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Abstract
We investigate pitchfork bifurcations for a stochastic reaction diffusion equation per-
turbed by an infinite-dimensional Wiener process. It is well-known that the random
attractor is a singleton, independently of the value of the bifurcation parameter; this
phenomenon is often referred to as the “destruction” of the bifurcation by the noise.
Analogous to the results of Callaway et al. (AIHP Prob Stat 53:1548–1574, 2017) for
a 1D stochastic ODE, we show that some remnant of the bifurcation persists for this
SPDE model in the form of a positive finite-time Lyapunov exponent. Additionally,
we prove finite-time expansion of volumewith increasing dimension as the bifurcation
parameter crosses further eigenvalues of the Laplacian.
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1 Introduction

We study bifurcations for the reaction diffusion equation known as the Chafee–Infante
equation, under perturbations by infinite-dimensional additive noise. The Chafee–
Infante equationwithout noise, in close relation to other reactiondiffusion systemswith
cubic nonlinearity such as the Allen-Cahn or the Nagumo equation, is a well-studied
parabolic partial differential equation (PDE) with global attractor whose bifurcation
behaviour is fully understood as a cascade of pitchfork bifurcations. We employ the
viewpoint of random dynamical systems theory (see e.g. [3]) to detect a similar bifur-
cation pattern for the noisy case.

In more detail, we consider the following stochastic partial differential equation
(SPDE) with Dirichlet boundary conditions on a bounded domain O ⊂ R, say O =
[0, L],

{
du = (�u + αu − u3) dt + √

QdWt ,

u(0) = u0 ∈ H , u|∂O = 0,
(1.1)

where α ∈ R is the deterministic bifurcation parameter, H := L2(O) is the state
space and (Wt )t∈R denotes a two-sided H -cylindricalWiener process, with covariance
operator Q as specified in Sect. 2.

In the case without noise (see e.g. [29]), the Chafee–Infante equation is well-posed,
yielding a semigroup S(t) on H for which one can find a global attractor A, i.e., A is
a compact invariant subset of H (S(t)A = A for all t ≥ 0) which attracts the orbits of
all bounded subsets of H . Starting with the homogeneous zero solution for α < λ1,
where λi denote the eigenvalues of the Laplacian −�, an unstable direction and two
new stationary solutions are added whenever α passes λn ; the attractor then consists
of these stationary points together with their respective unstable manifolds.

In the case with noise, the attractor becomes a random object, a so-called random
attractor A(ω), whose position in the state space depends on the noise realization.
It has been shown in [9, Sect. 6] that, if Q is bounded and invertible with bounded
inverse (e.g. space-time white-noise), for any value of α, the random attractor A(ω)

of (1.1) consists of a single point almost surely, i.e., there exists a random variable
a = aα : � → H with

ϕ(t, ω, a(ω)) = a(θtω) for every t ≥ 0 P − a.s.,

such that A(ω) = {a(ω)}. This phenomenon is often called synchronization by noise
and has been studied thoroughly in recent years for finite-dimensional SODEs [15, 20,
27] andSPDEs [7, 9, 21]. The proof of synchronization for (1.1) in [9, Sect. 6], adapting
ideas from Crauel and Flandoli [15], uses the correspondence between stationary
measures and attractors and a monotonicity argument. These ideas on synchronization
carry over in our setting, where the covariance operator Q of the noise will be given by
a negative fractional power of the Laplacian, in order to ensure a suitable regularity of
the solution according to Sect. 2. In a similar spirit, results on synchronization for (1.1)
with Neumann-boundary conditions (and α = 0) have been derived in [24] provided
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that the noise is H2s(O)-valued for s > 1
4 . Finally, for (1.1) driven by space-time

white-noise in two and three dimensions, a similar synchronzation phenomenon has
been observed in [22].

Synchronization can be interpreted in the sense that the noise “destroys” the pitch-
fork bifurcation, since the attractor A(ω) = {a(ω)} remains a single point for allα ∈ R.
This interpretation was embraced by Crauel and Flandoli [15] for the stochastically-
forced pitchfork normal form on R given by

dx = (αx − x3)dt + dWt . (1.2)

There, they showed that the random attractor A(ω) ⊂ R consists of a point for all
values of α, hence all trajectories synchronize to a random equilibrium. It follows that
at the level of the asymptotic dynamics, the bifurcation at α = 0 is “destroyed” and
no switch to local instability occurs.

Callaway et al. [8] challenged this point of view by measuring local stability for
trajectories of the one-dimensional SODE model (1.2) on finite time scales, using
finite-time Lyapunov exponents (FTLEs). They proved that, whereas all FTLEs are
negative for α < 0, there is always a positive probability to observe positive FTLEs
for α > 0; this change of in FTLEs corresponds with a transition from uniform to
non-uniform attractivity of the attractor and a loss of (uniform) hyperbolicity.

The authors also showed that there is no uniformly continuous topological conju-
gacy between the dynamics for negative and positive α. A similar result was proved
for stochastic Hopf bifurcations with additive noise in [18].

An alternative but strongly related problem is to fix the parameter α > 0 in (1.2)
(or α > λ1 in (1.1) respectively), introduce a coefficient ε > 0 in front of the noise
term dWt in (1.2) [or (1.1) respectively], and determine for ε � 1 the extent to
which the random motion resembles that of the deterministic (ε = 0) system. For the
latter, the bulk of initial conditions relax to one of two stable solutions, while when
ε > 0 these solutions are metastable, with typical random trajectories transitioning
from the vicinity of one to the other, reflecting the fact that the system admits a unique
stationary measure. Large deviations estimates provide a way of estimating the typical
timescale of these transitions, thereby giving another perspective on the “persistence”
of the bifurcation in the presence of noise. For the system considered in this paper,
this metastability picture was studied in [5, 6].

Statement of results

The purpose of this manuscript is to extend the mentioned ideas from Callaway et
al. [8] and Doan et al. [18] to the infinite-dimensional setting, demonstrating similar
bifurcation behavior for the random dynamical system induced by the SPDE (1.1).
Let again 0 < λ1 < λ2 < . . . denote the eigenvalues of −� on O = [0, L] with
Dirichlet boundary conditions.

Given an initial condition u0 ∈ H and a sample ω ∈ �, the FTLE at time t along
the trajectory ϕt

ω(u) is given by
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606 A. Blumenthal et al.

�1(t;ω, u0) = 1

t
ln ‖Du0ϕ

t
ω‖H (1.3)

where Du0ϕ
t
ω is the linear operator on H obtainedbyFréchet differentiating the cocycle

ϕt
ω at u0, and ‖ · ‖H denotes the norm on H .
In line with Callaway et al. [8] and in concert with our goal of assessing changes

in the attractivity of the singleton attractor a(ω) of (1.1), we are primarily1 interested
in the FTLE

�1(t;ω) := �1(t;ω, a(ω))

taken along the attractor a(ω).

