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Industry 4.0 drives exponential growth in the amount of operational data collected in fac-
tories. These data are commonly distributed and stored in different business units or coop-
erative companies. Such data-rich environments increase the likelihood of cyber attacks,
privacy breaches, and security violations. Also, this poses significant challenges on analyt-
ical computing on sensitive data that are distributed among different business units. To fill
this gap, this article presents a novel privacy-preserving framework to enable federated
learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage
Sfully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate
encrypted results that, when decrypted, match the results of mathematical operations per-
formed on the plaintexts. Multilayer encryption and privacy protection reduce the likelihood
of data breaches while maintaining the prediction performance of analytical models. Exper-
imental results in real-world case studies show that the proposed framework yields superior
performance to reduce the risk of cyber attacks and harness siloed data for smart manufac-
turing. [DOL: 10.1115/1.4065571]
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1 Introduction

The last decade has witnessed a significant increase in the devel-
opment and deployment of industry 4.0 technologies. There are
more than 6 billion connected devices proactively asking for
support in 2018 [1]. Pervasive sensing in the manufacturing indus-
try has resulted in a significant surge in data generation and accumu-
lation. According to a report from International Data Corporation,
the manufacturing sector accounted for the highest share of data
in 2018, amounting to approximately 3584 Exabytes, and the man-
ufacturing industry is expected to produce as much as about 22.5
Zettabytes of data by the year 2025 [2]. Commonly, these data
are distributed and stored in different business units or cooperative
companies due to the interconnected collaboration in the global
supply chain. By leveraging analytical techniques, organizations
can make more informed decisions based on data such as manufac-
turing sharing economy and resource planning [3]. In other words,
data-driven intelligence is indispensable for the realization of smart
manufacturing and has become a key enabler to increase manufac-
turing competitiveness [4].

However, distributed data-rich environments increase the risk of
cyber attacks, privacy breaches, and security violations. It is
reported that more than 90% of organizations, such as those in
the manufacturing, healthcare, or transportation industries, have
experienced at least one major cyber attack in the past 2 years [5].
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In the manufacturing sector, data breaches often lead to severe
implications. For example, confidential designs, robust process
parameters, or proprietary manufacturing settings are considered
as core assets to gain competitive advantages by a company. If
such data are breached, it will undermine a company’s innovative
strategies and bring significant risks to expose sensitive information
to competitors. As a result, competitors can use a smaller invest-
ment to replicate advanced manufacturing processes or innovative
product designs. Consequently, such breaches represent not just a
loss of intellectual property but also a significant setback to a com-
pany’s competitive position and future growth prospects.

Traditionally, sensing data are collected from different business
units and then gathered at a centralized location to develop analyt-
ical models. Data ownerships are segregated. Data collected by dif-
ferent business units maintain a distinctive level of data privacy,
governed by their respective data management policies. Many
stakeholders hesitate and/or decline to communicate raw data for
centralized analytics. This reluctance stems from concerns that
when large amounts of data are integrated from every independent
data owner, the likelihood of privacy breaches also increases.
Therefore, a new question emerges, i.e., how to perform analytical
computing on siloed datasets from segregated ownerships while
maintaining data privacy?

This article presents a novel privacy-preserving framework that
enables federated learning on encrypted data stored and distributed
in different locations for smart manufacturing. This research
includes two key components: (1) Distributed learning: It is prefer-
able to maintain distributed storage while developing an analytical
model. In the event of a privacy breach at one location, this allows
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for the protection of data stored in other locations. Therefore, dis-
tributed learning enables businesses to protect the privacy of their
data and reduce the risk of data theft. (2) Computation on encrypted
data: Encryption is a crucial step in enhancing the protection of data
privacy and reducing the risk of unauthorized access and theft of
sensitive information. Specifically, we leverage fully homomorphic
encryption (FHE) to facilitate computations on encrypted data,
yielding encrypted results that, upon decryption, align with the
results obtained from mathematical operations performed on the
unencrypted data.

First, we introduce FHE to protect data privacy and empower
computations on encrypted data. Second, we design a federated
learning framework on encrypted data so that each factory does
not need to communicate raw data with others. Third, the proposed
methodology is evaluated and validated with a real-world case
study to predict the energy consumption of the machining
process. Experimental results show that the proposed privacy-
preserving framework increases the protection of data privacy
while maintaining the performance of predictive models.

The rest of the article is organized as follows. Section 2 reviews
the research background, while the proposed privacy-preserving
framework, including federated learning, FHE method, and infer-
ence of predictive model on encrypted data, is presented in Sec. 3.
Section 4 discusses the real-world case study. Section 5 presents the
experimental results. Finally, the concluding remarks are presented
in Sec. 6.

2 Research Background

2.1 Data Privacy. Modern manufacturing enterprises are now
characterized by complex integration of equipment, processes, and
facilities, all of which generate vast amounts of data. This is largely
due to the widespread adoption of sensing technologies. Digital
twin [6], parallel computing, and network analytics [7] are increas-
ingly employed to derive data-driven intelligence, which promises
to revolutionize decision-making processes. In fact, data become
a key asset in boosting the competitiveness of manufacturing oper-
ations. For example, Yang et al. leveraged a large amount of sensing
data to design the new six-sigma quality control of additive manu-
facturing [8]. Kan and Yang developed a new dynamic network
approach for image-guided monitoring of ultraprecision machining
and biomanufacturing processes [9]. Nonetheless, most of the exist-
ing works focus more on a centralized way to analyze the data for
manufacturing intelligence. Although the centralized approach pro-
vides convenient access to a shared pool of data, it brings forth sig-
nificant concerns regarding data privacy, hindering the involved
parties to share raw data.

