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A B S T R A C T   

Onychophora are cryptic, soil-dwelling invertebrates known for their biogeographic affinities, diversity of 
reproductive modes, close phylogenetic relationship to arthropods, and peculiar prey capture mechanism. The 
216 valid species of Onychophora are grouped into two families – Peripatopsidae and Peripatidae – and apart 
from a few relationships among major lineages within these two families, a stable phylogenetic backbone for the 
phylum has yet to be resolved. This has hindered our understanding of onychophoran biogeographic patterns, 
evolutionary history, and systematics. Neopatida, the Neotropical clade of peripatids, has proved particularly 
difficult, with recalcitrant nodes and low resolution, potentially due to rapid radiation of the group during the 
Cretaceous. Previous studies have had to compromise between number of loci and number of taxa due to lim-
itations of Sanger sequencing and phylotranscriptomics, respectively. Additionally, aspects of their genome size 
and structure have made molecular phylogenetics difficult and data matrices have been affected by missing data. 
To address these issues, we leveraged recent, published transcriptomes and the first high quality genome for the 
phylum and designed a high affinity ultraconserved element (UCE) probe set for Onychophora. This new probe 
set, consisting of ~ 20,000 probes that target 1,465 loci across both families, has high locus recovery and 
phylogenetic utility. Phylogenetic analyses recovered the monophyly of major clades of Onychophora and 
revealed a novel lineage from the Neotropics that challenges our current understanding of onychophoran 
biogeographic endemicity. This new resource could drastically increase the power of molecular datasets and 
potentially allow access to genomic scale data from archival museum specimens to further tackle the issues 
exasperating onychophoran systematics.   

1. Introduction 

Onychophora, commonly known as “velvet worms” or “peripatus,” 
are soft bodied, many-legged, elongate animals that represent the only 
exclusively terrestrial phylum (Fig. 1a–e). They predominantly inhabit 
permanently moist microhabitats to avoid desiccation (Giribet and 
Edgecombe, 2020; Oliveira et al., 2012). Velvet worms are particularly 
notable for their unique prey capture mechanism (Baer et al., 2017; Baer 
et al., 2019; Benkendorff et al., 1999; Haritos et al., 2010), strong 
biogeographic affinities (Giribet et al., 2018; Monge-Nájera, 1995; 
Murienne et al., 2014), and their remarkable diversity of reproductive 
strategies. Ranging from oviparity, through ovoviviparity, to placental 
viviparity, their reproductive modes have been hypothesized to be 
involved in their dispersal and subsequent radiation, particularly on 
Caribbean islands (Anderson, 1973; Baker et al., 2021; Mayer et al., 

2015). Additionally, the discrepancy in diversity and disparity between 
Onychophora, with 216 valid species (Oliveira, 2023), and their sister 
group Arthropoda (Dunn et al., 2008; Laumer et al., 2019; Rota-Stabelli 
et al., 2010), comprising ca. 80% of living animal species, raises 
important questions regarding broad macroevolutionary patterns such 
as morphological evolution and diversification. 

Onychophora are divided into two extant families with strong sup-
port from morphological (Reid, 1996) and molecular data (Baker et al., 
2021; Giribet et al., 2018; Murienne et al., 2014) that have starkly 
disjoint distributions (Fig. 1f). Genome gigantism (Jeffery et al., 2012; 
Sato et al., 2023), low GC content (Mora et al., 1996), complex mito-
chondrial genomes (Braband et al., 2010a; Braband et al., 2010b; Pod-
siadlowski et al., 2008), and extremely variable regions in 18S rRNA 
(Giribet and Wheeler, 2001) have made molecular phylogenetics chal-
lenging and multi-locus Sanger data sets almost unattainable. 
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Additionally, the cryptic nature of these animals and their low popula-
tion densities (Daniels et al., 2016) has led to limited taxon sampling. 
However, what molecular studies have been conducted have helped 
increase phylogenetic resolution and revealed extensive cryptic specia-
tion particularly within Peripatopsidae (Allwood et al., 2010; Briscoe 
and Tait, 1995; Oliveira and Mayer, 2017; Sato et al., 2018). Due to 
these limitations, onychophoran phylogenetics had only been investi-
gated at small scales using molecular data (Allwood et al., 2010; Muri-
enne et al., 2014; Oliveira et al., 2013) until the comprehensive 
phylogeny of Giribet et al. (2018) and the first phylotranscriptomic 
interrogation of the group by Baker et al. (2021). Despite these efforts, 
studies had to manage the trade-off between taxon sampling and num-
ber of loci. 