Theorem A The random dynamical system induced by the SPDE (1.1) exhibits a bifur-
cation at α = 0 in the following sense:

(a) Unconditionally, we have that for all α ∈ R,

�1(t;ω) ≤ α − λ1 with probability 1 for all t ≥ 0.

In particular, �1(t;ω) < 0 with probability 1 for all α < λ1.
(b) For any α > λ1, 0 < δ � α − λ1 and T > 0, there is a positive-probability event

A ⊂ � such that

�1(t;ω) ≥ α − λ1 − δ > 0 for allω ∈ A , t ∈ [0, T ].

Statements (a) and (b) together imply loss of uniform hyperbolicity of the system
at α = λ1 corresponding with the deterministic pitchfork bifurcation of the PDE.

Our second result concerns the cascade of deterministic bifurcationswhenα crosses
more and more eigenvalues λk . We are able to capture this by finite-time expansion
of k-dimensional volumes, as measured by the quantities

Vk(t;ω, u0) := 1

t
log ‖ ∧k Du0ϕ

t
ω‖∧k H , Vk(t;ω) := Vk(t;ω, a(ω)),

k ≥ 1. Here, ∧k denotes the k-fold wedge product of a linear operator; see Sect. 3.2.1
for details. Equivalently, Vk can be characterized by volume growth: for a bounded
linear operator A on H , we have the identity

‖ ∧k A‖∧k H = max{| det(A|E )| : E ⊂ H , dim E = k}

relating ‖∧k A‖∧k H with themaximal volume growth A exhibits along a k-dimensional
subspace of H . Here, det(A|E ) is the determinant of A|E : E → A(E) regarded as a
linear operator between E and A(E), and we follow the convention det(A|E ) = 0 if
dim A(E) < dim E .

1 See Remark 1.3 below for a discussion of FTLEs at more general initial data.
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Theorem B Let k ≥ 1 be arbitrary.

(a) Unconditionally, we have that for all α ∈ R,

Vk(t;ω) ≤
k∑

i=1

(α − λi ) with probability 1 for all t ≥ 0.

(b) For any α > 1
k

∑k
i=1 λi , 0 < δ � ∑k

i=1(α − λi ) and T > 0, there is a positive
probability event A ⊂ � such that

Vk(t;ω) ≥
k∑

i=1

(α − λi ) − δ for allω ∈ A , t ∈ [0, T ].

Remarks and comments on the proof

Estimation of FTLE for the stochastic ODE (1.2) is straightforward and proceeds
roughly as follows. Analogously to our setting, FTLE are unconditionally ≤ α for
any value of α ∈ R. When α > 0, the origin 0 is linearly unstable, yet one can find a
positive probability event that the point attractor remains close to 0 on arbitrarily long
timescales, accumulating a positive FTLE ≈ α.

Our proof in the SPDE setting (1.1) follows roughly the same lines: the events A
we construct in Theorems A and B steer the random point attractor aα(ω) towards 0,
where the linearization is “close” to the shifted heat semigroup e(α+�)t with singular
values et(α−λi ), i ≥ 1. However, making this rigorous entails several challenges not
present in the finite-dimensional case, e.g.:

(a) Due to the nonlinear term in (1.1), the linearization is only close to the semigroup
e(α+�)t when the point attractor aα(ω) is small in C(O), not just H = L2(O) (c.f.
Proposition 3.1). For details, see Proposition 2.7 and its proof in the Appendix.

(b) Even when the linearization is steered to be close to the semigroup e(α+�)t , lower
bounds onFTLEdonot follow fromnaive L2 energy estimates. Instead,we derive a
lower bound using a careful invariant cones argument delineated by an appropriate
quadratic form Qδ on H × H . This approach, inspired by techniques for ODEs
[26], avoids verifying the abstract criteria developed in [1] in order to establish cone
invariance for parabolic evolution operators. The lower bounds on k-dimensional
volume growth are obtained by extending this technique to thewedge spaces�k H .
See Sect. 3.2.1 for details.

Remark 1.1 The collection of Lyapunov exponents usually refers to the set of
asymptotic exponential growth rates realized by different tangent directions. By the
Multiplicative Ergodic Theorem (see, e.g., [28, 30] or the survey [34]), the rates
achieved are precisely asymptotic exponential growth rates of singular values, and
so a natural way to consider ‘lower’ finite-time Lyapunov exponents is to use finite-
time singular values:

�k(t;ω, u0) := 1

t
log σk(Du0ϕ

t
ω)
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where for k ≥ 1wewrite σk(A) for the k-th singular value of a bounded linear operator
A on H . It is straightforward to show that for such a bounded operator A, we have the
identity ‖ ∧k A‖∧k H = ∏k

i=1 σi (A), hence

Vk(t;ω) =
k∑

i=1

�i (t;ω) .

For T > 0, 0 < δ � 1, TheoremB implies there is a positive probability eventA ⊂ �

so that

α − λk − δ ≤ �k(t;ω) ≤ α − λk + δ for all ω ∈ A, t ∈ [0, T ] ,

suggesting as before a bifurcation occurring as α moves past λk .

Remark 1.2 Our main results concern estimates of finite-time Lyapunov exponents
on positive probability events, i.e., fixing a time T > 0 and estimating �k(t, ω) for
t ∈ [0, T ] and for ω drawn from a positive-probability set in �. As t → ∞, it follows
from the subadditive ergodic theorem and uniqueness of the stationary measure for
the Markov process defined by (1.1) that the asymptotic Lyapunov exponents

lim
t→∞ �k(t;ω) (1.4)

exist for each k ≥ 1 and are deterministic (independent of ω) with probability 1 (see,
e.g., [30]). Since the random attractor of (1.1) consists of a single point with full
probability for all values of the bifurcation parameter, it is likely that the asymptotic
exponents as in (1.4) are all negative (or at least nonpositive). Indeed, in [15] the
asymptotic Lyapunov exponent of the one-dimensional system (1.2) was shown to
be negative, using an explicit calculation, and in [18] a quantitative negative upper
bound was derived for the two-dimensional extension to Hopf bifurcations in certain
parameter regimes. Perhaps unsurprisingly, though, the arguments from these papers
do not carry over to the infinite dimensional setting of our work. Providing such an
estimate remains an open problem for future work.

Remark 1.3 Our estimates of FTLEs along the random attractor, carried out in Sect. 3,
are relatively versatile and make no direct use of assumptions about the nondegener-
acy of the covariance (as in [9]), otherwise used to ensure uniqueness of stationary
measures or synchronization by noise– see Remark 3.3 for further discussion. More-
over, it is not hard to check that our estimates carry over to trajectories initiated at any
sufficiently small initial u0 ∈ H . However, our proof as-is does not extend to arbitrary
initial data: see Sect. 4 at the end of the paper for further discussion along these lines.

