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A B S T R A C T

Several case history failures of slope systems have highlighted that the instability onset in loose materials can
be triggered under prevailed drained conditions and stress paths that can be represented by constant shear
drained (CSD) loading. This study uses the anisotropic critical state theory (ACST) to assess the effect of fabric
anisotropy and loading characteristics (e.g., Lode angle and principal stress direction) on the instability onset
under CSD stress paths, comparing our numerical-based observations with available experimental information.
Towards this end, the ACST-based SANISAND-F model’s performance under CSD stress paths is also assessed. In
addition, multiaxial conditions are incorporated through the estimation of instability surfaces. The numerical
simulations are useful in explaining that the instability onset under CSD loading is dictated by a trade-off
of volumetric strain components. Moreover, the results show an important effect of fabric anisotropy on the
instability stress ratio (𝜂𝑓 ). For conditions representative of common experimental setups, 𝜂𝑓 decreases with
the increase of the Lode angle and the major principal stress inclination, and 𝜂𝑓 increases with the increase
of initial fabric intensity, consistent with available experimental evidence. However, these trends can change
based on the interaction between the Lode angle and loading/fabric directions; hence, departing from typical
experimental observations. Finally, we discuss the potential of a simplified approach to estimate 𝜂𝑓 analytically,
including fabric effects.
1. Introduction

Static liquefaction has been associated with several catastrophic fail-
ures of slope systems such as tailings storage facilities (TSFs) and water
dams, some of them occurring during the last decade (Morgenstern
et al., 2016; Jefferies et al., 2019; Robertson et al., 2019; Embankments
and Committee, 2021). Static liquefaction can be regarded as an insta-
bility type occurring in particulate materials where large plastic strains
are developed due to a lack of strength under a given combination of
stresses (Chu et al., 2003). It is well established that loose particulate
aterials can experience static liquefaction when subjected to mono-
onic shear loading under undrained conditions (Kramer, 1985; Konrad,
993; Ishihara, 1996; Kramer, 1996). However, several case history
ailures have also highlighted that static liquefaction can be triggered
y prevailing drained loading conditions. For instance, the Wachusett
am failure in 1907 (Olson, 2000), the Aberfan coal tip disaster in
966 (Bishop et al., 1969; Jefferies and Been, 2015), the TSF failures
t Stava in 1985 (Morgenstern, 2001), Fundao in 2015 (Morgenstern
t al., 2016) and Cadia in 2018 (Jefferies et al., 2019), and more re-
ently the failure of the Edenville-Sanford dam in 2020 (Embankments
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and Committee, 2021; France et al., 2022), are prime examples of static
liquefaction where drained conditions prevailed before the instability
triggering.

Fig. 1a shows the failure mechanism of the 1907 Wachusett dam
failure schematically. According to Olson (2000), a rise of the water
table under drained conditions caused a significant decrease in the ef-
fective vertical stresses while the shear stress changed only marginally.
This change in stresses can be represented by the stress path in Fig. 1b,
which can be idealized in the laboratory through a constant shear
drained (CSD) test (Brand, 1981; Anderson and Riemer, 1995). A CSD
test is commonly conducted in triaxial equipment, considering two
stages. First, a standard triaxial loading is imposed until reaching
the desired deviatoric loading (𝑞), and then in a second stage, the
vertical and confining stresses are released by the same amounts, hence
decreasing the mean effective stress (𝑝′) under a constant 𝑞. Fig. 1 (b,c)
schematically shows the typical CSD test response for a loose material
where instability can be observed. The instability is associated with a
stress ratio (𝜂 = 𝑞∕𝑝′) on the instability line depicted in Fig. 1b. In
addition, large shear strains are developed on further shearing beyond
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Fig. 1. (a) Illustration of the cross-section through the failed portion of the North Dike of Wachusett Dam highlighting the sliding surface and the stress state at a certain location.
b, c) Schematic of the behavior of loose granular material subjected to CSD loading showing a typical stress path (b) and shear strain versus mean effective stress (c) responses.
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he instability point as illustrated in Fig. 1c. Previous research has
suggested that instability triggers when the mobilized 𝜂 = 𝑞∕𝑝′ is
higher than 𝜂𝑓 = (𝑞∕𝑝′)𝑓 (Lade, 1992). Section 2.2 will discuss in detail
he conditions for the instability triggering and the definition of the
nstability stress ratio (𝜂𝑓 = (𝑞∕𝑝′)𝑓 ).
As discussed in Fanni et al. (2022), the CSD stress path is partic-

larly important as it is difficult to obviate the possibility of a water
able increase during the lifetime of a slope system and because any pre-
ailure indicators (e.g., increase in displacements) would be minimal,
aking it dangerous in terms of static liquefaction (Sasitharan et al.,
993; Reid et al., 2021b). Several previous experimental studies have
xplored the onset of instabilities under CSD loadings, with most efforts
ocused on triaxial (i.e., axisymmetric) conditions, considering a range
f densities and stresses (Sasitharan et al., 1993; Skopek et al., 1994;
Anderson and Riemer, 1995; Gajo et al., 2000; Chu et al., 2003; Azizi,
009; Chu et al., 2012, 2015; Dong et al., 2016; Fotovvat et al.,
2022; Lindenberg and Koning, 1981; Brand, 1981; Harp et al., 1990;
ckersley, 1990). These studies highlight mechanisms consistent with
2

those illustrated in Fig. 1(b,c). In some cases, comparisons of the
instability triggering under CSD and undrained triaxial loadings have
also been explored, highlighting similar 𝜂𝑓 regardless of the drainage
condition if the initial conditions (i.e., density, consolidation stress) are
similar (Chu et al., 2012; Dong et al., 2016; Wanatowski et al., 2010;
otovvat et al., 2022). Comparatively, experimental efforts considering
on-triaxial conditions are scarce. For example, Wanatowski et al.
2010) and Wanatowski and Chu (2012) explored the instability of
sands in CSD stress paths under plane-strain conditions. The authors ob-
served experimentally that 𝜂𝑓 under plane strain conditions was lower
than its counterpart under triaxial conditions. More recently, Fanni
et al. (2022) used a hollow cylinder apparatus to explore the effect
of fabric (induced and inhered) on the onset of instabilities under
drained loadings. Their experimental setup attempted to resemble a
CSD stress path. They applied loading with different directions of
major principal stress relative to the vertical axis to examine induced
fabric anisotropy. In addition, they also tested samples prepared with

different reconstitution methods to examine inherent anisotropy. Due
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to experimental limitations, the loading conditions were limited to two
different Lode angles (including the Lode angle in triaxial compression
conditions) and two different major principal stress directions. The
results highlighted an important effect of both induced and inherent
fabric on the instability triggering. Specifically, 𝜂𝑓 was lower for the
higher Lode angle and the stress orientation that deviates more from
the vertical.

Previous efforts have also evaluated the instability onset under CSD
stress paths numerically. Most of these efforts have been focused on
triaxial conditions, using Hill’s criterion (Hill, 1958) combined with
a constitutive model to assess instability conditions (Sibille et al.,
2007; Sawicki and Świdziński, 2010a; Ramos et al., 2012; Sun, 2013;
lipour and Lashkari, 2018). Hence, the underlying constitutive model
ignificantly influences the observations derived from these efforts. For
xample, Sibille et al. (2007) and Sawicki and Świdziński (2010a)
used constitutive models developed by Darve et al. (1995), and Saw-
icki and Świdziński (2010b,c); Ramos et al. (2012) and Sun (2013)
performed simulations using the Dafalias and Manzari (2004) (DM04)
model, and Alipour and Lashkari (2018) used an extended DM04 model
developed by Golchin and Lashkari (2014). Due to the nature of the
constitutive models employed in previous efforts, fabric anisotropy ef-
fects on CSD stress paths have rarely been assessed. We are only aware
of the studies by Lashkari et al. (2019) and Wu et al. (2020), which
employed fabric-dependent constitutive models and discrete element
modeling (DEM) simulations to evaluate instability conditions under
CSD loading. Lashkari et al. (2019) modified the constitutive model de-
veloped by Yang and Li (2004) to incorporate fabric effects. However,
in the context of fabric anisotropy, their study was limited to exploring
the effect of initial cross-anisotropic fabrics under triaxial compression
loading, concluding that initially cross-anisotropic samples had a higher
𝜂𝑓 compared with isotropic counterparts. In another effort, Wu et al.
(2020) used DEM and ACST-based numerical simulations to investigate
micromechanical features of instability triggering in granular materials
under varying drainage conditions imposed on proportional strain and
CSD loadings. In this context, one of the main contributions of this
study is to assess the effect of induced and inherent fabric anisotropic
on the instability onset under CSD stress paths comprehensively. Im-
portantly, our simulations also provide insights for scenarios that are
difficult to represent experimentally and have not been assessed in
previous efforts due to the challenges of imposing generalized loading
conditions considering fabric anisotropy. Towards this end, we use the
anisotropic critical state theory (ACST) framework, which is amenable
to incorporating fabric effects. In particular, the performance of the
ACST-based SANISAND-F model (Petalas et al., 2020) under CSD stress
paths is first assessed and then used to evaluate generalized fabric
effects. Of note, to the author’s best knowledge, the performance of
an ACST model under complex CSD stress paths, considering rotated
principal stresses and the intermediate stress ratio, is assessed for the
first time.

