr)) Tiling Tkx, Tky Tix, Tiy Tox, Toy Tif Tof
i‘;ﬁ? Unrolling Pxk, Pky Pix, Piy Pox, Poy Pif Pof
Input feature map kernels Output feature map
Stored in input buffer Stored in output buffer
" FSSSIss
Tiy :: 4
— |: Toy
1
1
4
1 R ——
\)\" Tof
Nif=Tif ™ . Nox=Tox

| Nif=Tif$\‘

Fig. 5. Loop tiling strategy of our proposed architecture. Adapted from [14].

Tof and Toy tiling strategy (Figure 5). In our tiling scheme, Nif is equal to Ti f, which means that
we read all the necessary input feature maps that are required in accumulation and perform the
summation in the DSP without stalling or reading the next batch of input feature maps to continue
the accumulation. Thus, one iteration of the MAC operation will calculate and store Pox X Poy X
Pof amount of output feature map pixels to the output buffer. Since we are not tiling pixels in the
Nix dimension, Nox tiling is not used and Nox is equal to Tof. Once Nox X Tof X Toy amount of
output pixels are ready in the output buffer, the write DMA process will start writing these pixels
into DDR memory.

To maximize the hardware performance in the resource-constrained FPGA, we investigated the
following design methodologies and strategies, which will be described in detail in the rest of the
section.

e Comprehensive design space exploration
e Dual-data rate DSP design
e Small direct memory access (DMA) descriptor buffers.

3.2 Design Space Exploration

In this sub-section, we explain how we optimized our baseline architecture design to reduce the
size of the design while getting the best performance out of it. The entire design process we used
in our work is given in the Figure 6. The steps we used in our design space exploration are given
below:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection

‘,/ : Begin design 7

adjust ratio of

_space exploration /

DSP and non-
DSP PE

Step 1. N
aximui o LE*
Th r°u9 h p Ut parallelism Plncrea:e f sDang over?
optimization v e atil Yes
es
inimu No Adjust
Step 2. @mbﬂ Poy and Pof
Resource v Yes
w—— es
utlll_ZG.tlon_ No s BRA Adjust ratio of
optimization still over- BRAM and
ilized? distributed RAM
inimum DD No Adjust
Step 3. accesses in all Toy and Tof
DDR memory layers? per layer
access Yes
optimization /" End design \".
| sequence

Fig. 6. Flow chart of our proposed design space exploration.

e Step 1: Increase parallelism by increasing number of MAC units in the design. This will
achieve maximum PE counts, which equals Pox X Poy X Pof from our design parameters.
Test if any logic elements or DSPs are over-utilized and, if so, adjust the ratio of non-DSP PE
and DSP. Here, non-DSP PE means a PE that only uses logic elements.

o Step 2: With fixed parallelism, find the best ratio of distributed RAM vs. block RAM to make
the design fit into target FPGA. Also, test different (Pox, Poy, Pof) combinations to find the
best performance in terms of total latency:.

e Step 3: Adjust the loop tiling size of Toy and Tof to reduce the number of DDR memory
accesses.

3.2.1 Step 1: Throughput Optimization. First, we attempt to employ the highest Pox X Poy X
Pof number, which will result in the highest parallelism of MAC arrays implemented by both
DSP slices and non-DSP PE using logic elements in the FPGA. We employed a design parameter o
that determines how many PEs in the MAC array should be implemented using DSP, and the rest
of the PEs will be implemented using logic elements. However, our accelerator using UniPOT is
implemented by using only DSPs, because we found it has better hardware utilization when our
PEs are all implemented using DSPs, since only a few shift register/constant multipliers are needed
for scaling factor multiplication. But in the case of APOT quantization, which uses extra multipliers
for scaling factor multiplication, we can use this parameter to decide whether we will use DSPs to
implement such extra multipliers. In our target FPGA, 360 DSP resources are available. Since the
largest POT less than 360 is 256, the number of parallelism (loop unrolling) in our design is 512 (2X
Pox X Poyx Pof), as we can use up to 256 DDR DSPs. Also, in any step of the optimization process,
if we searched the entire design space and a design that fits onto FPGA does not exist, then we
delete that combination of Poy and Pof from the design space and start the DSE search over again.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:12 H.-S. Suh et al.

3.2.2 Step 2: Resource Utilization Optimization. Once we found the upper limit of the maximum
parallelism, we searched the best combination of Pox, Poy, and Pof that can result in the lowest
total latency among possible choices of combination. Then, we test if the BRAM is over-utilized in
the design. If the selected Poy and Pof combination uses too much BRAM, we adjust the parameter
B to move a certain amount of buffer capacity from BRAM to distributed RAM, which uses LUT
and LUTRAM to implement on-chip memory. This is the most important part of our DSE search
process, and to the best of our knowledge, our method is the only DSE that automatically adjusts
this ratio to squeeze every on-chip resource out from FPGA. During the search, Pox is considered
as a constant because we are not tiling over the x dimension in the input feature maps and thus
Pox is only dependent on the DMA bit-width to read as much as data from DDR memory. For input
pixels, we need Pox X Poy X [pixel bitwidth] = 8 X 4 X 8-bit = 256 bits, since we need Pox X Poy
pixels at a time in PE arrays. On the other dimension of 2D PE array, weights are being fed and we
need Pof X [weight bitwidth] = 16 X 8-bit = 128 bits amount of data. On the DDR memory side,
we are using 1.2 GHz as an operating frequency of DDR memory, and according to Xilinx, we can
calculate speed of DDR memory below:

[Data Rate] X [Number of DDR Inter faces] X [DDR Inter face Width]

= 2.4GHz x 2 x 32bits = 150Gbps. @

Therefore, we have sufficient bandwidth on the DDR memory side, but we only have two phys-
ical high-performance AXI ports in our FPGA that is connected to the DDR memory. Each AXI
port has 256 bits of bandwidth in our design, and it is being used to feed pixels and weights to PE
arrays and obtain outputs out of the PE arrays. Therefore, we have to wait a few cycles while we
copy one tile of pixels and weights to the input buffer and weight buffer, and the real calculation in
PE arrays starts once the input and weight buffer are filled with tiles. Similarly, once computation
for all tiles in the input/weight buffer is done, the output buffer starts writing results to the DDR
memory and we can copy another set of input and weight tiles while it is copying results to DDR
memory. Since we do not have a ping-pong buffer in our design, PE arrays must be halted while
we are reading/copying data from/to DDR memory.

