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ABSTRACT

The dynamics of a soft particle suspended in a viscous fluid can be changed by the presence of an elastic boundary. Understanding the
mechanisms and dynamics of soft-soft surface interactions can provide valuable insights into many important research fields, including
biomedical engineering, soft robotics development, and materials science. This work investigates the anomalous transport properties of a
soft nanoparticle near a visco-elastic interface, where the particle consists of a polymer assembly in the form of a micelle and the interface is
represented by a lipid bilayer membrane. Mesoscopic simulations using a dissipative particle dynamics model are performed to examine the
impact of micelle’s proximity to the membrane on its Brownian motion. Two different sizes are considered, which correspond to ~10 — 20 nm
in physical units. The wavelengths typically seen by the largest micelle fall within the range of wavenumbers where the Helfrich model
captures fairly well the bilayer mechanical properties. Several independent simulations allowed us to compute the micelle trajectories during
an observation time smaller than the diffusive time scale (whose order of magnitude is similar to the membrane relaxation time of the largest
wavelengths), this time scale being hardly accessible by experiments. From the probability density function of the micelle normal position
with respect to the membrane, it is observed that the position remains close to the starting position during ~0.057; (where 7, corresponds to
the diffusion time), which allowed us to compare the negative excess of mean-square displacement (MSD) to existing theories. In that time
range, the MSD exhibits different behaviors along parallel and perpendicular directions. When the micelle is sufficiently close to the bilayer
(its initial distance from the bilayer equals approximately twice its gyration radius), the micelle motion becomes quickly subdiffusive in the
normal direction. Moreover, the temporal evolution of the micelle MSD excess in the perpendicular direction follows that of a nanoparticle
near an elastic membrane. However, in the parallel direction, the MSD excess is rather similar to that of a nanoparticle near a liquid interface.
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I. INTRODUCTION

Understanding soft interactions is important for engineering
new devices that should interact with biological systems, such as in
the biomedical and soft robotics fields. More particularly in biology,
endocytosis is one of the most important processes, where species
uptake by a living cell occurs through its plasma membrane,”* gov-
erned by complex biophysical and biochemical mechanisms.’ There
is a tremendous research effort on the development of drug car-
riers to vehicle medicines to targeted cells, where the carrier, a
hard (gold or silica) or a soft colloid (i.e., liposomes and polymer

micelles), should successfully approach the cell membrane and cross
it. There is a proof of the efficiency of some of these soft drug carri-
ers at the clinical level,” with a limited current understanding of the
rules for designing them. An exhaustive description of the soft(drug
carrier)-soft(cell boundary) interactions should include the study of
the dynamics along the interaction pathway. To simplify the prob-
lem, we study in this work a passive interaction of mechanical origin,
where electrical and chemical contributions are negligible.

The motion of small particles is controlled by thermal agitation
in the absence of interactions. Most of the investigations in the lit-
erature addressing Brownian motion of particles near an interface

J. Chem. Phys. 159, 244903 (2023); doi: 10.1063/5.0182499
Published under an exclusive license by AIP Publishing

159, 244903-1



The Journal

of Chemical Physics

considered rigid colloidal particles. It is well known that confine-
ment by neighboring interfaces alters particle thermal diffusion in
a fluid through the modification of particle mobility close to the
interface. Near a rigid wall, particle diffusion is decreased compared
to its thermal diffusion in an unbounded fluid due to the decrease
in particle mobility in both parallel and perpendicular directions
(with respect to the wall). This phenomenon was evidenced theoreti-
cally® and then experimentally near a plane wall”” and a cylindrical
wall.® However, if the interface is fluid-like, the diffusive behavior
depends on the viscosity of phases on both sides of the interface
(see a recent review by Villa et al.”). In case the viscosity of the sol-
vent where the particle is immersed is higher than the viscosity of
the fluid on the other side of the interface, the particle mobility in
the direction parallel to the interface increases with respect to the
unbounded counterpart, unlike the mobility in the perpendicular
direction, which is decreased.'” ' When the interface is membrane-
like, its bending resistance induces elastic energy storage that leads
the Brownian motion to depend on the history of the particle trajec-
tory."? It has been shown that this memory effect induces a change
in the diffusion motion in time and that the diffusion coefficient is
close to its value in the bulk at a short time while it decreases to
tend toward the diffusion coefficient near a hard wall at a long time
scale, going through a sub-diffusive regime at an intermediate time
range.'* Experiments carried out with diffusive particles (of micron
size) near GUV and cell membranes indicate a strong dependence of
particle mobility on the nature of the cell (macrophage, adenocarci-
noma cell, or epithelial), which is assumed to be associated with the
cell’s composition and its regulation of proteins and lipids inside the
cell or the membrane.'”

In the above-mentioned literature, the size of the colloidal par-
ticles investigated experimentally is of the order of a micron, which
corresponds to a spatial range accessible to optical measurements
(confocal microscopy, optical tweezers, and optical interference).
The present study investigates the Brownian motion of a soft parti-
cle near a soft interface at much smaller length scales inaccessible to
optical measurements; the particle size is few tens of nanometers, as
typically found in drug delivery applications. The boundary is mod-
eled as a lipid bilayer, representing a model biological membrane.
The soft nanoparticle (called micelle hereafter) is designed from the
self-assembly of amphiphilic molecules with sizes ~10-20 nm for its
potential to carry non-soluble drugs before being easily disintegrated
or eliminated by the organism after drug delivery is completed.
We use a numerical method accounting for molecular interactions,
including hydrophobic and hydrophilic forces, to investigate the
system dynamics at constant thermal energy.

The remainder of this paper is organized as follows: in Sec. II,
we first briefly introduce the numerical method and describe the
details of the micelle-bilayer system setup. Sections III and IV
characterize the mechanical properties of the lipid bilayer and the
diffusive motion of the micelle. Section V discusses the results of
the Brownian motion of the soft micelle near the fluctuating bilayer
membrane. Section VI provides conclusions.

Il. NUMERICAL MODEL
A. Mesoscopic simulations with DPD

Dissipative particle dynamics (DPD) is a coarse-grained molec-
ular dynamics (MD) simulation technique that is widely used to
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study mesoscopic complex fluid phenomena, which are otherwise
very difficult to study by the conventional all-atom MD method.'"”
Similar to the MD systems, a DPD model is based on the dynam-
ics of interacting particles, which are represented by coarse-grained
beads that interact via a set of pairwise forces, whose coarse graining
nature allows simulations of fluid systems on a longer time scale and
a larger length scale beyond the capability of MD. The time evolu-
tion of a DPD bead i with a unit mass of m; = 1 is governed by the
Newton’s equation of motion,'*

oy, mALEy (1)

where the total force F; on a DPD bead i comes from three non-
bonded pairwise interactions with its neighboring bead j within a
cutoff distance beyond which these interactions vanish. The pair-
wise interactions between DPD particles include a conservative force
(Fg) a dissipative force (Fg-), and a random force (Ffj),

Fi=Y (Ej+F)+E), )
J#i

F[C; = az’j(l - Vij/rc)i'iﬁ (3)

Fjj = —yyen(ry) (£ - Vi) s, 4

Ff{] = S,ij(rij)dt’I/ZG,jf,j, (5)

where aj; is the conservative force coefficient called the repulsion
parameter, r;; = |r;j| = |r; — r}| is the distance between particles i and
j»and . is the cutoff distance for pairwise interactions. f;; = r;; [ri jis
the unit vector pointing from particle j to particle i, and v;; = vi — v;
quantifies their velocity difference. dt is the time step for time inte-
gration of the equation of motion, and 8; is the Gaussian random
variable with a zero mean and unit variance. In addition, Vi is the
dissipative coefficient, and J;; sets the strength of the random force.