The structure of the paper is as follows: After the introduction in
Section 1, Section 2 discusses the SANISAND-F model and the deriva-
tion of instability criteria that are dependent on the most general form
of fabric anisotropy features for CSD stress paths. We then assess the
performance of the SANISAND-F model in estimating the instability
conditions under CSD stress paths using selected experimental data of
well-characterized sands (Section 3). Next, in Section 4, we numerically
simulate several multiaxial CSD stress paths to gain insights into the
role of fabric and other state variables besides fabric (e.g., density) and
loading characteristics, such as Lode angle and direction of the major
principal stress on the onset of instabilities under CSD stress paths. In
Section 5, we discuss the practical application of the derived instability
criterion and lastly in Section 6, we present the conclusions of our
3

study. s
Table 1
Main equations of the SANISAND-F model.
Description Equation

Fabric tensor 𝑭 𝑭 = 𝐹𝒏𝐹 ; 𝐹 =
√

𝑭 ∶ 𝑭 ; 𝒏𝐹 ∶ 𝒏𝐹 = 1; 𝑡𝑟𝒏𝐹 = 0 (1)

FAV 𝐴 𝐴 = 𝑭 ∶ 𝒏′ = 𝐹𝒏𝐹 ∶ 𝒏′ = 𝐹𝑁 (2)

ACST conditions 𝜂 = 𝜂𝑐 = (𝑞∕𝑝)𝑐 =𝑀(𝜃); 𝑒 = 𝑒𝑐 = 𝑒𝑐 (𝑝); 𝐴 = 𝐴𝑐 = 1 (3)

DSP 𝜁 𝜁 = 𝜓 − 𝑒𝐴(𝐴 − 1) (4)

Elastic moduli 𝐺 = 𝐺0𝑝𝑎𝑡
(2.97 − 𝑒)2

1 + 𝑒

(

𝑝
𝑝𝑎𝑡

)1∕2

; 𝐾 =
2(1 + 𝜈)
3(1 − 2𝜈)

𝐺 (5)

Yield Surface 𝑓 = [(𝒔 − 𝑝𝜶) ∶ (𝒔 − 𝑝𝜶)]1∕2 −
√

2
3
𝑚𝑝 (6)

Flow rule 𝑹′ = 𝐵𝒏 − 𝐶
(

𝒏2 − 1
3
𝑰
)

(7)

𝐵 = 1 + 3
2
1 − 𝑐
𝑐

𝑔(𝜃)𝑐𝑜𝑠3𝜃; 𝐶 = 3
√

3
2
1 − 𝑐
𝑐

𝑔(𝜃) (8)

Dilatancy surface 𝜶𝑑𝜃 =
√

2
3
[

𝑔(𝜃)𝑀𝑐𝑒𝑥𝑝(𝑛𝑑𝜁 ) − 𝑚
]

𝒏 (9)

Bounding surface 𝜶𝑏𝜃 =
√

2
3
[

𝑔(𝜃)𝑀𝑐𝑒𝑥𝑝(𝑛𝑏 < −𝜁 >) − 𝑚
]

𝒏 (10)

Critical state surface 𝜶𝑐𝜃 =
√

2
3
[

𝑔(𝜃)𝑀𝑐 − 𝑚
]

𝒏 (11)

Loading direction 𝒏 = 𝒓 − 𝜶
√

2∕3𝑚
(12)

Dilatancy 𝐷 = 𝐴0
(

𝜶𝑑𝜃 − 𝜶
)

∶ 𝒏 =
√

2∕3𝐴𝑑
(

𝑀𝑑
𝜃 (𝜁 ) − 𝛽

)

(13)

Plastic Modulus 𝐾𝑝 = 𝑝𝐻(𝜶𝑏𝜃 − 𝜶) ∶ 𝒏 = 𝑝𝐻
(

𝑀𝑏
𝜃 (𝜁 ) − 𝛽

)

(14)

𝐻 = 2
3

ℎ(𝑒, 𝑝, 𝐴)
⟨(𝜶 − 𝜶𝑖𝑛) ∶ 𝒏⟩

= 2
3
ℎ(𝑒, 𝑝, 𝐴)
⟨𝛽 − 𝛽𝑖𝑛⟩

(15)

ℎ = 𝐺0ℎ1𝑒𝑥𝑝(ℎ2𝐴)(𝑒−1 − 𝑐ℎ)2
(

𝑝
𝑝𝑎𝑡

)−1∕2

(16)

Fabric evolution 𝑭̇ = ⟨𝐿⟩𝑐0𝑒𝑥𝑝(𝐴)(𝒏′ − 𝑟𝑭 ) (17)

Strain increment 𝝐̇ = 𝝐̇𝑒 + 𝝐̇𝑝 = 1
2𝐺

𝒔̇ + 1
3𝐾

𝑝̇𝑰 + ⟨𝐿⟩
(

𝑹′ + 1
3
𝐷𝑰

)

(18)

Stress increment 𝝈̇ = 2𝐺𝒆̇ +𝐾𝜖̇𝑣𝑰 − ⟨𝐿⟩(3𝐺𝑹′ +𝐾𝐷𝑰) (19)

Plastic multiplier 𝐿 = 1
𝐾𝑝

𝑝𝒏 ∶ 𝑑𝒓 =
2𝐺𝒏 ∶ 𝒆̇ −𝐾(𝒏 ∶ 𝒓) ̇𝜖𝑣
𝐾𝑝 + 2𝐺 −𝐾𝐷(𝒏 ∶ 𝒓)

(20)

2. ACST based instability criteria for CSD loading

2.1. SANISAND-F model formulation

The SANISAND-F constitutive model was recently proposed in Peta-
las et al. (2020). It is part of the SANISAND family of constitutive
models and is a direct extension of the critical state-dependent two-
surface plasticity model presented in Manzari and Dafalias (1997)
and Dafalias and Manzari (2004). The model is developed within the
ramework of ACST (Li and Dafalias, 2012), which accounts for the
ffect of fabric anisotropy on the mechanical behavior of granular
oils. More details on the model and the ACST framework can be
ound in Petalas et al. (2020) and Li and Dafalias (2012), respectively.
he governing equations of the SANISAND-F model are summarized
n Table 1. One of the main features of the model is that it utilizes
normalized deviatoric fabric tensor 𝑭 (Equation 1) as an evolving
tate variable via the evolution law 𝑭̇ in Equation 17. This allows
or the definition of a scalar-valued Fabric Anisotropy Variable (FAV)

(Li and Dafalias, 2002), which measures the relative orientation
etween the loading and the fabric directions (Equation 2). As proposed
n Li and Dafalias (2012), the original critical state conditions are
nhanced via Equation 3, which implies that at critical state, the fabric
rientation is aligned with the loading direction. Similarly, the classical
tate parameter 𝜓 (Been and Jefferies, 1985) is enhanced by fabric
nisotropy via the dilatancy state parameter 𝜁 in Equation 4. The new
tate parameter determines the dilatancy (𝐷) and plastic modulus (𝐾𝑝)
ia Equation 13 and Equation 14 respectively, which influences the
onstitutive relations in Eqs. 18 and 19. Fig. 2 schematically presents
he basic characteristics of the model in the 𝜋-plane of the deviatoric

tress-ratio space (see Fig. 2’s caption for descriptions on the surfaces).
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Fig. 2. Illustration of the yield surface (YS), bounding surface (BS), dilatancy surface
(DS) and critical surface (CS) on the deviatoric stress ratio space.
Source: From Petalas et al. (2020).

2.2. Instability criteria for CSD stress path incorporating fabric anisotropy

In this section, we first derive instability criteria conditions for
CSD stress paths, which are then expressed in terms of the parame-
ters of the SANSISAND-F model. Towards this goal, Hill’s instability
criterion (Hill, 1958; Rudnicki and Rice, 1975) is used. Hill (1958)
ostulated that a particulate material is considered stable if the second-
rder work is positive, i.e., 𝑑2𝑊 = 𝑑𝝈′𝑑𝜺 > 0. Thus, instability is
triggered when 𝑑2𝑊 = 0, which can be represented by Eq. (21).

𝑑𝝈′𝑑𝜺 = 0 (21)

where, 𝝈′ and 𝜺 are the stress and strain tensors, respectively. Substi-
tuting, 𝝈′ = 𝒔 + 𝑝′𝑰 and 𝜺 = 𝒆 + 1

3 𝜀𝑣𝑰 into the above equation, the
nstability condition can now be written as:

𝒔 ∶ 𝑑𝒆 + 1
3
𝑑𝑝′𝑑𝜀𝑣 = 0 (22)

here 𝒔 is the deviatoric stress tensor and 𝒆 is the deviatoric strain
ensor, 𝑝′ is the mean effective stress and 𝜀𝑣 is the volumetric strain.
In a CSD stress path, the deviatoric stress tensor remains constant,

.e., 𝑑𝒔 = 0. Hence the instability condition is further simplified to,

𝑝′𝑑𝜀𝑣 = 0 (23)

Eq. (23) has two possible solutions, 𝑑𝜀𝑣 = 0 when 𝑑𝑝′ ≠ 0 or 𝑑𝑝′ = 0
hen 𝑑𝜀𝑣 ≠ 0. These two solutions represent two potential instability
ypes in a CSD stress path. Alipour and Lashkari (2018) defined these
nstability types as Type 1 and Type 2, as elaborated subsequently.