Therefore, data breaches have become a major concern. For
example, according to Verizon’s 2018 report, the number of secur-
ity incidents and data breaches exceeded 53,000 and 2,000, respec-
tively. Notably, the manufacturing sector contributed 536 security
incidents and 71 data breaches to this total [10]. In addition, as
per 2016 California Data Breach Report, Target, a prominent
retailer ranked eighth in the United States, experienced a breach
of credit card data in 2013 through a third-party vendor. This
breach led to the unauthorized disclosure of credit card information
of 7.5 million customers [11]. Governments gradually consider data
privacy as an important issue, such as California Consumer Privacy
Act [12] in the United States and General Data Protection Regula-
tion [13] in the European Union. Moreover, the protection of data
privacy at edge devices in the industrial Internet of things has
been viewed as a key challenge in recent years [14]. Recently, a
variety of innovative privacy-preserving methods have been devel-
oped. For example, Krall et al. designed a new mosaic gradient per-
turbation approach to preserve the privacy of predictive models and
demonstrated the effectiveness of privacy protection against model
inversion attacks with healthcare datasets and case studies [15,16].
Lee et al. designed a new neuron perturbation approach to preserve
the privacy of neural network models that are often employed in
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data analytics to improve the smartness of manufacturing systems
[17]. Hu et al. presented a privacy-preserving analytical model
that predicts the energy consumption of machines toward the reali-
zation of a smart and sustainable manufacturing system [18].

Currently, smart manufacturing tends to face significant chal-
lenges regarding data privacy. Conventional analytical models
mainly rely on centralized aggregation and storage of data, which
increase the likelihood of data breaches. Therefore, business units
often have privacy concerns pertinent to the share of raw data,
posing challenges to achieve collective decision-making. Although
privacy-preserving methods fueled increasing interest in manufac-
turing, few, if any, previous investigations have considered the ana-
lytical computing on encrypted data. There are different encryption
techniques available in the state of the art, e.g., advanced encryption
standard (AES). Nonetheless, traditional encryption techniques
do not support computing directly on encrypted data, but rather
require the encrypted data to be decrypted first before analytical
computing. As such, the level of privacy protection becomes weaker
after decryption.

2.2 Homomorphic Encryption. Homomorphic encryption
(HE) is a cryptographic scheme that allows the evaluation of an
arbitrary arithmetic circuit on encrypted data without decryption.
This concept was proposed in 1978 [19]. In the early stages, homo-
morphic cryptography only supports addition or multiplication. In
2009, Gentry put forth the first fully homomorphic encryption
approach, which was based on the concept of ideal lattices [20].
However, Cao et al. showed that the scheme presented by Gentry
is not efficient and cannot accommodate decimal operations [21].

Therefore, in 2017, Cheon et al. presented an approximate homo-
morphic encryption method known as CKKS [22]. This method
greatly increased the computing effectiveness of floating-point
values, attaining homomorphic encryption’s optimal efficiency in
analytical applications. Moreover, Cheon et al. enhanced the effi-
ciency of the CKKS scheme by utilizing the residual framework
as an optimization tool [23]. Their implementation exhibited perfor-
mance benefits, achieving speed-up improvements of 17.3, 6.4, and
8.3 times for encryption, constant multiplication, and homomorphic
multiplication, respectively. In the field of manufacturing, Krall
et al. proposed an innovative distributed cryptosystem that inte-
grates Paillier cryptography with the alternating direction method
of multipliers for distributed learning and analytics on encrypted
data, which is demonstrated with an experimental study for manu-
facturing resource planning [24].

However, very little has been done to integrate FHE with feder-
ated learning for privacy-preserving analytics in current manufac-
turing practices. Most of the existing federated learning
techniques focus more on the distributed learning and model
update [25,26], but are less concerned about data privacy and ana-
Iytical computing on encrypted data. There is an urgent need to
investigate FHE-enabled federated learning in the context of
smart manufacturing for the protection of data privacy.

3 Research Methodology

As shown in Fig. 1, this article consists of four key components
to develop the proposed privacy-preserving framework for feder-
ated learning in smart manufacturing. (1) Segregated data owner-
ship: We separate the data ownership among independent entities
to build a privacy boundary during collaboration in the context of
smart manufacturing. (2) Computation on encrypted data: The sen-
sitive data are designed to be encrypted by FHE to simultaneously
enhance data privacy protection and enable computational opera-
tions on the encrypted data. (3) Federated learning: The further
development of the analytical model is decentralized to eliminate
the need of centralized data storage and model learning. (4)
Privacy protection: A privacy-preserving framework is designed
to integrate FHE and federated learning and mitigate the probability
of data breaches.
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3.1 Manufacturing Data Ownership

3.1.1 Distributed Manufacturing. A finished product is com-
posed of countless parts from various manufacturers that are
located in different geographical areas. For example, the chair of
an airplane can be produced in Asia, while the engine is manufac-
tured in America. Each unit specializes in making a specific compo-
nent. A single manufacturer will not be able to produce all
components of a finished product effectively and efficiently. Dis-
tributed manufacturing involves producing goods across a
network of locations rather than in a single facility. A global
supply chain can source raw materials and components from
various countries, assemble products in different locations, and
then ship finished products to customers worldwide [24]. This
offers competitive advantages by leveraging specialized expertise,
accessing lower costs, and tapping into various advantages
offered by different regions. To make a commercially successful
product, therefore, manufacturers begin to cooperate together.