The conservative force is responsible for the static properties
of the DPD fluid, which determine the liquid compressibility and
solubility.'® Thus, the value of the repulsion parameter ay, for the
same type of particles can be determined by matching the compress-
ibility of the modeling fluid, while the mutual solubilities between
different beads are determined by the values of a,, for different
types of particles. In general, the Flory-Huggins y-parameter is lin-
ear with respect to the excess repulsion Aa, which is defined by
Aa = ayy — axx, where ay, represents the same type of beads and
axy stands for different types of beads.'® Setting repulsion parameters
small for same type beads and large for unlike beads will generate a
positive Flory-Huggins y-parameter, leading to phase separation.””

To have correct canonical distribution functions, the dissipa-
tive and random forces are related by satisfying the fluctuation
dissipation theorem in the form of Ref. 20,

8 = 2yiksT,  wp(ry) = wr(ry) = (1= ry/ra)’, (6)

where kg is the Boltzmann constant and T is the temperature.
wp and wg are weight functions for dissipative and random forces,
respectively. The exponent s changes the shape of the weight func-
tions and is modified to adjust fluid viscosity and diffusion in order
to have a reasonable value of the Schmidt number.”"”> These two
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non-conservative forces together act as a thermostat to maintain an
isothermal condition for the DPD fluid. This thermostat is achieved
through pairwise interactions and conserves both linear and angular
momentum, which leads to the correct description of hydrodynam-
ics.”? The cutoff radius r, of the dissipative and random forces is, in
general, equal to that of the conservative force . in the DPD model.
However, r4 can be set to larger values in order to increase the bead
momentum transfer with respect to their diffusion.

For bonded DPD particles, ie., polymers with a chain-like
structure, additional bond interactions should be included as well.
For example, a harmonic spring quadratic potential is computed by

Up = (1/2)ko(r - 10)*, 7)
Up = (1/2)k(6 - 60)%, (8)

where 7o and ) are the equilibrium lengths and angles and k;, and kg
are the spring constant and angular bending stiffness, respectively.

B. Simulated systems

The system setup consists of lipids self-assembled in a bilayer
and amphiphilic surfactant-like molecules self-assembled in micelles
freely moving in the solvent, as illustrated in Fig. 1 (the solvent is
not shown here for more clarity). Self-assembly is promoted by the
initial molecule configuration. The coarse-graining follows closely
that pioneered by Groot and Rabone’* and is used frequently in the
literature (see Ref. 25 for example). Each DPD bead represents a
volume of 904, Since the volume of a water molecule is approx-

imately 3047, every DPD bead represents three water molecules.
The number density in the simulations is set to p = 3. Consequently,
the characteristic interaction distance between two DPD beads
rc corresponds to the physical length-scale V/3 x 904" = 0.646 nm.
In addition, for the amphiphilic surfactant-like molecules, we

(X —

N o

FIG. 1. A snapshot of an A;B, micelle near a lipid bilayer from a DPD simula-
tion. The solvent is transparent. Hydrophobic beads are represented in red, and
hydrophilic beads are represented in cyan.
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FIG. 2. Coarse-graining of (a) lipid molecules and (b) A,B, monomeric molecules.

adopted the same coarse-graining rule, with each DPD bead repre-

senting a volume of 904%, which presumes that the density of the
whole system is close to that of water.

1. Lipid bilayers

The lipid bilayer was constructed from the assembly of the
molecules, such as the one displayed in Fig. 2. It is composed of
a polar head segment divided into three hydrophilic beads and
two tails formed by four hydrophobic beads each, connected by
the glycerol group (the bead e in Fig. 2). Three CH, atoms are
grouped together to form a hydrophobic t+ DPD bead. The clos-
est lipid molecules to the one considered here are the DLPC
(dilauroyl-sn-glycero-3-phosphocholine, with 12 carbon atoms) and
the DMPC (dimyristoyl-phosphatidylcholine, with 14 carbon atoms
per tail), the latter being more frequently studied in the literature on
lipid bilayers. The interaction coefficients a;; between hydrophobic
t, hydrophilic h, and water beads w, as well as the thermal energy
kpT, are chosen such that the lipid bilayer falls into the fluid phase,
according to the study of Kranenberg and Smit.”° Those coefficients
are summarized in Table L.

2. Micellar system

The micelle is made of amphiphilic chains with equal
hydrophobic and hydrophilic segments. The smallest micelle con-
sidered for this work is similar to a micelle formed of a nonionic
surfactant C,E¢. The corresponding coarse-graining leads to a chain
of four hydrophobic and four hydrophilic DPD beads. This molecule
will be called A,B, hereafter, where each B bead represents an
(CH,)s group and each A bead represents 1.5 ethylene oxide (EO)
groups (see Groot and Rabone” for more details). With respect to

TABLE 1. DPD beads are classified into three types: solvent beads (w), hydrophilic
beads (h, e, or A), and hydrophobic beads (t or B). In this work, the conservative
interaction rules for beads e, h, and A are identical, and the conservative interactions
for beads t and B are also identical.

a w h t

w 25 15 80
h 15 25 80
t 80 80 25
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the interaction coefficients a;j, the beads A and B are, respectively,
equivalent to & and t. This analogy reflects situations where the
solubility of the lipid chains is close to that of the surfactant-like
molecule in the solvent.

C. Simulation setup

The software LAMMPS is used to carry out simulations at con-
stant volume, number of beads, and thermal energy. The simulation
box is periodic in all directions. Ly, Ly, and L, denote the box dimen-
sions in the x, y, and z directions, respectively. These dimensions
will be marked explicitly for the different simulations carried out.
The water molecules fill the simulation box after the bilayer and/or
micelle molecule positions and orientations are initialized. The two
leaflets of the bilayer contain an equal number of lipid molecules.
These molecules are initially disposed parallel to the yz plane in a
way to promote their self-assembly in the form of a bilayer. The
micelle is formed with an aggregation number set to 200 for any
micelle size; the self-assembly is initially promoted by orienting the
hydrophobic segments of the chains toward the micelle center at
the beginning of the simulation. The micelle remains stable, with
no fragmentation events observed in the frame of the simulations
carried out for this work.

The simulation results are expressed in terms of length (r.),
time (r¢y/mo/ksT), and energy (kgT) in DPD units. The correspon-
dence between the simulation time unit and the physical time will be
given once the characteristic time scales are discussed in Sec. V. The
simulations carried out for this study cost around two million central
processing unit (CPU) hours (the most time consuming simulations
being those carried out for Sec. V).

D. Simulation parameters

In the simulations, we set the thermal energy to kzT = 0.8 and
the exponent in the weight function of the dissipative force to s = 0.5,
following Li et al’s work.”” A uniform random number genera-
tor has been used for this work, as it takes less CPU time than
the Gaussian random number generator, while no statistical dif-
ference was found between these two types of generators.”* As for
the bond springs, we set the linear stiffness to k; = 100, the equilib-
rium distance between connected beads to ry = 0.7, and the bending
stiffness to kg = 6.0. The equilibrium angles between two adja-
cent bonds are 89 = 180°, 059 = 90°, and 03¢ = 135°, as illustrated
in Fig. 2.

For the other parameters, two considered sets are summarized
in Table II. In the first one, called SET1 hereafter, standard DPD

TABLE II. SET1 and SET2 parameters, expressed in DPD units: thermal energy kg T,
exponent s used in Eq. (7), cutoff of the conservative force r¢, cutoff of the random
and dissipative forces rg, time step df, amplitude of the random force &, dynamic
viscosity #, and Schmidt number Sc (the viscosities and diffusion coefficients are
obtained from Li et al.'s work?7). The thermal energy is kg T = 0.8, and the exponent
of the weighting function is s = 0.5.

