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Odd two-variable Soergel bimodules and Rouquier complexes
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Abstract. We consider the odd analogue of the category of Soergel bimod-
ules. In the odd case and already for two variables, the transposition bimodule
cannot be merged into the generating Soergel bimodule, forcing one into a
monoidal category with a larger Grothendieck ring compared to the even case.

We establish biadjointness of suitable functors and develop graphical calculi
in the 2-variable case for the odd Soergel category and the related singular
Soergel 2-category. We describe the odd analogue of the Rouquier complexes
and establish their invertibility in the homotopy category. For three variables,
the absence of a direct sum decomposition of the tensor product of generating
Soergel bimodules presents an obstacle for the Reidemeister III relation to hold
in the homotopy category.

1. Introduction

In this note we propose an odd analogue of Soergel bimodules for Coxeter type
A1. Soergel bimodules for A1 are certain bimodules for the algebra of polynomials
in two variables. In the odd case it’s role is played by the algebra of skew-symmetric
polynomials R = k〈x1, x2〉/(x1x2+x2x1). The substitute for the generating Soergel
bimodule B over the polynomial algebra consists of two R-bimodules B and B that
constitute a biadjoint pair (that is, the functor of tensoring with B is both left and
right adjoint to tensoring with B).

Starting in Section 2.2 we develop a graphical calculus for the category of odd
Soergel bimodules in two variables and define a pair of mutually-inverse functors
R,R′ on the homotopy category of graded R-modules given by the tensor product

with complexes of bimodules formed from suitable bimodule maps B
m
−→ R{−1}

and R{1} −→ B, where {±1} is a grading shift.
These complexes of bimodules and corresponding functors R,R′ are odd ana-

logues of the Rouquier complexes that in the even case give rise to a braid group
action on the homotopy category of modules over the n-variable polynomial al-
gebra. In Section 6 we explain an obstacle that exists in the odd case to having
the braid relation RiRi+1Ri

∼= Ri+1RiRi+1. The lack of this braid relation blocks
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an attempt, from which this note originated, to define odd HOMFLYPT link ho-
mology via braid closures and odd Soergel bimodules, analogous to the original
construction of HOMFLYPT link homology via Hochschild homology of Soergel bi-
modules [8]. It’s not known either whether the odd counterpart of bigraded SL(N)
link homology [9] exists for N > 2. For the definition and structure of odd SL(2)
link homology see [12–16].

In Section 5 we identify the Grothendieck ring of the category of odd Soergel
bimodules for A1 and compute a natural semilinear form and trace on that ring.

Rouquier functors on the even Soergel category are closely related to the invert-
ible functors of twisting by a relative spherical object in the Fukaya–Floer categories
and in the derived categories of coherent sheaves [11]. It should be interesting to
explore odd counterparts of such functors; one can, for instance, ask whether there
exists an odd counterpart of quiver varieties and associated derived categories of
coherent sheaves on them and, more generally, an odd counterpart of algebraic ge-
ometry. A simpler problem is to understand the relation between functors R,R′ and
recently constructed odd counterpart of Chuang–Rouquier symmetries and Rickard
complexes [1,2].

2. Bimodules for two strands

2.1. Anticommuting polynomials and odd Demazure operators. Let
k be a commutative ring and denote by R = k〈x1, x2〉/(x1x2 + x2x1) the algebra
of anticommuting polynomials in two variables. Let S2 be the symmetric group on
two letters with generator s, acting on R by s(xi) = −xs(i) and s(fg) = s(f)s(g)
for f, g ∈ R.

Define the odd Demazure operator ∂ : R −→ R (see [5–7]) as follows:

• ∂(1) = 0, ∂(x1) = ∂(x2) = 1.
• The twisted Leibniz rule holds

∂(fg) = (∂f)g + s(f)∂g.

Note that ring R does not have unique factorizations, for instance (x1+x2)
2 =

(x1 − x2)
2 in R.

The equation

(2.1) ∂ ◦ s = −s ◦ ∂

follows via the Leibniz rule above and checking it on generators of R.
Let Rs = ker(∂) = im(∂) ⊂ R. Equality ker(∂) = im(∂) is straighforward to

check. The twisted Leibniz rule then implies that Rs is a subring of R. The ring
Rs has generators E1 = x1 − x2, E2 = x1x2 and the defining relation is that these
generators anticommute,

Rs = k〈E1, E2〉/(E1E2 + E2E1), E1 = x1 − x2, E2 = x1x2.

The action of S2 on R restricts to an action on Rs, with

s(E1) = E1, s(E2) = −E2.

Define the transposition bimodule R to be free rank one as a left and as a right
R-module, with the generator 1 and relations f1 = 1s(f). It has a subbimodule
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Rs := Rs1 = 1Rs ⊂ R. Denote 1 ∈ R by 1s when viewed as an element of Rs ⊂ R.
We fix bimodule isomorphisms

R⊗R R ∼= R, 1⊗ 1 
−→ 1,(2.2)

Rs ⊗Rs Rs ∼= Rs, 1s ⊗ 1s 
−→ 1s,(2.3)

Rs ⊗Rs R ∼= RsRR, 1s ⊗ 1 
−→ 1,(2.4)

R⊗Rs Rs ∼= RRRs , 1⊗ 1s 
−→ 1.(2.5)

The first map is an isomorphism of R-bimodules, the second – that of Rs-bimodules.
The odd Demazure operator can be written as a map

(2.6) ∂′ : R −→ Rs, ∂′(f) = 1∂(f).