.2.1. Type-1 instability criterion
Type-1 instability in a CSD stress path occurs when 𝑑𝜀𝑣 = 0, given

𝒔 = 𝟎 and 𝑑𝑝′ ≠ 0. To derive the instability criterion for Type
instability in the context of the SANISAND-F model, we start by
xpressing the total volumetric strain as the sum of its elastic and
lastic components, i.e.,

𝜀𝑣 = 𝑑𝜀𝑒𝑣 + 𝑑𝜀
𝑝
𝑣 (24)

The equation above can also be written as,

𝜀𝑣 =
𝑑𝑝′

𝐾
+ ⟨𝐿⟩𝐷 (25)

where 𝐾 is the bulk modulus, 𝐿 is the plastic multiplier, 𝐷 is the
ilatancy and ⟨⟩ are the Macaulay brackets.
4

In an elastoplastic loading process, such as the CSD loading, the
lastic multiplier 𝐿 is positive and is given as 𝐿 = 1

𝐾𝑝
𝑝′𝒏 ∶ 𝑑𝒓; hence

Eq. (25) can be written as:

𝑑𝜀𝑣 =
𝑑𝑝′

𝐾
+ 𝐷
𝐾𝑝

𝑝′𝒏 ∶ 𝑑𝒓 (26)

The deviatoric stress-ratio is defined as 𝒓 = 𝒔
𝑝′ , which implies 𝑑𝒓 =

𝑑𝒔
𝑝′ − 𝒓𝑑𝑝′

𝑝′ . In a CSD stress path 𝑑𝒔 = 𝟎. This implies, 𝑑𝒓 = − 𝒓𝑑𝑝′
𝑝′ . Thus

q. (26) becomes:

𝜀𝑣 =
𝑑𝑝′

𝐾
− 𝐷
𝐾𝑝

𝑑𝑝′𝒏 ∶ 𝒓 (27)

Type-1 instability occurs when the 𝑑𝜀𝑣 = 0 and 𝑑𝑝′ ≠ 0, this implies,

𝐾𝑝,𝑓 = 𝐾𝐷 𝒏 ∶ 𝒓 (28)

where 𝐾𝑝,𝑓 is the plastic modulus at the instability point. Hence, the
Type-1 instability criterion can be written as 𝐻1 = 0, where

1 = 𝐾𝑝 −𝐾𝑝,𝑓 (29)

𝑝 is the current plastic modulus, which evolves until matches 𝐾𝑝,𝑓
hen instability occurs.
The stress-ratio in multiaxial stress space, i.e., 𝛽 =

√

3∕2𝒓 ∶ 𝒏, at the
nstability point (𝛽𝑓 ) can be derived from Eq. (28) as (Appendix shows
the details of the derivation):

𝛽𝑓 =
−𝐶1
3

⎡

⎢

⎢

⎣

1 + 2

(

1 − 3
𝐶2

𝐶2
1

)0.5

𝑐𝑜𝑠
(

𝜙 + 4𝜋
3

)

⎤

⎥

⎥

⎦

𝜙 = 𝑐𝑜𝑠−1
1 + 27𝐶3

2𝐶3
1
− 9𝐶2

2𝐶2
1

(

1 − 3𝐶2
𝐶2
1

)

(30)

where 𝐶1 = −
(

𝛽𝑖𝑛 +𝑀𝑑
𝜃 (𝜁 )

)

, 𝐶2 = −
(

1
𝐹𝑒

− 𝛽𝑖𝑛𝑀𝑑
𝜃 (𝜁 )

)

, and 𝐶3 =
𝑀𝑏
𝜃 (𝜁)
𝐹𝑒

.
The term 𝐹𝑒 in 𝐶2 and 𝐶3 is given as,

𝐹𝑒 =
2𝐴𝑑 (1 + 𝜈)(2.97 − 𝑒)2

3(1 − 2𝜈)(1 + 𝑒)ℎ1𝑒𝑥𝑝(ℎ2𝐴)(𝑒−1 − 𝑐ℎ)2
(31)

This implies that type-1 instability in a CSD loading path occurs
when the current stress ratio, i.e., 𝛽 equals the instability stress ra-
tio, i.e., 𝛽𝑓 given according to Eq. (30). Importantly, notice that the
terms 𝐶1, 𝐶2, 𝐶3 and 𝐹𝑒 in Eq. (30) that estimates 𝛽𝑓 depend on
fabric anisotropy, via the dilatancy state parameter 𝜁 and the fabric
anisotropic variable 𝐴. This dependence is the critical component that
allows us to introduce the effects of fabric anisotropy on the onset of
instability in the CSD loading path, as discussed in subsequent sections.
Of note, the stress ratio 𝜂 = 𝑞∕𝑝′ in the triaxial space is numerically
equal to the stress ratio 𝛽 in the multiaxial stress space, thus 𝜂𝑓 = 𝛽𝑓 .

It is worth highlighting that the instability criterion proposed in
Bokkisa et al. (2022) for undrained stress paths is consistent with the
𝐻1 instability criterion. This is because the instability conditions in
undrained stress paths dictate 𝑑𝜀𝑣 = 0, and 𝑑𝑞 = 0, which incidentally
coincides with the conditions for 𝐻1 instability in CSD stress paths.

2.2.2. Type-2 instability criterion
Type 2 instability in a CSD stress path occurs when 𝑑𝑝′ = 0, given

𝑑𝒔 = 0 and 𝑑𝜖𝑣 ≠ 0. Using these conditions, Eq. (27) can be rearranged
as:

𝑑𝑝′ = 0 =
𝐾𝑝,𝑓𝐾

𝐾𝑝,𝑓 −𝐾𝐷𝒏 ∶ 𝒓
𝑑𝜀𝑣 (32)

𝐾𝑝,𝑓 = 0 is required in Eq. (32) for a non-trivial solution; thus type
instability can be expressed as: 𝐻2 = 𝐾𝑝 −𝐾𝑝,𝑓 = 0.
Since the plastic modulus in SANISAND-F is 𝐾𝑝 = 𝑝𝐻(𝑀𝑏

𝜃 (𝜁 ) − 𝛽),
the instability stress ratio in the multiaxial stress space for Type 2
instability can be estimated as:

𝑏
𝛽𝑓 =𝑀𝜃 (𝜁 ) (33)
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Table 2
Material parameters of the SANISAND-F model, calibrated for Firoozkuh No. 161 sand
and Silica Fine Sand (SFS)
Description Symbol Firoozkuh SFS

Elasticity 𝐺0 120 120
𝑣 0.1 0.05

Critical state 𝑒𝑟𝑒𝑓 0.923 0.755
𝜉 0.527 0.27
𝜆 0.0569 0.032
𝑀𝑐 1.24 1.21
𝑐 0.8 0.66

Plastic modulus ℎ1 12 6
𝑐ℎ 0.93 0.9
𝑛𝑏 2.5 2.2

Yield surface 𝑚 0.01 0.01
Dilatancy 𝐴0 0.35 1.2

𝑛𝑑 7.5 8.0
Fabric 𝑒𝐴 0.01 0.06

𝐹𝑖𝑛 0.5 0.7
𝑐0 1.0 10
ℎ2 1.2 1.1

𝒏𝐹

⎡

⎢

⎢

⎢

⎢

⎣

2
√

6
0 0

0 −1
√

6
0

0 0 −1
√

6

⎤

⎥

⎥

⎥

⎥

⎦

This implies that Type 2 instability occurs when the mobilized stress
atio is equal to the bounding surface stress ratio, which is dependent
n fabric anisotropy via the dilatancy state parameter 𝜁 .
Note that the derived instability criteria in this study share similar

functional forms as the criteria derived by Alipour and Lashkari (2018).
However, the derivation procedure used in this study is different and,
in our opinion, more straightforward as it does not use constitutive
matrices. In addition, the criteria derived in this study allow for fabric
effects, as already discussed.

3. SANISAND-F performance in simulating CSD stress paths

In this section, we assess the performance of SANISAND-F in sim-
ulating CSD stress paths by comparing numerical simulations with
selected experimental data produced by Lashkari et al. (2017, 2019)
and Fanni et al. (2022) for Firoozkuh No. 161 sand and a silica fine sand
respectively. All simulations are performed using the incremental driver
code described in Niemunis and Grandas-Tavera (2017) along with a
bespoke implementation of the SANISAND-F model to run element tests
for various loading paths.

Firoozkuh No. 161 sand is particularly suitable for our purposes as
it includes results for triaxial compression/extension and CSD stress
paths. Basic properties of the sand include a mean particle size (𝑑50) of
0.276 mm, coefficient of uniformity (𝐶𝑢) of 1.47, maximum void ratio
(𝑒𝑚𝑎𝑥) of 1.0, and minimum void ratio (𝑒𝑚𝑎𝑥) of 0.58 (Lashkari et al.,
2019). In our assessment, first, the SANISAND-F model parameters are
estimated using the triaxial compression/extension data following the
calibration protocols in Petalas et al. (2020), and then we use the cal-
ibrated SANISAND-F parameters in the simulation of CSD stress paths,
comparing the numerical simulations and the available experimental
results. The calibrated SANISAND-F parameters for Firoozkuh sand are
included in Table 2. Fig. 3(a-f) compares the numerical simulations and
he experimental results considering undrained triaxial compression
oading conditions for a range of initial densities (i.e., very loose, loose,
nd medium loose). Fig. 3(g–h) shows similar comparisons consid-
ring undrained triaxial extension loading conditions. The numerical
imulations are in good agreement with the experimental results, and
he model shows good accuracy for various densities and confining
ressures for both triaxial compression and extension with the same
et of input parameters.
Using the same set of SANISAND-F parameters (Table 2), the CSD-

stress tests are simulated in 2 stages. First, a conventional triaxial
5

drained loading is imposed until the desired 𝑞 is reached. Then, the
principal stresses are equally relieved, maintaining 𝑞 constant. Fig. 4
shows the comparison of the SANISAND-F simulated responses and
the experimentally observed responses (allowing for uncertainty in 𝑒
f 0.02 as suggested by Nocilla et al., 2006; Vilhar et al., 2013; Reid
t al., 2021a) for a range of initial 𝑒 (0.844 to 0.948), 𝑝′ (150 kPa to
50 kPa), and maximum 𝑞 (110 kPa to 150 kPa) values. Of note, the
onset of instabilities in both numerical simulations and experiments are
highlighted in Fig. 4. The instability points in the numerical simulation
are highlighted based on the previously discussed 𝐻1 and 𝐻2 criteria.
In the experiments, the instability point corresponds to the 𝑑𝜖𝑣 = 0
condition for loose states, consistently with Hill’s criteria. In the case of
dense states, the instability is selected when the stress path in the 𝑝′−𝑞
space crosses the CSL, as it corresponds to an apparent loss of control in
the experiment. The numerical simulations are again in good agreement
with the experimental responses (Fig. 4), capturing the experimental
patterns for the considered scenarios.