T T4 dt ) n Sc
SET1 1.0 1.0 0.01 3 1.7 7.5
SET2 1.0 1.3 0.005 5 16.2 443

ARTICLE pubs.aip.org/aip/jcp

parameters are used. The cutoff radius r. = 1 is identical for the con-
servative, dissipative, and random pairwise forces. The strength of
the random force is 8 = 3, and accordingly, y = 6?/2ks T = 5.625. The
time step is dt = 0.01. In another set of simulations called SET2, the
cutoff distance of the conservative force is maintained equal to 1.
However, the cutoff distance for the dissipative and random forces
is set to 1.3rc. The strength of the random force is § = 5, and cor-
respondingly, y = 15.625. The time step dt = 0.005 guarantees the
simulation stability.

Those parameters allowed for adjusting the diffusion coeffi-
cient and viscosity of the DPD model (a similar strategy has been
used, for instance, by Pieczywek et al.?®): the dynamic viscosity is
larger and the DPD bead diffusion is smaller in simulations based
on SET2 compared to the SET1. The ratio between the kinematic
viscosity and diffusion of the DPD beads leads to the characteristic
dimensionless Schmidt number Sc. The values of Sc corresponding
to SET1 and SET?2 parameters are included in Table II. Those values
are calculated theoretically following the work of Li et al.,”” assum-
ing a uniform pair bead distribution. One can also calculate, directly
from the numerical simulations, the fluid viscosity (obtained from
the Poiseuille flow profile of a DPD fluid submitted to constant body
force) and self-diffusion coefficient (obtained from the mean square
displacement of the DPD beads submitted to kgT). In that case,
the numerical values obtained with SET1 are # = 1.86 and D = 0.11,
leading to Sc = 5.6, whereas the numerical values obtained with SET2
are = 17.1 and D = 0.01, leading to Sc = 570. The discrepancies
between the numerical and theoretical values of # and D are of the
order of 10%. The Schmidt numbers suggest that in SET1 simula-
tions, the DPD fluid exhibits rather gas-like dynamics, whereas in
SET2 simulations, the DPD fluid exhibits liquid-like dynamics.

lil. BILAYER PROPERTIES

Lipid membranes belong to a special class of membranes that
can be easily deformed by external stress and also experience thermal
fluctuations that increase their configurational entropy. Depending
on the conditions (temperature, pressure, and hydration), a lipid
bilayer can go through a variety of phases. The phase of the bilayer
is also influenced by structural characteristics, such as head group
size and hydrophobic tail length. The parameters used in this study,
particularly the interaction coefficients and the thermal energy, lead
the lipid bilayer to behave as a fluid phase.”

The simulations are carried out with squared membranes in
order to promote the spatial symmetry of the membrane fluctua-
tions. The box dimensions in the y and z directions are L, = L, = L.
As the simulation box is periodic in the y and z directions, the value
of L sets the area per lipid molecule a, such that Nja/2 = L%, with
N; denoting the total number of lipid molecules in the bilayer (N,;/2
is the number of lipid molecules in one leaflet). In order to verify the
bilayer state, we calculated the bilayer thickness and its order para-
meter S. The bilayer thickness t, can be defined in different ways. In
our study, it is calculated from the average distance between the top
hydrophilic heads in the two leaflets. The bilayer thickness is found
tobe t;, = 6.50[r.] in simulations based on both SET1 and SET2. The
order parameter is given by

5o (3 coszgoc) - 1)’ ©)
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TABLE lIl. Summary of the bilayer mechanical properties obtained from numerical
simulations.

Ka [ksT/r?]

« [ksT] [Eq. (12)]  « [ksT] [Eq. (14)]

SET1 23.1 16.2 24.4
SET2 23.6 16.6 22.7

where « denotes the angle between the vector connecting the first
and last beads in the tail of a lipid molecule and the bilayer normal.
The brackets denote the ensemble average over the lipid molecules.
Asymptotically, the order parameter tends to 1 if the average lipid
tails are parallel to the normal to the bilayer surface, to —0.5 if they
are perpendicular, and to 0 if the tail orientation is random. In most
of the simulations carried out for this work, the order parameter is
found to be around 0.3, indicating that the bilayer behaves as a fluid.

A. Static properties

Next, the bilayer mechanical properties are calculated, partic-
ularly the surface tension, the area compressibility (or dilatation
modulus), and the bending rigidity. The results are summarized in
Table I1I. In atomistic simulations, the surface tension can be cal-
culated from the averaged difference between normal stress p, and
tangential stresses (p,, + pzz)/2 (with respect to the normal to the
interface),”’

1

UZP

/“,[ wx %(Pnyerz)]dV, (10)

where L? represents the membrane projected surface and V denotes
the volume of the simulation domain. In general, when the mem-
brane is not stretched and not subject to external potentials, it adopts
a tensionless state.”’ In the absence of external potential, the mem-
brane surface tension depends on the area per lipid molecule a. The
simulations are realized with two bilayer sizes: a smaller one with
N; = 3200 and a larger one with N; = 12 800. The corresponding box
size is (Lx, L, L) = (24.2,\/Nja/2, /Nla/Z)rf. Then, several simula-
tions are carried out with different areas per lipid molecule a. The
resulting time average surface tension is calculated in a steady state.
The results are displayed in Fig. 3.

Several key points in the interface mechanics can be highlighted
in Fig. 3. First, at a small area per lipid, the surface tension becomes
negative due to membrane buckling, as in the simulations in
Ref. 31. In that case, the surface tension depends on the membrane’s
finite size. This feature is inherent to numerical simulations of lipid
bilayers with periodic boundaries.”” Beyond the area per molecule
that leads to the tensionless state, when the membrane is stretched,
the surface tension increases due to the excess in free energy as
hydrophobic chains are relatively more exposed to the solvent. The
increase in the area per molecule is linear (which leads to mem-
brane apparent elasticity) up to a certain limit where the membrane
reaches plastic yielding until it breaks at large areas (beyond the limit
shown in Fig. 3). In the linear regime, the slope allows us to calcu-
late the area compressibility K4 defined in the frame of the Helfrich
model for membranes as

o Ky (27 %0) (11)
ag
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FIG. 3. Bilayer surface tension as a function of the area per lipid for two differ-
ent sets of parameters, SET1 (red color) and SET2 (blue color). The curves are
obtained with two bilayer sizes, the smallest containing 3200 lipids and the largest
containing 12 800 lipids. The surface tension is in DPD units (kg T/r?).

where ay corresponds to the area per lipid that leads to vanishing
surface tension. In Fig. 3, ao is estimated to be around 1.38[1’3],
which would correspond to 57.6A°, which is close to what can

be found from measurements on phosphocholine lipids in fluid

state, between 56 and 70A2, depending on the hydrophobic chain
length.”"*

Figure 3 also suggests that the surface tension and the area com-
pressibility are almost independent of the DPD parameters used in
both SET1 and SET2 (except in the buckling region, which is not
the case of interest for this study) and that the domain size has no
significant influence on the slope in the plots. Therefore, K4, cal-
culated from the slope of the surface tension curve in the linear
regime, is not significantly dependent on the simulation parameters:
Ka =23.1[kpT/r?] and 23.6[kzT/r?] for SET1 and SET2, respec-
tively, with the results being very close for both bilayer sizes. Those
values of the area compressibility are close to available experimental
measurements for DMPC bilayers (K4 = 23.8[ksT/r?] in the work
of Rawicz et al.,”> which corresponds to 0.234 N/m) and to avail-
able numerical simulations (Ks = 21.66[ksT/r?] in the work of Gao
et al.’® and K4 = 23[kpT/r?] in the work of Li et al.”?).