It is then naturally a map of Rs-bimodules. We can also write it as a bimodule
map

(2.7) ∂′′ : R −→ Rs, ∂′′(f1g) = ∂(s(f)g).

The ring R is a free rank two left and right module over Rs,

RsR ∼= Rs · 1⊕Rs · xi, RRs
∼= 1 ·Rs ⊕ xi ·R

s, i ∈ {1, 2}.

Note that in the bimodule R ⊗Rs R we have

(2.8) x1 ⊗ 1− 1⊗ x1 = x2 ⊗ 1− 1⊗ x2,

since x1 − x2 ∈ Rs.
We make R into a graded ring, with deg(x1) = deg(x2) = 2. Then Rs has an

induced grading, and ∂ is a degree −2 map. Bimodules R and Rs are naturally
graded, with deg(1) = deg(1s) = 0.

2.2. Biadjointness. We consider the graded bimodules RRRs , RsRR and

RRR and introduce the following four functors, where gmod stands for the cat-
egory of graded modules and degree zero maps:

• F↑ : Rs−gmod −→ R−gmod is the induction functor of tensoring with
the graded bimodule RRRs .

• F↓ : R−gmod −→ Rs−gmod is the restriction functor; it is isomorphic to
tensoring with the bimodule RsRR.

• F− : R−gmod −→ R−gmod is the functor of tensoring with R.
• Fs : R

s−gmod −→ Rs−gmod is the functor of tensoring with Rs.

The endofunctors F− and Fs are involutive. Fix a functor isomorphism

(2.9) Fs ◦ F↓
∼= F↓ ◦ F−

given by the bimodule isomorphism

Rs ⊗Rs R ∼= Rs
R⊗R R ∼= RsR

which takes 1s⊗f to s(f)⊗1 to 1f . The last term is R viewed as (Rs, R)-bimodule
with the standard left action of Rs and right action of R. Likewise, there’s an
isomorphism

(2.10) F↑ ◦ Fs
∼= F− ◦ F↑

via the corresponding bimodule isomorphisms

R⊗Rs Rs ∼= R ⊗R RRs

∼= RRs , f ⊗ 1s 
−→ 1⊗ s(f) 
−→ 1s(f).
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These isomorphisms can be thought of as “sliding” involutive functors F− and Fs

through the induction and restriction functors F↑ and F↓.
We depict natural transformations between compositions of these functors by

drawing planar diagrams, with regions labelled by categories R−gmod (white re-
gions) and Rs−gmod (shaded regions), following the usual string diagram notation.
Identity natural transformation of F↑ (respectively F↓) is denoted by a vertical line,
with the shaded region to the left (respectively, to the right), see equation (2.11)
below. We denote the identity functor on a category C by 1C or just by 1.

F↑

F↑

R−gmod Rs−gmod

F↓

F↓

id

F−

F−

id

Fs

Fs

id

(2.11)

The identity natural transformation of F− and Fs is denoted by a vertical
dashed orange line, in a white or shaded region, respectively, see (2.11) above.

Sliding isomorphisms above are shown as crossings of strands, which are mu-
tually-inverse isomorphisms, see equations (2.12)-2.12 below.

F↓

F↓Fs

F− F↓

F↓ F−

Fs F↑

F↑F−

Fs F↑

F↑

F−

Fs

(2.12)

= =(2.13)

= =(2.14)

Proposition 2.1. The following pairs of functors are adjoint pairs: (F↑, F↓)
and (F↓, F− ◦ F↑).

Proof. Induction functor F↑ is left adjoint to the restriction functor F↓. Ad-
jointness natural transformations come from standard bimodule homomorphisms

(2.15) ³0 : R ⊗Rs R −→ R, f ⊗ g 
−→ fg, f, g ∈ R,

and

´0 : Rs −→ RsRRs , f 
−→ f, f ∈ Rs.
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These adjointness maps and the corresponding adjointness isotopy relations are
shown in equation (2.16). We use ³0, ´0, etc. to denote both bimodule maps and
the corresponding natural transformations of functors (idR stands for the identity
functor in the category R−gmod). The composition F↓ ◦ F↑ is written F↓↑, for
brevity.

F↓F↑

F↑↓

idR

α0

F↓ F↑

idRs

F↓↑

β0

= =

(2.16)

For the second adjoint pair of functors, we consider corresponding bimodules
and define bimodule homomorphisms

³1 : RsR⊗R R ⊗R RRs −→ Rs, ³1(f ⊗ 1⊗ g) = ∂(s(f)g).

This is just the map ∂′′ in (2.7), under the bimodule isomorphism RsR ⊗R R ⊗R

RRs
∼= RsRRs .

´1 : R −→ R ⊗R R⊗Rs R, ´1(f) = 1⊗ x1 ⊗ f − 1⊗ 1⊗ x1f, f ∈ R.

Due to (2.8),

´1(f) = 1⊗ (x1 ⊗ 1− 1⊗ x1)f = 1⊗ (x2 ⊗ 1− 1⊗ x2)f.