Structure of the paper

Section 2 recalls regularity properties of the solution to equation (1.1) and the gen-
eration of an associated random dynamical system with random attractor and sample
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measures corresponding with the unique stationary measure of (1.1). Section3 is ded-
icated to proving Theorems A and B, firstly taking care of estimating the top FTLE
with the cone technique described above, and secondly bounding the k-volume growth
rates via the wedge spaces ∧k H . In the Appendix we provide the proof of the crucial
Proposition 2.7, yielding control of the random equilibrium in Vγ = H2γ

0 (O) for
γ ∈ ( 14 ,

1
2 ). For an outlook on future problems along the lines of the results in this

paper, see Sect. 4.

2 Preliminaries

Westudy bifurcations for the following reaction diffusion equationwith additive noise.
Let α > 0, set H := L2(O) and V := H1

0 (O) for a bounded domain O ∈ R, e.g.
O = [0, L], and consider again the SPDE (1.1)

{
du = (�u + αu − u3) dt + √

QdWt ,

u(0) = u0 ∈ H , u|∂O = 0.

2.1 Background and basic properties

Notations, assumptions, and basic results Throughout, we regard the Laplacian �

as a closed linear operator on H = L2(O) with Dirichlet boundary conditions. It
is well-known that this generates a compact, analytic C0-semigroup (S(t))t≥0 on H
and the domain of its fractional powers can be identified with fractional Sobolev
spaces [1]. More precisely we introduce the spaces Vγ := (D(−L)γ , 〈·, ·〉Vγ ), where
〈x, y〉Vγ = 〈(−L)γ x, (−L)γ y〉 for x, y ∈ Vγ . Then we can identify the fractional
power spaces with Sobolev spaces [33, Theorem 16.15]

Vγ =
{

H2γ (O), γ ∈ [
0, 1

4

)
,

H2γ
0 (O), γ ∈ ( 1

4 , 1
] \ { 3

4

}
.

Note that in particular, V 1
2

= H1
0 (O) = D((−L)1/2) and that Vγ is continuously

embedded in C(O) for all γ > 1
4 by the Sobolev embedding theorem [33, Theorem

1.36].
In this paper, we will utilize a two-sided H -cylindrical Wiener process (Wt )t∈R

with covariance operator Q (to be specified shortly) on a probability space (�,F ,P).
It is well-known that there exists a Hilbert space H̃ such that H ⊂ H̃ where (Wt )t∈R
is trace-class. Since we are working in a random dynamical systems framework, it is
expedient to use the canonical space � := C0(R, H̃) with the compact-open toplogy,
F = Bor(�), andWiener measure P, so that P-typicalω ∈ � correspond to two-sided
Brownian paths ω : R → H̃ with ω(0) = 0. We abuse notation somewhat and will
write Wt = Wt (ω) = ω(t) in the following. The space (�,F ,P) will be equipped
with the two-sided filtration (F t

s )s<t ,F t
s := ω(Wt − Ws), as well as the time-shift
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610 A. Blumenthal et al.

θt : � � given by θ t (ω)(s) := ω(t + s), so that (�,F ,P, (θt )t∈R) is an ergodic
measure-preserving transformation (see, e.g., [13]).

We will assume in what follows that Q is given by

Q := (−�)−2β , (2.1)

whereβ ∈ (0, 1
4 ).While other choices are possible tomake the forthcoming arguments

work, this choice is made for ease of exposition. See Remark 3.3 below for further
discussion on precisely what is needed regarding the covariance Q.

The following is used to ensure propagation of Vγ -regularity, a crucial ingredient
of the proofs in Sect. 3.

Lemma 2.1 Let γ ∈ ( 14 ,
1
4 + β). With Q as above, there exists an almost-sure, F t

0-
adapted modification (zt )t≥0 of the stochastic convolution

∫ t

0
S(t − s)

√
QdWs (2.2)

for which t �→ zt is continuous with values in Vγ for t ≥ 0.

Proof sketch This follows from the same argument as that of Chueshov and Scheutzow
[13, Proposition 3.1], using only the assumption that

trH (Q(−L)2γ−1+ε) < ∞, (2.3)

for some ε > 0, which is equivalent to the upper bound γ < β + 1
4 . Here, trH refers

to the standard trace of an operator on H . ��

Well-posedness, C1 semiflow and RDS formulation

Let γ ∈ ( 14 ,
1
4 + β) be fixed for now. By standard techniques, it now holds (see, e.g.,

[16]) that

(1) there exists P-a.s. a unique mild solution of (1.1)

u ∈ L2(� × (0, T ); Vγ ) ∩ L2(�; C([0, T ]; H))

for all T > 0; and
(2) the first variation equation along the trajectory (ut ), given by

dv = (�v + αv − 3u2v)dt (2.4)

is well-posed P-almost surely and for arbitrary initial data v ∈ H .

Below, we collect various properties that allow to realize mild solutions of (1.1) as
the trajectories of a random C1 semiflow ϕt

ω : H → H . The first three statements
are well-known [10] and the Fréchet differentiablity follows from Debussche [17,
Lemma 4.4].
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Proposition 2.2 There is a θ t -invariant subset �′ ⊂ � of full probability2 such that
for all ω ∈ �′ and any t ≥ 0, there is a (Fréchet differentiable) C1 semiflow

u0 �→ ϕ(t, ω, u0) =: ϕt
ω(u0)

on H = L2(O) with the following properties for each ω ∈ �′:
(a) For all T > 0 and fixed initial u0 ∈ H, the mapping � × [0, T ] �→ H given by

(ω, t) �→ ϕt
ω(u0) is the (unique) pathwise mild solution to (1.1).

(b) The semiflow ϕ satisfies the cocycle property: for s, t > 0 we have

ϕt+s
ω = ϕt

θ sω ◦ ϕs
ω

(c) For any u ∈ H and s, t ∈ R, s < t , we have that ϕt−s
θ sω(u) is F t

s -measurable as an
H-valued random variable.

(d) For all T > 0 and fixed initial conditions u0, v0 ∈ H, the mapping �×[0, T ] �→
H given by (ω, t) �→ Du0ϕ

t
ω(v0) is the unique solution to the first variation

Eq. (2.4).

Here, given a C1 Fréchet-differentiable mapping ψ : H → H , we write Duψ ∈
L(H) for the derivative of ψ evaluated at u ∈ H .

Markov process formulation

For fixed initial u0 ∈ H and for ω ∈ �, we will write (ut )t≥0 for the random process
in H defined by ut := ϕt

ω(u0). We note two important properties of this process.

Lemma 2.3 The process (ut ) is an F t
0-adapted, Feller Markov process.

Proof That (ut ) is F t
0-adapted follows from its definition and Proposition 2.2(c). The

fact that it is a Feller Markov process follows from continuity of u0 �→ ϕt
ω(u0) for

almost all ω ∈ �′. ��
Furthermore, we obtain the following statement regarding the existence, uniqueness
and regularity of the invariant measure associated to (1.1).

Proposition 2.4 The process (ut ) admits a unique, locally positive stationary measure
ρ on H for which ρ(Vγ ) = 1.