Peripatopsid relationships have been relatively stable (Fig. 2b–h) 
with major clades corresponding to the breakup of Gondwana such as 
the early division between East Gondwana (Australasia, New Zealand) 
and West Gondwana (South America, Africa) (Allwood et al., 2010; 
Baker et al., 2021; Giribet et al., 2018; Murienne et al., 2014; Oliveira 
and Mayer, 2017; Oliveira et al., 2018; Sato et al., 2018). Furthermore, 
the reciprocal monophyly of mainland East and West Australian peri-
patopsids has been found in previous studies (Baker et al., 2021; Giribet 
et al., 2018; Murienne et al., 2014; Oliveira and Mayer, 2017; Oliveira 
et al., 2018; Sato et al., 2018). Interestingly, there are two well sup-
ported trans-Tasman Sea clades found in both Tasmania and New Zea-
land corresponding to an egg laying clade (Ooperipatellus) and a live 
bearing clade (Peripatoides, Tasmanipatus, Diemenipatus, Leucopatus) 

Fig. 1. The habitus of Onychophora. a) Epiperipatus barbadensis, Barbados; b) Ooperipatellus sp., TAS, Australia; c) Tasmanipatus barretti, TAS, Australia; d) Austro-
peripatus cf. eridelos, QLD, Australia; e) Diemenipatus mesibovi, TAS, Australia; f) map of the distribution of Peripatidae (green) and Peripatopsidae (blue). 
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(Baker et al., 2021; Giribet et al., 2018; Murienne et al., 2014; Oliveira 
and Mayer, 2017; Oliveira et al., 2018). 

Peripatid relationships however (Fig. 3) have proved particularly 
difficult with unstable topologies and low support except for four major 
groups corresponding to Asia (Eoperipatus), Africa (Mesoperipatus), and 
two Neotropical clades (Oroperipatus, all other genera) (Baker et al., 
2021; Costa, 2016; Giribet et al., 2018). Additionally, the most species- 
rich genera in Neopatida – the Neotropical clade of peripatids – have 

been termed “catch-all” genera with little to no support of monophyly 
(Fig. 3e,f) (Baker et al., 2021; Giribet et al., 2018). Several monotypic 
genera are also of questionable validity often nesting within these larger 
genera (Baker et al., 2021; Costa et al., 2021; Giribet et al., 2018). 
Combined with the complete lack of characters to distinguish the genera 
of Neopatida (Costa, 2016), this has led to a taxonomic dilemma with a 
proposed solution as drastic as reverting Neopatida to two historical 
genera: the “Péripatus andicoles” (= Oroperipatus) and “Péripatus 

Fig. 2. Summary of the phylogenetic hypotheses within Peripatopsidae found in this study (a), compared to those from previous molecular phylogenetic analyses 
(b–h). Clades have been collapsed where possible for clarity. 

Fig. 3. Summary of the phylogenetic hypotheses within Peripatidae found in this study (a), compared to those from previous molecular phylogenetic analyses (b–g). 
Clades have been collapsed where possible for clarity. 
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caraïbes” (= Peripatus) of Bouvier (Bouvier, 1899a, b). 
Recent advances in hybrid enrichment probe sets (Burrell et al., 

2015; Faircloth et al., 2012; Suchan et al., 2016), especially with 
ultraconserved elements (UCEs), have generated phylogenomic data 
from standard, ethanol preserved specimens in natural history collec-
tions (Derkarabetian et al., 2019) and has developed into the growing 
field of museomics utilizing historical DNA (hDNA) (Raxworthy and 
Smith, 2021). Additionally, some recent analyses have found unfiltered 
UCE data matrices, even at modest gene occupancies (50%), may be 
better than standard transcriptomic amino acid data matrices at 
resolving rapid radiations (Chan et al., 2020; Kulkarni et al., 2021). To 
address these outstanding issues in onychophoran phylogenetics and 
taxonomy, particularly within Neopatida, we present here the first 
ultraconserved element probe set for the phylum Onychophora. 