To prove that ´1 is a well-defined bimodule map we check that �xi
(´1(1)) =

rxi
(´1(1)), where �x, respectively rx, denotes the left, respectively right, multi-

plication by x in an R-bimodule:

�x1
(´(1)) = x11⊗ x1 ⊗ 1− x11⊗ 1⊗ x1 = 1⊗ x2x1 ⊗ 1− 1⊗ x2 ⊗ x1

= 1⊗ (1⊗ x2x1 − x2 ⊗ x1) = 1⊗ (1⊗ x2 − x2 ⊗ 1)x1

= 1⊗ (1⊗ x1 − x1 ⊗ 1)x1 = rx1
(´(1)),

�x2
(´(1)) = x21⊗ (x2 ⊗ 1− 1⊗ x2) = 1⊗ (x1x2 ⊗ 1− x1 ⊗ x2)

= 1⊗ (1⊗ x1x2 − x1 ⊗ x2) = 1⊗ (1⊗ x1 − x1 ⊗ 1)x2 = rx2
(´(1)).

We check the adjointness relation (³1 ⊗ id) ◦ (id⊗´1) = id, where id stands for the
identity homomorphism of suitable bimodules:

1
id⊗β1

−→ 1⊗ 1⊗ (x1 ⊗ 1− 1⊗ x1)

α1⊗id

−→ ∂(x1)1− ∂(1)x1 = 1.

To check the other adjointness relation (id⊗³1) ◦ (´1 ⊗ id) = id we compute the
corresponding endomorphism of the (R,Rs)-bimodule R ⊗R RRs (functor F− ◦ F↑

is given by tensoring with this bimodule):

1⊗ 1
β1⊗id

−→ 1⊗ (x1 ⊗ 1− 1⊗ x1)⊗ 1⊗ 1

id⊗α1
−→ 1⊗ x1³1(1⊗ 1⊗ 1)− 1⊗ 1³1(x1 ⊗ 1⊗ 1)

= 1⊗ x1∂(1)− 1⊗ 1∂(s(x1)) = 0− 1⊗ 1(−1) = 1⊗ 1.

�
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Diagrams for maps ³1, ´1 and their adjointness relations are depicted below.
To shorten notations, we write F↓−↑ for F↓ ◦ F− ◦ F↑, etc.

F↓−↑

1Rs−gmod

α1

F−↑↓

1R−gmod

β1

= =

(α1⊗idF↓
)(idF↓

⊗β1)=idF↓
(idF−↑

⊗α1)(β1⊗idF−↑
)=idF−↑

It is also natural to define another “cup” morphism, with the dotted line en-
tering the local minimum in the middle, see below, as the composition of ´1 and

the isomorphism (2.9). We call this cup balanced and denote the morphism by ˜́
1.

Then the diagram representing ´1 can be rewritten as the composition of a balanced
cup and a crossing, see below (the map ψ : F−↑ → F↑s is the crossing isomorphism
in (2.12)).

:=

F↑s↓

1R−gmod

β̃1 = ψ ◦ β1

=

F−↑↓

1R−gmod

β1 = ψ−1 ◦ β̃1

The balanced cup morphism is

˜́
1 : R −→ R⊗Rs⊗R, ˜́

1(f) = −x2⊗1s⊗f−1⊗1s⊗x1f = −x1⊗1s⊗f−1⊗1s⊗x2f.

As ˜́
1 is a bimodule map, f ∈ R can also be placed on the far left in the formula.

Proposition 2.2. Functors F↑↓ = F↑◦F↓ and F↑s↓ = F↑◦Fs◦F↓ are biadjoint.

Proof. This follows from Proposition 2.1 and functor isomorphisms (2.9) and
(2.10). �

The corresponding biadjointness maps are shown below. We fix these biad-
jointness maps ³2, ´2, ³3, ´3.

F↑↓ ◦ F↑s↓

idR

α2

F↑s↓ ◦ F↑↓

idR

β2

F↑s↓ ◦ F↑↓

idR

α3

F↑↓ ◦ F↑s↓

idR

β3

(2.17)
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A quick computation shows that the two bimodule maps on the left of the
diagram (2.19) below differ by a minus sign. We can then define a trivalent vertex,
with a orange dashed line entering it from below, as in (2.19) on the right. This
bimodule map is given by

(2.18) R −→ R⊗Rs R, 1 −→ 1⊗ x2 − x2 ⊗ 1 = x1 ⊗ 1− 1⊗ x1.

It may be interesting to compare our dashed line and vertex with dashed lines in
Ellis-Lauda [6].

(2.19) = − :=

Likewise, there’s a sign in a similar relation given by reflecting these diagrams
about a horizontal axis and reversing the shading of regions, see (2.20) below left.
One can then define the reflected trivalent vertex as in the figure in (2.20) below,
on the right. This bimodule map is ∂′, see formula (2.6),

R −→ Rs, f 
−→ 1s∂(f), f ∈ R.

(2.20) = − :=

Some other relations in this graphical calculus are shown below.

= 0 = =

= 0 = =

=

Recall that a vertical dotted orange line on a white (respectively, blue or shaded)
background denotes the identity map ofR-bimodule R (respectively, ofRs-bimodule
Rs), see below.

(2.21) = idR, = idRs .

The isomorphism (2.2) between R⊗RR and R can be represented by orange dashed
“cup” and “cap” maps, see below. These maps satisfy the following relations

= =
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as well as the isotopy relations on the cup and the cap. Orange dashed cup and
cap maps have degree 0. Isomorphism (2.3) is represented by oranged dashed cup
and cap maps on a blue (shaded) background, with the following relations:

= =

and the isotopy relations.
Likewise, isomorphisms (2.4) and (2.5) are represented by the orange dashed

cup and cap diagrams in white-blue (or white-shaded) regions, as shown below
for the isomorphisms (2.4), together with suitable relations on them, including
isotopies.

= =

All eight possible orange dashed cup and cap maps have degree 0.