However, the risk of data breaches increases when collaborating
and sharing sensitive data across multiple units and/or facilities.
These manufacturing facilities are often independent, meaning
that the data gathered by manufacturers are owned individually.
Sensitive data cannot be communicated with others so as to
prevent data breaches. This consideration can lead to a loss of
trust between facilities, making collaborative learning and analytics
a challenge. If sensitive data are hacked, many business units can be
affected. This situation will create a barrier to collaboration and
hinder effective information exchange, potentially leading to
reduced efficiency and missed opportunities.

Hence, if a federated and privacy-preserving framework is real-
ized among various factories, the performance benefits of smart
manufacturing can be fully unleashed. Therefore, there is an
urgent need to expand the use of data and advanced operational
modeling practices to realize the full economic and social benefits
of digitalization. Smart manufacturing solutions are vital for manu-
facturers of all sizes and for plants participating in various supply
chains. Democratization will lead to a harmonized manufacturing
IT environment, enabling performance improvements in every
part of the enterprise. However, despite the collaborative efforts
among manufacturers, the ownership of data is partitioned.

3.1.2  Segregated Versus Aggregated Data Ownership. A man-
ufacturing unit or organization can structure, analyze, and interpret
its collected data to extract some useful information for decision-
making. These data, which are assumed distinct forms based on
the situation, can be categorized into two different ownerships: seg-
regated data ownership and aggregated data ownership.
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e Segregated data ownership: It implies that data are owned and
controlled by individual entities or organizations in isolation.
Each business unit maintains ownership of its data and is
responsible for managing its usage, sharing, and security.

e Aggregated data ownership: Multiple business units collec-
tively own and manage a dataset that has been combined
from various sources. In this context, ownership might not
be concentrated in a single business unit but rather distributed
among business units that have provided data for the
aggregation.

In the context of the worldwide supply chain network, individual
manufacturers presently maintain ownership of distinct datasets
in isolation, thereby constituting a segregated data ownership. How-
ever, due to concerns about data privacy, many manufacturers are
reluctant to communicate their sensitive data during collaboration.
Thus, the segregated data ownership calls on the design and devel-
opment of a privacy-preserving framework for data analytics.

Figure 2 depicts the proposed privacy-preserving framework. In
each of K units or factories, sensors are installed in factories’
machinery to capture data such as energy usage. These data have
been designated for the purpose of supporting the collaborative
decision-making. To avoid data breaches, we design three layers
of protection mechanisms in the proposed framework. First, data
ownership is segregated in the layer 1 protection. Raw and unen-
crypted data belong to the individual owner. In other words, manu-
facturing operations and machine settings are physically isolated.
Next, the layer 2 protection will encrypt the raw data by FHE.
Privacy boundaries are established for data across different facto-
ries. Finally, layer 3 protection will drive the model development
into each factory. This distributed learning approach eliminates
the need to store encrypted data in a centralized location.

3.2 Computation on Encrypted Data. Cryptography is
aimed at concealing and ensuring the security of data by encrypting
data into a concealed form. The history of encryption can be traced
back to ancient cultures such as Egypt, Greece, and Rome, where
encryption was utilized for religious and military purposes. One
of the earliest recorded forms of encryption is Caesar Box, which
dates back to approximately 100 BC. The evolution of cryptography
has been ongoing, and cryptography remains an indispensable tool
for maintaining data privacy in the modern era.

As shown in Fig. 3(«a), Julius Caesar gave his field commanders
the order to launch an attack at noon, and his adversary could poten-
tially have this information if one of his messages was intercepted.
To avoid information leakage, each letter of his message is
shifted three letters to the left, encrypting the order as
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“XQQXZHXQKLLN.” This encryption method is currently viewed
as symmetric encryption because the same key is used for both
encryption and decryption. The plain texts are encrypted by
shifting three letters to the left, and the cipher texts are decrypted by
shifting three letters to the right. Compared to symmetric encryption,
asymmetric encryption is designed to increase data protection. As
shown in Fig. 3(b), asymmetric encryption has two different keys,
namely, the public key and the private key. The public key encrypts
the raw data, while the private key decrypts the encrypted data.
Notably, the encrypted data cannot be decrypted by the public key.
However, these conventional encryption methods are limited by
their scope and focused primarily on protecting sensitive data from
external cyber attacks. In other words, encrypted data cannot be
used for computation because mathematical operations on
encrypted data do not yield the same results as when performed
on unencrypted data. Therefore, we propose data encryption by
the FHE method, which facilitates computations on encrypted data.
As shown in Fig. 4, each factory owns its data independently so
that there is a privacy boundary among factories. Factory 1’s dataset
is structured as matrices [X, Y], where X represents the set of inde-
pendent variables and Y is the set of measured performance out-
comes in real-world manufacturing process. First, factory 1 uses

its public key I~C(l) to encrypt the raw data x and y into x, and y,
by the FHE method, respectively. Notably, these keys are generated
and saved on their own local proxy servers. Next, the computation
function F(x,, y.) = x, + y. can be performed directly. When utiliz-
ing the private key K" to decrypt the result of x, + y,, it will be
equal to x+y. On the other hand, factory k also has a dataset
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[x/, y'] and plans to dp(,glultiplication with encrypted. In the begin-
ning, its public key K is generated to encrypt the data x’ and y’
into x}, and y), respectively. Next, factory k can execute the compu-
tation function F(x), y,) =x, - y,. In the end, this encrypted result
can be decrypted by private key K®, and the result will be x' - y.