This means we need 4 X PoxX 8-bit (activation bit-width) of bandwidth, where our DMA band-
width is 256 bits. Therefore, the optimal choice of Pox is 8 in our design. To decide how much
parallelism will be in Poy and Pof, we tried to assign more parallelism to a design parameter that
comes with smaller buffer size to reduce BRAM resource utilization in FPGA.

In Figure 5, the input buffer is always larger than the weight and output buffers, because we are
tiling over the Nof dimension. Even if the input channel and output channel sizes are identical,
Tof tiling reduces the amount of weights and outputs that need to be minimally stored in each
buffer. On the other hand, Nif is not tiled and thus the input buffer is relatively larger than the
other two buffers. Now, if we increase Toy, this will increase Tiy and the input buffer capacity will
increase to store more tile pixels. Instead of increasing Poy, which will proportionally increase Toy
and the input buffer size, we first increased Pof (which does not increase the input buffer size),
and then the rest of parallelism was assigned to Poy. We swept a number of combinations of (Pof,
Poy) sets, and (16, 2) was the best design parameter setting that resulted in the lowest total latency.

Once the adjustment of Poy/Pof and the adjustment between BRAM usage and distributed RAM
usage is done, the total latency of our FPGA design is estimated and the design search continues.
In our design, the latency for one convolution layer is composed of input buffer latency and MAC
array calculation time. The former is the number of input image tiles in a convolution times the
latency that it takes to process a given tile. The latter can be calculated by (Tif X Tox/Pox X
Toy/PoyxTof [Pof X #of input image tiles), which provides a good estimation on the number of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:13

Operation types
r'y
(A)
Input buffer write for Input buffer write for
first iteration () second iteration
Input Input Input Input
buffer buffer buffer buffer
read read read read

MAC MAC MAC MAC
operation | operation J operation operation
Fee — o === 1
1
Output e———p!
buffer writes !
! €) —

_____________ r—
Output buffer
read for first
iteration

»

Time (s)r

Fig. 7. Timing diagram of MAC array operation including DRAM communication.

cycles consumed in the MAC array. By summing up the latency of all layers, we can obtain the
total latency. Pox, Poy, and Pof of our design are optimally chosen as 8, 4, and 16, respectively.

3.2.3 Step 3: DDR Memory Access Optimization. Figure 7 shows the latency breakdown for one
iteration of MAC array computation. Upon completion of Pox, Poy, and Pof combination search
for the best total latency, we found that our design has a bottleneck in the DDR memory perfor-
mance. The latency of (A), (B), and (C) varies for different convolution layers. In the cases of the
conv4_2 and conv4_3 layers, our most time-consuming convolution layers, (A) consumed higher
latency than (B) or (C), which was caused by the bottleneck from DDR memory read speed. In
our initial latency measurement, input buffer write latency (A) consumed >70% of total latency
in the conv4_2 layer. During input buffer write, the read DMA module was spending too much
time waiting on data from the DDR memory. To alleviate this bottleneck, we tried to reduce the
DDR memory accesses by increasing the tile size of feature maps. In our CNN accelerator, this can
be achieved by increasing either the Toy or Tof design parameter without increasing the size of
input/output/weight buffers. For fine-grained optimization, we fine-tuned Toy and Tof for each
layer of the CNN.

For degrees of freedom in the optimization factor, we have a number of parameters that can
be adjusted, but we mainly tuned Poy, Pof, Toy, and Tof for design space exploration. A con-
straint exists that Toy and Tof must be integer multiples of Poy and Pof, respectively. Also, design
parameters « and f cannot exceed 1 because they decide the percentage of modules that will be
moved from one to the other logic resources, e.g., logic elements or distributed RAM.

Techniques such as double-buffering could further increase the throughput by hiding the com-
munication latency to/from DDR memory, which will be possible for some larger FPGA devices.
However, our target FPGA device, ZU3EG, only has 1.175 MB of total on-chip memory, while our
design uses both LUTRAM and BRAM for input and output buffers. Both of them should be dou-
bled to integrate double-buffering into our target FPGA, but the total on-chip memory was not
sufficient to enable this. Balancing the limited on-chip resources to make enough space for both

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:14 H.-S. Suh et al.

|
Output |
ACC2
signals

|
| signals

l Output
BUF 1x clk

|

DS Pimitive o, : - —_——— — e — e e e - >
|
|

reset signal | | — 1X clock ! 2X clock

] []: BRAM buffers [l : Multiplexers = : Dataflow
1X clock| 2X clock | 1X clock

R i R - [: Registers [J: RTL Modules - : Control signals
ACC1/ACC2: registers for accumulated results ®: Mutiplier @ : Accumulator
A1/A2: registers for input feature maps W1/W2: registers for weights (b)

(@)
Fig. 8. (a) Dual-data-rate DSP implementation. (b) Clock-crossing logic used in DDR DSP control signals.

LUTRAM and BRAM was also limited, because we found that faster BRAM should be used in
some buffers to avoid critical path problems. To that end, double-buffering was not employed for
our FPGA design with the ZU3EG device.