The CSD experimental results in Lashkari et al. (2017) do not con-
ider the effects of loading direction or intermediate stresses; hence, we
lso considered the experimental results from Fanni et al. (2022), who
ncorporated these effects. The motivation is to assess the SANISAND-
performance under CSD loading further. Fanni et al. (2022) tested
silica fine sand (𝑑50 = 0.21 mm, 𝐶𝑢 = 2.3) in a hollow cylinder,
pproximating CSD conditions under constant 𝛼𝜎 (the relative orienta-
ion between the major principal stress axis and the vertical axis) and
= (𝜎2 − 𝜎3)∕(𝜎1 − 𝜎3) (the intermediate stress ratio). The numerical
imulations were conducted for the dry pluviated tests in Fanni et al.
2022) as they include information that allows a better estimation
f SANISAND-F parameters (e.g., tests on dense specimens). Most of
he SANISAND-F parameters were calibrated following the procedure
escribed in Petalas et al. (2020), except for the fabric-related param-
ters (𝑒𝐴, 𝑛𝑑 , 𝑐0, ℎ2). Due to the unavailability of triaxial extension test
ata, we modified the approach in Petalas et al. (2020) to calibrate
hese parameters based on the five undrained hollow cylinder test
ata available on dense specimens performed at a constant [𝛼𝜎 , 𝑏]
onditions. For instance, consistent with the SANISAND-F equations
see Table 1), we estimate 𝑒𝐴 by averaging 𝜓𝑑∕(𝐴 − 1) across all
ndrained hollow cylinder tests, where 𝜓𝑑 is the state parameter at the
hase transformation (PT) point and 𝐴 is the initial fabric anisotropic
ariable before undrained shearing. Similarly, we estimate 𝑛𝑑 as the
verage of 𝑙𝑛(𝑀𝑑∕𝑀)

𝜁𝑑 for all undrained tests, where 𝑀𝑑 represents the
stress-ratio at the PT point, 𝑀 is the critical state stress-ratio, and 𝜁𝑑 is
etermined using Equation 4. We used trial and error for parameters 𝑐0
and ℎ2, considering the available test data for different 𝛼𝜎 and 𝑏. The
final parameters are included in Table 2.

Consistent with experiments, the numerical simulations use the
octahedral deviatoric stress (𝑞𝑜𝑐𝑡 - Eq. (34)) and octahedral shear
strain (𝛾𝑜𝑐𝑡 -Eq. (35)) to represent shear stresses and strains. Moreover,
similar to the experiments, the numerical simulations consider two
stages. Stage one considers an anisotropic consolidation from an initial
isotropic state until the desired target values of 𝑞𝑜𝑐𝑡, 𝑝′, 𝛼𝜎 , and 𝑏 are
reached using constant step increments, and stage two imposes a CSD
loading under constant 𝛼𝜎 and 𝑏.

𝑞𝑜𝑐𝑡 =
1
√

2

√

(𝜎11 − 𝜎33)2 + (𝜎22 − 𝜎33)2 + (𝜎11 − 𝜎22)2 (34)

𝛾𝑜𝑐𝑡 =
2
3

√

(𝜖11 − 𝜖33)2 + (𝜖22 − 𝜖33)2 + (𝜖11 − 𝜖22)2 (35)

Fig. 5 shows the experimental results (Fig. 5 a,c) and the nu-
merical simulations (Fig. 5 b,d) of specimens at similar void ratios
after anisotropic consolidation (𝑒𝑖𝑛 ≈ 0.68) subjected to undrained
shearing at different constant 𝛼𝜎 and 𝑏 stress paths. Consistent with the
experiments, the numerical results show that a contractive response is
enhanced as 𝛼𝜎 or 𝑏 increases. However, it is important to note that
the experimental test conducted with [𝛼𝜎 = 22.5◦, 𝑏 = 0.5] exhibited a

◦
dilative response compared to the test with [𝛼𝜎 = 0 , 𝑏 = 0], contrary
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Fig. 3. SANISAND-F model simulations against the experimental data of Firoozkuh No. 161 sand. Figures (a) to (h) show stress–strain and stress paths. (a,b) Triaxial compression
test, very loose sand (𝑒 = 0.895 − 0.917, 𝑝′ = 100 − 300 kPa); (c,d) triaxial compression test, loose sand (𝑒 = 0.877 − 0.904, 𝑝′ = 100 − 300 kPa); (e,f) triaxial compression test, medium
oose sand (𝑒 = 0.825 − 0.865, 𝑝′ = 100 − 300 kPa); (g,h) triaxial extension test, loose sand (𝑒 = 0.879 − 0.89, 𝑝′ = 100 − 300 kPa).
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o the expected trend and prior literature (Yoshimine et al., 1999).
onsequently, the numerical simulation fails to capture the behavior
f the experiment with [𝛼𝜎 = 22.5◦, 𝑏 = 0.5] but performs reasonably
ell for all other test conditions. The fact that SANISAND-F can capture
his behavior is due to its formulation within the ACST framework. The
umerically estimated 𝜂𝑓 are also in reasonable agreement compared
o experiments. Overall, we find the predicted responses satisfactory
nd comparable with the SANISAND-F calibration for other sands
e.g., Toyoura sand calibrated in Petalas et al. (2020)).
Using the same set of parameters, the hollow cylinder CSD tests

re simulated. Fig. 6 compares numerical simulations and experimental
ests, considering CSD loading under different 𝛼𝜎 and 𝑏 and initial
oid ratios in the range (𝑒𝑖𝑛 ≈ 0.64 − 0.70). The instability onset is
lso highlighted. The instability points are determined in the numerical
imulations based on the 𝐻1 and 𝐻2 criteria discussed earlier. In the
xperiments that show a transition from volume increase to decrease,
he instability point corresponds to the condition of 𝑑𝜖𝑣 = 0, consistent
ith Hill’s criterion. In the case of continuously dilating specimens, the
nstability is identified when 𝑞 starts to decrease, indicating a loss of
6

𝑜𝑐𝑡
ontrol during the experiment. Fig. 6(a,b) illustrate the results of CSD
ests performed on specimens with similar void ratios (𝑒𝑖𝑛 ≈ 0.68) but
ubjected to different CSD stress paths: [𝛼𝜎 = 0◦, 𝑏 = 0], [𝛼𝜎 = 22.5◦,
= 0.2], and [𝛼𝜎 = 45◦, 𝑏 = 0.2]. The experimental responses show
dilative response throughout the test when [𝛼𝜎 = 0◦, 𝑏 = 0] and
𝛼𝜎 = 22.5◦, 𝑏 = 0.2]. However, the specimen subjected to [𝛼𝜎 = 45◦,
= 0] shows a transition from volume increase to volume decrease
see Fig. 6b). The numerical simulations show a response consistent
ith the experiments, highlighting the influence of fabric anisotropy.
or instance, Fig. 6b, shows the dilatancy state lines (DSLs) at the
nstability onset for the three simulations. DSL is the locus of dilatancy
oid ratio 𝑒𝑑 where phase transformation happens. In SANISAND-F, 𝑒𝑑
s determined as 𝑒𝑑 = 𝑒𝑐 + 𝑒𝐴(𝐴 − 1). At critical state, where 𝐴 = 1,
DSL becomes identical to CSL. When 𝐴 ≠ 1, in ACST 𝜁 = 𝑒 − 𝑒𝑑
plays a role similar to the 𝜓 = 𝑒 − 𝑒𝑐 in the classical critical state
theory. Notably, in the [𝛼𝜎 = 0◦, 𝑏 = 0] and [𝛼𝜎 = 22.5◦, 𝑏 = 0.2]
simulations, the instability point lies below the corresponding DSLs
(i.e., 𝜁< 0) dictating, a ‘‘dilative’’ response and an 𝐻2 instability. The
dilative response occurs because 𝜂 is greater than the dilatancy stress
𝑓
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Fig. 4. SANISAND-F constitutive model predictions against the experimental data for Firoozkuh No. 161 sand samples under CSD (stress path, 𝑒 − 𝑝′ space). Influence of mean
effective stress in (a,b) Influence of constant 𝑞 in (c,d) Influence of void ratio in (e,f). The marker points represent the instability triggering points in both numerical ( marker)
and experimental (★ marker) test results.
a
c
b
t

ratio, 𝑀𝑑 (see Equation 9 and refer Fig. 6a), thus making 𝐷 < 0 (see
Equation 13). Conversely, for the [𝛼𝜎 = 45◦, 𝑏 = 0.2] simulation, the
instability point lies above the corresponding DSL (i.e., 𝜁> 0), and
𝑀𝑑 > 𝜂𝑓 (refer Fig. 6a) indicating, a ‘‘contractive’’ response (i.e., 𝐷 > 0)
and a 𝐻1 instability. Consistent with the ACST framework, the DSL and
𝑀𝑑 line location control the dilatancy scaling regardless of the CSL
position (above the instability points in all cases). The relative location
of the DSL incorporates fabric anisotropic effects, which are key for
the numerical simulations being consistent with the experiments. The
location of instability points in Fig. 6a are also in good agreement
7