In this article, we first generate a pair of keys, private key K® and
public key INC(k for each factory k, based on ring learning with error
[27]. The cyclotomic polynomial ring R, constitutes a subset of the
cyclotomic polynomials, exhibiting an isomorphism with its roots.
The basic settings of FHE algorithm are as follows:

pr— Computing Function F(:) d—
F(xe, ye) Fixg' ve')

b=

we
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(%o ¥e')
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F N
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Fig. 4 FHE in smart manufacturing
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Parameters: s* and a® e Multiplicative homomorphism: On the other hand, factory k

Private key generation: K® = (1, s®), where s¥ € R,.

Public key generation: I~C(k) = (P, a®), where a® e Ry eis
error with uniform distribution, and 5® = —a® . s® 4+ ¢.
Encryption: This pair of keys allows the factory k to encrypt
raw data as follows:

%= 0+KY=(x—a® s¥ +e a®)=(coc) (1)

where x, represents the encrypted data and x represents the raw
data.

Decryption: When the encrypted data are decrypted by factory
k, the decryption function is as follows:

X=co+c ~s(k)=(x—a(k)~s(k)+e)+a(k)-s(k)=x+ezx
2)

where X represents the estimated value of x,. Notably, factory k
does not exactly obtain the original data x but x with some
noise e. If e is small enough, then the decryption of x, will
be close to the original x. After encryption, the raw data x
are hidden in ¢y, with a the mask -a® -s®. To remove
a® . s®, we can use ¢, which only stores a®), and combine
it with the private key K® to obtain the decryption, which is
x+e.

The properties of FHE encryption are shown as follows.

Additive homomorphism: Factory k collects x and y, and it
plans to do computation with the third party. To avoid data
breaches, factory k encrypts the collected data as x, and y,
as follows:

T =xe=(cg, ¢i)s  T(y)=ye =(cp, ¢}) 3)
where J(-) represents the encryption function. Hence, the
addition function is defined as follows:

FHEua = +ye = (¢, ¢) + (¢, ) = (¢ + ¢ ¢f +¢))

“
When FHE,, is decrypted by using K®,

J(FHE,4) = e+ (cf+ei)- s®
=(cg +c7 - sP) + (cf +¢f -sP) Q)
=(x+e)+(y+e) mx+y

has raw data x and plans to perform multiplication by any
real number ¢, which is not a sensitive value and does not
need to be encrypted. First, the raw data x are encrypted as
(cg» ci)- The multiplication function can be defined as follows:

FHE,y = x, - t=(cy - t, ¢{ - 1) (6)

Hence, when factory k decrypts FHE,,,; by using KX©, the
equation will be shown as follows.

J(FHE ) =1-cj +1-cf - s®
=t-(c6‘+clx-s(k)) )
=tx+e)=t-x+t-exix

Moreover, if both data, x and y, in the multiplication function
are sensitive, the factory k needs to encrypt both of them as x,
and y,. Hence, the multiplication function is defined as
follows.

J(FHEmu) = T (x) - T(3e)
=(cy+ci- s®y. (e +¢f - sy
=cy )+ (el +ef-es® +ef e s®?
—dy+d 5P +dy - s @®)

where dy is (cg - ¢f). dy is (¢ - ¢ + ¢f - ¢3), and dp is (c{ - ¢}).
Notably, J(-) typically comprises a pair of polynomials;
however, in the case of J(FHEmu), it is now evident that
three polynomials are involved. Therefore, relinearization
ReLin(-) [23], as depicted in Eq. (9), ensures that the dimen-

sion of J| (FHE ;) remains constrained within 2.
(dy, dy) = ReLin(FHE ) ©)
where
dy+d, 5P =do+d, - % +dy - 9 (10)

Finally, during the decryption of the relinearized result, it is
observed that

J(ReLin(FHE 1)) ~ X - y (1

Figure 5 illustrates that the FHE method exhibits better perfor-

where J(-) represents the decryption function. mance compared to both nonencryption methods and non-FHE
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methods, particularly in terms of data privacy and computational
capabilities. For example, raw data x=1, y=2 can be directly
added, and the factory can get the result as 3. However, the
risk is high when communicating raw data. If the factory starts
to protect and encrypt sensitive data as x, and y, with
non-FHE methods, like AES encryption, an issue arises because
the computation cannot be realized on AES encrypted data.
J (xe +ye) will not have the same result of 3. Hence, factory
needs to decrypt x, and y, for computation again. In contrast,
if data are encrypted by the FHE method, the computation can
be accomplished on encrypted data. When the encrypted result
23754 is decrypted, the value is 3, which is the same as 1+2.
But raw data are not exposed. Encryption methods provide
greater data privacy protection than without encryption. Further,
the FHE method has the capability to allow for computation on
encrypted data.