One of the most significant mechanical characteristics of the
lipid bilayer is its bending rigidity. The amount of energy needed
to change the membrane’s normal curvature into a different out-of-
plane curvature is known as the bending modulus of the lipid bilayer
and will be called .

In the frame of the elastic theory, a lipid bilayer is assumed to
behave as an elastic sheet, where the bending rigidity is related to the
area compressibility as follows:*

t2
=Ky-L, 12
k=Ko (12)

where t, is the bilayer thickness. Based on the calculated values of
Ka and t,, Eq. (12) leads to x = 16.2[kT] (»6.6 x 1072 J at room
temperature) for SET1 and 16.6[kT] (~6.8 x 1072 J) for SET2.
Another way of calculating the bending rigidity « in particle-
based models starts with the Helfrich Hamiltonian. For membranes
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that deviate only weakly from the plane, the position of the mid-
plane (the plane between both leaflets) can be described by the
Monge parameterization h(r); the Helfrich Hamiltonian is then
H=05[;[x(V*h)* +6(Vh)* + U]dS + const.” " The contribu-
tion of external potentials denoted by U will be neglected in the
following ways: When h(r) is expanded in a Fourier series, assuming
that the Fourier modes h; decouple, applying the Fourier trans-
form of the Helfrich Hamiltonian and the equipartition theorem,
the equilibrium power spectrum of the height fluctuations can be
written as

ksT

2 —
<|hq‘ )* Lz(xq4 +O'q2). (13)

The bracket (-) represents time averaging in each simulation. When
the bilayer is tensionless, i.e., o is negligible, the bending rigidity can
be calculated from the relation

2 ksT
(|hq|") = LZ(Kq4)' (14)

The simulations used to calculate (|k,|*) contain N; = 12 800
lipid molecules, and the box size is (Lx, Ly, L) ~ (93[rc])’. The
calculated interfacial tension (in DPD units) is o = 0.02[ksT/r?]
for SET1 and 0.05[kpT/r?] for SET2, respectively. At the post-
processing level, a two-dimensional linear mesh with 32 x 32 grid
points is defined over the area of the bilayer. In every snapshot,
the bilayer height is calculated at each grid point h(y,z) by the
average normal coordinate of the surrounding hydrophobic beads.
Next on that grid, the height fluctuations are calculated with respect
to the average bilayer height as well as the corresponding Fourier
transform.

The power spectrum of the height fluctuations is displayed in
Fig. 4. Note that periodic boundary conditions lead to a maximum
wavelength equal to L. In the limit of small wavenumbers (high
wavelengths), (|h,|*) scales like g~* and x can be obtained from a
simple fit, whereas the description of the lipid bilayer by the Helfrich

10 ——
< SETI
>  SET2
kK.T/kq'
103} B "9 ]
oo
<
10}
&
ﬁ{}‘f}b
1075 ; ; ; §8.0is s s
0.4 06 08 1 12

a(r)

FIG. 4. Fluctuation spectrum (hg) of the tensionless bilayer as a function of
wavenumber (q). The line represents the theoretical fit [using Eq. (14)], the red
triangles represent the calculated spectrum from the SET1 simulations, and the
blue triangles represent the SET2 simulations.
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model breaks at high wavenumbers. In Eq. (14), the bending rigid-
ity « is calculated in the limit of small wavenumbers, provided that
the membrane surface tension is small: x ~ 24.4kgT and 22.7kgT for
SET1 and SET?2 simulations, respectively.

To end this section, we compare our results on bending rigid-
ity with values from the literature, which are numerous and suffer
from scattering in some situations. It should be noted that experi-
mental results usually depend on the measurement technique, and
numerical results can depend on the size of the studied mem-
branes, as reported in the review by Bochicchio and Monticelli.*’
For DMPC bilayers at room temperature, ¥ was found to be in
the range 29-34[kgT] using shape fluctuations optical analysis in
the experiments of Nagle et al.,’" whereas x = 6.9 x 107 J (which
corresponds to 16.8[kpT]),” using the micropipette pressurization
technique. Other experiments based on x-ray scattering carried out
by Tristram—Nagle et al.* on DLPC bilayers led to x = 5.5 x 1072 |
(which corresponds to 13.4[kpT]) at room temperature. As for the
bending rigidity from numerical simulations (based either on sur-
face undulation or on the membrane buckling technique), one can
find x ~ 24-36[kgT] at room temperature obtained from atomistic*’
or coarse-grained simulations.** The values of x measured from
numerical simulations tend to increase with the box size and the
measurement time, while ¥ measured from thermal undulation anal-
ysis depends on whether lipid tilt is taken into account or not when
calculating «.*’ The values of bending rigidity found from area com-
pressibility are smaller than those mentioned above. In numerical
simulations of DMPC bilayers, Gao et al.*° found « = 8[kgT] (with
K4 = 21.7[kpT/r?]), whereas Li et al?® found « = 11[kgT] (with
K4 = 23[ksT/r?]). These values are smaller than the ones found in
the present work for two possible reasons: the bending rigidity cal-
culated from the undulation method [Eq. (14)] increases with the
box size (for instance, the membrane surface in Gao et al.’s work™® is
33 times smaller than that in the present work), and the bending
rigidity calculated from the compressibility method [Eq. (12)] is
strongly influenced by the way the thickness is evaluated.*

B. Dynamic properties

The rate of undulation relaxation is the main dynamic property
that we have investigated. Since this quantity requires the measure-
ment of the friction coefficient of the two monolayers sliding one
past the other, we will first start by calculating this quantity. For
this purpose, simulations (with SET1 parameters) were realized with
N; = 3200 and a box size equal to (Lx,L,L) = 46.6°r>. The fluid in
the box undergoes shear flow, with the average vorticity being par-
allel to the membrane plane. The shear was imposed by moving two
slabs at x = 0 and x = Ly at equal and opposite velocities Vy,, in the
y direction. Figure 5(a) shows a typical velocity profile at a steady
state, obtained by averaging the velocity beads in slabs parallel to the
membrane. One can clearly observe the discontinuity in the slope
of the velocity profile dV, /dx between the solvent region, where the
shear rate deviates slightly from the one that the solvent would expe-
rience in the absence of the bilayer, and the smaller slope in the
bilayer, which corresponds to a much stronger resistance to shear
deformation. We define vs, the slip velocity between the solvent and
the bilayer, from the intersection between the two linear approxi-
mations of the velocity profiles in both flow regions, as indicated
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FIG. 5. Bilayer under shear flow. (a) Velocity profile V, (x) from DPD simulations
displayed in blue plus symbols. The lines are obtained from linear approximations
of the velocity profile in the bulk and the bilayer. The inset shows the shear stress
along the x direction. (b) Friction coefficient b[\/ka T/rf] of the two monolayers
sliding one past the other as a function of the imposed shear flow 2V, /L[ rc/7].

in Fig. 5(a). The friction coefficient follows from the shear stress
Txy exerted by the solvent on the top and bottom monolayers, using

b= "2 (15)
Vs

The shear stress 7y, has been computed by averaging the shear
stress experienced by the DPD beads in slabs parallel to the mem-
brane (the domain has been divided into ~100 slabs along x). As
one expects in the frame of momentum conservation along the flow
direction in the Couette flow, the shear stress is constant along
x in the solvent phase; it slightly fluctuates across the bilayer around
the average value. Within the fictitious walls, the measured stress
is insignificant, and the values were thus excluded from the aver-
age. The friction coefficient calculated with Eq. (15) is displayed in
Fig. 5(b) as a function of the shear rate. The average value of the
friction coefficient is b ~ 5[\/mksT/r.], which would correspond
to ~4 x 10° Ns/m® at room temperature. This value, like others
obtained in the past by molecular simulations of lipid bilayers,”*°
is typically smaller by two orders of magnitude compared to experi-
mental values for DMPC bilayers.””*® This difference is attributed to
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the fact that coarse-graining leads to the speed-up of the dynamics in
general, in addition to the fact that the small size of the membrane in
numerical simulations reduces the macroscopic apparent roughness
induced by large scale undulations.