2. Methods 

2.1. UCE probe set design 

A combination of genome and transcriptome data were used to 
design the probe set. RNAseq data from Baker et al. (2021) were 
downloaded from SRA and assembled de novo using the pipeline from 
Cunha and Giribet (2019) (Supplementary Table 1). In short, reads were 
filtered and adaptor-trimmed with Rcorrector v1.0.4 (Song and Florea, 
2015) and TrimGalore! v0.6.7 (Krueger, 2021). Ribosomal RNA and 
mitochondrial DNA sequences were filtered using Bowtie2 v2.3.4 
(Langmead and Salzberg, 2012). Reads were assembled de novo with 
Trinity v2.13.2 (Grabherr et al., 2011; Haas et al., 2013). Assemblies 
were filtered again with Bowtie2 and sequence redundancy was reduced 
with CD-HIT-EST v4.8.1 (Fu et al., 2012). BUSCO v5.3.2 (Simão et al., 
2015) was run against the Arthropoda Orthodb v10 (Kriventseva et al., 
2019) to assess transcriptome quality for selection in probe set design 
(Supplementary Table 1). The high quality genome of Epiperipatus 
broadwayi (GenBank: GCA_028023455.1) (Sato et al., 2023) was used as 
the base genome for probe design. An additional genome of Euper-
ipatoides rowelli was downloaded from NCBI (GenBank: 
GCA_003024985.2) and a newly sequenced, but fragmented and 
incomplete genome of Peripatoides sp. (unpublished) was included for 
probe set design. 

The PHYLUCE v1.7.1 pipeline (Faircloth, 2016) was used to identify 
UCE loci and design the probes. Genome and transcriptome fastas were 
converted to 2bit format using faToTwoBit, a part of the BLAT suite v36 
(Kent, 2002). 100bp reads were simulated from 11 “exemplary” taxa 
(Supplementary Table 1) using ART v2.5.8 (Huang et al., 2012) at 2X 
coverage with an insert size of 200bp (SD 150bp). Simulated reads were 
mapped to the base genome using stampy v1.0.31 (Lunter and Goodson, 
2011). Unmapped reads were removed using SAMtools v1.16.1 (Dane-
cek et al., 2021; Li and Durbin, 2009) and the resulting BAM files were 
converted to BED files using BEDtools v2.30.0 (Quinlan and Hall, 2010). 
Sorting, merging, and removal of repetitive intervals of the mapped 
reads were conducted using PHYLUCE v1.7.1 scripts. 

Following the recommendation of Gustafson et al. (2019), putative 
UCE loci found in the base genome and only one additional taxon were 
used for bait design. 160bp sequences were extracted from the resulting 
putative UCEs and then used to design a temporary bait set with two 
baits per locus, 3X tiling density, and a length of 120bp. Problematic 
baits with >25% repeat content, GC content outside 30–70%, and >50% 
identity with other baits were removed. These duplicate-screened tem-
porary baits were aligned against the base genome, the 11 exemplar 
transcriptomes, and an outgroup genome, Drosophila melanogaster 
(GenBank: GCA_000001215.4). Baits that were recovered from the base 
genome and eight other taxa were taken for final probe set design. To 
reduce the number of probes, those that were found in less than 50% of 
the taxa in the full transcriptome dataset were removed. Finally, the 
remaining probes were aligned to the highest quality transcriptome 
(Peripatoides sp.) using BLAST (Altschul et al., 1990) implemented in 

Geneious (Kearse et al., 2012). Probes that aligned to the same transcript 
were removed if they were less than 1kb apart. An additional run of CD- 
HIT-EST (Fu et al., 2012) was run with a cutoff of 97% to reduce 
redundancy. 

2.2. In-silico testing and probe set synthesis 

The final probe set was then tested in-silico against a full dataset of 34 
transcriptomes to determine their utility and recovery of loci. Tran-
scriptome assemblies were used as input to the PHYLUCE script phylu-
ce_assembly_match_contigs_to_probes. Matrix construction and 
processing was conducted using the standard pipeline in PHYLUCE 
(Faircloth, 2016). An unpartitioned maximum likelihood analysis was 
conducted in IQ-TREE v2.2.2 including model testing, tree reconstruc-
tion, and branch support assessment with 1500 ultrafast bootstraps 
(Hoang et al., 2017; Kalyaanamoorthy et al., 2017; Nguyen et al., 2015). 
The final probe set fasta file was subsequently sent to Arbor Biosciences 
for synthesis as a custom myBaits probe set. 

2.3. Molecular data collection and processing 

DNA from 67 specimens preserved in 95% ethanol (Supplementary 
Table 2) was extracted from oncopods (onychophoran legs) or trunk 
tissue using the DNeasy Blood and Tissue kit (Qiagen Inc.) following 
manufacturer protocol. Libraries were prepared using the KAPA Hyper 
Plus kit (Roche) following manufacturer protocol at half reaction vol-
umes for all steps. Sequence capture followed the standard protocol in 
the Arbor Biosciences myBaits kit version 5. Reactions were setup with 
the hybridization temperature to 60 ◦C but were then incubated for 24h 
with a touchdown protocol (62 ◦C for 4 h, 60 ◦C for 16h, 55 ◦C for 4 h). 
The following bead binding and wash steps were also conducted at 
60 ◦C. Final hybridized libraries were amplified with universal Illumina 
primers and sequenced at 150bp paired-end (PE) reads in an Illumina 
NovaSeq S4 flow cell at the Bauer Core Facility at Harvard University to 
at least 2 million reads per sample. 