Proof The existence of an invariant measure is an application of Es-Sarhir and Stannat
[19, Theorem 4.4], whereas its uniqueness can be inferred from Cerrai [11, Sect. 5].
The hypothesis in [11] can be verified in our setting, due to the structure of the covari-
ance operator of the noise Q = (−�)−2β for β ∈ (0, 1

4 ). More precisely letting
(λk)k∈N denote the eigenvalues of the Dirichlet–Laplacian and (qk)k∈N stand for the
eigenvalues of Q, the condition

∞∑
k=1

q2
k

λ
1−p
k

< ∞

2 In what follows, we will intentionally abuse notation and conflate � and �′.

123
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holds for some p ∈ (0, 1). This reduces to

∞∑
k=1

1

k4β+2−2γ < ∞,

which is satisfied provided that β >
p
2 − 1

4 . Therefore it is always possible to find
p ∈ (0, 1) satisfying the above inequality. That the resulting invariant measure fully
charges Vγ follows by construction relying on the Krylov–Bogoliubov method [19,
Sect. 2] and regarding the compact embeddings Vγ ↪→ Vγ ′ for γ ′ ≤ γ .

Lastly, this measure is locally positive on H by Cerrai [11, Proposition 8.3.6]. Since
ρ(Vγ ) = 1, it is straightforward to check that local positivity on Vγ also holds. ��

2.2 Properties of attractor and samplemeasures

Given a Borel-measurable mapping ψ : H → H and a Borel probability μ on H ,
define ψ∗μ := μ ◦ ψ−1 to be the pushforward of μ by ψ . We recall a, by now,
classical result from the RDS literature, sometimes also coined the correspondence
theorem between stationary measures ρ and sample measures ρω that are measurable
with respect to the past, also named Markov measures.

Lemma 2.5 (Theorem 4.2.9 of [25]) For P a.e. ω ∈ �′, the weak∗ limit

ρω = lim
t→∞(ϕt

θ−t ω
)∗ρ

exists and is F− := F0−∞-measurable. The sample measures ρω satisfy (ϕt
ω)∗ρω =

ρθ t ω with probability 1 for all t ≥ 0 as well as E(ρω) = ρ.

The samplemeasures can be associatedwith a unique attracting randomequilibrium
for the situation of (1.1), by combining Proposition 2.4, Lemma 2.5, the almost sure
order-preservationϕt

ωu ≤ ϕt
ωv for allu ≤ v [14, Theorem5.8] and the characterization

of random attractors by Arnold and Chueshov [4].

Proposition 2.6 Consider the RDS induced by the SPDE (1.1) for any value of α ∈ R.
We have that

(a) with probability 1, the sample measure ρω is atomic, i.e., ρω = δa(ω) where
a = aα : � → H is an F−-measurable H-valued random variable such that
almost surely

ϕt
ω(a(ω)) = a(θ t (ω)),

(b) the set valued map ω �→ {a(ω)} is the unique random attractor of the RDS induced
by the SPDE (1.1), i.e. for all bounded D ⊂ H we have almost surely

lim
t→∞ sup

d∈D
‖ϕt

θ−t ω
(d) − a(ω)‖H = 0.
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Proof While the covariance operator Q is slightly different in our case, the main
arguments from Caraballo et al. [9, Theorem 6.1] carry over. The existence of the
attractor follows upon reducing the SPDE (1.1) into a PDE with random coefficients,
which utilizes the stochastic convolution from Lemma 2.1. Then, one can easily derive
an absorbing set using a-priori estimates and the fact that F : Vγ → Vγ is locally
Lipschitz. The compactness of the absorbing set follows from the compact embeddings
Vγ ↪→ Vγ ′ for γ ′ ≤ γ . The fact that the random attractor is a singleton is implied by
the order-preservation of the system together with the existence of a unique invariant
measure, recalling Proposition 2.4. ��

For proving the bifurcations in terms of finite-time Lyapunov exponents, we cru-
cially require the following lemma on regularity of the random attractor a = aα .

Proposition 2.7 (a) With probability 1, we have that a(θ tω) ∈ Vγ for all t ∈ R.
(b) For any T > 0, there exists a FT−∞-measurable set A ⊂ � with P(A) > 0 such

that

‖aα(θ sω)‖Vγ ∈ (0, ε) for all s ∈ [0, T ] andω ∈ A.

Roughly, Proposition 2.7 will follow from (i) the fact that ρ(Vγ ) = 1, hence
aα(ω) ∈ Vγ with probability 1 and (ii) that Vγ -regularity is propagated3 in time by the
evolution Eq. (1.1), and that ‖a(θ tω)‖Vγ can bemade small by taking ‖a(ω)‖Vγ small.
Point (i) is immediate from the preceding discussion in this section, while point (ii)
is ensured by the existence of the Vγ -continuous modification of the stochastic con-
volution in Lemma 2.1 together with regularizing properties of analytic semigroups.
See Appendix A for further details.

Remark 2.8 We refer the reader to Chueshov [12] and Zhao [35] for further details
regarding the regularity of randomattractors for stochastic reaction diffusion equations
with finite-dimensional additive noise, based on a randomdynamical systems approach
(without using the correspondence between attractors and invariant measures).

3 Proofs of Theorems A and B

Notation: in the following, the vectors e1, e2, . . . denote the orthonormal Fourier basis
of the Laplacian � on O = [0, L] with Dirichlet boundary conditions,

ek(x) =
√

2

L
sin(2πkx/L).

We write π1 for the orthogonal projection onto the span of e1, and (·, ·) = (·, ·)L2

for the L2 inner product. Moreover, we write λk = (2πk/L)2 for the corresponding
eigenvalues of (−�), so that �ek = −λkek . Lastly, in this section we will write
‖ · ‖ = ‖ · ‖H for clarity of notation.

3 Note that this regularity issue is inherent to the infinite-dimensional problem and does not arise in the
previous SODE works [8, Proposition 4.1] and [18, Proposition 5.1].
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3.1 Proof of Theorem A: estimate of top FTLE

The following summarizes our estimates of finite-time Lyapunov exponents along the
attracting random equilibrium aα(ω) and immediately implies Theorem A.

Proposition 3.1

(a) Unconditionally,

‖Daα(ω)ϕ
t
ω‖ ≤ et(α−λ1)

for all t > 0 and with probability 1.
(b) Assume α − λ1 > 0. For all 0 < η � α − λ1, T > 0 there exists A ∈ FT−∞ with

P(A) > 0 such that

‖Daα(ω)ϕ
t
ω‖ ≥ (1 − η)et(α−λ1−η)

for all t ∈ [0, T ], ω ∈ A.

Proof of the upper bound (a)

The bound from above in part (a) is straightforward from the energy estimate derived
by taking a time derivative of ‖vt‖2, where vt := Da(ω)ϕ

t
ωv0 for fixed v0 ∈ L2.