I

with the experiments. Fig. 6(c,d) present the results of simulations on
specimens with different void ratios (𝑒𝑖𝑛 = 0.706 and 0.64) but the same
[𝛼𝜎 = 45◦, and 𝑏 = 0.2]. The experiments show that the specimen with
𝑒𝑖𝑛 = 0.64 displays a dilative response throughout the test. However, the
specimen with 𝑒𝑖𝑛 = 0.706 transitions from volume increase to decrease
s the CSD loading progresses. The numerical simulations capture the
ombined effects of fabric anisotropy and void ratio on the observed
ehavior. Similar to the previous simulations, the relative position of
he DSL and the 𝑀𝑑 line location influence the response at instability.
ndeed, the DSL is above the instability point for the simulation, which
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Fig. 5. SANISAND-F model simulations against the experimental data of silica fine sand subjected to undrained loading in a hollow cylinder device. Figures (a) and (c) show
tress–strain and stress paths corresponding to the experiments conducted at a similar void ratio (≈ 0.68) but different constant 𝛼𝜎 and 𝑏 conditions. Figures (b) and (d) show the
odel simulations run under similar conditions as in experiments.
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hows a dilative response, and below for the simulation showing a
ransition in the volume change tendency.
Overall, it can be observed that the CSD loading numerical simula-

ions and experimental results match reasonably well for the examined
ands, including cases where 𝛼𝜎 and 𝑏 vary. Last, Fig. 7 compares the 𝜂𝑓
alues estimated by SANISAND-F and their experimental counterparts.
hen the numerically computed 𝜂𝑓 matches the experimental estimate,
data point lies on the highlighted 𝑥 = 𝑦 line. Again, the SANISAND-
performance in estimating 𝜂𝑓 , which is the focus of this study, is
atisfactory for CSD stress paths. Of note, the instability stress ratios
orresponding to undrained stress paths were estimated numerically
ollowing the instability criterion proposed in Bokkisa et al. (2022) and
xperimentally by capturing the peak point of the soil response in the
′ − 𝑞𝑜𝑐𝑡 space.

. Role of fabric anisotropy on the instability onset under CSD
tress paths

This section assesses the role of fabric anisotropy and other state
ariables on the instability onset under CSD stress paths. We investigate
he aforementioned effects by numerically simulating CSD stress paths
ith anisotropic effects. When experimental observations are available
scarce for CSD stress paths, as discussed in Section 1), we compare the
8

t

nsights of our simulations against experimental counterparts. Specifi-
ally, our simulations consider varying the initial density (illustrating
ypical instability patterns), the Lode angle (𝜃) of the principal stress
ensor, the rotation of the principal stress axis (𝛼𝜎), and the initial fabric
ntensity (𝐹𝑖𝑛). If the principal stresses are ordered as 𝜎11 > 𝜎22 > 𝜎33,
he Lode angle can be estimated as 𝜃 = 𝜋

6 + 𝑡𝑎𝑛−1
(

2𝑏−1
√

3

)

. We consider
the Firoozkuh sand calibrated parameters as our analyses are focused
on investigating general trends.

Previous efforts (Wanatowski, 2005; Fanni et al., 2022) have sug-
ested that stresses typically developing below slopes involved in case
istory failures (e.g., Fig. 1) may have been likely associated with
𝜎 values between 15◦ and 45◦ and 𝑏 values between 0.2 and 0.5
nd initially loose materials (i.e., the initial state in the 𝑒 − 𝑝′ space
bove the CSL); hence, our analyses are focused on these ranges.
owever, we also explore broader ranges of 𝑏 and 𝛼𝜎 by deriving
nstability surfaces in the 𝜋-plane, following the approaches in Bokkisa
t al. (2022). The simulation of CSD stress paths considers an initial
tage to reach the targeted 𝑞𝑜𝑐𝑡, which for convenience is conducted
nder a constant 𝑝′, then, a stress relief stage where 𝑝′ is decreased
nder a constant 𝑞𝑜𝑐𝑡. Of note, for a given loading path 𝛼𝜎 and 𝜃 are
aintained constant throughout the simulation of the CSD loading, and

he onset of instability is assessed using the criteria previously discussed
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Fig. 6. SANISAND-F constitutive model predictions against the experimental data for silica fine sand samples under CSD (stress path, 𝑒 − 𝑝′ space). Influence of fabric anisotropy
in (a,b) Influence of void ratio in (c,d). The marker points represent the instability triggering points in both numerical ( marker) and experimental (★ marker) test results.
Highlighted DSLs at the instability in 𝑒 − 𝑝′ space and dilatancy stress ratios (𝑀𝑑 ) at the instability in the 𝑝′ − 𝑞𝑜𝑐𝑡 space.
Fig. 7. Comparison of experimental instability stress-ratio against the computed
instability stress ratio for the CSD and undrained (UD) tests of Firoozkuh No. 161
sand and the Silica Fine Sand.
9

(Section 2.2). 𝑞𝑜𝑐𝑡 and 𝛾𝑜𝑐𝑡 are calculated using Eqs. (34) and (35), unless
stated differently.

4.1. Initial density effect and typical Type 1 and Type 2 instability responses

Fig. 8 shows typical responses of CSD stress paths, considering
𝛼𝜎 = 0◦, 𝜃 = 0◦ (the effect of varying 𝛼𝜎 and 𝜃 is assessed in the
following subsections), 𝑒𝑖𝑛 = [0.8, 0.9, 0.95], and 𝑝′𝑖𝑛 = 200 kPa. In the
initially loose states (i.e., 𝑒𝑖𝑛 = 0.9 and 0.95), a Type 1 instability
can be observed, where 𝜂𝑓 = 𝑞𝑜𝑐𝑡∕𝑝′ is significantly lower than 𝑀𝑐
(see Fig. 8a), the initial response on the CSD stress relief stage shows
a slight increase in void ratio, which is then reverted (see Fig. 8b).
After the instability onset, strains are also accelerated (see Fig. 8c)
consistently with the numerical results of Alipour and Lashkari (2018).
In terms of the variables that track instability conditions, 𝐻1 becomes
zero at a relatively low deviatoric strain; however, 𝐻2 monotonically
decreases but never reaches a zero value. For the initially dense samples
(𝑒𝑖𝑛 = 0.8), an instability Type 2 can be observed where 𝜂𝑓 is higher
than 𝑀𝑐 (see Fig. 8a), the response on the CSD stress relief stage
is dilative (see Fig. 8b) before and after the instability onset where
strains are also accelerated (see Fig. 8c). In this case, 𝐻2 reaches a zero
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Fig. 8. SANISAND-F constitutive model responses for Firoozkuh No. 161 sand specimen at 𝑝′ = 200 kPa subjected to CSD loading path in triaxial compression conditions for
different initial void ratios 𝑒𝑖𝑛 = [0.8, 0.9, 0.95] (a) Stress path (b) 𝑒 − 𝑝′ space (c) Octahedral shear strain Vs mean effective stress (d) Evolution of instability criterion with respect
to shear strain. The marker points represent the instability triggering points.

Fig. 9. Evolution of stress-ratio, dilatancy, and volumetric strain increment against mean effective stress for loose sample in (a,b,c) and dense sample in (d,e,f) respectively. The
marker points represent the instability triggering points.
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Fig. 10. SANISAND-F constitutive model responses for Firoozkuh No. 161 sand specimen at 𝑒𝑖𝑛 = 0.90 and 𝑝′ = 200 kPa subjected to CSD loading path with 𝛼𝜎 = 45◦ and
𝑏 = [0, 0.4, 0.8, 1.0]. (a) Stress path (b) 𝑒 − 𝑝′ space (c) Octahedral shear strain versus mean effective stress (d) Stress paths represented in the 𝜋-plane of the principal deviatoric
tress-ratio space corresponding to 𝛼𝜎 = 45◦. The marker points represent the instability points.
alue at relatively low strains, consistently with a Type 2 instability;
1 decreases monotonically; however, without reaching a zero value
Fig. 8d). The aforementioned patterns are consistent with Alipour
nd Lashkari (2018); however, the derivations in this study enable
comprehensive assessment of fabric effects, as discussed in the
ext subsections. Last, as expected, 𝜂𝑓 increases as 𝑒𝑖𝑛 decreases, which
s consistent with previous experimental and numerical studies (Chu
t al., 2015; Fanni et al., 2022; Fotovvat et al., 2022; Azizi et al., 2009;
Wanatowski et al., 2010; Alipour and Lashkari, 2018; Wu et al., 2020).