Raw reads were processed, assembled, and aligned into final 
matrices using PHYLUCE v.1.7.1 (Faircloth, 2016). Adaptor removal 
and quality filtering was done with illumiprocessor (Faircloth, 2013), a 
wrapper for Trimmomatic (Bolger et al., 2014). Processed reads were 
assembled using SPAdes v3.15.5 (Bankevich et al., 2012). Additional 
genomes were downloaded from NCBI for outgroups (Supplementary 
Table 3). Contigs matching UCE probes were aligned using MAFFT 
(Katoh and Standley, 2013) and trimmed with Gblocks (Castresana, 
2000; Talavera and Castresana, 2007) using the following settings (−b1 
0.5, −b2 0.5, −b3 6, −b4 4). Both steps were run in PHYLUCE v1.7.1. 
Loci were further filtered using CIAlign v1.1.0 (Tumescheit et al., 2022) 
to remove divergent sequences (<60% identity) and gaps. A 50% (M1) 
and 95% (M2) occupancy matrix, determined by the percentage of 
ingroup taxa only, were created from the resulting loci and concate-
nated. This means that for a 50% occupancy matrix, loci that are rep-
resented at least in 50% of the ingroup taxa were selected, effectively 
using 50% as the minimal threshold per locus for that matrix. 

Locus statistics including length, GC content, and parsimony infor-
mative sites were calculated with PhyKIT (Steenwyk et al., 2021) using 
alignments of all 1,465 loci with outgroup samples removed. Sequences 
were aligned with MAFFT and trimmed with moderate Gblocks settings 
(−b1 0.5, −b2 0.5, −b3 6, −b4 4) prior to the calculation of statistics. A 
second set of statistics were calculated using more stringent Gblocks 
settings (−b1 0.5, −b2 0.85, −b3 4, −b4 8). 

2.4. Phylogenetic methods 

Maximum likelihood analyses, including model testing, tree recon-
struction, and branch support assessment with 1500 ultrafast bootstraps, 
were conducted for all matrices in IQ-TREE v2.2.2 (Hoang et al., 2017; 
Kalyaanamoorthy et al., 2017; Nguyen et al., 2015). The best 
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partitioning scheme was identified using PartitionFinder (Lanfear et al., 
2012), implemented in IQ-TREE using the relaxed hierarchical clus-
tering algorithm (Lanfear et al., 2014). Bayesian analyses were run in 
ExaBayes v1.5.1 (Aberer et al., 2014) under a GTRGAMMA model on 
matrices M1 and M2. The Markov Chain Monte Carlo was configured 
with two runs, each with one cold and three heated chains and run for 10 
million generations sampling every 500 until the average standard de-
viation of split frequencies (ASDSF) was <0.02. Log files were combined 
with LogCombiner v1.10.4 (Drummond and Rambaut, 2007) and 
parameter convergence was checked in Tracer v1.7.2 (Rambaut et al., 
2018). The first 25% of trees were discarded as burn-in. All trees were 
rooted between Onychophora and all outgroup taxa and thus conclu-
sions should not be drawn from the relationships of the outgroups. Gene 
concordance factors (gCF) and site concordance factors (sCF) were 
calculated using matrix M2 (95% occupancy) in IQ-TREE (Minh et al., 
2020; Mo et al., 2023). The resulting values were then plotted in R 
v4.3.0 (R Core Team, 2021). 

2.5. Testing Peripatidae sp. MCZ:IZ:32029 

Given the initial unorthodox position of a specimen of Peripatidae sp. 
(MCZ:IZ:32029) from Guyana (Sato, 2023) (specimen data and images 
available at: https://mczbase.mcz.harvard.edu/guid/MCZ:IZ:32029), 
we set out to test the validity of its phylogenetic position and rule out 
potential contamination sources. The same specimen was resequenced 
and reads were processed for UCEs. A new 50% occupancy matrix (M3) 
was created, and a maximum likelihood phylogeny was estimated with 
IQ-TREE using the methods previously outlined. 