Next, the dynamics of bilayer thermal undulations was stud-
ied by considering the undulation mode autocorrelation. Seifert and
Langer” have shown that b manifests itself through the decay of
the autocorrelation function of the undulatory modes. They have
solved the overdamped equations of motion of a bilayer coupled
with those of the solvent. The bilayer consists of two layers of bend-
ing rigidity x and elastic modulus k;,, surrounded by the solvent
of viscosity #. Coupled sets of equations of motion for the height
and projected density difference (between the two lipid layers) were
written by Seifert and Langer, considering that modes with differ-
ent wave-vectors evolve independently. The slowest relaxation rates
that emerge from their analysis depend on the mode wavenumber,
compared to a critical wavenumber, gc = (2nk»)/(b&) = 0.073[r;*].
Following Shkulipa et al.,”’ for g > q,, the slowest relaxation rate is
Prs1 ® k;—b"qz occurs from the two layers slipping one on top of the
other, whereas for g < g, the slowest relaxation rate is y,;; ~ ﬁ‘f
falls into the bending regime. The Onsager regression hypothesis is
usually invoked to describe the autocorrelations of height around
equilibrium, C(q,t) = (hq(t)h; (0))/|h3| ~ e ", considering only
the dominant decay.

We attempted to validate the decay in time of the undulation
autocorrelation function. For this, we carried out numerical sim-
ulations where the bilayer normal displacement field h(y,z,t) was
saved frequently in time. SET1 parameters were used for this test. As
for the calculation of the bending rigidity, h(y, z, t) was constructed
on a (32 x 32) grid, with the normal displacement averaged over
the x positions of the beads in the lipid tails that belong to a grid
element. Since the relaxation time of the different modes increases
significantly with the wavenumber, we carried out a simulation dur-
ing 600007 and time sampling equal to 7 to analyze modes (1,0)
(g =0.068r-") and (1,1) (g = 0.095r; "), and a last simulation during
15007 and time sampling every 0.027 to analyze modes (2,0), (2,1),
and (3,0) (¢ = 0.135, 0.151, and 0203771, respectively). The undu-
lation autocorrelation function for the different modes is displayed
in Fig. 6, together with C(g,t) = e””*"". The autocorrelation func-
tion for the three largest wavenumbers follows an exponential decay
~ g’t, unlike the smallest wavenumbers. In a short time, the height
fluctuations of the smallest wavenumbers decay exponentially like
~ g°t, as expected by the theory. The coefficient in front of ¢t that
leads to the best estimate (see Fig. 6) is equal to 1/5 x x/(4#) instead
of k/(4n). The fact that the relaxation time is slower than what is
expected from the theory of Siefert and Langer is probably associated
with the bilayer inertia in the simulations.”’

IV. MICELLE SIZE AND SELF-DIFFUSION

Simulations with three particle (or micelle) sizes were car-
ried out, considering different chain lengths for A4B4, AsBs, and
AgBg molecules, respectively, using both SET1 and SET2 parameters.
The micelle radius of gyration Rg informs us about the micelle
compactness associated with hydrophobic and hydrophilic atom
distribution. Experimentally, it can be inferred from small-angle
neutron scattering (SANS) and small-angle x-ray scattering (SAXS)
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measurements. In numerical simulations, the instantaneous radius
of gyration is calculated using

1 | X N
Rg:N ;\xi—xc|, (16)

where x. denotes the center of mass and x; refers to the position
of a hydrophobic or hydrophilic bead i in the polymer molecules.
The time average value is included in Tables IV and V. The micelle
has another important dimension to be considered: the hydrody-
namic radius (Rj,) associated with the micelle diffusive motion. The
hydrodynamic radius (also called Stokes radius in the literature) of
an object corresponds to the radius of a hard sphere that diffuses at
the same rate as that object. The relation between R, and the micelle
diffusion coefficient can be written in terms of the Stokes-Einstein
relation,

 ksT
0" 67‘[71Rh’

17)

where Dy refers to the isotropic diffusion coefficient in the bulk
and 7 corresponds to the solvent dynamic viscosity. Experimen-
tally, the diffusion coefficient and, subsequently, the hydrodynamic
radius are often measured using dynamic light scattering (DLS).
Similarly, in the present simulations, the diffusion coefficient Dy is

TABLE V. Simulation results using SET1 parameters: micelle radius of gyration
Rg[rc], diffusion coefficient D[ /ppp ], hydrodynamic radius Rs[rc], and the ratio
between the box length and the micelle size L/2R.

R L
Rg Dy Ry, R—i 2R,
A4By 4.50 0.0029 8.72 0.44 8.89
AsBs 5.30 0.0021 12.03 0.48 8.96
AgBy 6.40 0.0015 16.85 0.38 7.42
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TABLE V. Idem Table |V for simulations using SET2 parameters.

R L
Rg Dy Ry, ﬁ 3K,
A4By 4.44 0.000 34 7.72 0.63 9.00
AsBs 5.30 0.000 27 9.73 0.50 8.96
AgBy 6.42 0.00018 14.59 0.51 7.40

calculated from the slope of the mean square displacement (MSD)
of the micelle motion at “long times” using

Dy = L lim AMSD)

1
2t—oc0 (it (18)

where we consider the MSD of the center-of-mass of the micelle,
which is defined as X =Y mx;/ Y m;. MSD is computed from
the Einstein formula MSD(7) = (|x(t + 7) — x(¢)]*) = NT'SN, |x(t:
+7) — x(t;)|%, with N being the number of samples. To maximize
N for a stable measure of MSD, we use a sliding time window”?
with a duration time to average over all possible lag-times 7 < Tmax,
where Trmay is the duration of the trajectory obtained from numerical
simulations.

The micelle MSD is computed within a simulation domain suf-
ficiently large in order to minimize the interaction of the micelle
with its images through the periodic boundaries. For each micelle,
the MSD is averaged over the three spatial directions (isotropic dif-
fusive motion) and over six independent trajectories. The temporal
evolution of the corresponding ensemble-averaged MSD is displayed
in Figs. 7 and 8 using SET1 and SET?2, respectively. At a short time
scale (up to 100 DPD time units), the micelle experiences a ballis-
tic motion where the MSD increases as £. Beyond that time, the
MSD increases linearly in time, with good signal convergence in
the time interval [200-1000] DPD time units, which corresponds
approximately to [0.02-0.1]7,; in simulations based on SET1 and
[0.003-0.02] 74, in simulations based on SET2 [where 7; denotes the
micelle diffusion time scale, see Eq. (19)]. The diffusion coefficient
is estimated from the linear increase in the MSD in this time range
using Eq. (18).
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FIG. 7. Evolution of MSD [r?] in time [zppp] for different micelle sizes from
simulations using SET1 parameters.
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The diffusion coefficients are included in Tables IV and V for
different micelle radii and simulation parameters. Those tables also
contain the hydrodynamic radius, calculated from Eq. (17), which is
not a geometric quantity but corresponds to the radius of the sphere
that experiences similar self-diffusion under thermal agitation. The
results show that the ratio between the gyration radius and hydro-
dynamic radius of the micelle is smaller than 0.75, corresponding
to a filled sphere, and closer to that of a core-shell object.”” It is
interesting, although, to compare the hydrodynamic radius to the
radius of the fictitious sphere that would be obtained if the polymer
chains were concentric and straight with the bond at equilibrium.
In that case, the chain length would have been equal to the num-
ber of elements multiplied by the bonds equilibrium length (set to
0.7r; in the present simulations). The radius of that object would
be equal to 5.67, 8.4r. and 12.67, for A4By, A¢Bs, and A9Bo, respec-
tively, falling between the gyration and hydrodynamic radius. This
indicates that the micelle has a larger response time to thermal agi-
tation, even when compared to a full sphere of radius equal to the
fictitious “spiky” sphere. It is not surprising since the mobility of an
object decreases with its permeability with respect to the solvent, as if
aslip exists between the object surface and the ambient fluid (discon-
tinuity in the momentum transfer at the object interface). Note that
Ry, is systematically larger in SET1 simulations compared to SET2,
suggesting that the apparent slip is stronger in a gas-like medium
than in a liquid-like medium.