Inspecting the volumetric response in CSD stress path allows for a
better understanding of the mechanisms at the instability onset. This
is illustrated in Fig. 9, which shows the typical evolution of the 𝜂, 𝐷,
and volumetric strain increments for the simulations with 𝑒𝑖𝑛 = 0.95
(loose state) and 𝑒𝑖𝑛 = 0.8 (dense state) in Fig. 8. The evolutions are
shown in terms of 𝑝′ so readers can inspect Fig. 9 in the context of
Fig. 8. First, it is worth noting that 𝜂 is always increasing; hence the
CSD path imposes a continuous loading despite the stress-relief stage,
as shown in Fig. 9a. It is also interesting to see that 𝐷 is always positive
on initially loose samples, which may suggest a continuous decrease
in volume. However, 𝐷 is only based on plastic strains, and there is
also a contribution from elastic strains to the total volumetric strains.
To put this into context, note the evolution of elastic (𝑑𝜀𝑒𝑣) and plastic
volumetric strain (𝑑𝜀𝑝𝑣) increments in Fig. 9c and how this evolution
translates in the rate of total volumetric strain increments (𝑑𝜀𝑣 =
𝑑𝜀𝑝𝑣 + 𝑑𝜀𝑒𝑣). In the initial part of the stress relief stage, 𝑑𝜀𝑒𝑣 is negative
and 𝑑𝜀𝑝𝑣 positive, with the 𝑑𝜀𝑒𝑣 magnitude being higher, making 𝑑𝜀𝑣
negative. As the stress relief progresses, 𝑑𝜀𝑝 becomes more positive, and
11

𝑣

eventually, 𝑑𝜀𝑣 is zero, marking the instability onset and a transition
from volume increase to volume decrease. Therefore, the instability
triggering is dictated by the trade-off between 𝑑𝜀𝑝𝑣 and 𝑑𝜀𝑒𝑣. This is an
important aspect to highlight in interpreting the mechanisms at the
instability onset under CSD loading, yet not pointed out in previous
efforts as far as we are aware. In the case of initially dense states, 𝑑𝜀𝑣
is always negative in the stress relief stage, with 𝑑𝜀𝑒𝑣 and 𝑑𝜀𝑝𝑣 being
also negative. Hence, the instability onset is associated with reaching
bounding conditions (i.e., Eq. (33)) without trade-off on volumetric
strain components.

4.2. Effect of Lode angle 𝜃 (or intermediate stress ratio 𝑏)

Fig. 10 shows the simulations of CSD paths considering 𝛼𝜎 = 45◦,
𝑒𝑖𝑛 = 0.9, 𝑝′𝑖𝑛 = 200 kPa, a targeted 𝑞𝑜𝑐𝑡 of 50 kPa, and different Lode
angles, 𝜃 = [0◦, 23.4◦, 49.1◦, 60◦] (corresponding to 𝑏 = [0, 0.4, 0.8, 1.0]).
𝜂𝑓 is estimated using the 𝐻1 criterion and highlighted with different
markers on each loading path. Fig. 10 also shows the 𝑀𝑐 line repre-
senting the critical state stress ratio for 𝑏 = 0 for reference. Note that,
in general, the critical state stress ratio is Lode angle dependent. It
can be observed in Fig. 10a that as 𝑏 increases, 𝜂𝑓 decreases. Fig. 10b
shows that instability occurs at the transition between volume increase
and decrease responses, consistently with the loose initial state. After
the instability onset, the octahedral shear strains also start to increase
significantly, as illustrated by Fig. 10c. Last, Fig. 10d shows the stress
paths in the 𝜋-plane, where differences in the loading path that cannot

′
be appreciated in the 𝑝 − 𝑞 space are now evident. As 𝑏 is constant,
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Fig. 11. SANISAND-F constitutive model responses for Firoozkuh No. 161 sand specimen at 𝑒𝑖𝑛 = 0.90 and 𝑝′ = 200 kPa subjected to CSD loading path in triaxial compression,
plane strain and triaxial extension conditions. (a) Stress path (b) 𝑒− 𝑝′ space (c) Octahedral shear strain Vs mean effective stress (d) Stress paths represented in the 𝜋-plane of the
principal deviatoric stress-ratio space corresponding to 𝛼𝜎 = 0◦. The marker points represent the instability points.
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Fig. 12. Instability surface obtained from the numerical simulations of a hollow
cylinder test with constant Lode angle (𝜃) and constant stress principal axis rotation
(𝛼𝜎 = 45◦) using Firoozkuh No. 161 sand properties with 𝑒𝑖𝑛 = 0.9 and 𝑝′ = 200 kPa.
Instability points corresponding to 𝑏 = [0, 0.4, 0.8, 1.0] are also highlighted.
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s

the stress paths in the 𝜋-plane are straight lines. In terms of previous
efforts assessing the role of 𝑏 on 𝜂𝑓 under CSD stress paths, we are
only aware of the experimental study of Wanatowski et al. (2010), who
ompared 𝜂𝑓 for triaxial paths (i.e., 𝛼𝜎 = 0◦, 𝑏 = 0) and plane strain
onditions, observing larger 𝜂𝑓 in triaxial conditions. Even though 𝑏
as not estimated by Wanatowski et al. (2010), previous studies have
uggested 𝑏 varying in the range between 0.25 and 0.5 (Sayao and
aid, 1996; Yoshimine et al., 1999; Shibuya, 1985; Pradhan et al.,
988) for plane strain conditions. Thus, the experimental observations
y Wanatowski et al. (2010) are, in general, consistent with the trends
n Fig. 10.
Recognizing that triaxial compression, triaxial extension, and plane

train (variable 𝜃 or 𝑏) conditions are of interest in the assessment
f slope systems (Sadrekarimi, 2014; Wanatowski and Chu, 2007), we
ave assessed CSD stress paths, considering these loading paths. Fig. 11
hows simulations of CSD loading under triaxial compression (𝛼𝜎 = 0◦
nd 𝜃 = 0◦), plane strain (𝛼𝜎 = 0◦) and triaxial extension conditions
𝛼𝜎 = 0◦ and 𝜃 = 180◦). Note that in a plane strain condition, the
adial strain is constrained, i.e., 𝜀𝑟 = 𝜀22 = 0, but 𝜎22 cannot be
ontrolled; thus, 𝑞𝑜𝑐𝑡 cannot be maintained constant (see Eq. (34)) when
lane strain conditions are enforced. Hence we simulated a constant
13 = 𝜎11 − 𝜎33 path with 𝑞13 maintained constant at 57 kPa, which, in
urn, simulates approximately a constant 𝑞𝑜𝑐𝑡 of 50 kPa. This approach
s consistent with the strategy used in the experimental study of Fanni
t al. (2022). The 𝐻1 instability criterion is still used to estimate 𝜂𝑓
nder plane strain as 𝑞𝑜𝑐𝑡 is almost constant (see Fig. 11a). Fig. 11
hows that 𝜂 in triaxial compression is higher than 𝜂 in plane strain,
𝑓 𝑓
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Fig. 13. SANISAND-F constitutive model responses for Firoozkuh No. 161 sand specimen at 𝑒𝑖𝑛 = 0.90 and 𝑝′ = 200 kPa subjected to CSD loading path with 𝜃 = 0◦ (𝑏 = 0) and
𝛼𝜎 = [0, 30◦ , 60◦ , 90◦]. (a) Stress path (b) 𝑒 − 𝑝′ space (c) Octahedral shear strain Vs mean effective stress (d) Stress paths represented in the 3D global deviatoric stress-ratio space
𝑟𝑧 − 𝑟𝑟 − 𝑟𝜃) and viewed through the axis 𝑟𝑟. The marker points represent the instability points.
hich in turn, is significantly higher than 𝜂𝑓 in triaxial extension. These
rends are consistent with the experimental studies by Wanatowski
t al. (2010) and Dong et al. (2016). The instability for the three
cases occurs at the transition between volume increase and decrease
responses during the stress relief (Fig. 11b). After the instability, as the
CSD loading progresses, larger strains are developed (Fig. 11c). Fig. 11d
shows the stress paths in the 𝜋-plane, which enables appreciating the
differences between the imposed loading conditions that cannot be
properly assessed in the 𝑝′−𝑞 space. A perfect line in the 𝜋-plane implies
a constant 𝑏 value; hence, it can be noticed that for the plane strain
case, 𝑏 is not constant, varying between 0.24 − 0.52 for the conducted
simulation. To illustrate the assessment of a broader range of 𝑏 values,
we conducted additional simulations considering 𝛼𝜎 = 45◦ and varying
𝜃 from 0◦ to 360◦. The 𝜂𝑓 estimated at instability for these simulations
can be plotted in the 𝜋-plane of the principal deviatoric stress-ratio
space to construct an instability surface. Fig. 12 shows such a surface,
where the axes in the 𝜋-plane are adjusted to have the distance from
the origin to the instability surface also representing 𝜂𝑓 in the 𝑝′ − 𝑞
space. Fig. 12 also highlights the instability points corresponding to 𝑏 =
[0, 0.4, 0.8, 1.0]. The interpretation of the instability surface in Fig. 12 is
that it separates stable from unstable states for any Lode angle; hence,
13