2.6. Microscopy methods 

Color photos of Peripatidae sp. (MCZ:IZ:32029) were taken using a 
Canon EOS 5D mark III and MP-E 65mm f2.8 1-5x macro lens along with 
macro flashes. Images were focus stacked in Photoshop. Prior to critical 
point drying, tissue samples were transferred to fresh 100% ethanol for 
30 min two times to ensure proper dehydration. The tissues were then 
critical point dried in a Tousimis 931 GL 2.5 and mounted on an SEM 
stub using biadhesive carbon tape. The samples were then sputter coated 
in 10nm of Pt/Pd 80/20 using a Quorum Technologies 150T S and 
imaged using a Zeiss FESEM Ultra Plus at the Center for Nanoscale 
Systems, Harvard University. 

3. Results and discussion 

3.1. Design and in-silico testing 

A total of 730,129 putative UCEs were shared between the base 
genome and at least one of the 11 exemplar taxa. The temporary baits 
designed from this initial pool of potential UCEs recovered 2,720 loci 
from the base genome and at least eight other taxa. These loci were used 
to design a draft probe set with 1,547 loci. After duplicate removal and 
filtering, the final probe set resulted in 19,267 probes targeting 1,465 
loci. In-silico testing of the probe set using transcriptomes and genomes 
recovered a topology identical to the 75% occupancy amino acid anal-
ysis in Baker et al. (2021) except for the placement of Epiperipatus sp. 
MCZ:IZ:136557 from Amazonas (Supplementary Fig. 1). The in-silico 
test recovered this taxon as sister group to Epiperipatus sp. MCZ:IZ:46445 
from Guyana, a result never recovered in the original transcriptomic 
analyses of Baker et al. (2021). However, this taxon was known to be 
rogue in the original transcriptome dataset, and was recovered in several 
places with most analyses supporting a sister group relationship to the 
clade from Central America and Puerto Rico-Guyana-Brazil or to just the 
Puerto Rico-Guyana-Brazil clade (Baker et al., 2021). 

3.2. Locus recovery 

We were able to recover contigs matching to most loci (>95%) from 
all samples except Oroperipatus peruvianus MCZ:IZ:83623 which was the 
oldest sample in the dataset, collected in 1994, nearly 30 years before 
our experiments (Supplementary Table 4). Raw locus recovery was high 
with the 95% occupancy matrix totaling >700 loci (Supplementary 
Table 5). Loci trimmed with low stringency Gblocks settings showed 
substantial variation outside of the core UCE both within genera 
(Fig. 4a,b) and within species (Fig. 4c,d), across both families. This, in 
conjunction with the resolution within Plicatoperipatus jamaicensis, 
Peripatus juanensis, and Oroperipatus, suggests the utility of this probe set 
for species level phylogenetic analyses. 

Loci trimmed with moderate Gblocks settings (−b1 0.5, −b2 0.5, 
−b3 6, −b4 4), averaged 747 bp in length with a GC content of 29%. The 
raw alignment of ingroup samples averaged 75% parsimony informative 
sites per locus totaling 779,239 sites. More stringent Gblocks trimming 
(−b1 0.5, −b2 0.85, −b3 4, −b4 8) drastically reduced these values to an 
average length of 231 bp, 36% GC content and 59% parsimony infor-
mative sites per locus. Due to this loss of information, we conducted 
phylogenetic analyses with moderate Gblocks settings as more stringent 
trimming of UCEs is known to have potentially negative downstream 
effects (Bossert et al., 2021; Portik and Wiens, 2021). 

3.3. Phylogenetic reconstruction 

Maximum likelihood and Bayesian analysis of matrix M1 recovered 
identical topologies (Supplementary Figs. 2, 3). For clarity, they will be 
referred to together as topology M1 (Fig. 5). All nodes were found with 
high support (bootstrap support [BS]≥95%, posterior probability [PP]=
1) except for the clade consisting of the Guyana Shield group, two 
Brazilian samples, and a Peripatus from Mexico (BS=44%, PP=1). An 
additional clade consisting of samples from Puerto Rico, Costa Rica, and 
Jamaica was found with low support (BS=64%, PP=1). Both maximum 
likelihood and Bayesian topologies of matrix M2 were nearly identical 
except in the placement of Peripatidae sp. MCZ:IZ:131426 (Supple-
mentary Figs. 4, 5). All ingroup nodes had high support (BS≥90%, 
PP=1) except for the sister group relationship between Peripatus sp. 
MCZ:IZ:131331 (from Mexico) and Epiperipatus edwardsii (BS=60%, 
PP=1) and the sister group relationship of Peripatidae sp. MCZ: 
IZ:131426 (from the Dominican Republic) to a large clade consisting of 
Peripatus juanensis, Costa Rican species, and Jamaican species (BS=56%, 
PP=1). Maximum likelihood analysis of M3 resulted in a well-supported 
tree with all nodes receiving moderate support (BS>85%, PP=1) except 
for the sister group relationship between the Costa Rica + Jamaica clade 
and Peripatus juanensis + a South American clade comprised of MCZ: 
IZ:131445 (from Guyana), MCZ:IZ:136557 (from Brazil), and MCZ: 
IZ:131441 (from Brazil) (BS=61%, PP=1). 