3.3 Dual-data-rate DSP Design

For DSP count reduction, we use dual-data-rate DSP, which can feed two data into one DSP at
a time and generate two outputs at the same time, as shown in Figure 8(a). The DSP slices in
our FPGA design work at 400 MHz of frequency, twice the operation frequency (200 MHz) of the
main CNN accelerator. Although DDR DSP is standard in Xilinx’s deep learning processing
unit (DPU) IP [23], how it is configured is not published. By referring to the IP diagram, we
implemented our own custom design of dual-data-rate DSP, by adding time-matching flip-flops
and clock-crossing logics before and after the DSP48E2 primitive (Figure 8(a)). The two sets of
registers on the input side are input pipeline registers. Output data lines are separated and fed
back to DSP again for accumulation.

A0/A1/A2 are pipeline registers that can latch the activation data that gets conveyed to the DSP
module. Similarly, W0O/W1/W2 are pipeline registers that latch the weight data. For everything
that is in the “DSP” box in Figure 8(a), we used integrated registers and multipliers inside the DSP
to set up the internal DSP configuration. For example, ACC1 and ACC2 are pipeline registers that
latch accumulated output data at the end of calculation, where we placed two registers so they
can hold two independent results in each register in a time-multiplexed manner with our custom
control logic for DDR-DSP.

The number of stages in the pipeline registers is determined based on the information in the
Xilinx technical manual. Clock-crossing logics are inserted into the control signals, such as the
accumulator reset signal and multiplexer select signals. Figure 8(b) shows how flip-flops are in-
serted to prevent signal meta-stability in the frequency-crossing domain. We could increase the
effective DSP counts by 2x using this technique.

In Table 6, we compared our technique to other DSP packing techniques [8, 16]. [8] reduces the
number of DSPs the most, but they need to place extra on-chip memory to store the multiplier
parameters. In addition, the technique in [8] uses extra hardware resources for the concatenation
of inputs and shift registers for post-processing, and an extra accumulator also exists outside of
the DSP using LUTs at the end. This is why their implementation overall uses a high amount of
resources. Regarding [16], even though it is stated that 4n bits are enough to do a double multipli-
cation in one DSP, there is still a chance of overflow due to the large accumulation in convolution

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:15

Table 6. Resource Utilization Comparison
of DSP Packing Techniques for 1 PE with
8-bit Quantization

LUT | DFF | DSP | BRAM
[8] 57.06 | 64.19 | 0.33 0.48
[16] 11 12 0.5 0
Ours 9 29.5 0.5 0

3X3K:;r:1| I \ Kernel
Stride 2 ’ » O
— 1x1 conv Outout
Stride 1 P
> 0Im

il

&
&

No reduction over
input dimension

Depth-wise convolution

Input

Reduction over
input dimension

A

Point-wise convolution
Fig. 9. Depth-wise separable convolution layer split into two convolution operations.

layers with large output channels. Depending on how many output channels exist in the convo-
lution layer, we may need more than 4n bits. For example, if we continuously multiply 1000000z
with 1000000(;y and accumulate them 1,024 times, this leads to 24 bits for the resulting binary
number. To avoid the overflow in this case, 24 + 1 (guard bit) + 24 = 49-bit accumulator is required,
and this is impossible in our DSP, which only has 48-bit accumulator. On the contrary, our pro-
posed technique only uses one DSP with a few additional registers for clock crossing and pipeline
registers; hence, our implementation shows the least amount of hardware resource consumption
without the need for any accumulator outside of the DSP.

3.4 MobileNet-V1 HW Implementation

To obtain the best performance while using resources on FPGA as little as possible, we also im-
plemented MobileNet-V1 CNN. For this, a depth-wise separable convolution (DSConv) layer
and its corresponding hardware were added to the DSP design. This DSP design also benefits from
our DDR DSP design by accommodating an accumulation pattern in the DSConv layer, which is
somewhat different from normal convolution layers.

In the DSConv layer, there are two convolution layers; one is the depth-wise convolution layer
and the other is the point-wise convolution layer. To perform the DSConv operation without
adding any extra PEs and DSPs to the design, we separated a DSConv layer into a depth-wise
convolutional layer (DWConv) and point-wise convolutional layer (PWConv), as shown
in Figure 9. With this strategy, we can reuse the same DSP architecture for these consecutive

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:16 H.-S. Suh et al.

kernels and input pixels are streamed in to PE
o i N 7 7 s N s s A 5 PE
i 1 NN N
nput ch EEE EDDD
@_ N Conv Accumulation in PE: across the input channel dimension
Kernel
input ch.2
@ 7 DWConv Accumulation in PE: No accumulation over input dimension
i <h3 LD LiZeA | A0 BT ey
BEEE SO0N
t
. I Start new accumulation = reset accum
Start new accumulation = reset accum fetch pixels from line buffers
fetch pixels from input buffers *control signals for DSP and line buffer fetch are added.

Fig. 10. DWConv layer input feeding pattern compared to the normal convolution layer.

X.,Y)
L » To DSP0~2 (0:2, 0)

INPX
BUF

> To DSP3~5 (0:2, 1)

— To DSP6~8 (0:2, 2)

Stride_select

*line_buffer

for reusing
pixels

Fig. 11. Structure of line buffer for pixel reuse in depth-wise convolution (Pox=3, Poy=3).

convolution calculations. This is important for applications with limited logic resources such as a
small FPGA. Also, there are two notable differences in these layers compared to plain convolution
layers. One is that the DWConv layer does not do any accumulation across the output channel
dimension after the convolution calculation. Considering this, we came up with a new DSP design
that can skip and reset accumulation in DSPs. Our strategy of feeding inputs to the DSPs for the
DWConv layer is shown in Figure 10.