V. MICELLE BROWNIAN MOTION NEAR
THE LIPID BILAYER

A. Time scales at play
The time a micelle takes to diffuse over a surface equal to its size
squared can be estimated based on the Stokes-Einstein relation,
3
_ 671R;,
kT’

T4 (19)
where Ry, refers to the hydrodynamic radius of the micelle. Close
to a soft membrane, the particle motion is subject to memory
effects associated with membrane undulations and solvent medi-
ated hydrodynamic interactions. The modification of the mean-
square displacement of a hard nanoparticle in the presence of
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an elastic membrane has been studied theoretically by Bickel,"
where the bilayer bending rigidity was accounted for, and later
by Daddi-Moussa-Ider et al. (DMI),”* where membrane elasticity
(stretching and shear) was also considered. In Sec. V D, we will
summarize the results of the DMI theory and compare the time evo-
lution of the MSD obtained numerically with the theoretical one
in Sec. V C. Two additional time scales, associated with the mem-
brane properties and the solvent viscosity, emerge. For over-damped
membrane surface waves and accounting for velocity continuity and
stress jump, two time scales appear in the mobility of a particle
located at a distance xo near the membrane, one associated with
bending,

_4nxg

T, (20)

K
and another time scale associated with the membrane resistance to
shear and area dilatation, which can be written as

_ 619

T
s K.

21
where K; is the dynamic elastic shear modulus, as written in the
theoretical work of DML>* Unlike red blood cells, in lipid bilay-
ers, the static elastic shear modulus is negligible. However, the
dynamic shear modulus can be different from zero at high fre-
quencies, especially when complex interactions take place, and its
order of magnitude is about a hundred times smaller than the elas-
tic dilatation modulus,””° i.e., Ks ~# K4/100. Thus, in the frame of
our simulations, Ts < T}, and therefore, viscoelastic effects on the
particle motion in the parallel direction are weaker than in the per-
pendicular direction. It should be noted that the ratio between the
micelle diffusion and membrane relaxation time scales is indepen-
dent of the fluid viscosity. As the values of the bending rigidity
obtained from both SET1 and SET2 simulations are close, the ratio
74/ Ty is close in both simulations, and it ranges roughly between
1 and 100, with xo ranging between five and two times the particle
radius of gyration, respectively.

At this point, we can give more information about the DPD
time scale and its correspondence with physical time. In the DPD
simulations, the time scale associated with the bead thermal motion
can be written as Tppp = re\/m / k,T. Based on the coarse-graining

system, one DPD time unit is thus equivalent to 2.67 x 1072 s at
room temperature. Consequently, the diffusion coefficient of the
A4By4 micelle obtained from simulations with SET1 parameters, i.e.,
D =2.9x10"*[r?/tppp] corresponds to 4.5 x 107'® m*/s, whereas
the diffusion coefficient from simulations with SET2 parameters,
i.e, D =3.4x107*[r!/tppp] corresponds to 5.3 x 107" m?/s. The
latter value agrees with typical diffusion coefficients measured with
surfactant micelles (such as Ci2Es) in aqueous solutions.’”

Thus, simulations with SET2 parameters allow for the correct
capture of micelle diffusion on the one hand and the solvent Schmidt
number on the other. We can conclude that, among both sets of
parameters, SET2 would be more convenient to capture the system
dynamics correctly. Yet, 7,/T}, is close in both sets of simulations
(the viscosity drops out in the ratio), so we expect that the relative
influence of the membrane on the micelle diffusion would be fairly
well captured by the simulations with SET1 parameters. We chose
to carry out the following simulations with SET1 parameters since
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TABLE VI. Initial distance of the micelle with respect to the membrane midplane
(expressed in terms of the gyration radius of each micelle) X and Xof , and the asso-
ciated ratio between the time scale of viscous relaxation of membrane fluctuations at
the micelle position T, and the diffusion time scale 4.

X[R)  XJR]  Tlexg/t Tolggf
A4By 2.5 5.34 0.01 0.12
AgBgy 1.87 3.75 0.002 0.016

they are significantly cheaper from a computational point of view.
Indeed, the diffusion time scale is about ten times smaller in SET1
than in SET2 simulations, and the time step should be twice smaller
with SET2 parameters to enhance computational stability.

B. Trajectories

As discussed above, we examine the Brownian motion of a
micelle near a lipid bilayer using simulations of type SET1 and
with two sizes, i.e., A4Bs and A9Bg micelles. The lipid bilayer in the
simulations contained 12 800 lipid molecules. The simulations were
carried out in a cubic box with (L, Ly, L;) = (93r.)>. The average
surface tension of the lipid bilayer calculated a posteriori in each
simulation is equal to 0.06[kgT/r?]. The corresponding capillary
length scale is I, = \/K/_G ~ 20r.. In order to examine the impact of
its distance to the membrane, the micelle was initially placed at two
different positions with respect to the bilayer midplane: Xj and X({ ,
which refer to positions more or less close to the membrane surface.
Those positions, expressed in terms of the micelle radius of gyration,
are included in Table V1.

Figure 9 shows a typical trajectory of the AgBy micelle near the
membrane. Note that here and in the following, the position along
x is calculated with respect to the membrane midplane. This figure
was recorded during 7 = 0.057,, with the micelle center of the mass
position being recorded every DPD time unit, which corresponds
to ~5 x 107%7,. The trajectory contains a clear signature of Brown-
ian motion. The probability density function (PDF) of the micelle
position along the normal direction was then calculated over an
ensemble of 16 trajectories. The PDF is displayed in Fig. 10 for both
A4B; and AgBs placed at Xg, from 16 independent trajectories. This

4.5

X/R

FIG. 9. 3D trajectory of micelle AgBg near a bilayer (at X7).
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FIG. 10. PDF of the micelle position along x (calculated with respect to the mem-
brane midplane) during (a) 7 ~ 0.0574 and (b) 7 ~ 0.174 simulation times. The
position is scaled by the radius of gyration Rgy. The solid and dashed black lines
correspond to AgBg and A4B;, respectively, with the vertical solid and dashed lines
indicating the corresponding initial position X7. The blue curve in (b) is obtained
with A4By during 7 ~ 0.374 simulation time.

figure shows that the micelle center of mass deviates slightly from
X{ but remains close to it during 7 = 0.0574 [panel (a)]. After a time
7 = 0.174, the PDF remains skewed, peaking near X, but micelle
AgBy spans a wider range of normal positions. Panel (b) shows that
A4B4 remains close to its initial position for a longer time compared
to AgBo. This information will be used during the analysis of the
mean-square displacement.