Gene and site concordance factors of matrix M2 ranged from 0 to 
75% and 21–75% respectively (Supplementary Fig. 6,7,8). Low gCF 
could originate from systematic issues such as gene tree estimation error 
or could reflect true biological signal from gene tree incongruence (e.g. 
incomplete lineage sorting) (Lanfear and Hahn, 2024). Gene tree esti-
mation error is particularly exacerbated by short alignment lengths 
which is known to be an issue with UCE datasets (Camargo et al., 2012; 
Meiklejohn et al., 2016; Van Dam et al., 2021). Relatively higher sCF 
values (Supplementary Fig. 8) could suggest the phylogenetic signal is 
spread across alignments or are masked by noise in individual loci but 
the lower overall values indicate the data are still affected by conflicting 
signal. This is not surprising given the conflicting signal found even in 
phylotranscriptomic datasets with extensive reticulation and radial to-
pology of SuperQ networks (Baker et al., 2021). 

3.4. Relationships within Peripatopsidae 

Notably the South African genus Opisthopatus was recovered as sister 

S. Sato et al.                                                                                                                                                                                                                                     

https://mczbase.mcz.harvard.edu/guid/MCZ%3aIZ%3a32029


Molecular Phylogenetics and Evolution 197 (2024) 108115

6

group to the rest of Peripatopsidae in all analyses (Fig. 5, Supplementary 
Figs. 2–5). This is a novel result as all previous molecular analyses 
including Metaperipatus (from Chile), Opisthopatus, and Peripatopsis 
(from South Africa) recovered a Western Gondwanan clade with these 
three genera (Fig. 2b,c,f,h) (Allwood et al., 2010; Baker et al., 2021; 
Giribet et al., 2018; Murienne et al., 2014). Additionally, the sister group 
relationship of the Chilean Metaperipatus and the South African Peri-
patopsis was found in only one ASTRAL analysis of the 75% amino acid 
occupancy matrix in Baker et al. (2021) and some Sanger-based studies 
with variable support (Allwood et al., 2010; Giribet et al., 2018; Muri-
enne et al., 2014). All other phylogenomic analyses to date have found a 
monophyletic South African clade of Opisthopatus + Peripatopsis. Non-
monophyly of South African taxa has been found in other coeval 
Gondwanan organisms (e.g. Baker et al., 2020; Derkarabetian et al., 
2021; Giribet et al., 2022). In light of the relationships between South 
America and South Africa in these other dispersal-limited soil taxa, our 
results could be interpreted as ancestral cladogenesis in West Gondwana 
prior to the separation of Africa and South America. The deep diver-
gence between the Eastern Gondwanan and Western Gondwanan taxa 
has been previously estimated to precede the opening of the Atlantic 
(Baker et al., 2021). However, due to the signal conflict at this node 
(Supplementary Fig. 6,7) further investigation into the nature of this 
relationship is needed. 

A clade of East Gondwanan peripatopsids (Australasia, including 
Papua New Guinea, Australia and New Zealand) was recovered with full 
support in all analyses (BS=100%, PP=1) (Fig. 5, Supplementary 
Figs. 2–5). The egg-laying trans-Tasman Sea genus Ooperipatellus appears 
as monophyletic, and forms either the sister group to all remaining 
Australian and New Zealand taxa or to the rest of Australasia (including 
Paraperipatus). This result was also found in the phylotranscriptomic 
analysis of Baker et al. (2020), although that study did not include the 
New Guinean Paraperipatus. This however contrasts with the Sanger- 