2.3. Bimodules B and B and their tensor products. Define graded R-
bimodules

(2.22) B := R⊗Rs R{−1}, B := R⊗Rs Rs ⊗Rs R{−1} = R⊗
s
R{−1}.

We use a shorthand and denoteM⊗RsRs⊗RsN (respectively, its elementm⊗1s⊗n)
by M⊗

s
N (respectively, by m⊗

s
n). Likewise, M ⊗R R ⊗R N (and its element

m⊗ 1⊗ n) can be denoted M⊗N (and by m⊗n).
Endofunctors F↑↓ and F↑−↓ of the category R−gmod of graded R-modules are

given by tensoring with bimodules B{1} and B{1}, respectivley. Natural transfor-
mations ³2, ´2, ³3, ´3 can then be rewritten as bimodule maps, denoted the same
(the tensor products are over R and f, g ∈ R):

³2 : B ⊗B −→ R, ³2(1⊗s f ⊗ g⊗
s
1) = ∂(s(fg)),

´2 : R −→ B ⊗B, ´2(f) = −(x1⊗s
1)⊗ (1⊗s f)− (1⊗

s
1)⊗ (1⊗s x2f),

³3 : B ⊗B −→ R, ³3(1⊗s
1⊗ f ⊗s g) = ∂(f)g,

´3 : R −→ B ⊗B, ´3(f) = −(x1 ⊗s 1)⊗ (1⊗
s
f)− (1⊗s 1)⊗ (1⊗

s
x2f).

All four maps have zero degree: deg(³2) = deg(´2) = deg(³3) = deg(´3) = 0.
We fix graded bimodule isomorphisms

(2.23) R⊗R B ∼= B ∼= B ⊗R R

given by

1⊗ f ⊗ g 
−→ s(f)⊗ 1s ⊗ g, f ⊗ 1s ⊗ g 
−→ f ⊗ s(g)⊗ 1, f, g ∈ R.

We depict the identity maps of B by a blue line

(2.24) = idB
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Bimodule maps (2.15) and (2.18) are given by the following diagrams (we write
f ⊗s g for f ⊗Rs g and f ⊗ g = 1⊗ fg = fg ⊗ 1 for f ⊗R g):

: B
m
−→ R, f ⊗s g 
→ fg,(2.25)

: R
∆
−→ B, 1 
→ 1⊗s x2 − x2 ⊗s 1 = 1⊗s x1 − x1 ⊗s 1.(2.26)

Due to our definition (2.22) of the graded bimodule B, both of these maps have
degree 1. The maps in equations (2.25) and (2.26) fit into a short exact sequence

(2.27) 0 −→ R{1} −−−−→ B −−−−→ R{−1} −→ 0,

where we shifted the gradings of the left and right terms to make the differential
grading-preserving.

Tensoring this sequence with R gives another exact sequence, since R is a free
left and right R-module:

(2.28) 0 −→ R{1} −−−−→ B ⊗R R −−−−→ R{−1} −→ 0.

The middle term in the second sequence is isomorphic to B. Here and later we fix
the isomorphism B ⊗R R ∼= B given by

Exactness of sequences (2.27) and (2.28) implies relations

= 0 = 0.

Note that the two relations are equivalent, due to the isotopy relation on red cups
and caps.

Lemma 2.3. The following are (R,R)-bimodule maps:

: 1⊗s 1⊗ 1 
→ 1⊗ 1⊗s 1,(2.29)

: 1⊗ 1⊗s 1 
→ 1⊗s 1⊗ 1,(2.30)

: 1⊗s 1 
→ 1⊗s 1⊗s 1,(2.31)

: 1⊗s f ⊗s 1 
→ 1⊗ ∂(f)⊗s 1.(2.32)

Proof is straightforward. �
These maps have degrees 0, 0,−1,−1, respectively.
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The shortcuts below will be useful in the sequel.

:= := :=

Lemma 2.4. The bimodule maps in equations (2.24) to (2.32) satisfy the rela-

tions below.

= =

= =

= −

= =

= = − = −

= = =

A proof is given by a straighforward computation. �
Dashed orange lines in the present paper are similar to dashed blue lines in

Ellis-Lauda’s categorification of odd quantum sl(2), see [6]. (Compare adjointness
relations (3.13), (3.14) in that paper with the adjointness in Proposition 2.2.)

The difference of the present diagrammatical calculus of blue lines (for B) and
dashed red lines (for R) from the earlier calculus in Section 2.2 is that blue regions
(for the category Rs−gmod) are now hidden inside blue lines and graphs. Thick-
ening these lines and graphs recovers the earlier diagrammatics, see equation 2.33
below.

(2.33)

Proposition 2.5. The following equality holds
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(2.34) = −

Moreover, both terms on the right hand side are orthogonal idempotents.

Proof. A direct computation shows that the two terms on the right hand side
are orthogonal idempotents. To show that their sum is the identity of B⊗s B note
that for f ∈ R the element P (f) := f − x2∂f is in Rs since ∂P (f) = 0. This
allows writing f = P (f) + x2∂(f) (a similar argument appears in [3, §2.2]). We
then compute

(
−

)
(1⊗s f ⊗s 1)

= 1⊗s 1⊗s f − 1⊗s 1⊗s x2∂f + 1⊗s x2∂f ⊗s f

= 1⊗s 1⊗s P (f) + 1⊗s x2∂f ⊗s 1

= 1⊗s P (f)⊗s 1 + 1⊗s x2∂f ⊗s 1 = 1⊗s f ⊗s 1,

as claimed. �

Corollary 2.6. There are direct sum decompositions

B ⊗B ∼= B{−1} ⊕B{1} ∼= B ⊗B,(2.35)

B ⊗B ∼= B{1} ⊕B{−1} ∼= B ⊗B.(2.36)

Proof. The first idempotent on the right hand side of (2.34) is a composition
of degree 0 maps

B ⊗B −−−−→ B{−1} −−−−−−→ B ⊗B.