C. Mean-square displacement and scaling exponent

From the micelle center of mass recorded in time, we calcu-
lated the MSD separately in parallel and perpendicular directions.
Different simulations were carried out starting from two different

positions, X{j and X({ , and for different micelle sizes, A4B4 and A¢Bs.
For each initial position and micelle size, the MSD was calculated
from an ensemble average over 16 independent simulations. The
MSD curves are plotted in Fig. 11 using the logarithmic scale. In
this figure, the time is scaled by the diffusion time scale 7, calcu-
lated from Eq. (19), which is independent of the micelle position
and the membrane fluctuations. In a short time, an almost quadratic
dependence over time can be observed. At longer times, the MSD
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FIG. 11. Evolution of the MSD in time (scaled by z4) on a log-log scale for different
micelle sizes and initial positions. The red and black lines correspond to the MSD
in the parallel and perpendicular directions, respectively. The quadratic and linear
trends are shown in light green and blue colors, respectively.

temporal evolution becomes close to linear, especially in the parallel
direction, which indicates that the Brownian motion is fairly diffu-
sive in this direction during the measured time range, which allows
for estimation of a diffusion coefficient.

For further analysis, it is also insightful to compare the mea-
surement time with characteristic time scales associated with the
membrane resistance to deformation. In principle, the relaxation
time scale of the largest wavelength 7, = 47L;/ is larger than the dif-
fusion time: 7, ~ 8.57; for A4B4 and 7, ~ 1.27, for A9By. Thus, our
measurements are carried out during short times compared to 7,.
For this reason, we will scale the time by the bending time T}, from
Eq. (20), where the characteristic length is the distance between the
particle center and the membrane. The bending-to-diffusive time
scale ratio T,/7,; corresponding to our simulations is included in
Table VI. By construction, T, is proportional (i) to the third power of
the separation distance xo and (ii) to the ratio /x (such as the relax-
ation time 7,). However, it does not take into account the particle’s
finite size compared to its distance to the membrane.

The scaling exponent «a; = %ﬂsn) calculated both in paral-
lel and perpendicular directions, is displayed in Fig. 12. a; - 2 is
characteristic of ballistic motion, whereas «; — 1 is characteristic of
diffusive behavior. Our results indicate two trends in the intermedi-
ate time range: in the parallel direction, the scaling exponent tends to

level off near 1 for both Xjj and Xof . However, in the normal direc-
tion, the scaling exponent clearly decreases below 1 only when the
particle is initially placed at X. Although exact values of this expo-
nent cannot be extracted from our data due to the limited number of
available trajectories, the quasi-plateau remains close to 0.9 when the
number of trajectories considered to calculate this exponent is varied
(40 trajectories were carried out with AgBy for this aim). Moreover,
the transition to subdiffusive motion occurs after a time ¢ close to
the bending time T). This is more clear when the micelle is placed at
X{ since Ty, is much smaller than the simulation time in that case.
Note that since we used the sliding time window technique to cal-
culate the MSD and the associated scaling exponent, the statistical
convergence becomes weaker over a longer period of time, which
leads to large fluctuations of the scaling exponent.
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FIG. 12. Scaling exponent of the micelle MSD as a function of time (see the
definition in the text) in the parallel direction (a) and the perpendicular direction
(b). The time is scaled by the bending time T, included in Table VI. The curves
are obtained by averaging over 16 trajectories, except AgBg@X7', which is obtained
from 40 trajectories.

Figures 13 and 14 display a lin-lin plot of the temporal evo-
lution of the MSD of A4By and A¢By micelles, respectively, while
scaling the time with 7. In each figure, panel (a) displays the MSD
very close to the membrane (at X{), whereas panel (b) shows the
MSD at a slightly larger distance, (Xof ). At first glance, the MSD
plots deviate from those of the isolated micelle at X{, reflecting
the fact that the micelle has experienced hydrodynamic interactions
with the membrane during the observation time scale. However,

the MSD plots at Xg remain close to those of the micelle in the
solvent. This suggests weak hydrodynamic interactions with the
membrane, both directly and through the box periodic boundaries
(in the normal direction) during the observation time range.
Attime ¢t << T}, the particle does not “feel” the membrane pres-
ence, as first suggested by the analysis of Bickel'® considering a
Brownian particle near a fluid membrane. However, at t > T}, the
particle motion becomes independent of the elastic properties of the
membrane, as if the particle is moving close to a non-deformable
interface. The deviation of the MSD curve at the closer and farther
positions can be interpreted in light of the theoretical conclusion of
Bickel. In the measurement time range, the significant difference in
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FIG. 13. MSD of the A4B4 micelle near the lipid bilayer. The top panel (a) corre-
sponds to particle distance from the membrane equal to X", whereas the bottom

panel (b) corresponds to XO’ . Lines with (resp. without) symbols correspond to the
MSD in the parallel (resp. perpendicular) direction. The black color with sold lines
indicates numerical results. The red curves are obtained from Egs. (22) and (23),
using the theory of DMI's work,>* with x = 30[kg T] being the membrane bending
rigidity and K» = 18[kgT/r.] being the area dilatation taken from the numerical
results on the bilayer mechanical properties. Using C = 100, this leads the area
strain modulus (which has not been measured directly) to be of the same order as
the surface tension ~0.2[kgT/r?]. The vertical line in panel (b) indicates the time
of viscous relaxation of membrane fluctuations at the initial particle position. This
time tends to zero in panel (a), and thus, it is not shown there.

the dynamics at xo = X and xo = Xof is due to the time scale required
for the particle to feel the membrane presence in addition to the
change in particle mobility due to the membrane proximity. T, esti-
mated at the initial micelle position is indicated by vertical lines in
Figs. 13(b) and 14(b) (it is not indicated in panels (a) because T/ 74
is very small when x = X). In addition, for the sake of comparison,
Figs. 13 and 14 include the curves in red from the theory of DMI
(that will be explained further in Sec. V' D). One does not neces-
sarily expect perfect matching in view of the differences in system
nature, i.e., freely moving soft micelles in the simulations vs trapped
solid particles in the theory and elastic membranes vs fluid inter-
faces. Nevertheless, at the closest separation distance Xg, the MSD
curves from the DMI theory follow a trend similar to the MSD curves
from the numerical simulations. Note that the theoretical MSDs do
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FIG. 14. MSD of the AgBy micelle near the lipid bilayer. The top panel (a) corre-
sponds to particle distance from the membrane equal to X', whereas the bottom

panel (b) corresponds to Xof. The data are visualized in the same way as in
Fig. 13.

not change significantly when the area compressibility K4 is varied
by 10% that is the typical error in the estimation of K4 from the
simulations.

D. MSD excess

The MSD negative excess A expresses the deviation of the MSD
of a Brownian particle with respect to the MSD corresponding to the
particle’s diffusive motion in the bulk (far from any boundary). In
view of the anisotropy of the motion near the membrane, we define
the MSD excess separately in the normal and parallel directions with
respect to the membrane as follows:

MSD;

=1-A,(1), 22

Dot (1) (22)
MSD, MSD

) 2 - = =1-Ap(10), (23)
ot 2Dt

where MSD; = ((x(t) — x0)*), MSD, = {(y(t) - y0)*), and MSD,
= ((2(t) = 20)?), with brackets referring to an ensemble average.
The MSD excess depends on the relative distance xo/R and on
dimensionless time, where R denotes the particle radius. There are
three known limits in the literature for a Brownian particle near an
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interface. First, near a hard wall, the MSD excess of a Brownian par-
ticle can be written at the leading order in R/x, following Happel
and Brenner” as
Awull _ 25 wall _ 25 (24)
T 8x
Second, the MSD negative excess corresponding to a Brownian
particle near a liquid interface (referred to with the superscript LL)
was derived at the leading order in R/xo by Lee et al.,'’

w_ 3R w_15R

===, - ) 25
732" T T 16x0 (25)