For this new input pattern, we implemented the pixel reuse modules additionally for the DW-
Conv operation. This will also reduce the DDR latency and buffer-to-PE data movement by reusing
the pixels that have been already fetched. The structure of this design is shown in Figure 11. With
these line buffers, we can feed the next pixels to PEs without accessing input buffers or DDR mem-
ory. This means that the buffer needs to hold 2x more pixels than the Pox dimension in both line
buffers (FIFOs) and a pixel buffer to feed in initial pixel tiles to line buffers. While we are increasing
the buffer size by 2X in the direction of Pox, this can be affordable for MobileNet-V1, due to the low

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:17

4 [[y
] d
T * T T < T

0O 0 0 0 0 O 0O 0 0 0 0 O

0 0_-p1lp12p13pl4 0 O0_-p11lp12p13pi14
p11p12 613 P14 p15p16 p11p12 13 f14 p15 p16
p21 p22 p23 p24 p25 p26 p21 p22 p23 p24 p25 p26 p21 p22 p23 p24 p25 p26
p22 p23 p24 p25 p26 p27 p22 p23 p24 p25 p26 p27 p22 p23 p24 p25 p26 p27

T T AT

000 0 0O
0 0_-p11lp12p13pi14
p11p12 613 P14 p15p16

Line buffer
Line buffer

Input buffer 1 Input buffer 2 %,” Input buffer 3
«--- : Shift register operation for stride 2. §

Fig. 12. Details of line buffer dataflow for pixel reuse in depth-wise convolution.

resource requirement of the compact model (e.g., ~1/7 of SSD300HW). Figure 12 illustrates how
the data pipeline is configured for reusing pixels. Without pixel reuse, Tox X Toy-sized tiles need
to be read multiple times even for overlapping pixels. PEs can only calculate Pox X Poy amount of
output pixels at a time in this case. This takes 12 cycles in our design, and multiplying the number
of direct reads from the buffer adds an extra 15.73 ms of delay for processing the “conv10 dw/s2”
layer in MobileNet-V1 for the COCO dataset. Compared to the layer delay of 5.45 ms in our ac-
celerator design with pixel reuse, pixel reuse in the DWConv layer will reduce this latency from
21.18 to 5.45 ms (3.89% reduction).

The second difference is in the point-wise convolution layer. This can be deemed as a plain
convolution layer with a 1 X 1 kernel, but it needs to support convolution with zero padding. Our
hardware and compiler implementation was designed accordingly to include these requirements.
We added hardware to our input pixel pipeline to select whether we will load zero padding or not
to PE, as implemented by the multiplexer shown in Figure 12.

3.5 DMA Descriptor Buffer Design

In prior works with larger FPGAs [15], DMA descriptors containing DDR addresses are pre-
calculated and the entire set of DMA descriptors required to complete one inference was stored in
the DMA descriptor buffers (Figure 13(a)). This improves the FPGA performance since the delay
for calculating DDR addresses is eliminated. However, when the tile size is very small due to the
capacity limit of on-chip BRAM, DMA needs to move small tiles more frequently and thus the
number of DMA descriptors for copying those tiles will increase. The DMA buffer size require-
ment can be calculated from the number of read/write DMA descriptors multiplied by each DMA
descriptor size, 32 bits. Our 1.0X model required 15.36 Mb of read DMA buffer with conventional
DMA architecture. Using a similar analysis, 1.52 Mb of write DMA buffer was required to hold the
entire write DMA descriptor. Since ZU3EG only has 7.6 Mb of BRAM, evidently the conventional
DMA scheme cannot be used for our target FPGA.

Figure 13(b) shows our proposed DMA system design. In this system, the entire read/write
DMA descriptor will be stored in DDR memory. To reduce the size of DMA buffers, we designed
small DMA descriptor buffers that can refill DMA descriptors from DDR memory. The size of the
read/write DMA descriptor buffer was decided by the maximum input/output channel size that
exists in our SSD model, where one DMA descriptor corresponds to one tile in one feature map.
To accumulate Nif pixels from the L, layer in the MAC array without stalling and to prepare Nif
pixels from the (L + 1), layer for the ensuing computation, we need 2 X Nif DMA descriptors in
the buffer to prevent stalling convolution computations in consecutive layers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:18 H.-S. Suh et al.

Input | |Weight| |Output

For large FPGAs Buffer Buffer Buffer

with sufficient BRAM

+l L))
DMA
] DMA
Descriptor SGpot DMA - 9= 0 troller
buffer

!

DDR memory

(@)

Input | |Weight| |Output
Buffer Buffer | | Buffer

refill buffer) 3 [y
v |
DMA
o SG port [—
' l port DMA Controller
Small DMA descriptor buffer t Added controller functionalities:
using 2-port BRAM 1. Load new DMA descriptors by
(read & write simultaneously) DDR memory calculating DDR addresses.
2. Control when to perform DMA

descriptor refill to buffer

SG port : Scatter-Gather port that accepts DMA descriptor
=p : DMA descriptor provided to DMA

=p : DMA descriptor refill from DDR memory
(b)

Fig. 13. (a) Conventional DMA descriptor buffer design for large FPGAs with sufficient BRAM. (b) Proposed
DMA design with small descriptor buffer for small FPGAs with limited BRAM.

In our 1.0X SSD model, the largest input channel sizes of two adjacent convolution layers are
1,024 and 1,024. Thus, we need up to 2,048 DMA descriptor buffers ready in the DMA buffer. This
corresponds to 32-bit x 2,048 = 64 Kb of capacity in the buffer. The same logic applies to the write
DMA descriptor buffer. With our DMA descriptor design, the descriptor buffer size is only 64 Kb
for each DMA module for read and write. By using the proposed DMA scheme with a small DMA
descriptor buffer, the capacity requirement of the read DMA descriptor buffer is reduced by 240x
(15.36 Mb/64 Kb), and that of the write DMA descriptor buffer is reduced by 23.7x (1.52 Mb/64 Kb).