Composing in the opposite direction gives the identity map of B{−1}, so that
this idempotent is a projection onto a copy of B{−1}. Grading shift is present due
to the degree of (2.25) being one.

Likewise, the second idempotent is a composition

B ⊗B −−−−−→ B{1}

−

−−−−−−→ B ⊗B,

with the composition in the opposite direction equal idB{1}. Thus, it’s a projection
onto a graded bimodule isomorphic to B{1}. We obtain a direct sum decomposition
B ⊗ B ∼= B{−1} ⊕ B{1} in (2.35) Tensoring with R on the right and on the left
gives the remaining direct sum decompositions. �

Remark 2.7. The identity in (2.34) can be expressed in equivalent ways, which
result in different presentations of the maps realising the isomorphisms in (2.35)
and (2.36). For example, it equals its reflection around a vertical axis:

(2.37) = −
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To see that this equation holds, we need the two relations below.

+ =

= −

The first one can be proved by direct computation, and the second is obtained
from (2.34) by postcomposing all terms with the map m at the appropriate place.
Combining these two relations with (2.34) gives (2.37).

The direct sum decompositions in Corollary 2.6 are not canonical. Specializing
to B ⊗ B, there is a canonical short exact sequence below (up to a choice of signs
for the maps) with the inclusion given by map (2.31)

0 −→ B{−1} −−−−−→ B ⊗B −−−−−→ B{1} −→ 0.

This sequence splits, but a splitting is non-unique, due to the existence of a
non-trivial degree 2 bimodule map B −→ B, see below on the left. Via adjointness,
it comes from a degree two homomorphism R −→ B⊗B, shown below on the right

−

(the minus sign is added to match our definition of the corresponding adjointness
morphism). A particular direct sum decomposition ofB⊗B is given by the following
maps, as in the proof of Corollary 2.6.

B{−1} B ⊗B B{1}

−

3. Oriented calculus for products of generating bimodules

Our diagrammatics so far explicitly includes bimodules B (blue lines) and R
(dashed orange lines). Bimodule B and the maps that go through it appear im-
plicitly through a combination of diagrammatics for B and for R. It’s natural to
extend this diagrammatics, by depicting the identity map of B, respectively B, by a
vertical blue line oriented up, respectively down, see below. Then the biadjointness
maps (2.17) can be compactly depicted by oriented cups and caps, with the usual
isotopy relations on these cup and caps.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ODD TWO-VARIABLE SOERGEL BIMODULES 217

= =

B B BB

BB B B

A closed circle, either clockwise or counterclockwise oriented, evaluates to 0,
see below.

= 0 =

There are additional generating maps and isotopy relations on them (some
relations are depicted below, together with the maps).

= = =

= = =

(3.1)

Isomorphisms (2.23) can be depicted by a trivalent vertex where a dashed
orange line enters the point of orientation reversal of a blue line, see below, together
with the corresponding relations. There are 8 such trivalent vertices, with some
relations on them also shown below and other relations are obtained by suitable
symmetries (horizontal and vertical reflection and orientation reversal).

B

B ⊗R

∼= =

B

R⊗B

∼= = =

B

B

id

= =

Blue lines in the top row of (2.33) now acquire upward orientation, see below.
The rightmost diagram is an exception; dashed orange line is hidden at the cost of
orienting the left bottom leg down.

(3.2)

Composing trivalent vertices with cups and caps results in rotated trivalent
vertices, see below (where top left diagram is the rightmost diagram in (3.2).
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:= = := =

:= := =

:= =

At a trivalent vertex, the three edges either all oriented into the vertex, or one
edge is oriented in and two edges out. The number of “out” oriented edges at each
vertex is even.

The degrees of various maps are summarized the table below.

map

degree 0 0 0 0 1 1

map

degree 0 0 -1 -1 0 0

It’s also convenient to introduce a crossings of a downward-oriented blue line
with dashed orange line, a degree 0 map defined as shown below.

:= = := =

Also, the following relations hold.

= = 0

Similar to the decomposition of B ⊗B and using oriented lines, we obtain the
following direct sum decomposition

B ⊗B ∼= B{1} ⊕B{−1}

from Corollary 2.6 diagrammatically (note the minus sign in one of the maps).

(3.3) B{1} B ⊗B B{−1}

−
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There’s flexibility in choosing some arrows in a direct sum decomposition of B⊗B,
as in the earlier discussion about the equivalent case of decomposing B ⊗B.

Remark 3.1. Let SBim be the monoidal category of 2-variable odd Soergel
bimodules generated by bimodules B,R and their grading shifts (see more details
about SBim in Section 5). Bimodule B has an antiinvolution φ given by φ(x⊗y) =
y⊗x. Bimodule R has an antiinvolution φ given by φ(x1y) = y1x. Antiinvolutions
φ extend to an involutive antiequivalence φ : SBim −→ SBimop of the category
SBim that takes B to B and B to B. In our graphical description of SBim some
generating maps are invariant under the reflection in a vertical line, such as in
(2.25). Our diagrammatical notations for several maps break reflectional symmetry,
requiring adding a minus sign to the reflected diagram, including in (2.26). These
signs later propagate in formulas: for instance, observe the absence of signs in the
direct sum decomposition given by (4.1) and the presence of a single minus sign in
the decomposition (3.3).