Recalling with (2.4) the variational random PDE

v̇t = (α + �)vt − 3aα(θtω)2vt , (3.1)

we see that

1

2

d

dt
‖vt‖2 = (vt , v̇t ) = (vt , (α + �)vt ) − (vt , 3aα(ω)2vt ) ≤ (vt , (α + �)vt ) .

Since (α + �) is self-adjoint with eigenvalues α − λi , i ≥ 1, we see in view of the
min-max principle for closed self-adjoint operators that

(w, (α + �)w) ≤ (α − λ1)‖w‖2

for all w ∈ L2. In conclusion,

d

dt
log ‖vt‖ ≤ α − λ1 ,

from which the estimate in (a) follows.
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Proof of the lower bound (b)

Our primary tool in this proof will be the family of quadratic forms on L2 × L2

Qδ(v,w) = δ(π1v, π1w)L2 − (π⊥
1 v, π⊥

1 w)L2 , δ > 0 .

In what follows, we will abuse notation and write Qδ(v) = Qδ(v, v). Conceptually,
quadratic forms such as these specify closed cones

Cδ = {v ∈ L2 : Qδ(v) ≥ 0} =
{
‖π⊥

1 v‖2 ≤ δ‖π1v‖2
}

, δ > 0 ,

roughly parallel to the span of the first eigenmode e1. It is evident that the shifted heat
semigroup e(α+�)t leaves these cones Cδ invariant, expanding vectors within them to
order et(α−λ1).

In summary, our lower bound on ‖Da(ω)ϕ
t
ω‖will come from showing the following:

(1) the operator Da(ω)ϕ
t
ω is close to the heat semigroup e(α+�)t conditioned on an event

A along which the perturbation factor 3aα(θtω)2 in (3.1) is small in an appropriate
sense; and (2) we can transfer cone preservation and vector expansion of the heat
semigroup to the nearby time-t cocycle Da(ω)ϕ

t
ω. The following makes this more

precise:

Lemma 3.2 Assume α > λ1. Let T > 0 and ε > 0 with
√

ε � α −λ1 be fixed, and let
ω ∈ � be a noise path with the property that the nonlinear term Bt

ω := −3aα(θ tω)2

satisfies

‖Bt
ω‖C(O) ≤ ε (3.2)

for all t ∈ [0, T ].
Finally, assume v0 ∈ L2 satisfies Qδ(v0) > 0, where

δ := √
ε.

Under these conditions, the time-t solution vt = Da(ω)ϕ
t
ω(v0) to the first variation

Eq. (3.1) satisfies

1

2

d

dt
Qδ(vt ) ≥ (α − λ1 − 2δ) Qδ(vt ) . (3.3)

While in Sect. 3.2 we will prove a more general result, we have included the following
proof for convenience of the reader.

Proof To start, observe that

1

2

d

dt
Qδ(vt ) = Qδ(vt , v̇t ) = δ(π1vt , π1v̇t ) − (π⊥

1 vt , π
⊥
1 v̇t ) ,
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hence

1

2

d

dt
Qδ(vt ) ≥ δ(α − λ1)‖π1vt‖2 − (α − λ2)‖π⊥

1 vt‖2 − (1 + δ)ε‖vt‖2

≥
(

α − λ1 − (1 + δ)ε

δ

)
δ‖π1vt‖2 − (α − λ2 + (1 + δ)ε) ‖π⊥

1 vt‖2 ,

having used the estimates

(π1v, (α + �)π1v) ≥ (α − λ1)‖π1v‖2 ,

(π⊥
1 v, (α + �)π⊥

1 v) ≤ (α − λ2)‖π⊥
1 v‖2

and decomposing ‖v‖2 = ‖π1v‖2 + ‖π⊥
1 v‖2. On assuming that

(1 + δ)ε ≤ α − λ1 − (1 + δ)ε

δ
,

which can be arranged with δ = √
ε and ε taken sufficiently small, it follows that

1

2

d

dt
Qδ(vt ) ≥

(
α − λ1 − (1 + δ)ε

δ

)
Qδ(vt ) ,

which implies the desired bound. ��
Completing the proof of Proposition 3.1(b) Assume for themoment that Eq. (3.3) holds
for all t ∈ [0, T ]. Then,

1

2

d
dt Qδ(vt )

Qδ(vt )
≥ α − λ1 − 2δ ,

hence,

Qδ(vt ) ≥ Qδ(v0) exp{2t (α − λ1 − 2δ)}. (3.4)

To translate this to a lower bound on norms: Take M > 1 and assume Qδ/M (v0) ≥ 0.
Then,

Qδ(v0) = δ‖π1v0‖2 − ‖π⊥
1 v0‖2 = δ

(
1 − 1

M

)
‖π1v0‖2 + Qδ/M (v0)

≥ δ(M − 1)

M
‖π1v0‖2.

Using that v ∈ Cη implies ‖v‖2 ≤ (1 + η)‖π1v‖2 for η > 0, we have

Qδ(v0) ≥ δ(M − 1)/M

1 + δ/M
‖v0‖2 = δ(M − 1)

M + δ
‖v0‖2 . (3.5)
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Since Qδ(w) ≤ δ‖w‖2 unconditionally for all w ∈ L2, we combine (3.4) and (3.5) to
obtain

‖vt‖2 ≥ M − 1

M + δ
exp{2t (α − λ1 − 2δ)}‖v0‖2 for all v0 ∈ Cδ/M .

We can clearly make the prefactor as close to 1 as desired on taking M sufficiently
large.

To complete the proof, it suffices to arrange for (3.3) to hold for all t ∈ [0, T ]
on a positive-probability event A ∈ FT−∞. This follows by Lemma 3.2 as long as
‖Bt

ω‖L∞ can be made small as in (3.2) for all t ∈ [0, T ]. This, in turn, is implied by
Proposition 2.7, which allows to make aα(θ tω) small in Vγ , hence also in C(O), for
all t ∈ [0, T ]. ��
Remark 3.3 Note that the only informationwe used in the preceding argument was that
aα(θ tω) could be made sufficiently small in Vγ (hence also in C(O)) for all t ∈ [0, T ].
Indeed, the argument goes through with aα(θ tω) replaced by any trajectory (ut )t≥0,
as long as ‖ut‖Vγ remains sufficiently small for all t ∈ [0, T ]. By Lemma A.1 in the
Appendix, this can be arranged with positive probability for all fixed initial u0 with
‖u0‖Vγ sufficiently small. Indeed, this alternative version of Proposition 3.1 makes no
use at all of the stationary measure or the point attractor, and relies only on the RDS
framework of Proposition 2.2, hence only on the assumption (2.3) on the covariance
operator Q. These observations apply equally well to the forthcoming arguments of
Sect. 3.2 controlling finite-time k-dimensional volumes.

3.2 Proof of Theorem B: bounding volume growth

We now wish to apply similar ideas to estimate volume growth rates. We begin with
some background on wedge spaces and norms in Sect. 3.2.1, allowing us to state
Proposition 3.4 which summarizes the volume growth bounds required in Theorem B.
The proof of Proposition 3.4 via a cones argument will occupy the remainder of the
Section.