4 EXPERIMENT RESULTS
4.1 Software Experiments

We investigated the VGG16-SSD model with different width multipliers (1.0%, 0.5%, 0.25x%). For
MobileNet-V1 SSD, the 1x full-width model was implemented. We evaluated the model perfor-
mance on our custom multi-drone dataset [17], the Pascal VOC dataset, and the Microsoft COCO
dataset. For the multi-drone detection task, we first load the pre-trained full-precision VGG-16
backbone CNN model trained by the ImageNet dataset and then fine-tune the entire VGG-based
SSD model with the synthetic multi-drone images [17] while applying the 8-bit UniPOT quantiza-
tion. After that, the low-precision fine-tuning process will be continuously performed on the real
images. We heuristically select 0.125 and 16 as the quantization boundary for weight and activation,
respectively.

We also fine-tuned the SSD model on the Pascal VOC dataset with the 8-bit backbone VGG CNN
to make it comparable with prior works. Table 9 shows that the 1.0x SSD model with 8-bit precision

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:19

100 100 40
90 | 490 35k
80k m:] Bog) s
-de e h B
70l Total # of OPs] 70% _
v 3
—~ 60F ,‘-eo‘g 325
S .- -
o 50} Pid 4505 20
3 e
40 F “/ -40.6 a1s5f
30} Le” {30*
e s 10
20 | < 4200
__‘.’ - 5
10 P s 410
-
ol . M Y 0l N .
0.25 0.50 1.00 0.25 0.50 1.00
Network Width Multiplier Network Width Multiplier
(a) (b)

Fig. 14. Hardware inference results from different SSD network width multiplier settings for (a) mAP and
the total number of operations (b) FPS.

exhibits no mAP degradation compared to the full-precision baseline mAP of 77.2% [13]. For the
MobileNet-V1 SSD model, we retrained the baseline model from Caffe model-zoo with the COCO
dataset. The baseline model is the reproduction of [6], and we used the same 8-bit quantization for
this model.

4.2 Hardware Experiments

Our system is implemented and tested by using the OVC3 system. The FPGA used in OVC3 is
Xilinx Zynq ZU3EG. Our implementation was done using HDL with SystemVerilog. Our design
tool used is Vivado 2019.2 for hardware bitstream generation, and Vitis 2019.2 for Linux boot image
creation. Then, the Linux image is loaded to an ARM processor, which is equipped on a ZU3EG
board by default.

The SSD and backbone CNNs with 8-bit precision using the UniPOT quantization scheme
are implemented on the FPGA device, while the non-maximum suppression (NMS) and post-
processing modules are performed by the CPU in OVC3. Our accelerator runs at 200 MHz and
DSPs run at 400 MHz of frequency, aided by our dual-data-rate DSP design.

The reason is that the maximum frequency of Xilinx’s DSP in our device variant, ZU3EG, is
400 MHz. We can run the DSP only either at the maximum (double) 400 MHz frequency or at the
baseline frequency of 200 MHz. Due to this constraint, we run our non-DSP parts of our FPGA
design at 200 MHz to simplify the clock domains of the overall accelerator and eliminate the use
of additional FIFOs for clock-domain crossing.

Figures 14(a) and 14(b) show the performance and mAP values of our FPGA designs across
different VGG16-SSD width models. With algorithm-hardware co-design and optimizations, we
could achieve up to 34.2 FPS for the 0.25% VGG16-SSD model. The implementation of the 0.5X
model achieves 9.60 FPS, with only 2% mAP degradation compared to that of the 1.0x VGG16-SSD
model.

For the MobileNet-V1 backbone network, we achieve up to 12.67 FPS. For the COCO dataset,
our implementation exhibits 1.9% mAP degradation compared to the FP32 model [19]. A prior
work [11] shows 0.2% higher mAP, but the model size of [11] (8.9 MB) was 2.8 larger than our
quantized network model (3.15 MB). The MobileNet-V1 with Pascal VOC dataset achieved mAP of
65.89%. While this is 9.21% lower than the state-of-the-art work in [19], note that FP32 precision
was used in [19] with larger input image size, which will introduce more computational complexity

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:20 H.-S. Suh et al.

Table 7. FPGA Resource Utilization for Implementations
of Different VGG16-SSD Width Models

e . Available
Resource Utilization in FPGA
\S;Etﬁbdel 1.0x | 0.5x | 0.25x
LUT 64,128 | 64,613 | 64,544 70,560
LUTRAM 14,032 | 14,155 | 14,153 20,880
FF 74,759 | 75,482 | 75,468 141,120
BRAM 184.5 119 102 216
DSP 263 263 263 360

Table 8. FPGA Resource Utilization for Implementations
of the MobileNet-V1 Model

Resource | Utilization | Available in FPGA
LUT 53,533 70,560
LUTRAM 2,065 28,800

FF 77,058 141,120
BRAM 205.50 216

DSP 264 360

to the entire network. On the other hand, in comparison to compressed network models, our work
achieved better energy efficiency in terms of FPS/W than [11] (2.6 FPS/W vs. 2.87 FPS/W) with a
small loss of 0.51% mAP.

The resource utilization for FPGA implementations of different VGG16-SSD width models is
reported in Table 7. Table 8 shows the resource utilization of FPGA implementation for MobileNet-
V1. In our FPGA design, we can adjust the ratio of distributed RAM and BRAM utilization for a
certain buffer (input/weight/output), which especially aided the 1.0x implementation to achieve
higher resource utilization and better performance with a limited amount of BRAM.