The third limit corresponds to the motion of a nanoparticle near
a visco-elastic membrane. Assuming an infinitely large membrane
that exhibits fluctuations associated with the motion of a nearby
nano-particle (the membrane thermal undulations are neglected),
negligible inertial effects, and a small change in the particle posi-
tion compared to its distance xo with respect to the membrane,
DMI* calculated the negative excess of the particle MSD near the
membrane, both in parallel and perpendicular directions. In each
direction, this MSD excess is equal to the sum of the strain and
bending contributions, written as follows:

3 R7(3B+21)

Brs(T) = YWY 26
J_,S( ) 16 xo 2(B+T)2 ( )
15 R )
Al,h(TJ.,b) = @; arctan Ti{;’ -7
0 TL,b
2 23
(1) 27)
27+ 3B 4B) 4B
A= 28 Qr+3B)(5t+4B) 4B (1+1)
| 64 x (B+1) . B
1
——61n(1+z) , 28)
T 2
A ( ) 3 R Ti,/hz + ZTH,h + 9Tﬁ)/hz +6
1e3Te) = 355 1/2 17272
32 xo T (1+ 0 )
- in(1+7f) (29)
e )|

Tlb

The constant B=2/(1+ C) depends on C, the ratio between
the area compressibility and shear modulus of the membrane.
There are three dimensionless times that appear in the expres-
sions of the A functions, ie, 7=t/Ts, 7|5 = (5/2)(t/Ts), and
7,5 = (97/4)(t/Ty). The time scale separation accounts for the
difference in the relaxation time associated with membrane bend-
ing, resistance to shear, and area dilatation. Bending resistance
influences particle diffusion mainly in the perpendicular direction,
whereas shear resistance influences the particle displacement rather
in parallel direction.

Figure 15 shows the transient evolution of the MSD negative
excess [Egs. (22) and (23)] from simulations carried out with the
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0 10 20 30

FIG. 15. Temporal evolution of A, the MSD excess as defined in Egs. (22) and (23),
obtained for micelle initial position X, (a) in the perpendicular direction and (b) in
the parallel direction. The time is scaled by the bending time T, whose value is
indicated in Table V1. Lines correspond to micelle A4Bs, and symbols correspond to
AgBy. The black and red colors refer, respectively, to the present work and the the-
oretical prediction of DMI>* (including both strain and bending contributions). The
constant curves correspond to particle Brownian motion near a non-deformable
solid interface (green color) and a liquid-liquid interface (blue color). The yellow
shaded area indicates scattering when the number of trajectories is varied between
15 and 40.

micelles A4B4 and AgBo initially placed at Xg. Since the micelle is
freely moving, its motion is expected to be diffusive as t - co. In
this work, the interpretation of the deviation of the micelle Brow-
nian motion near the bilayer from the diffusive motion in the bulk
is limited to a relatively short time scale, compared with the diffu-
sive time scale (and also 7). The probability density functions in
Fig. 10 suggest that micelles A4B, and AgBy remain relatively close to
their initial positions during a simulation time of ~0.17,; and 0.057,
respectively. Thus, in this time range, it is possible to compare the
MSD excess with the theories, which are all developed at a constant
distance xo between the particle and the interface.

The limits corresponding to a particle near a non-deformable
interface [Egs. (24) and (25)] and a particle near an elastic mem-
brane [Eqgs. (26)-(29)] are also displayed in Fig. 15. Let us discuss
those limits before comparing them with the simulations. Due to

ADMI N Awall

membrane elasticity, at long time but since the ratio
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between the area compressibility and the shear modulus is large
(a feature of lipid bilayers), the convergence of AP! toward the
wall limit is achieved beyond the current measurement time. The
red curves calculated with C = 100 tend toward the green asymp-
tote after O(107,) in the perpendicular direction and after O(z,) in
the parallel direction (far beyond the maximum time in this figure).
If the bilayer is supported by a solid wall, the Brownian motion of
a nearby nanoparticle tends to NG quite quickly as shown by the
experiments of Benavides-Parra.”® However, if the bilayer undergoes
thermal undulation in the solvent and considering only the bilayer
bending ri§idity, Bickel'” has shown that A would theoretically con-
verge to A" as t — oo (the bilayer is indeed a fluid interface) if the
separation distance between the particle and the bilayer is larger than
the membrane correlation length (due to an external potential for
instance).

Back to the simulation results, the MSD excess in the per-
pendicular direction is larger than that in the parallel direction, as
expected. The temporal evolution of the MSD excess is similar for
both micelles when the time is scaled by the bending time T. At
t - 0, A starts from 1 in the simulations, since the MSD is equal
to 0 at the first instant. At short times, A decreases since the MSD
varies such as a power law with a scaling exponent « > 1. This is
different from the DMI theory, where the starting point is the diffu-
sive motion. A, increases with time, starting from ¢ ~ T}, where the
motion becomes subdiffusive. The MSD excess closely follows the
DMI theory in the perpendicular direction (the yellow region shows
the scattering when the number of trajectories is varied between
15 and 40 for the largest micelle). Thus, we conclude that bilayer
bending rigidity plays a dominant role in terms of the modifica-
tion of micelle mobility in that direction. However, in the parallel
direction, the simulations and the DMI theory seem to tend toward
different limits. This observation is particularly true for the largest
micelle, since A~ A‘LL, and most likely, it is associated with the
negligible shear modulus of the lipid bilayer in the simulations. A
substantial amount of computer resources is required in order to
quantify the shift between the MSD excess of the smallest and largest
micelles and to determine the role associated with the micelle finite
size with respect to the bilayer characteristic length or with the soft
nature of those nano-particles.

VI. CONCLUSION

Mesoscopic simulations were used to investigate the Brown-
ian motion of a soft nanoparticle (micelle made from monomer
assembly) of few tens of nanometers close to a soft interface (con-
stituted of a lipid bilayer). The membrane’s mechanical properties,
particularly its bending rigidity, agree with the data available in the
literature on DMPC lipid bilayers. After characterizing the particle
diffusive motion in the bulk and the bilayer mechanical properties,
the motion of the micelle was investigated for two positions near
the bilayer and for two micelle sizes whose hydrodynamic diameters
were around 2.5 and 5 times the membrane thickness, correspond-
ing to ~10 and 20 nm, respectively. Apart from the membrane length
(set by the box size) and the estimated capillary length (associated
with the very small but finite surface tension), the membrane has no
other correlation length.

The particle trajectories were measured at different distances
xo from the membrane, with a measurement time smaller than the
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particle diffusion time scale so that the particle remains relatively
close to its initial position. The numerical results obtained with two
particle sizes suggest that (i) the micelle dynamics depends on the
separation distance between the micelle and the membrane, (ii) the
motion is subdiffusive only in the direction perpendicular to the
membrane, and (iii) the MSD excess corresponding to the micelle
Brownian motion tends to different limits in the parallel and per-
pendicular directions. The subdiffusive motion observed close to
the membrane has some implications, for instance, in drug delivery
applications. Preceding the endocytosis mechanism, the subdiffusive
motion can lead to an increase in the intake time scale, or said dif-
ferently, the number of successful attempts to approach the surface
(that can be predicted in the frame of a Fokker-Planck approach,
for instance) can be significantly lowered compared to the isotropic
diffusive motion situation.”

The results of this study were obtained in the particular sit-
uation where the particle diffusion time scale is comparable with
(or larger than) the membrane relaxation time. They were carried
out at time scales that are hardly accessible to experimental mea-
surements (the diffusion time of a 10 nm particle is of the order of
0.1 us), and in that sense, they can provide valuable insights into the
rapid dynamics of such small objects. In terms of the perspectives of
the present work, a quantitative model that rationalizes the effect of
micelle size and softness as well as the membrane mechanical prop-
erties requires a more significant amount of data from independent
trajectories.
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