3.3 Federated Learning and Predictive Analytics. Smart
manufacturing is established by leveraging large, diverse, and high-
quality data. To reduce the likelihood of data breaches, federated
learning enables a model to be trained across multiple factories,
each holding its respective data, without exchanging them. As
shown in Fig. 6, federated learning represents a decentralized meth-
odology for developing analytical models. It eliminates the need to
centralize sensitive data from independent data owners on global
servers. Instead, independent data owners perform the development
separately only with their own data. The insights derived from the
context of each independent model’s development will be gained
collaboratively in the form of a consensus model.

This work proposes a federated learning framework in the
context of smart manufacturing. As shown in Fig. 7, K manufactur-
ing factories operate collaboratively, and each individual factorky,
denoted as factory k, independently owns its data, D® = {(xl(- ),
yl(-k))|i= 1,...,n®}. In this context, x; represents the ith input
vector for factory k, ygk) denotes the ith corresponding output,
and n® signifies the quantity of observations within factory k. Indi-
vidual factories only store their data and utilize it for the develop-
ment of analytical models. Due to their manufacturing conditions,
capacities, and product orders among distinct factories, different
datasets are collected and used for model development. A consen-
sus model is then tasked with integrating these insights drawn from
factories.

The FHE method is specifically designed for the execution of
arithmetic computations on encrypted data. In the setting of multi-
entity cooperation, this study demonstrates the federated learning

071007-6 / Vol. 24, JULY 2024
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framework with the use of Bayesian LR as an example. The raw
data from each unit are encrypted as follows:

Jx®)=xP, g(®) =y (12)

13)

where x% represents the encrypted input vector from the kth
factory, w~D is the parameter vector that has been updated for
t—1 times, y is the observed output value from the kth factory,
and ¢ is the Gaussian noise.

Based on the Bayes’ theorem, posterior is defined in Eq. (14):

f(xgk)) = xg‘)Tw(’_l), yg‘) =f(X£,k)) +ek=1,2,....K

POYIXE, wDp(wi)

O1y® x®y _
pwly,”, X7) = (14)
PPIXD)
Therefore, the likelihood of observed data becomes
](A)
p(y®XY, WD) =TT [x &, wi=)
i=1
® ® BT =D
ll—[ 1 (yie _Xie w )
= exp| —
el V270 P 20?
® _ x®T o
_ 7EXp ~ g2 |Ye =X’ w ‘
(277!62)2 o
— N(ng>Tw<’—‘>, 021) (15)

where I® represents the number of data factory k has, and
[x;®, y®7 is ith data point of factory k. The marginal likelihood
is dependent on the parameters and given by

p(y1X) = jp(yg"HXS‘Z wpw )y aw - (16)

The process of federated learning allows each individual factory
to separately and continually develop the predictive model without
the need for data centralization. The model is pushed to each
factory, as opposed to sharing data with others while building the
predictive model. This learning process contributes to democratized
manufacturing by enabling factories cooperate with others.

The posterior of the model update for factory k can also be
written as follows:

Transactions of the ASME
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bution follows the Gaussian distribution, with an average w and
covariance matrix A~!, shown as follows:

1

pvXE.30) = (5= A XN A7)

where A = U_Zng)X(Ek)T + 3. The updated parameters, w, will
be computed for the kth factory with the encrypted data. In other
words, w/=1 will be updated as w”) after learning with data
from factory k. Factory k will announce the updated model to
every cooperated factory. Hence, factory k + 1 can utilize the new
parameters, w), from the previous factory’s updating as the prior
to update the parameters to w*1 . This federated learning facilitates
collaborative computing among multiple units or factories and does
not require to communicate the sensitive data with others.

The algorithm of the proposed privacy-preserving framework is
described as follows:

Algorithm 1 Federated Learning in the Proposed Privacy-
Preserving Framework

Input: [ X®, y®)]

Define the prior w®

Create a pair of public key &% and private key K® for every factory

The input data undergo encryption before storage

for iteration r € [1,2,3,...,T] do
Randomly assign factory & to update the model
Calculate the posterior from encrypted data
Compute the new parameters of the predictive model
Factory k announces the updated model to other factories
t=t+1

end for

Each factory £ has its pair of public key INC(k) and private key K®.
Factory k encrypts the raw data by means of its public key. When
the raw data are collected by sensors, these data will be encrypted.
Second, the factory will store these encrypted data. Once the model
is pushed to the factory, this factory will utilize the encrypted data
as the training data to update the model. Finally, the updated model
will be then announced to every factory.

4 Real-World Case Study

In recent decades, society and the natural ecosystem have expe-
rienced significant impacts due to climate change. Anticipated
effects include heightened intensity and frequency of extreme
weather events, prolonged climate shifts across extensive areas,
and the melting of ice caps resulting in rising sea levels. The aim
to mitigate these impacts involves limiting global carbon dioxide
atmospheric concentrations to 450 ppm by the year 2050 [28]. Mit-
igating carbon dioxide is especially challenging, mainly due to its
strong connection with energy generation and consumption pro-
cesses. Both carbon emission and climate change have driven a
growing emphasis on devising strategies to optimize energy con-
sumption, monitoring, and scheduling. Therefore, a predictive
model of energy consumption is urgently needed. In this case
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study, five distinct facilities, designated as factories 1-5, possess
independent ownership and control over their respective datasets.
If they collaboratively work toward the development of a predic-
tive model for energy management, the concern of data privacy
emerges.