based phylogenetic analyses of Giribet et al. (2018) and Murienne 
et al. (2014) (Fig. 2c,f), which supported a sister group relationship of 
Ooperipatellus to the live-bearing trans-Tasman Sea clade (represented 
here by Tasmanipatus from Tasmania and Peripatoides from New Zea-
land). This could be the result of limited resolving power of Sanger 
datasets and in fact, the relationship between Ooperipatellus and the 
trans-Tasman Sea clade was found with low bootstrap support in the 
untrimmed peripatopsid only dataset (Giribet et al., 2018). Additionally, 
the sister group relationship of mainland Australian peripatopsids with 
the live bearing Peripatoides to the exclusion of Ooperipatellus was found 
in transcriptomic data (Fig. 2h) (Baker et al., 2021). The genera Tas-
manipatus and Peripatoides were recovered as sister groups forming a 
trans-Tasman Sea clade, a result corroborating most prior studies (Gir-
ibet et al., 2018; Murienne et al., 2014; Oliveira and Mayer, 2017; Oli-
veira et al., 2018). This live-bearing clade was found to be nested within 
a larger clade from mainland Australia containing live-bearing as well as 
egg-laying species (MCZ:IZ131436, the Western Australian clade of 
Occiperipatoides and Kumbadjena, and the larger clade containing the 
genera Aethrikos, Euperipatoides, Ooperipatus, and Phallocephale), a result 
that was suggested by the phylotranscriptomic analysis but not explicitly 
tested as the dataset did not include representatives from Tasmania 
(Baker et al., 2021). The mainland Australia clade was further split into a 
Western Australia clade (Occiperipatoides and Kumbadjena) and an 
Eastern Australia clade (Aethrikos, Euperipatoides, Ooperipatus, and 
Phallocephale), corroborating previous analyses (Baker et al., 2021; 
Giribet et al., 2018; Murienne et al., 2014; Oliveira and Mayer, 2017; 
Oliveira et al., 2018; Sato et al., 2018). 

Topologies M1, M2, and M3 were almost identical with regard to 
peripatopsid relationships except for the placement of Paraperipatus 
(New Guinea). In analyses of M1 and M3, Paraperipatus was recovered as 
sister group to the rest of the East Gondwana clade whereas analyses of 
M2 placed Ooperipatellus stemwards and Paraperipatus as sister group to 

Fig. 4. Smilograms of UCE loci at species and genus level. Variation measured as proportion of variable sites is plotted against distance from the center of the UCE 
locus. a) all loci recovered for species in the genus Peripatoides, b) loci for species in the genus Ooperipatus, c) all loci for Peripatus juanensis, d) all loci for Oro-
peripatus peruvianus. 
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the rest of the Australia + New Zealand peripatopsids (Supplementary 
Figs. 2–5,9). 

3.5. Relationships within Peripatidae 

The evolutionary relationships within Peripatidae have been recal-
citrant and poorly supported in previous analyses (Giribet et al., 2018; 
Murienne et al., 2014) particularly among the Central American, 
Amazonian, and Caribbean taxa termed the “Eastern clade” (Costa et al., 
2021; Cunha et al., 2017; Oliveira et al., 2011; Oliveira et al., 2014a). 
However, some stable relationships among major clades have been 
found including an early divergence of Eoperipatus from Southeast Asia, 
followed by Mesoperipatus from West Africa, which is sister group to the 
clade of Neotropical peripatids, the Neopatida (Fig. 3b-e). In the absence 
of the monotypic Indian genus Typhloperipatus, this makes for a split 
between East and West Gondwana. Additionally, within Neopatida, 
there is strong support for the division between Oroperipatus (Mexico, 
Galapagos, Andes), and the rest of Neopatida in previous studies 
(Fig. 3b,d,e,f,g) (Baker et al., 2021; Costa et al., 2021; Giribet et al., 
2018; Murienne et al., 2014). This relationship corresponds to the his-
torical division of “Péripatus andicoles” and “Péripatus caraïbes”, 
respectively (Bouvier, 1899a, b). The UCE phylogeny was able to 
recover these main lineages with strong support (BS≥95%, PP=1) 
(Fig. 5, Supplementary Figs. 2–5). However, an undescribed Peripatidae 
sp. from Guyana (MCZ:IZ:32029) was recovered as sister group to 
Mesoperipatus + Neopatida sensu stricto (topologies M1 and M2) or as 
sister group to Eoperipatus horsti (topology M3). This sample has never 
been included in any analysis to date but represents the first contra-
diction to the stable relationships among the earliest branching lineages 
within Peripatidae. The non-monophyly of South American or 

Neotropical taxa has been found in other groups of soil-dwelling, trop-
ical invertebrates with low-vagility (e.g. Benavides et al., 2019; Der-
karabetian et al., 2021) and could represent cladogenesis prior to the 
breakup of Gondwana. Within the problematic Eastern clade, resolution 
and support was higher than in previous analyses and clades corre-
sponded to geography rather than current taxonomic groupings (Fig. 5) 
with multiple genera from one region being more closely related than to 
other members of their respective genera (e.g., in Trinidad and Tobago, 
Costa Rica or Jamaica). 