4. Odd Rouquier complexes and invertibility

Consider the following two-term complexes of graded B-modules, where B and
B terms are placed in cohomological degree 0. The differential is given by maps
(2.25) and the map ∆ obtained from (2.26) by tensoring with 1, respectively.

R := 0 −→ B
m

−−→ R{−1} −→ 0,

R
′ := 0 −→ R{1}

∆
−→ B −→ 0.

Complexes R,R′ can be viewed as odd analogues of the Rouquier complexes.

Theorem 4.1. There are homotopy equivalences of complexes of graded B-

modules R⊗R R
′ ∼=h R and R

′ ⊗R R ∼=h R.

Here R denotes the identity R-bimodule, viewed as a complex concentrated in
homological degree 0.

Proof. The complex R ⊗R R
′ is given by forming a commutative square of

bimodules below

B ⊗R{1} R⊗R

B ⊗B R⊗B{−1}

d0

d3

d1 d2

then adding a minus sign to the map d2 and collapsing the square into the complex

(C, d̂) below.

C : B{1} R⊕ (B ⊗B) B{−1}

d̂−1 =

(
d0
d1

)
d̂0 = (−d2, d3)
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Introduce maps h0, h3 and j between terms in the above commutative square, as
shown below.

B{1} R

B ⊗B B{−1}

d0 =

d3 =

d1 =

d2 =

(−)

h0 =

h3 =

j =

The following relations hold

h0d1 = idB{1}, d2 = d3j, d3h3 = idB{−1}, h0h3 = 0.

Thus, d1 is split injective, with a section h0. Likewise, d3 is split surjective, with
h3 as a section.

We would like to check that B ⊗ B = im(d1) ⊕ im(h3). Consider the map d′3
given by

d′3 =

Map d′3 is a rotation of the top left diagram in (3.3). Then

(4.1) d′3d1 = 0, h0h3 = 0, d′3h3 = idB{−1}, d1h0 + h3d
′
3 = idB⊗B .

Pairs of maps (d1, h0) and (d′3, h3) give a direct sum decomposition B ⊗ B ∼=
B{1} ⊕B{−1}.

Complex C above splits into the direct sum of three subcomplexes:

0 −→ B{1}
d0+d1−→ B{1} −→ 0,

0 −→ R −→ 0,

0 −→ h3(B{−1})
d3−→ B{−1} −→ 0,

where the middle complex consists of pairs (a, j(a)), a ∈ R. The first and third
complexes are contractible, while the middle complex is the identity bimodule R.
Consequently, R⊗R R

′ ∼=h R. A similar computation, changing the order of terms
in tensor products and reflecting all map diagrams about horizontal axes, shows
that R′ ⊗R R ∼=h R. �
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Corollary 4.2. Functors of tensoring with bimodule complexes R and R
′ are

mutually-invertible functors in the homotopy category of complexes of graded R-

modules.

Proposition 4.3. After removing contractible summands, complex R
n for n >

0 simplifies to the (n+1)-term complex, nontrivial in cohomological degrees from 0
to n, with the head

· · · −−−−→ B{5− n} −−−−→ B{3− n} −−−−→ B{1− n} −−−−→ R{−n} −→ 0

and the tail

0 −→ B{n− 1} −−−−→ B{n− 3} −−−−→ B{n− 5} −−−−→ B{n− 7} −−−−→ · · ·

for odd n and

0 −→ B{n− 1} −−−−→ B{n− 3} −−−−→ B{n− 5} −−−−→ B{n− 7} −−−−→ · · ·

for even n. Under the differential maps, 1 ⊗s 1 and 1 ⊗s 1 are sent to 1 ⊗s 1x1 +
x2 ⊗s 1 ∈ B and to 1⊗s x2 − x2 ⊗s 1 ∈ B, respectively.

The proposition can be proved by induction on n and a direct computation
using Gauss elimination. �

The case of R′n is similar:

Proposition 4.4. After removing contractible summands, complex R′n for n >
0 reduces to the following (n+ 1)-term complex that lives in cohomological degrees

from −n to 0:

0 −→ R{n} −−−−→ B{n− 1} −−−−→ B{n− 3} −−−−→ B{n− 5} −−−−→ · · · .

Remark 4.5. Adding the signed permutation bimodule to R,R′ gives the 2-
strand motion braid group action on the homotopy category of graded R-modules,
see A.-L. Thiel [18] for the corresponding action of the group of motion braids or
virtual braids in the even case for any number of strands.

5. Grothendieck ring

Recall that SBim is the category of 2-variable odd Soergel bimodules generated
as the monoidal category by bimodules B and R and their grading shifts. Hom
spaces in this category are all grading-preserving homomorphisms of bimodules.
We can also define the larger spaces

HOMSBim(M,N) := ⊕n∈ZHomSBim(M{n}, N).

These HOM spaces are naturally modules over the center of R,

(5.1) Z(R) ∼= Z[x2
1, x

2
2] ⊂ R.

The left and right actions of Z(R) on these hom spaces are not equal, in general.
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Indecomposable objects of SBim, up to shifts, are R,R,B,B, with tensor prod-
uct decompositions

R⊗R ∼= R, B ∼= B ⊗R ∼= R⊗ B, B ⊗B ∼= B{−1} ⊕B{1}.