it provides a full assessment of 𝜂𝑓 .
4.3. Effect of loading direction, 𝛼𝜎

Fig. 13 shows the simulations of CSD paths considering 𝜃 = 0◦

(𝑏 = 0.0), 𝑒𝑖𝑛 = 0.9, 𝑝′𝑖𝑛 = 200 kPa, a targeted 𝑞𝑜𝑐𝑡 of 50 kPa,
and 𝛼𝜎 = [0◦, 30◦, 60◦, 90◦]. The 𝜂𝑓 estimated using the 𝐻1 criterion
are also highlighted. It can be observed that 𝛼𝜎 significantly affects
the instability triggering and 𝜂𝑓 . Indeed, 𝜂𝑓 decreases as 𝛼𝜎 increases
(see Fig. 13a). Fig. 13b shows that the increase in volume before
the instability is less as 𝛼𝜎 increases, and Fig. 13c shows that strains
increase significantly as the CSD loading progresses after the instability,
consistently with previous observations. The difference in the stress
paths with respect to 𝛼𝜎 can be better distinguished in Fig. 13d where
the stress paths are plotted in the global deviatoric stress-ratio space,
i.e., 𝑟𝑧 − 𝑟𝑟 − 𝑟𝜃 and viewed along the 𝑟𝑟 axis. It can be observed
as the 𝛼𝜎 increases, the stress paths rotate more with respect to the
vertical (i.e., 𝑟𝑧 axis). In terms of previous studies exploring the effects
of 𝛼𝜎 under CSD loading, we are only aware of the experimental study
by Fanni et al. (2022), who considered 𝛼𝜎 values of 22.5◦ and 45◦. The
aforementioned trends are consistent with the observations by Fanni
et al. (2022) (i.e., 𝜂𝑓 decreases as 𝛼𝜎 increases). Fig. 14 shows the
instability surfaces for different 𝛼𝜎 values, considering the full range of
𝜃 values. It is interesting to see how the shapes of instability surfaces
change as 𝛼𝜎 varies, affecting interactions with different Lode angles.

◦ ◦
For example, for low Lode angles, i.e., 𝜃 = 0 to 60 , 𝜂𝑓 decreases
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Fig. 14. Instability surface obtained from the numerical simulations of a hollow cylinder test with constant Lode angle (𝜃) and constant stress principal axis rotation
(𝛼𝜎 = [0◦ , 30◦ , 60◦ , 90◦]) using Firoozkuh No. 161 sand properties with 𝑒𝑖𝑛 = 0.9 and 𝑝′ = 200 kPa.
Fig. 15. Influence of fabric anisotropy on the instability lines represented in the 𝑒 − 𝑝′ space for (a) 𝛼𝜎 = 0◦, 𝑏 = 0 (b) 𝛼𝜎 = 45◦, 𝑏 = 0.5 (c) 𝛼𝜎 = 90◦, 𝑏 = 1.
as 𝛼𝜎 increases; however, this trend is reverted for large Lode angles,
i.e., 𝜃 = 120◦ to 240◦. These trends are associated with the coupling
between the Lode angle, 𝛼𝜎 , and the initial fabric direction (represented
by the fabric tensor in Table 2). The trend of 𝜂𝑓 decreasing as 𝛼𝜎
increases has been observed experimentally for Lode angles and initial
fabric directions that are expected to be consistent with that in our
simulations (i.e., the Fanni et al., 2022 study previously discussed).
However, experimental studies considering interactions of 𝛼𝜎 , initial
fabric, and a wide range of Lode angles, as considered in this study, are
unavailable. Future experimental studies should inspect this further.

To further illustrate the anisotropy role (i.e., variations in 𝛼𝜎 and 𝑏 =
0) on 𝜂𝑓 , Fig. 15 shows contours of instability points on a 𝑒− 𝑝′ space.
14

Each contour corresponds to a constant 𝑞 value. Within a contour, it
can be observed that as 𝑒 increases, the 𝑝′ value at instability also
increases, indicating a decrease in 𝜂𝑓 . For increasing 𝛼𝜎 and 𝑏 (Fig. 15
b,c), the instability contours shift towards the right, indicating that for
a given 𝑒 and 𝑞, instability occurs at a higher 𝑝′, resulting in a lower
𝜂𝑓 , consistent with previous discussions. These observations highlight
again the role of fabric anisotropy on static liquefaction triggered by
CSD loading.

4.4. Effect of initial soil fabric intensity 𝐹𝑖𝑛

In this section, we assess the effects of initial fabric intensity on
the instability triggering and 𝜂𝑓 under CSD loading by conducting
numerical simulations considering different fabric intensities, following
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Fig. 16. SANISAND-F constitutive model responses for Firoozkuh No. 161 sand specimen at 𝑒𝑖𝑛 = 0.90 and 𝑝′ = 200 kPa and different fabric intensities 𝐹𝑖𝑛 = [0.01, 0.5, 1.0] subjected
to CSD loading path with 𝜃 = 0◦ and 𝛼𝜎 = 0◦ (a) Stress path (b) 𝑒− 𝑝′ space (c) Octahedral shear strain Vs mean effective stress (d) Volumetric strain vs mean effective stress. The
arker points represent the instability points.
Fig. 17. Effect of initial fabric intensity on the instability surface obtained for various loading paths, 𝜃 varying from 0◦ to 360◦ with constant 𝛼𝜎 = 0◦ and 𝛼𝜎 = 45◦.
the structure for the fabric tensor in Table 2. In the simulations, we only
change 𝐹𝑖𝑛 and consider all other constitutive parameters fixed. Fig. 16
shows representative responses considering 𝛼 = 0◦, 𝜃 = 0◦, 𝑒 = 0.9,
15

𝜎 𝑖𝑛 a
𝑝′𝑖𝑛 = 200 kPa, a targeted 𝑞𝑜𝑐𝑡 of 50 kPa, and variable fabric intensities
of 𝐹𝑖𝑛 = [0.01, 0.5, 1.0]. 𝐹𝑖𝑛 = 0.01 represents an almost isotropic fabric,
nd 𝐹 = 1.0 represents a highly anisotropic fabric. It can be observed
𝑖𝑛
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Fig. 18. Evolution of fabric variables for the SANISAND-F constitutive model simulations of Firoozkuh No. 161 sand specimen at 𝑝′ = 200 kPa subjected to CSD loading path in
triaxial compression conditions for different initial void ratios 𝑒𝑖𝑛 = [0.8, 0.9, 0.95] (a) Evolution of 𝐴 (b) Evolution of 𝜁 . The marker points represent the instability triggering points.
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that as 𝐹𝑖𝑛 increases, the initial volume increase during the stress relief
of the CSD loading is enhanced (see Fig. 16b); hence, leading to a
higher 𝜂𝑓 (see Fig. 16a). This response is associated with the evolution
of the fabric anisotropic variable (𝐴 = 𝐹𝑁), which controls dilatancy.
For instance, for 𝑏=0 and the considered cross-anisotropic fabric, the
loading direction is aligned in the direction of fabric, implying 𝑁 = 1,
and 𝐴 = 𝐹 . Larger 𝐹𝑖𝑛 implies larger 𝐴, which in turn implies smaller
dilatancy state parameter 𝜁 (see Equation 4) and thus enhances the
dilative response (see Equations 13 & 9). The evolution of shear strains
is also consistent with the patterns observed in previous simulations.
Lastly, the stress paths travel vertically upwards (as 𝜃 = 0◦) in the 𝜋-
plane (see Fig. 16d) with instability points at different distances from
the critical surface due to different initial fabric intensities.

Fig. 17 shows instability surfaces estimated for different 𝐹𝑖𝑛, 𝛼𝜎 of
0◦ and 45◦, for the full range of Lode angles. Considering 𝛼𝜎 = 0◦, it
can be observed that for the isotropic fabric (𝐹𝑖𝑛 = 0.01), the instability
surface is almost symmetric with respect to the origin. In contrast, the
instability surface estimated for the anisotropic fabric (𝐹𝑖𝑛 = 1.0) is
not symmetric and particularly distorted for 𝜃 = 0◦ and 𝜃 = 180◦,
where 𝜂𝑓 has its maximum and minimum values and also changes
more significantly relative to the 𝐹𝑖𝑛 = 0.01 instability surface. In the
case of 𝛼𝜎 = 45◦, a significant change in the instability surfaces and
𝜂𝑓 relative to the 𝛼𝜎 = 0◦ cases can be observed. For instance, there
s a significant decrease in 𝜂𝑓 for cases with a high fabric intensity
𝐹𝑖𝑛 = 1.0) and Lode angles between 0◦ and 60◦. Again, these changes
re influenced by the coupling between the Lode angle, 𝛼𝜎 , and the
initial fabric direction. As previously discussed, the only study we know
of exploring 𝛼𝜎 effects under CSD loading is the Fanni et al. (2022)
study, where the authors also considered different reconstitution pro-
cedures to represent different fabrics. They observed that dry-pluviated
specimens showed a greater reduction in 𝜂𝑓 when 𝛼𝜎 is increased for
𝑏 values in the order of 0.2. Moreover, Yang et al. (2008) highlighted
that both dry pluviation and moist tamping produce cross-anisotropic
fabrics; however, the fabric anisotropy is higher for dry pluviation.
Thus, our results (i.e., Figs. 16 and 17) are in qualitative agreement
ith the experimental observations by Fanni et al. (2022) and Yang
t al. (2008).