Currently, energy consumption data are collected from multiple
computer numerical control (CNC) turning machines by sensors
in machine shops and sent through Industrial Ethernet to the data
storage server within factories. Our previous studies have focused
on the aggregation of all datasets into a centralized location for data-
driven energy modeling and real-time analysis of energy efficiency
[29]. In this investigation, we assume segregated data ownership in
each factory. In other words, energy consumption data are collected
in real time when parts are processed by CNC machines in each
factory. It is common that there are often different numbers of
parts and different types of materials processed by a variety of
machines in each factory. Therefore, factories 1-5 own unique
data assets that are critical to collective decision-making and
energy prediction. In fact, factories 1-5 have different number of
data points in this case study, which are 500, 200, 800, 450, and
100. Energy consumption data are assumed to be collected sequen-
tially as a part finished processing in each factory. The predictive
model will be iteratively updated in a federated way when new
data become available from a factory. The energy consumption of
machining process is considered as an important aspect within the
realm of energy management. Seven features pertinent to energy
consumption of machining process are logged in this case study.
These features can be categorized into three groups as follows:

e Product specification: Product specifications play a crucial
role in determining energy consumption, which consist of
three important variables as follows: diameter (x;), material
(x2), and tensile strength (x3).

e Machining parameter: Machining parameters, namely, feed
rate (v4) and cutting depth (xs), lead to varying levels of
energy requirements during the machining process.

o Workstation energy: Workstations need varying levels of
energy during the machining process, including idle energy
(x6) and air cutting energy (x7).

This work investigates the proposed framework in terms of data
privacy protection and prediction performance. First, four predic-
tive models are compared in this case study, namely, LR, predictor
value transformation model (TM-P), target value transformation
model (TM-T), and double-sided transformation model (DTM).
The optimal predictive model will be implemented in the proposed
privacy-preserving framework. Next, this study evaluates and vali-
dates the performance of the proposed framework by taking into
account privacy protection, predictive results of encrypted data,
and the necessity of communicating data.

e Linear regression model

W= /30+Z/3 AP+ (19)
e Predictor value transformation model
eik)—ﬂol_[j 1x(k)ﬁ’+8- ,if A=0
. W /1_ (20)
W =B+ X B+ LifA#0
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e Target value transformation model
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e Double-sided transformation model
W= [T xg‘{)ﬂj te it A=0
JWr_y J w0r_y . (22)
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where xl(-].‘) is the ith input variable of the jth attribute value from the

kth factory, pB; is the coefficient of the jth input variable, f is the
intercept of model, ¢; is the ith noise term, y(k) is the ith output var-

i
iable from the kth factory, and A is the parameter of Box-Cox
transformation.

5 Experimental Results

5.1 Descriptive Analysis. The fluctuations in energy con-
sumption can be attributed to manufacturing conditions (e.g., mate-
rials, processes, and product specifications). The correlation
coefficient helps identify features that exhibit a statistical relation-
ship with energy consumption. Here, we derive the visualization
results of correlation coefficients to screen and identify meaningful
features for energy consumption prediction. As shown in Fig. 8,
diameter, feed rate, cutting depth, idle energy, and air cutting
energy exhibit high correlation coefficients with energy consump-
tion, having values of 0.63, 0.47, 0.45, 0.77, and 0.40, respectively.
All of them are higher than 0.4. In other words, visualization results
reveal that these input variables are sensitive to the variations of
energy consumption.

However, it is important to note that datasets of factories 1-5 vary
due to differences in manufacturing situations, including product
orders and capabilities. For instance, as shown in Fig. 9, the distri-
bution of data differs between idle energy and energy consumption
across five factories. Therefore, data from factories 1-5 have differ-
ent correlation coefficients in relation to energy consumption. As
shown in Fig. 10, feed rate, cutting depth, and cutting energy
exhibit varying correlation coefficients across different factories.
Note that cooperation involves the integration of data among five
factories. Comparing factory 5 and cooperation, it is observed
that correlation coefficients of feed rate and cutting energy from
factory 5 are lower than cooperation. These results of factory 5
suggest that neither feed rate nor cutting energy has a significant
influence. Therefore, the predictive model constructed indepen-
dently by factory 5 will not make these two features as substantial
as they should be and statistically defined as insignificant features.
On the contrary, factory 5 exhibits a higher correlation coefficient of

0.77

Correlation Coefficient

Feed
rate

Diameter Cutting Idle

depth energy

Air cutting
energy

Fig. 8 Correlation coefficients between process features (i.e.,

diameter, feed rate, cutting depth, idle energy, and air cutting
energy) and energy consumption
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0.65 between cutting rate and energy consumption when compared
to the cooperative approach. Thus, if factory 5 constructs the predic-
tive model, the cutting rate will lead to a 33% increase in its impor-
tance for energy predictions. Overall, through collaborative efforts,
communicating data enables understanding of actual situation and
enhances the collective capability to construct a predictive model.