3.2.1 Background on wedge spaces

Let H be a separable Hilbert space. Given v1, . . . , vk ∈ H we write

v1 ∧ · · · ∧ vk

for the wedge product of {vi } (sometimes referred to as a k-blade), and write ∧k H for
the closure of the set of finite linear combinations of k-blades under the norm induced
by the inner product

(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det
[
(vi , w j )i j

]
,

where (vi , w j )i j denotes the k × k matrix with i, j-th entry (vi , w j ). Let ‖ · ‖∧k H
denote the norm induced by this inner product.
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618 A. Blumenthal et al.

We recall the following elementary properties of ∧k H :

(1) If e1, e2, . . . ∈ H is a complete orthonormal system, then an orthonormal basis
for ∧k H is given by the set of k-blades

ei = ei1 ∧ · · · ∧ eik ,

as i = (i1, . . . , ik) ranges over the set of all distinct indices i1 < i2 < · · · < ik .
(2) A bounded linear operator A on H gives rise to an operator ∧k A in B(∧k H),

i.e. the space of bounded linear operators from ∧k H into itself, via

∧k A(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧ Avk .

This operator has the property that

‖ ∧k A‖∧k H = sup{| det(A|E )| : E ⊂ H , dim E = k}
= sup

{‖Av1 ∧ · · · ∧ Avk‖∧k H

‖v1 ∧ · · · ∧ vk‖∧k H
: v1, . . . , vk ∈ H linearly independent

}
(3.6)

where for the purposes of defining det we view A|E : E → A(E) as a linear
operator of finite-dimensional inner product spaces, and set det(A|E ) = 0 if
dim A(E) < dim E .

Below, we will abuse notation somewhat and write ‖ · ‖ = ‖ · ‖∧k H .
We are now in position to formulate the estimates needed in the proof of TheoremB.

Proposition 3.4

(a) Unconditionally, for all k ≥ 1 we have that

‖ ∧k Da(ω)ϕ
t
ω‖ ≤ et

∑k
i=1(α−λi )

for all t > 0 with probability 1.
(b) Assume α − λr > 0 > α − λr+1 for some r ≥ 1. Let η > 0 be sufficiently small,

T > 0 arbitrary. Then, there exists A ∈ FT−∞ with P(A) > 0 such that for all
ω ∈ A, t ∈ [0, T ], we have

‖ ∧k Da(ω)ϕ
t
ω‖ ≥ (1 − η)et

∑k
i=1(α−λi −η)

for each k ∈ {1, . . . , r}.

3.2.2 Proof of Proposition 3.4(a): upper bound on k-dimensional volume growth

In using wedge products to derive upper bounds we follow a long tradition of authors,
e.g., Temam [32], Debussche [17]).
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To this end, let k ≥ 1 and fix v0 = v10 ∧ · · · ∧ vk
0 ∈ ∧k H , writing

vt = v1t ∧ · · · ∧ vk
t = ∧k Da(ω)ϕ

t
ω(v0).

Recalling that ∂tv
i
t = (α + � + Bt

ω)vi
t for all i = 1, . . . , k, we compute

1

2

d

dt
‖vt‖2 =

k∑
j=1

(vt , v
1
t ∧ · · · ∧ (α + � + Bt

ω)v
j
t ∧ · · · ∧ vk

t ). (3.7)

We will use the following linear algebra lemma.

Lemma 3.5 Let B be a bounded, negative semi-definite operator on a separable
Hilbert space H and let k ≥ 1. Then, the operator B̂(k) on ∧k H defined by

B̂(k)(v1 ∧ · · · ∧ vk) =
k∑

j=1

v1 ∧ · · · ∧ Bv j ∧ · · · ∧ vk

is negative semi-definite as an operator on ∧k H.

Proof To start, observe that

B̂(k) = d

dt

∣∣∣∣
t=0

∧k eBt

where on the RHS is the Frechet derivative at t = 0 of t �→ ∧keBt . Immediately it
follows that B̂(k) is self-adjoint. To check it is negative semidefinite, we will show that
∧keBt is a contraction semigroup, i.e.,

‖ ∧k eBt‖ ≤ 1

for all t > 0. If this is the case, then

(B̂(k)(v1 ∧ · · · ∧ vk), v1 ∧ · · · ∧ vk) = 1

2

d

dt

∣∣∣∣
t=0

‖ ∧k eBt (v1 ∧ · · · ∧ vk)‖2 ≤ 0

for all v1 ∧ · · · ∧ vk ∈ �k H , hence B̂(k) is negative semidefinite.
To check that ∧keBt is a contraction semigroup, it suffices by the characteriza-

tion in (3.6) to estimate ‖ ∧k eBt (v1 ∧ · · · ∧ vk)‖ for some linearly independent set
{v1, . . . , vk} ⊂ H . Applying the Gram Schmidt process to this set of vectors, let
{w1, . . . , wk} ⊂ H be an orthogonal set for which wi ∈ Span{v1, . . . , vi } for each
1 ≤ i ≤ k. On cancelling repeated wedge terms of the form vi ∧ vi , it follows that

v1 ∧ · · · ∧ vk = w1 ∧ · · · ∧ wk .
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Then,

‖ ∧k eBt (v1 ∧ · · · ∧ vk)‖ = ‖ ∧k eBt (w1 ∧ · · · ∧ wk)‖

≤
k∏

i=1

‖eBtwi‖ ≤
k∏

i=1

‖wi‖ ,

having used that B negative semi-definite implies that eBt is a contraction semigroup.
Note now that since the {wi } are orthogonal, (wi , w j ) = ‖wi‖2δi j (here δi j = 1 if
i = j and = 0 if i �= j), hence det(wi , w j ) = ∏k

i=1 ‖wi‖2. In view of the definition
of ‖ · ‖ = ‖ · ‖∧k H , we conclude that

∏
i

‖wi‖ = ‖w1 ∧ · · · ∧ wk‖ = ‖v1 ∧ · · · ∧ vk‖ ,

completing the proof. ��
To complete the upper bound as in part (a) of Proposition 3.4, observe from (3.7)

and the previous Lemma that

1

2

d

dt
‖vt‖2 ≤

k∑
j=1

(vt , v
1
t ∧ · · · ∧ (α + �)v

j
t ∧ · · · ∧ vk

t ) ≤
⎛
⎝ k∑

j=1

(α − λ j )

⎞
⎠ ‖vt‖2

by the min-max principle. The estimate in (a) now follows.