Consider the split Grothendieck ring K0 of SBim. Grading shift functor induces a
Z[q, q−1]-module structure on K0(SBim). The latter is a free rank four Z[q, q−1]-
module with a basis

1 = [R], c := [R], b := [B], bc = [B],

generators b, c, and multiplication rules

(5.2) c2 = 1, cb = bc, b2 = q−1b+ qbc.

Since the element c is central in K0(SBim), the latter is a commutative associa-
tive Z[q, q−1]-algebra (commutativity fails for analogous algebras for three or more
strands).

Define a Z[q, q−1]-semilinear form on K0(SBim) by

([M ], [N ]) := gdim(HOM(M,N)),

where gdim denotes the graded dimension. This form is Z[q, q−1]-linear in the
second variable and Z[q, q−1]-antilinear in the first variable. We have (cm, cn) =
(m,n), for m,n ∈ K0(SBim), and

(1, 1) =
1

(1− q4)2
,(5.3)

(1, c) = (c, 1) = 0,(5.4)

(b, 1) = (1, bc) =
q

(1− q4)2
,(5.5)

(1, b) = (bc, 1) =
q3

(1− q4)2
.(5.6)

The inner product (1, c) = 0 since HOM(R,R) = 0, which follows by a direct com-
putation. The inner product (b, 1) above is computed via adjointness isomorphism

HOM(B,R) = HOM(R⊗Rs R{−1}, R) ∼= Hom(RsRR,RsRR){1}.

An endomorphism ξ of the (Rs, R)-bimodule R is determined by ξ(1) ∈ R which
we write as ξ(1) = h00 + h01x1 + h10x2 + h11x1x2, where hij ∈ k[x2

1, x
2
2] = Z(R).

Commutativity relations fξ(1) = ξ(1)f for f ∈ Rs can be reduced to those for
generators x1 − x2, x1x2 of Rs, leading to the relations h01 = h10 = h11 = 0. Con-
sequently, endomorphisms of this bimodule are in a bijection with central elements
of R, via ξ(1) = h00 ∈ Z(R). Passing to the graded dimension results in the above
formula (b, 1) = q(1− q4)−2.

Likewise, the inner product (bc, 1) is the graded dimension of

HOM(B,R) = HOM(R⊗Rs R{−1}, R) ∼= Hom(RsRR,RsRR){1}.

The generator of the hom space HOM(B,R) is given by the degree 3 map below.
There x2

1 in a box denotes the bimodule map of multiplication by the central element
x2
1 of R. Replacing x2

1 by x2
2 in the middle box reverses the sign of the map.
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x2
1

A similar computation to the above shows that an (R,R)-bimodule maps B −→
R are given by 1 
−→ f(x1 − x2), for any f ∈ k[x2

1, x
2
2]. The generating map, for

f = 1, has degree 3, due to shift in the degree of B as defined. Consequently, the
inner product (bc, 1) is given by (5.6).

Each object of SBim has a biadjoint object (since the generating objects do).
Bimodules B,B and R,R define biadjoint pairs of functors. Denote the correspond-
ing “biadjointness” antiinvolution on K0(SBim) by τ . It has the properties

τ (1) = 1, τ (c) = c, τ (b) = bc,

and

τ (xy) = τ (y)τ (x), τ (qx) = q−1τ (x), x, y ∈ K0(SBim).

In general, such “biadjointness” involutions reverse the order in the product,
but due to commutativity of K0(SBim) it does not matter in our case. This invo-
lution is Z[q, q−1]-antilinear and compatible with the bilinear form,

(xm, n) = (m, τ (x)n), x,m, n ∈ K0(SBim).

Adjointness allows to finish the computation of the inner products (5.5) and
(5.6). We can further compute that

(b, b) =
1 + q4

(1− q4)2
, (b, bc) =

2q2

(1− q4)2
.

Some of the generating maps for HOM spaces between the four indecomposable
bimodules in SBim are shown below, with each map of degree one. Generating maps
in the opposite direction, all in degree 3, are not shown.

B

B

R R0 0

For each of the four arrows between these four bimodules, the HOM space is
a one-dimensional Z(R) module with the generator shown. There are no homs
between R and R, and the corresponding compositions are 0. The upper and lower
portions of the diagram constitute two short exact sequences, and zero objects are
added on the sides to emphasize that.

Note that trivalent vertices appear in this calculus when passing to the tensor
products of B’s and B’s, to describe tensor product decompositions into direct
sums.
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The bilinear form is determined by Z[q, q−1]-linear trace form tr on K0(SBim),
where tr(a) = (1, a), with

tr(1) =
1

(1− q4)2
, tr(b) =

q3

(1− q4)2
, tr(c) = 0, tr(bc) =

q

(1− q4)2
.

The inner product and trace can be rescaled by (1−q4)2 to take values in Z[q, q−1].
This corresponds to viewing hom spaces as free graded modules over Z(R) (under
either left or right multiplications by central elements) and taking their graded
ranks.

6. An obstacle to the Reidemeister III relation

Consider the ring R3 of supercommuting polynomials in 3 variables,

R3 = k〈x1, x2, x3〉/(xixj + xjxi), 1 ≤ i < j ≤ 3.