5.2 Performance Comparison of Models (Without
Encryption). The Box-Cox transformation, shown as Eq. (23),
leverages A to transfer nonnormal data into a normal distribution.
The choice of A impacts prediction performance. As shown in
Table 1, we conduct the performance comparison among three pre-
dictive models with different levels of 4, including —0.5, 0, and 0.5.
First, R? values of TM-P vary from 77.4%, 81.3%, and 82.3% when
A is varied among three levels. TM-P yields the highest F-statistic
value of 1,237 when 4 is 0.5. If we look at Akaike information cri-
terion (AIC), TM-P with 1 =0.5 has the lowest AIC of 3011,
second by 4 =0 with an AIC of 3022. TM-P with A =—-0.5 has
the highest AIC of 3,060. Note that AIC is a technique based on
in-sample fit that estimates the likelihood of a model to predict or
estimate future values. Lower AIC value indicates a better fit. Sim-
ilarly, Bayesian information criterion (BIC) has the lowest value
when 4 is 0.5. BIC is another criterion for model selection that mea-
sures the trade-off between model fit and complexity and lower BIC
values indicate a better fit. Therefore, the optimal A for TM-P is 0.5.
Second, TM-T attains the highest values for R?, adj. R?, and F-sta-
tistic when 4 is set to 0.5. However, TM-T has the lowest AIC and
BIC at 2 = 0. It may be noted that the difference in R, adj. R?, and
F-statistic between A =0 and 0.5 is much smaller than that of AIC
and BIC. In other words, the optimal value for 1 that maximizes
TM-T’s prediction performance is determined to be 0.5. Finally,
experiential results of DTM show that adj. R> values are varying
from 83.2%, 86%, and 84.9% when the A is varied among these
three levels. The AIC and BIC value for 41 =0 are —1,639 and
—1,635, respectively, which are notably lower than those for 1 =
—0.5 and 0.5. Hence, this comparative analysis underscores that
employing the Box-Cox transformation with 4 = 0 has a better pre-
diction performance for DTM.

-1
A bl
ln(yi),

ifA#0

10) = if 1=0 @3)

Then, this study compares four predictive models using five dif-
ferent evaluation metrics, namely, R?, adj. R?, F-statistic, AIC, and
BIC. As shown in Fig. 11(a), LR and TM-P return very close R? and
adj. R? values, which are around 82% for both. TM-T exhibits the
lowest R-squared and adj. R*> values, which are 69.4% and
69.3%, respectively. If we look at DTM, it is not hard to find that
DTM outperforms the other three predictive models with values
of 86.1% and 86%. Figure 11(b) illustrates F-statistic values of
four predictive models. The superiority of DTM is underscored
by the significantly highest F-statistic value of 1757, compared to
1208 for LR, 1320 for TM-P, and 646 for TM-T. As shown in
Figs. 11(c) and 11(d), DTM still results in a better prediction perfor-
mance. In both cases, DTM outperforms LR, TM-P, and TM-T with
the lowest AIC and BIC values, which are —1632 and —1587,
respectively.

We further perform normal Q-Q plots and distribution of residual
as descriptive graphical tools for model diagnosis of DTM. Note
that Fig. 12(a) shows the normal Q-Q plot approximately follows
a straight line and Fig. 12(b) shows the distribution of the residual
is normal. Hence, DTM with 4 = 0 stands as the optimal predictive
model among four predictive models for forecasting energy con-
sumption in this case study.

5.3 Fully Homomorphic Encryption-Enabled Federated
Learning and Modeling. This study first evaluates and validates
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data encryption and computational operations of FHE method with
regard to their influence on prediction performance. Note that this
study compares the performances between the model with FHE
and the model without encryption. Experimental results show that
both models exhibit similar performance in terms of R?, adj. R?,
AIC, and BIC. We further measure the absolute differences
among these four metrics, which are 1x 1074, 3x107%,
1.9 x 1073, and 1.6 X 1073, respectively. The performance variation
between encrypted and non-encrypted models is trivial. Therefore,
the proposed privacy-preserving framework does not lead to a
reduction in the prediction performance while adding the encryption
mechanism to protect data.

It is well known that FHE encryption is computationally heavy,
albeit providing a high level of data privacy protection. Thus, we

have further compared computational times between the model
with FHE and the model without encryption.

e Model learning: Due to the computational complexity, we
have performed the experiments on 70 processors of a high-
performance computing cluster, each equipped with 48
cores. The computational speeds for model learning with
factory 1 are different, approximately 5894.13 ms for the
model with FHE versus <1 ms if without encryption. This
comparison highlights the inherent complexity and resource
intensity that are needed for the purpose of data protection.

e Privacy protection: Nonetheless, the importance of data
privacy cannot be overstated, particularly in the manufacturing
industry, where the confidentiality of data is not just a prefer-
ence but a necessity. When the risk of data exposure carries
significant operational and reputational risks, the privacy-
preserving framework, despite its higher computational
requirements, is imperative. This calls upon a strategic invest-
ment in data protection, acknowledging that the value of pro-
tecting sensitive data far outweighs the increased resource
allocation for computational processes.

Consequently, this study shows the resource implications of dif-
ferent data protection strategies and affirms the importance of
privacy preservation in the manufacturing industry. In addition,
there are different approaches (i.e., either hardware or algorithmic
designs) to further improve the computational efficiency of FHE
within federated learning frameworks. For example, new algorithms
can be designed to streamline the processing of encrypted data.
Large-scale parallelization (e.g., MapReduce architectures and
hardware acceleration) can also be leveraged to reduce the compu-
tational time.