There was more discordance among peripatid relationships between 
M1 and M2 with more basal positions of Peripatidae sp. MCZ:IZ:131426 
albeit with low support (BS=56%, PP=1) and the clade of three speci-
mens from Guyana and Brazil (MCZ:IZ:131445, MCZ:IZ:136557, MCZ: 
IZ:131441) (BS=100%, PP=1) in analyses of M2. There were additional 
slight differences among the relationships in Peripatus juanensis between 
M2 topologies and the other two topologies. 

3.6. Peripatidae sp. MCZ:IZ:32029 

Resequencing of Peripatidae sp. MCZ:IZ:32029 (Fig. 6a–c) produced 
poorer libraries indicated by Qubit and Tapestation resulting in fewer 
recovered loci (1,421 vs 815 raw loci recovery; 1,144 vs 633 loci in 
matrix M3) (Supplementary Table 4). Inspection of individual align-
ments revealed the non-zero branch lengths between the two replicates 
resulted from a handful of spurious alignments and variable regions 
outside of the core UCE region potentially due to misassembly and poor 
library construction. Regardless, analysis still recovered this replicate in 
a basal position with the original sequences (Supplementary Fig. 9). 
Additionally, the Peripatus edwardsii clade (MCZ:IZ:313331, MCZ: 
IZ:141306, MCZ:IZ:131427, MCZ:IZ:46445) was recovered in a more 

Fig. 5. Summary of phylogenetic analyses plotted on the 50 % occupancy matrix (M1) topology. All nodes received full support (BS = 100 %, PP = 1) in both the 
maximum likelihood and Bayesian analysis of all matrices unless otherwise noted. Heatmaps represent topological conflict across the five analyses conducted in this 
study. Clade colors correspond to the distribution map (Fig. 1f). 

S. Sato et al.                                                                                                                                                                                                                                     



Molecular Phylogenetics and Evolution 197 (2024) 108115

8

basal position subsequently joining the juanensis + basilensis clade with a 
small Brazil + Guyana clade (MCZ:IZ:131445, MCZ:IZ:136557, MCZ: 
IZ:131441). 

Examination of Peripatidae sp. MCZ:IZ:32029 with light microscopy 
revealed peculiar morphological characteristics (Fig. 6). The most 
striking aspect of the specimen is the lack of annulations or plicae on the 
dorsal integument (Fig. 6d). Even with scanning electron microscopy, 
plicae could not be easily delimited (Fig. 6f,g) because they were 
incomplete and anastomosed, i.e. either fusing or dividing into separate 
rows. Additionally, the primary papillae were nearly identical to 
accessory papillae with an inconspicuous apical piece (Fig. 6h). The 
absence of well-defined primary papillae could account for the lack of 
clear plicae delimitation in the specimen. All specimens studied to date 
in a variety of fixation methods have clearly defined rings of papillae 
(Fig. 6e) which have been taxonomically informative (Oliveira et al., 
2014b; Reid, 1996). The specimen was collected using modern and 
standard preservation methods. Thus, it is unlikely that the unusual 
plicae morphology is due to preservation artefacts, as specimens 
collected by the same collectors and using the same methods clearly 
show plicae (e.g., MCZ:IZ:46445). Analysis of oncopod four revealed the 
presence of three spinous pads (Fig. 6i), a characteristic shared with 
Mesoperipatus tholloni, the only other peripatid known to have three 
spinous pads (Costa and Giribet, 2016). The morphological characters 
displayed by this sole specimen of this putative new lineage appear to be 
unique or intermediate with regard to Peripatidae, like the inconspic-
uous apical pieces and the number of spinous pads, respectively. 

4. Conclusion 

Limitations of previous molecular approaches have restricted our 

understanding of onychophoran biogeography and evolutionary history, 
including their radiation across Caribbean islands and the role of their 
reproductive modes in their diversity. Additionally, their taxonomic 
history spanning 200 years has led to confusion due to the heterogeneity 
and inconsistency of the morphological characters used to define genera 
and species. The advent of next generation sequencing and the emer-
gence of the field of “museomics” have opened new avenues of research 
into rare and understudied groups. Leveraging these recent advances, 
we designed the first UCE probe set for Onychophora. This new resource 
is highly informative at multiple levels from deep divergences within the 
phylum to species level relationships. Testing of the probe set on a 
limited set of taxa has shown the potential to resolve the relationships 
within the particularly problematic Neopatida and has already revealed 
a new lineage that contradicts long held phylogenetic and biogeographic 
hypotheses for Peripatidae. UCE datasets have shown utility across a 
wide range of taxa and we believe this new resource will enable novel 
avenues of research into this understudied and charismatic group of 
animals. 
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image of lateral view, c) light image of ventral view, d) light image of dorsal integument showing lack of plicae, e) typical view of plicae found in all Onychophora 
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