3.2.3 Proof of Proposition 3.4(b): Quadratic forms on∧kH

For δ > 0 we define the quadratic form Q(k)
δ on ∧k H

Q(k)
δ (v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = δ〈∧k�k(v1 ∧ · · · ∧ vk), w1 ∧ · · · ∧ wk〉

− 〈∧k�⊥
k (v1 ∧ · · · ∧ vk), w1 ∧ · · · ∧ wk〉

where �k denotes orthogonal projection onto the span of the first k eigenmodes
{e1, . . . , ek} of �, and �⊥

k = I − �k . Equivalently, ∧k�k is the orthogonal pro-
jection onto the span of ei0 = e1 ∧ · · · ∧ ek, i0 := (1, . . . , k). In what follows, we will
again abuse notation and write

Q(k)
δ (v1 ∧ · · · ∧ vk) = Q(k)

δ (v1 ∧ · · · ∧ vk, v1 ∧ · · · ∧ vk).

The following elaboration on Lemma 3.2 above extends that result to the operator
∧k Da(ω)ϕ

t
ω as a perturbation of ∧ke(α+�)t in view of Proposition 2.7. Below, given

i = (i1, . . . , ik) we write �i := ∑k
j=1(α − λi j ).
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Lemma 3.6 Assume α − λk > 0. Let T > 0 and ε > 0, ε � α − λk be fixed, and let
ω ∈ � be a noise path with the property that the nonlinear term Bt

ω := −3aα(θ tω)2

satisfies

‖Bt
ω‖C(O) ≤ ε

for all t ∈ [0, T ]. Finally, assume v0 = v10 ∧ · · · ∧ vk
0 ∈ ∧k L2 satisfies Q(k)

δ (v0) > 0
where δ > 0 satisfies

ε(1 + δ)k ≤ �i0 − �i − ε(1 + δ)k

δ
,

for all i �= i0.
Under these conditions, the k-blade vt := ∧k Da(ω)ϕ

t
ω(v0), corresponding with the

time-t solutions v
j
t = Da(ω)ϕ

t
ω(v

j
0 ) to the first variation Eq. (3.1), satisfies

1

2

d

dt
Q(k)

δ (vt ) ≥
(

�i0 − ε(1 + δ)k

δ

)
Q(k)

δ (vt ) .

Lemma 3.2 above is a special case of Lemma 3.6 with k = 1 and δ = √
ε. Fixing this

value of δ, we see that parallel to the argument presented around Eq. (3.4), Q(k)
δ (v0) >

0 implies vt = ∧k Da(ω)ϕ
t
ω(v0) satisfies

Q(k)
δ (vt ) ≥ Q(k)

δ (v0) exp{2t(�i0 − 2kδ)} .

In particular, for M > 1 we have that if Q(k)
δ/M (v0) > 0, then

‖vt‖2 ≥ M − 1

M + δ
exp{2t(�i0 − 2kδ)}‖v0‖2 .

The proof of Proposition 3.4(b) is now complete on taking M sufficiently large and
δ sufficiently small, and appealing to Proposition 2.7 to ensure ‖Bt

ω‖C(O) is sufficiently
small along the time window [0, T ] (c.f. the end of the proof of Proposition 3.1(b)).

Proof of Lemma 3.6

To start, note the unconditional estimate

|Q(k)
δ (v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk)| ≤ (1 + δ)‖v1 ∧ · · · ∧ vk‖‖w1 ∧ · · · ∧ wk‖ .
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Let vi = vi (t) = Da(ω)ϕ
t
ω(vi (0)). Assuming B = Bt

ω is such that ‖B‖V ≤ ε, it
follows that ‖Bv‖ ≤ ε‖v‖ for any v ∈ H . Therefore,

1

2

d

dt
Q(k)

δ (v1 ∧ · · · ∧ vk) =
k∑

j=1

Q(k)
δ (v1 ∧ · · · ∧ vk , v1 ∧ · · · ∧ v̇ j ∧ · · · ∧ vk)

=
k∑

j=1

Q(k)
δ (v1 ∧ · · · ∧ vk , v1 ∧ · · · ∧ (α + � + B)v j ∧ · · · ∧ vk)

≥
k∑

j=1

Q(k)
δ (v1 ∧ · · · ∧ vk , v1 ∧ · · · ∧ (α + �)v j ∧ · · · ∧ vk)

− ε(1 + δ)k‖v1 ∧ · · · ∧ vk‖2 .

We can write

v1 ∧ · · · ∧ vk =
∑
i

viei,

such that

Q(k)
δ (v1 ∧ · · · ∧ (α + �)v j ∧ · · · ∧ vk) =

∑
i,i′

vivi′(α − λi ′j )Q(k)
δ (ei, ei′).

For the summands we have

Q(k)
δ (ei, ei′) =

⎧⎪⎨
⎪⎩

δ i = i′ = i0,
−1 i = i′ �= i0,
0 else,

which implies

Q(k)
δ (v1 ∧ · · · ∧ (α + �)v j ∧ · · · ∧ vk) = δ(α − λ j )v

2
i0 −

∑
i �=i0

v2i (α − λi j )

such that we obtain

k∑
j=1

Q(k)
δ (v1 ∧ · · · ∧ (α + �)v j ∧ · · · ∧ vk) = δ�i0v

2
i0 −

∑
i �=i0

�iv
2
i .

Altogether, we have

1

2

d

dt
Q(k)

δ (v1 ∧ · · · ∧ vk) ≥ δ�i0v
2
i0 −

∑
i �=i0

�iv
2
i − ε(1 + δ)k

∑
i

v2i

= δ

(
�i0 − ε(1 + δ)k

δ

)
v2i0 −

∑
i �=i0

(�i + ε(1 + δ)k)v2i .
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Therefore, we may conclude

1

2

d

dt
Q(k)

δ (v1 ∧ · · · ∧ vk) ≥
(

�i0 − ε(1 + δ)k

δ

)
v2i0 Q(k)

δ (v1 ∧ · · · ∧ vk),

as long as

ε(1 + δ)k ≤ �i0 − �i − ε(1 + δ)k

δ

for all i �= i0. This finishes the proof of Lemma 3.6.

4 Outlook

In this paper we considered a scenario where stochastic driving destroyed a bifurcation
and showed that some “signature” of the bifurcation persisted in the form of a positive
FTLE on finite timescales and with positive probability. The results in this paper
suggest several possible areas of future work, some of which we list below:
Broader class of models It should be possible to extend the techniques of this paper to
a broader class of SPDEs exhibiting synchronization phenomena “destroying” bifur-
cations, e.g., the class of higher-order models exhibited in [7], or systems undergoing
Hopf bifurcations.
Quantitative estimates on FTLE Unaddressed by our work is the concrete value of
the probability of ‘seeing’ a positive FTLE on a given timescale for a statistically
stationary initial condition. In view of the convergence of the FTLE to the asymptotic
Lyapunov exponent with probability 1, this kind of quantitative information amounts
to a large deviations estimate. This is naturally tied to the ergodic properties of the
Markov process (ut , v̂t ), where ut is a solution to the SPDE, vt is a solution to the first
variation equation, and v̂t = vt/‖vt‖, see e.g. [2] in the context of SODE. However,
the ergodic properties of (ut , v̂t ) are difficult to study due to the normalization by ‖vt‖
and the difficult-to-rule-out possibility that the asymptotic Lyapunov exponent is−∞.
A rigorous proof of the fact that the asymptotic Lyapunov exponent is negative was
recently obtained in [23]. However, a better understanding of the ergodic properties
of this process remains an interesting open problem for a large class of systems.
Arbitrary initial data. It is an interesting question, outside the scope of this work, to
provide lower bounds on the FTLE �1 for a trajectory initiated away from 0 (large
initial data). Suppose, for instance, that one could arrange so that the stationarymeasure
ρ is fully supported in Vγ , and that the correspondingMarkov semigroup is strong/ultra
Feller [31]. According to Cerrai [11, Sect. 8.3.1] we know that these properties hold in
H under our assumptions. It would then hold that any initial data u0 ∈ Vγ enters a Vγ -
small neighborhood of 0 given enough time (with probability 1). This, in conjunction
with the arguments in Sect. 3, would imply the following: for all u0 ∈ Vγ and T > 0,
there exists t > 0 and a set A ∈ F t+T