We further conduct a performance comparison among FHE with
the federated learning model and independent models for factories
1-5. Notably, factories 1-5 relied solely on their respective data

Table 1 Performance comparison of different A for TM-P, TM-T, and DTM
TM-P T™M-T DTM
A Value -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
R? 77.4% 81.3% 82.3% 69.4% 77.2% 81.5% 83.3% 86.1% 85%
Adj. R? 77.3% 81.2% 82.2% 69.3% 77.1% 81.4% 83.2% 86% 84.9%
F-statistic 971.9 1237 1320 646 960 1251 1,418 1757 1611
AIC 3060 3022 3011 —1519 —643.3 1439 -1632 —1639 1397
BIC 3064 3026 3015 —1514 —598 1443 —1587 —1635 1401
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for the independent development of predictive models. Statistical
comparison of predictive results measured in terms of R* and adj.
R? values are summarized in Figs. 13(a) and 13(b). The model
with FHE and federated learning achieves the highest R* value of
0.86 compared to factories 1-5. By adopting this model, R value
is improved by at least 43.3 %. Similarly, the FHE with the feder-
ated learning model is found to be better than the others in terms of
having maximum adj. R* values. Furthermore, in Figs. 13(c) and
13(d), FHE with the federated learning model also yields a better
performance in terms of AIC and BIC. AIC is —1,633, significantly
lower than that of factories 1-5. Similarly, BIC is —1,594.53, also
lower than that of factories 1-5, which are 6,205, 12,769, 3,674,
11,792, and 4,241, respectively. Therefore, these results indicate
that FHE with the federated learning model achieves superior pre-
diction performance.

5.4 Privacy Analysis. In this article, our primary focus
encompasses two distinct aspects of cybersecurity: the preservation
of privacy against external adversaries and the resistance to attacks.

(1) Privacy preservation from external adversaries:

The current paradigm of smart manufacturing poses a vul-
nerability wherein sensitive data is at risk of exposure. This
vulnerability arises from the centralization of data storage
within the computing platform, consolidating all data for uti-
lization in the analytical process. In contrast, through the
encryption of sensitive data and the adoption of a decentral-
ized approach to both learning processes and data storage,
the proposed framework mitigates the risk of sensitive data
exposure.

(2) Resistance to attacks:

In order to mitigate cyber attacks, including offline attack
and encryption attack, the proposed framework is designed to
reduce the risk of the likelihood of data breaches. First, dic-
tionary and brute force attacks are common in the context of
offline attacks. A dictionary attack involves systematically
entering every word in a dictionary as a private key, while
a brute force attack uses trial and error to guess private
key. The proposed framework is designed to enhance the
resistance of these attacks by means of randomly generating
the pair of public and private keys and increasing the key
length such that the probability of key guessing is close to
0. Second, for the encryption attack, the pairs of public and
private keys in the proposed privacy-preserving framework
are not the same for different factories. The use of nonfixed
keys makes attackers difficult to get the sensitive data under
the known plaintext attack model and chosen ciphertext
attack model.

As shown in Fig. 2, the proposed privacy-preserving framework
overcomes the catastrophic consequences of data breaches even if a
hacker successfully attacks the database. First, when there is a data
breach in layer 1 protection for one factory, only the raw data of that
specific factory are exposed. Data belonging to other factories
remain protected due to segregated data ownership. Second, a
hacker can only access encrypted data in layer 2 protection. In
other words, without the correct pair of keys, hackers cannot deci-
pher the real data from its encrypted form. Finally, if data are
exposed in layer 3 protection, an attacker can only obtain encrypted
data and parameters of analytical models from one factory because
the model development is distributed. Therefore, the proposed
framework mitigates the risk of data breaches when multiple
independent data owners collaborate in developing an analytical
model.

6 Conclusions

Democratized manufacturing leads to a rise in collaboration
among business units. Communicating great amounts of data
within the collaboration to build analytical models enhances the
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performance of manufacturing. However, these data can be pro-
cessed and then transformed into sensitive information, which can
pertain to every aspect of the manufacturing system. This situation
makes business units face some new risks, such as data breaches,
which can disrupt the trust among multiple cooperative units, facto-
ries, or organizations. Therefore, the development of a privacy-
preserving framework is urgently needed to protect the sustainabil-
ity and resilience of smart manufacturing.

In this article, we present a novel privacy-preserving framework
that enables federated learning on encrypted data stored and distrib-
uted in different locations for smart manufacturing. Due to the
mechanism of federated learning and FHE method, the proposed
privacy-preserving framework does not require storing sensitive
data from different business units in a centralized location. More-
over, the learning process is decentralized and based on encrypted
data. The proposed privacy-preserving framework is evaluated and
validated with real-world data. We compare the proposed privacy-
preserving model with the traditional analytical model in terms of
the level of privacy protection and prediction performance. Exper-
imental results show that the proposed framework can significantly
reduce the likelihood of data breaches, consequently fostering col-
laboration among different business units. The collaboration will
enhance the model performance, enabling manufacturers to refine
their strategic plans to save time and costs. In addition, the proposed
framework ensures that the model performance remains comparable
when employing encryption methods for analytical model. Overall,
the proposed framework shows strong potential to promote smart
manufacturing while preserving data privacy.

In addition, it is important to note that malleability may pose
further challenges to the practical implementation of FHE. This is
still an open question in the cryptography community. Future
research can be performed to investigate various antimalleability
techniques in real-world manufacturing case studies, evaluating
their impact on data privacy, computational efficiency, and user
experience. This will help balance the trade-offs between data
privacy and performance, moving closer to the deployment of
FHE in practical applications. Furthermore, differential privacy rep-
resents an alternative strategy that ensures that one’s participation in
a dataset, or lack thereof, will not be disclosed. Future research can
investigate the integration of differential privacy with the proposed
privacy-preserving framework, thereby improving the multilayer
integration for the protection of data privacy.
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