. Discussion

The instability criterion for type 1 instability (Eqs. (30) and (31)),
hich is the most relevant for practical applications as it is associated
ith initially loose states. The analytical equation for 𝜂𝑓 is a function
16

f constitutive model parameters, 𝐴, 𝜁 (representing state), and 𝛽𝑖𝑛. r
he constitutive model parameters, once calibrated, remain constant,
nd 𝛽𝑖𝑛 is also constant as there is no stress reversal in a CSD stress
ath. In contrast, 𝐴 and 𝜁 evolve during the CSD loading. To illustrate
his, Fig. 18 shows the evolution of internal fabric variables (𝐴, 𝜁)
for the simulation results highlighted in Fig. 8. It can be observed
that the fabric anisotropy variable, 𝐴 does not evolve significantly
until the instability point considering both loose and dense samples.
However, as the CSD loading progresses, 𝐴 starts to increase exponen-
tially with a slight change in 𝑝′ (see Fig. 18a). The dilatancy state
parameter (𝜁), on the other hand, gradually decreases, approaching
zero value as the loading progresses in the loose samples. In the
dense case, the initial 𝜁 is negative, initially decreasing, and then
exponentially increasing towards 0. Overall, until the instability point,
the evolution in A is not significant, and the evolution in 𝜁 is only
minor (see Fig. 18a and 18b). Thus, these features could be considered
to relax the instability criterion previously derived and neglect the
evolution of 𝐴 and 𝜁 in the estimation of 𝜂𝑓 by using Eqs. (30) and
(31). The benefit of this approach is that a numerical simulation of
a particular CSD stress path would not be required anymore. Once
the calibration of constitutive model parameters is conducted, and
the anisotropy loading parameters are defined (i.e., Lode angle, 𝛼𝜎 ,
𝐹𝑖𝑛), 𝜂𝑓 could be directly estimated from the state, i.e., 𝑒 and 𝑝′ just
before the initiation of CSD loading. Here we assume that we know
the soil’s state just before the CSD loading initiation. Fig. 19 assesses
the performance of this approach by comparing 𝜂𝑓 values estimated
umerically, analytically (i.e., by neglecting the evolution of 𝐴 and 𝜁),
nd experimentally. Even though differences can be noticed between
he numerical and analytical 𝜂𝑓 , the estimates are reasonably close.
n general, the numerical 𝜂𝑓 is ≈ 1.1 times the analytical 𝜂𝑓 . Thus,
he analytical-based estimate is conservative for the constitutive model
arameters considered in this study. This is appealing as it simplifies
he 𝜂𝑓 estimate, still being on the conservative side. Future studies
hould inspect this further by considering a broader set of materials
nd constitutive model parameters. Lastly, when assessing the initial
abric effects in this study, we only considered variations of 𝐹𝑖𝑛. It
may be the case that other SANISAND-F constitutive parameters could
be affected by changes in 𝐹𝑖𝑛 (Li and Dafalias, 2012). However, we
are not aware of experimental information to rigorously investigate
this. Current efforts considering fabric measurements (Viggiani and
Tengattini, 2019; Zhao et al., 2021) are expected to be instrumental
n shedding light on this issue and should be considered in future

esearch.
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Fig. 19. Comparison of experimental instability stress-ratio against the computed
instability stress ratio both by numerical and analytical methods for the Firoozkuh
No. 161 sand and the Silica Fine Sand.

6. Conclusions

In this study, we have used the ACST framework to investigate
the instability conditions under CSD stress paths, considering the role
of fabric anisotropy, multiaxial loading, and state in a comprehensive
manner, something that has not been addressed in previous efforts. CSD
stress paths can be particularly important because the possibility of
a water table increase is difficult to obviate during the lifetime of a
slope system and because any predecessors of a potential failure would
be minimal, as shown by several case history failures discussed in the
introduction section of this study.

Towards the goals of our study, we first assessed the performance
of the ACST-based SANISAND-F constitutive model under CSD stress
paths, finding it satisfactory. Importantly, the adequate performance
of the SANISAND-F model was assessed considering the same set of
constitutive parameters under triaxial compression, triaxial extension,
and CSD stress paths, showing the model’s robustness. Moreover, sub-
sequent numerical simulations showed that the instability onset of
initially loose materials is governed by a trade-off between plastic and
volumetric strains. Fabric effects were incorporated in defining differ-
ent instability criteria. Specifically, instability stress ratios, which in a
multiaxial space can be represented by the distance between the origin
and instability surfaces in the 𝜋-plane, for initially loose and dense
tates were derived. Interestingly, the derived instability surfaces are
abric dependent and also depend on the loading conditions. Moreover,
hey are asymmetric relative to the 𝜋-plane axes, in contrast to what
ould be expected when fabric effects are not considered.
It was shown that the ACST framework, through the implementation

f the SANISAND-F model, is able to provide valuable insights into
ssessing the relative effects of fabric (inherent and induced), 𝛼𝜎 , Lode
ngle, and state on the instability under CSD stress paths. Importantly,
or conditions that are representative of the scarce experimental CSD
nformation considering anisotropic effects, our numerical-based find-
ngs are consistent with the experimental counterparts. For example,
nstability is triggered regardless of the state of the soil (dense or loose).
n addition, considering the cross-anisotropic fabrics used in this study,
hich resemble the initial fabric in experimental tests, 𝜂𝑓 decreases
s the Lode angle increase and 𝛼𝜎 increase for typical values used
n experiments (i.e., 𝛼𝜎 between 0◦ to 90◦, and Lode angles between
◦ to 60◦). Moreover, 𝜂𝑓 increases as the initial fabric intensity (𝐹𝑖𝑛)
ncreases, and the decrease in 𝜂𝑓 given a 𝛼𝜎 increase is more signif-
cant if 𝐹𝑖𝑛 is higher (i.e., a more anisotropic fabric), consistent with
he experimental Fanni et al. (2022) study. Importantly, our results
17
lso highlight the coupling between the Lode angle, 𝛼𝜎 , and 𝐹𝑖𝑛. For
nstance, when considering scenarios that have not been accounted for
n previous experimental efforts, the onset of instability for a given
ode angle and an increasing 𝛼𝜎 can be promoted or not, depending
n the interactions between the loading and fabric directions. Future
xperimental efforts considering broader ranges for Lode angle, 𝛼𝜎 , and
𝐹𝑖𝑛 can provide additional insights in this direction. Last, we also found
that relaxing the instability criterion (Eqs. (30) and (31)) by neglecting
the evolution of 𝐴 and 𝜁 provides reasonable 𝜂𝑓 estimates that are on
the conservative side for the constitutive model parameters considered
in this study. The benefit of this approach is that once the constitutive
model parameters are calibrated and anisotropy loading parameters
defined (i.e., Lode angle, 𝛼𝜎 , 𝐹𝑖𝑛), 𝜂𝑓 can be directly estimated by using
Eqs. (30) and (31), without conducting numerical simulations, which
is appealing. This approach was appropriate for the set of constitutive
model parameters considered in this study, but it should be inspected
further in future studies considering a broader set of constitutive model
parameters once more CSD experimental information comparable to the
one used in this study becomes available.
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Appendix. Derivation of instability stress ratio 𝜷𝒇 for Type-1 in-
stability

The three constitutive ingredients in Eq. (28) are the elastic bulk
modulus 𝐾, the dilatancy 𝐷 and the plastic modulus 𝐾𝑝, which are
defined based on the SANISAND-F model in Eqs. 5, 13 and 14 respec-
tively. Substituting them in Eq. (28) and denoting 𝛽 as 𝛽𝑓 , the stress
ratio at the onset of flow liquefaction, we get:

(𝑀𝑏
𝜃 − 𝛽𝑓 )

𝛽𝑓 (𝛽𝑓 − 𝛽𝑖𝑛)(𝑀𝑑
𝜃 − 𝛽𝑓 )

=
2𝐴𝑑 (1 + 𝜈)(2.97 − 𝑒)2

3(1 − 2𝜈)(1 + 𝑒)ℎ1𝑒𝑥𝑝(ℎ2𝐴)(𝑒−1 − 𝑐ℎ)2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹𝑒

(A.1)

After rearranging:

𝛽3 − (𝛽𝑖𝑛 +𝑀𝑑 )𝛽2 −
(

1 − 𝛽𝑖𝑛𝑀𝑑
)

𝛽𝑓 +
𝑀𝑏

𝜃 = 0 (A.2)
𝑓 𝜃 𝑓 𝐹𝑒 𝜃 𝐹𝑒
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Eq. (A.2) can be recast in a simple cubic polynomial form as shown
below:

𝛽3𝑓 + 𝐶1𝛽
2
𝑓 + 𝐶2𝛽𝑓 + 𝐶3 = 0 (A.3)

with 𝐶1 = −
(

𝛽𝑖𝑛 +𝑀𝑑
𝜃 (𝜁 )

)

, 𝐶2 = −
(

1
𝐹𝑒

− 𝛽𝑖𝑛𝑀𝑑
𝜃 (𝜁 )

)

, and 𝐶3 =
𝑀𝑏
𝜃 (𝜁 )
𝐹𝑒

. As
hown in Najma and Latifi (2017), the general cubic polynomial has
three roots, of which two are imaginary and one is a real acceptable
root. The real root can be estimated as Najma and Latifi (2017):

𝛽𝑓 =
−𝐶1
3

⎡

⎢

⎢

⎣

1 + 2

(

1 − 3
𝐶2

𝐶2
1

)0.5

𝑐𝑜𝑠
(

𝜙 + 4𝜋
3

)

⎤

⎥

⎥

⎦

𝜙 = 𝑐𝑜𝑠−1
1 + 27𝐶3

2𝐶3
1
− 9𝐶2

2𝐶2
1

(

1 − 3𝐶2
𝐶2
1

)

(A.4)

At the initiation of flow liquefaction, the stress ratio 𝛽 is equal to 𝛽𝑓 .
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