0 such that for ω ∈ A,

‖Dut ϕ
s
θ t ω‖ ≈ es(α−λ1) for all s ∈ [0, T ] ,
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624 A. Blumenthal et al.

along the lines of Theorem A. A significantly harder question, however, is to provide
an estimate of ‖Du0ϕ

s
ω‖, initiated at time zero, for potentially large initial data u0 and

for times s > T (u0). While it should be possible to steer the trajectory of (ut ) close
to 0 and apply the arguments of Sect. 3, what is missing is an argument to bound Dϕt

ω

from below during the ‘transient’ time period before ut has been ‘steered’ toward 0.
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A Appendix

A.1 Proof of Proposition 2.7

Proposition 2.7 will be deduced from the following.

Lemma A.1 For any T > 0 and ε > 0 there is an event AT ∈ FT
0 of positive

probability and a real number η = η(ε, T ) > 0 such that for any u0 ∈ Vγ with
‖u0‖Vγ < η, we have that ‖ut‖Vγ < ε for all t ∈ [0, T ] and all ω ∈ AT .

Proof of Proposition 2.7 assuming LemmaA.1 By Proposition 2.4, the process (ut )

admits a unique stationary measure ρ on H with ρ(Vγ ) = 1, hence aα(ω) ∈ Vγ

with probability 1. Let ε, T > 0 be fixed let and η = η(ε, T ) > 0,AT ∈ FT
0 be as in

Lemma A.1. Local positivity of ρ ensures P(A−) > 0, where

A− = {‖aα‖Vγ < η} .

Let now A = A− ∩ AT , and note that since A− ∈ F0−∞, we have that A−,AT are
independent, hence

P(A) = P(A−) · P(AT ) > 0,

which completes the proof. ��
Proof of LemmaA.1 The main idea is to exploit regularizing properties of analytic
semigroups. Recalling the SPDE (1.1)

du = [�u + αu −u3︸︷︷︸
:= f (u)

] dt + √
QdWt

= [�u + αu] dt + f (u) dt + √
QdWt , (A.1)
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we subtract the Ornstein-Uhlenbeck process, i.e. the solution of the linear SPDE

dz = [�z + αz] dt + √
QdWt .

This solution is given by the convolution

z(t) =
∫ t

0
T (t − r)

√
QdWt ,

where (T (t))t≥0 is the shifted heat semigroup with α, i.e. T (t) := e(�+α)t . According
to Lemma 2.1 this belongs to C([0, T ]; Vγ P)-a.s. Therefore the set

AT :=
{
ω ∈ � : sup

t∈[0,T ]
‖z(t)‖Vγ ≤ η

}
∈ FT

0

has positive probability. This is sufficient for our aims since we are only interested in
a finite-time statement. We further fix ω ∈ A = A− ∩ AT as in Proposition 2.7 and
study on Vγ the PDE with random non-autonomous coefficients

dũ = [�ũ + αũ] dt + f (ũ + z) dt . (A.2)

(Since (T (t))t≥0 is an analytic semigroup, ũ is differentiable on Vγ for t > 0). We
assume that the initial data ũ0 := ũ(0) = aα(ω). We now prove that for any given
ε > 0 and ω ∈ A we have

‖aα(θ sω)‖Vγ ∈ (0, ε), for s ∈ [0, T ]. (A.3)

To this aim we use the fact the semigroup (T (t))t≥0 acts on all function spaces Vγ

together with the classical estimate

‖T (t)‖B(Vγ ) ≤ e(−λ1+α)t , t > 0. (A.4)

The cubic nonlinearity f : Vγ → Vγ is locally Lipschitz for γ ∈ ( 14 ,
1
2 ), i.e. there

exists a constant l̃ := l̃(‖ũ1‖Vγ , ‖ũ2‖Vγ ) such that

‖ f (ũ1) − f (ũ2)‖Vγ ≤ l̃‖ũ1 − ũ2‖Vγ , for ũ1, ũ2 ∈ B ⊂ Vγ ,

where B is a bounded subset of Vγ . Moreover there exists an increasing function
a : R+ → R

+ such that

〈F(y + w), y〉Vγ ≤ a(‖w‖)(1 + ‖y‖), for all y, w ∈ Vγ , (A.5)
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see [19, (H3), p. 130] and [16, Sect. 7.2.1]. Regarding this together with ‖·‖H ≤ ‖·‖Vγ

further results in

1

2

d

dt
‖ũ(t)‖2Vγ

≤ 〈�ũ(t) + αũ(t), ũ(t)〉Vγ + 〈F(ũ(t) + z(t)), ũ(t)〉Vγ

≤ (−λ1 + α)‖ũ(t)‖2Vγ
+ a(‖z(t)‖Vγ )(1 + ‖ũ(t)‖Vγ )

≤ (−λ1 + α + a(‖z(t)‖Vγ ))‖ũ(t)‖2Vγ
+ a(‖z(t)‖Vγ ).

Here we estimated ‖ũ(t)‖Vγ ≤ ‖ũ(t)‖2Vγ
, since if ‖ũ(t)‖Vγ ≤ 1, then the statement

automatically holds. Gronwall’s inequality now entails

‖ũ(t)‖2Vγ
≤ e(−λ1+α)t+∫ t

0 a(‖z(s)‖Vγ ) ds‖ũ0‖Vγ +
∫ t

0
e(−λ1+α)(t−s)+∫ t

s a(‖z(r)‖Vγ ) dr a(‖z(s)‖Vγ ) ds

≤ e(−λ1+α+a(η))t‖ũ0‖Vγ + a(η)

∫ t

0
e(−λ1+α+a(η))(t−s) ds,

where we used the fact that a is increasing and that ‖z(s)‖Vγ ≤ sup
s∈[0,T ]

‖z(s)‖Vγ ≤
η for ω ∈ A. Regarding that ‖u(t)‖Vγ ≤ ‖ũ(t)‖Vγ + ‖z(t)‖Vγ , u0 = aα(ω) and
consequently u(t) = aα(θ tω), the statement follows. ��
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