Furthermore, to fully utilize the buffer capacity in our accelerator, we fine-tuned and adjusted
Toy and Tof values for each convolution layer. This will enlarge the size of tiles when necessary,
ensuring that the buffers will be filled with data at all times and that the number DDR memory
accesses is minimized. Figure 15(b) shows the input buffer write latency reduction achieved by per-
layer Toy/Tof adjustment, where 2 to 4X latency reduction is shown for bottleneck layers such as
conv3_2 and conv4_2. Only the convolution layers for backbone CNN are shown in Figure 15(a),
since the SSD layers only consume <8% of the overall latency. Figure 16 shows the latency per
layer for our MobileNet-V1 implementation for both Pascal VOC and COCO datasets. Due to the
kernel size difference (3 X 3 vs. 1 X 1), the DWConv layer takes more time than the PWConv layer
due to intra-channel accumulation and multiplication operations in convolution. Figure 17 shows
several examples of drone detection results by our FPGA.

In Table 9, we compare our proposed hardware implementation with prior works that target the
same or similar UAV applications. Unfortunately, other works [22, 24, 25] only reported IoU val-
ues, but not the corresponding mAP values for drone-specific datsets. While Skynet [25] achieved
3.45 FPS/W for object detection, our 0.25X SSD achieved 14.24 FPS/W (4.1x higher) and 0.5%
SSD achieved 3.69 FPS/W (1.1x higher). Compared to [24], we achieve 2.2 to 3.1X better energy

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:21

8 ——Toy/Poy (per-layer Toy adjustment)
===Tof/Pof (per-layer Tof adjustment)
Toy=Poy, Tof=Pof

—a——a—a

2N | \

=

Ratio (Toy/Poy or ToflPof)
H

0
AN " AN ™ N M =N MO=—NMONMNON-“TN-«“™N
LI e R A I N A e) Ay O Bl A~ T * i IR IO B R O |
TTE N NO OO T TWOWLWLE SO O~ 00
> > > > > > 3> > 3> 23> 3> > > > > > > > >
c ccccecececececececc c cccc c
O O 00O OO O OO O O O0OO0 O 0 0 00 O
O O 0O0OO OO O O o o oo O O 0O 0O 0 ©

(a)
70
60 u Per-layer Toy/Tof adjustment
= Toy=Poy, Tof=Pof
50

o

Latency (ms)
N g B

0
10
0 :
AN " AN "N M= NM=NMONMNTAN N «~™«N
LI I L AR I N B A B B A R B~) L L L R
TTE NN MO OO T T T O W % O ONDINOWW
> > > > > > > 2> 2> 2> > > 2> > > > > > 2>
c cccccccc c c c C c Cc c c C ¢C
O 000 00O 0O 0O 0 0 0O 0 OO0 O 0 0 0 0O O
O 0O OO 0O OO0 O o o o o o O 0O 0O 0O 0o 0o
Layers
(b)

Fig. 15. VGG16-SSD optimization results. (a) Per-layer optimization of Tof/Pof and Toy/Poy. (b) Input buffer
write latency with/without Toy and Tof optimization.

efficiency (GOPS/W) for all three widths of SSD (1.0%, 0.5%, and 0.25X). For our 0.25X SSD model
implementation that achieves similar mAP as [24], our FPS/W is 4.88% higher than that of [24].

Table 10 shows the performance, energy efficiency, and mAP results for general object detection
from other mobile, edge, or FPGA devices. Among the prior works in Table 10, [10] reported the
most comprehensive results including throughput (GOPS), FPS, power consumption, and mAP for
the Pascal VOC dataset while using the same FPGA ZU3EG as our work.

While both [10] and our work used the same FPGA device and both used the MobileNet-V1
model, the input image size is higher for the MobileNet model in [10], which means that there are
more operations. On the other hand, [10] used lower 4/3-bit precision, while we employed 8-bit
precision with the UniPOT algorithm. In addition, [10] used ARM cores besides the FPGA device for
certain computing/control operations. This heterogeneous architecture of CPU and FPGA in [10]

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:22 H.-S. Suh et al.

mCOCO :PascalvOC

N o ©

o

(3]

H

Latency (ms)

N W

conv1/s2 -
conv1l dw/ s1

conv2/ s1
conv2 dw / s2

conv9 / s1

conv7 / s1
convi0 dw / s2

conv3/s1
conv3 dw / s1
conv4 / s1
conv4 dw / s2
conv5/ s1
conv5 dw / s1
conv6 / s1
conv6 dw / s2
conv8 dw / s1 x5
conv8/s1 x5
conv9 dw / s2
conv10/s1 |

Layers

Fig. 16. Layer-wise latency results of our MobileNet-V1 FPGA implementation for COCO and Pascal VOC.

Fig. 17. Drone detection results by FPGA with bounding boxes on images from the multi-drone dataset.

likely enhanced the throughput (GOPS) with further pipelining and helped achieve high GOPS/W,
whereas our work only used FPGA for the overall computation.

While achieving similar mAP for the Pascal VOC dataset, for other metrics of energy efficiency,

our work achieved 8.6% lower energy/image (J/image) and 10% higher FPS/W than those of [10]. In
other words, when we compare the energy on a frame basis, our work achieves a bit higher energy
efficiency (J/image and FPS/W) than [10]. The much higher GOPS/W value in [10] could have

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:23

Table 9. Comparison with Prior Object Detection Works for UAV Applications

[25] [24] Ours (0.25%) | Ours (0.5X) | Ours (1.0X)

Zynq Zynq Zynq Zynq
FPGA Platform zuseG | PN zuseg ZU3EG ZU3EG
Frequency (MHz) 214 143 200 200 200
Backbone CNN Skynet | VGG-16 VGG-16 VGG-16 VGG-16
Input image size 360x160 | 448x252 300x300 300300 300x300
Precision (Activation/Weight) | 9/11 bits | 8/8 bits 8/8 bits 8/8 bits 8/8 bits
Total # of OPs in CNN - 8.73 4.04 15.65 61.60
Avg. Performance (GOPS) - 104.42 137.97 150.24 157.83
Power (W) 7.26 41 24 2.6 2.0
Energy Efficiency (GOPS/W) - 25.5 57.5 57.8 78.9
Energy Efficiency (FPS/W) 3.45 2.92 14.24 3.69 1.28
FPS 25.05 11.96 34.18 9.60 2.56
mAP (multi-drone dataset) - - 76.2 83.9 88.4

been achieved due to the execution of a larger model that led to higher resource FPGA utilization.
However, at the end, frame-based energy or how much total energy it consumes to finish a given
task is more important, rather than the mere value of GOPS/W, as pointed out in [21].