In this section let us denote R3 by R.
The symmetric group S3 acts on R, with

s1(x1) = −x2, s1(x2) = −x1, s1(x3) = −x3,

s2(x1) = −x1, s2(x2) = −x3, s2(x3) = −x2,

and si(fg) = si(f)si(g) for f, g ∈ R.
There are two odd Demazure operators, ∂1, ∂2 : R −→ R. Operator ∂1 : R −→

R is given by:

• ∂1(1) = 0, ∂1(x1) = ∂1(x2) = 1, ∂1(x3) = 0,
• the twisted Leibniz rule holds

∂1(fg) = (∂1f)g + s1(f)∂1g,

and likewise for ∂2.
The kernels of ∂1, ∂2 are subrings R1, R2 ⊂ R. For instance, ring R1 is the

subring of R generated by x1 − x2, x1x2, x3.
Form graded R-bimodules

Bi := R⊗Ri R{−1}, i = 1, 2.

Note that x3(1⊗ 1) = (1⊗ 1)x3, where 1⊗ 1 is the generator of B1.
Diagrammatic calculi of the earlier sections can be repeated separately for

B1 and B2. In case of B1 we would need the permutation bimodule, denoted
R1 ∼= R11, with the generator 11 and x11 = 11s1(x) for x ∈ R and can then
form B1 = B1 ⊗R R1 ∼= R1 ⊗R B1. We have not tried to develop a diagrammatical
calculus of odd 3-stranded Soergel bimodules which would add interactions between
products of B1 and B2.

Consider graded R-bimodules

Bi := R⊗Ri Ri ⊗Ri R{−1} = R⊗
RiR{−1}, i = 1, 2.

Define the bimodule

B1̂21
:= R⊗R[2] R{−3}.

Here R[2] ⊂ R is the subring of odd symmetric functions in three variables, R[2] =
ker(∂1) ∩ ker(∂2).
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Proposition 6.1. There exists an exact sequence of graded R-bimodules

(6.1) 0 −→ B1̂21 −→ B1 ⊗B2 ⊗ B1 −→ B1 −→ 0

This sequence does not split.

The absence of a splitting creates a problem for the Reidemeister III move in-
variance. When resolving complexes for R1R2R1 and R2R1R2 there are not enough
contractible summands to slim the complexes down to those with the leftmost term
B1̂21, which is how the isomorphism is proven in the even case. Instead, the leftmost
terms are B1 ⊗B2 ⊗B1 and B2 ⊗B1 ⊗B2, respectively, which are not isomorphic.
This prevents the corresponding complexes of bimodules from being isomorphic
in the homotopy category. Finding a way around this obstacle is an interesting
problem.

7. Comparison with the even case

In this section we use the same notations to denote the corresponding structures
in the even case:

• R = k[x1, x2] is the ring of polynomials in two variables. S2 acts on it by
permuting the variables.

• ∂ is the Demazure operator, ∂(f) = f−sf
x1−x2

.
• Rs ⊂ S is the ring of symmetric functions.
• B = R ⊗Rs R{−1} is the generating Soergel bimodule for two variables.
• R is the transposition bimodule, R = R1 = 1R, xi1 = 1xs(i).

For the general theory of Soergel bimodules we refer to [4,17] and for the diagram-
matic calculus of Soergel bimodules to [3, 4]. There is a natural isomorphism of
(Rs, R)-bimodules

RsR ⊗R R ∼= RsR

due to involution s acting by identity on Rs.
Likewise, there’s an isomorphism of (R,Rs)-bimodules

R⊗R RRs
∼= RRs .

Tensoring these equations with the other “halves” of the bimodule B gives bimodule
isomorphisms

R ⊗R B ∼= B ∼= B ⊗R R.

Odd replacement of these isomorphisms motivates introducing bimodules B in that
case, see earlier.

Multiplication map f ⊗ g 
−→ fg induces a surjective bimodule map B −→
R{−1} which extends to a short exact sequence of bimodules

0 −→ R{1} −→ B −→ R{−1} −→ 0

Tensoring all terms of this sequence with R flips the sequence to the opposite

(7.1) 0 −→ R{1} −→ B −→ R{−1} −→ 0

These filtrations were emphasized in [10]. They allow to think of Rouquier
complexes as a sort of homological perturbation or homological quantization of the
permutation bimodule R. In the homotopy category (and ignoring q-gradings) the
complex

(7.2) 0 −→ B −→ R −→ 0
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is not isomorphic to

(7.3) 0 −→ R −→ 0.

(in both complexes we place the leftmost nontrivial term in degree 0). Homology
groups of these complexes are isomorphic, though. Complex (7.2) is giving by

thickening complex (7.3) by the contractible complex 0 −→ R
id
−→ R −→ 0, which

does not change the homology but makes the complex more subtle on the homotopy
category level. The transposition relation, which holds for R (that R⊗R ∼= R) fails
for the complex (7.2). It’s substituted by the weaker relation that (7.2) is invertible
in the homotopy category, with the quasi-inverse complex 0 −→ R −→ B −→ 0
given by truncating (7.1). The quasi-inverse is another thickening of R.

Before “homological perturbation”, tensoring with the bimodule R is a symme-
try of order two, with R⊗R R ∼= R. Homological perturbation results in an invert-
ible functor of infinite order, while retaining the Reidemeister III relation (the braid
relation) in the homotopy category of complexes of bimodules over k[x1, x2, x3].

Thus, upon this homological perturbation, action of the permutation group
Sn on the category of k[x1, . . . , xn]-modules given by tensoring with permutation
bimodules Ri becomes a much more subtle action of the n-stranded braid group on
the homotopy category of k[x1, . . . , xn]-modules by Rouquier complexes.
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