In comparison with ARM Cortex-A53 processor-based implementation [1], our work achieves
8.7x higher FPS/W energy efficiency than [1] for the Pascal VOC dataset. Note that [1] used a very
small CNN model, which only used four convolution layers and three fully connected layers, and
also their input image size is very small (32 X 32). As a result, their custom CNN model only has
61.7M operations and thus exhibits much lower GOPS and GOPS/W.

To fully benefit from our proposed implementation, we can trade off performance and accuracy
to make the hardware best fit the application’s needs. Where the real-time detection of objects
is more important, we can deploy our 0.25X model algorithm to hardware to run it over 30 FPS,
which is enough to infer image frames from a video in real-time. On the other hand, if accuracy
is more important, we can use our 0.5X or 1.0X model to get the best accuracy within small edge
FPGA devices such as ZU3EG.

Table 10 shows the results of MobileNet-V1 with our proposed hardware design and comparison
to other FPGA works as well as commercial embedded/mobile hardware. Snapdragon and Nvidia’s
Jetson series use much higher operating frequency with higher power consumption. Also, higher
floating-point precision was used in these works, which cannot efficiently fit onto the small devices
like ZU3EG we used. Our MobileNet-V1 FPGA implementation for the COCO dataset achieves
4.9 FPS/W, which is ~1.9x higher than the prior FPGA works and commercial embedded/mobile
hardware.

5 CONCLUSION

In this work, we co-optimized algorithm and hardware for high-throughput and low-power drone
detection on resource-constrained FPGA devices. In mobile/edge devices, power consumption is
very limited due to the capacity of the battery and thus having a high energy efficiency with mar-
ginal/affordable mAP degradation is important. In this project, we propose the optimal mAP and
FPS tradeoft for less than 5W of energy consumption and compare our FPGA results with those
of the state-of-the-art works that deployed to the edge/mobile devices. Our proposed design satis-
fies both the on-chip and DSP resource limit and power constraint, without losing too much mAP
(0.51% for PascalVOC and 0.2% for COCO dataset compared to the state-of-the-art compressed
network model) for UAV-based multi-box object detection applications.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

33:24

H.-S. Suh et al.

Table 10. Comparison with Prior General Object Detection Works Using Mobile/Edge Platforms

Ours | Ours
[19] (2] [5] [10] (1] (VOC) | (COCO)
Platf Snapdragon | Nvidia Jetson | Nvidia Jetson Zynq Cortex-A53 | Zynq
attorm 845 AGX XAVIER | TX1 ZU3EG (Armv$-A) | ZU3EG
1.7/2.8G 1.2/2.265G

Frequency (Hz) (Boost) (Boost) ~1.91G 215M 1.2G 200M
Backbone CNN ThunderNet | MobileNet-V2 | Tinier-YOLO | MobileNet-V1 | Custom CNN | MobileNet-V1
Input image size
(VOC/COCO) 320/224 512 416 512 32 300 224
Precision . .
(Activation/Weight) FP32 FP32 - 4/3 bits FP32 8 bits
Total # of OPs
in CNN - - - 5.50G 61.7M 2.40G 1.21G
Avg. Performance
(OPS) - - 2.56B 202.8G 75.3M 17.44G | 15.27G
Power (W) - 10~30 ~10 6.9 3.7 2.54 2.57
Energy Efficiency - - - 0.383 3.03 035 | 020
(J/image)
Energy Efficiency
(GOPS/W) 29.4 0.02 6.87 5.94
Energy Efficiency
(FPS/W) 1.53 0.77~2.3 ~2.51 2.6 0.33 2.87 4.93
FPS 13.8 23 25.1 18 1.22 7.28 12.67
mAP (VOC) 75.1 73.0 65.7 66.4 72 65.89 -
mAP (COCO) 187 - 17.0 - - - 168

On the algorithm side, we employed a uniform and unified low-precision quantization scheme
termed UniPOT to achieve high mAP and simple hardware mapping. On the hardware side, we
performed comprehensive design space exploration to fully utilize the limited FPGA resources
and optimize throughput. We also employed dual-data-rate operations for DSPs to double the
throughput. Across three different widths of SSD models, we optimized and analyzed mAP, FPGA
hardware utilization, throughput, and energy efficiency. Our FPGA design achieves a high mAP of
88.42 on the drone dataset, together with a high energy efficiency of 79 GOPS/W and throughput
of 158 GOPS using the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version
3 (OVC3) platform.

REFERENCES
[1] Mohanad Abd Shehab, Ammar Al-Gizi, and Salah M. Swadi. 2021. Efficient real-time object detection based on con-

[2

E

[4

[5

G

—

]

[laav)

—_— =

volutional neural network. In 2021 International Conference on Applied and Theoretical Electricity (ICATE 21). IEEE,
1-5.

Yu-Chen Chiu, Chi-Yi Tsai, Mind-Da Ruan, Guan-Yu Shen, and Tsu-Tian Lee. 2020. Mobilenet-SSDv2: An improved
object detection model for embedded systems. In 2020 International Conference on System Science and Engineering
(ICSSE’20). IEEE, 1-5.

Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash Gopalakrishnan, Zhuo Wang, and Pierce
Chuang. 2019. Accurate and efficient 2-bit quantized neural networks. In Conference on Machine Learning and Systems
(MLSys’19).

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. 2021. RepVGG: Mak-
ing VGG-Style ConvNets great again. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’21).
13733-13742.

Wei Fang, Lin Wang, and Peiming Ren. 2019. Tinier-YOLO: A real-time object detection method for constrained envi-
ronments. [EEE Access 8 (2019), 1935-1944.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

Algorithm-hardware Co-optimization for Energy-efficient Drone Detection 33:25

[7] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and

Dmitry Kalenichenko. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only infer-

ence. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18). 2704-2713.

Ercan Kalali and Rene Van Leuken. 2021. Near-precise parameter approximation for multiple multiplications on a

single DSP block. IEEE Trans. Comput. 71, 9 (2021), 2036-2047.

Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper.

arXiv preprint arXiv:1806.08342 (2018).

Fanrong Li, Zitao Mo, Peisong Wang, Zejian Liu, Jiayun Zhang, Gang Li, Qinghao Hu, Xiangyu He, Cong Leng, Yang

Zhang, and Jian Cheng. 2019. A system-level solution for low-power object detection. In IEEE/CVF International Con-

ference on Computer Vision Workshops.

Yuhang Li, Xin Dong, and Wei Wang. 2019. Additive powers-of-two quantization: An efficient non-uniform discretiza-

tion for neural networks. In International Conference on Learning Representations (ICLR’19).

Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen Lin.

2020. Rotated binary neural network. Advances in Neural Information Processing Systems 33 (2020), 7474-7485.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.

2016. SSD: Single shot multibox detector. In European Conference on Computer Vision (ECCV’16). 21-37.

[14] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jaesun Seo. 2018. Optimizing the convolution operation to accelerate deep
neural networks on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 7 (2018), 1354-1367.

[15] Yufei Ma, Tu Zheng, Yu Cao, Sarma Vrudhula, and Jaesun Seo. 2018. Algorithm-hardware co-design of single shot de-
tector for fast object detection on FPGAs. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18).
1-8.

[16] Dong Nguyen, Daewoo Kim, and Jongeun Lee. 2017. Double MAC: Doubling the performance of convolutional neural
networks on modern FPGAs. In Design, Automation & Test in Europe Conference & Exhibition (DATE’17). IEEE, 890-893.

[17] Ty Nguyen, Ian D. Miller, Avi Cohen, Dinesh Thakur, Arjun Guru, Shashank Prasad, Camillo J. Taylor, Pratik Chaud-

hari, and Vijay Kumar. 2021. PennSyn2Real: Training object recognition models without human labeling. IEEE Robotics

and Automation Letters 6, 3 (2021), 5032—5039.

Eunhyeok Park and Sungjoo Yoo. 2020. PROFIT: A novel training method for sub-4-bit MobileNet models. In European

Conference on Computer Vision (ECCV’20). 430-446.

[19] Zheng Qin, Zeming Li, Zhaoning Zhang, Yiping Bao, Gang Yu, Yuxing Peng, and Jian Sun. 2019. ThunderNet: To-

wards real-time generic object detection on mobile devices. In Proceedings of the IEEE/CVF International Conference

on Computer Vision. 6718-6727.

Morgan Quigley, Kartik Mohta, Shreyas S. Shivakumar, Michael Watterson, Yash Mulgaonkar, Mikael Arguedas, Ke

Sun, Sikang Liu, Bernd Pfrommer, Vijay Kumar, and Camillo J. Taylor. 2018. The open vision computer: An integrated

sensing and compute system for mobile robots. CoRR abs/1809.07674 (2018). arXiv:1809.07674 http://arxiv.org/abs/

1809.07674.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. How to evaluate deep neural network processors:

TOPS/W (alone) considered harmful. IEEE Solid-State Circuits Magazine 12, 3 (2020), 28-41. https://doi.org/10.1109/

MSSC.2020.3002140

Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui, Dongliang Xie, and Yi Shan. 2019. A high-performance

CNN processor based on FPGA for MobileNets. In IEEE International Conference on Field Programmable Logic and

Applications (FPL’19). 136—143.

Xilinx. 2020. Product Guide of DPU (Deep Learning Processing Unit) IP. https://www.xilinx.com/support/

documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf.

Xiaowei Xu, Xinyi Zhang, Bei Yu, X. Sharon Hu, Christopher Rowen, Jingtong Hu, and Yiyu Shi. 2021. DAC-SDC low

power object detection challenge for UAV applications. IEEE Transactions on Pattern Analysis and Machine Intelligence

43, 2 (2021), 392-403.

Xiaofan Zhang, Cong Hao, Haoming Lu, Jiachen Li, Yuhong Li, Yuchen Fan, Kyle Rupnow, Jinjun Xiong, Thomas

Huang, Honghui Shi, et al. 2019. Skynet: A champion model for DAC-SDC on low power object detection. arXiv

preprint arXiv:1906.10327 (2019).

Yiren Zhao, Xitong Gao, Xuan Guo, Junyi Liu, Erwei Wang, Robert Mullins, Peter Y. K. Cheung, George Constantinides,

and Cheng-Zhong Xu. 2019. Automatic generation of multi-precision multi-arithmetic CNN accelerators for FPGAs.

In 2019 International Conference on Field-Programmable Technology (ICFPT’19). IEEE, 45-53.

— —
O =3
— [}

[10

=

[11

—

[12

—

(13

[t

(18

[t

[20

-

[21

—

[22

—

[23

—_

(24

=

[25

=

(26

—

Received 29 May 2022; revised 3 December 2022; accepted 27 January 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 33. Pub. date: May 2023.

http://arxiv.org/abs/1809.07674
http://arxiv.org/abs/1809.07674
https://doi.org/10.1109/MSSC.2020.3002140
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf

