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Machine learning models were constructed to predict student performance in an introductory mechanics
class at a large land-grant university in the United States using data from 2061 students. Students were
classified as either being at risk of failing the course (earning a D or F) or not at risk (earning an A, B, or C).
The models focused on variables available in the first few weeks of the class which could potentially allow
for early interventions to help at-risk students. Multiple types of variables were used in the model: in-class
variables (average homework and clicker quiz scores), institutional variables [college grade point average
(GPA)], and noncognitive variables (self-efficacy). The substantial imbalance between the pass and fail
rates of the course, with only about 10% of students failing, required modification to the machine learning
algorithms. Decision threshold tuning and upsampling were successful in improving performance for at-
risk students. Logistic regression combined with a decision threshold tuned to maximize balanced accuracy
yielded the strongest classifier, with a DF accuracy of 83% and an ABC accuracy of 81%. Measures of
variable importance involving changes in balanced accuracy identified homework grades, clicker grades,
college GPA, and the fraction of college classes successfully completed as the most important variables in
predicting success in introductory physics. Noncognitive variables added little predictive power to the
models. Classification models with performance near the best-performing models using the full set of
variables could be constructed with very few variables (homework average, clicker scores, and college
GPA) using straightforward to implement algorithms, suggesting the application of these technologies may
be fairly easy to include in many physics classes.
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I. INTRODUCTION

Quantitatively understanding student outcomes in phys-
ics classes has long been an important research strand in
physics education research (PER). Quantitative studies
have explored how course grades, final examination scores,
and conceptual inventory scores change with student
characteristics and with different methods of instruction.
In general, these studies have applied traditional statistical
methods including linear and logistic regression. Recently,
a wide variety of new computational data analysis tech-
niques broadly classified as machine learning has been
created to analyze the large datasets collected by public and
private entities in the Internet age. These methods are rarely
based on underlying statistical assumptions and often do
not allow statistical conclusions. These methods have
begun to be applied to examine student outcomes in

physics classes [1,2] and physics student retention [3].
The current work explores this wealth of new methods and
develops recommendations for the use of these for accurate
prediction of all students with minimum additional effort
for working instructors. Predicting student outcomes in
physics classes could be a key step in improving methods
of instruction as well as decreasing the attrition rate of
students from science, technology, engineering, and math-
ematics (STEM) degrees. The President’s Council of
Advisors on Science and Technology issued a report [4]
in 2012 that called for an increase of graduates in STEM
majors so as to avoid a shortfall of one million STEM job
candidates over the next decade. An accurate prediction of a
student’s outcome in a physics class allows instructors to
target students who are at risk of failing the class with
interventions that could improve their chance of passing the
class. Physics classes form key barriers to degree progres-
sion for STEM students and, therefore, improving physics
retention should improve STEM retention in general.

A. Research questions

This study seeks to further explore the application of
machine learning algorithms to predict whether a student
will earn a D or F in a physics class, to understand how the
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accuracy of these predictions are affected by different
algorithms and additional variables including noncognitive
variables, and to understand what these algorithms can
contribute to general research landscape of PER. In
particular, we explore the following research questions:

RQ1: How can machine learning outcomes be optimized
to most effectively predict student outcomes early in
physics classes?

RQ2: How does the performance of the algorithms
change with the addition of new types of variables
such as noncognitive or institutional variables? What
factors are most important in the prediction of student
success in physics classes?

RQ3: How does the performance of the optimized model
compare with that of a model using a limited set of
variables easily accessible to physics instructors?

B. Prior machine learning studies in physics

The application of machine learning techniques to
student performance prediction in PER has become more
common in recent years. A 2018 study by Aiken et al. used
random forest classifiers to examine student persistence in
physics and which factors affect student transitions into
engineering while also comparing the results to those of a
more traditional contingency table analysis [3]. Both
methods indicated that the two features most useful in
predicting whether a student would complete a physics
degree or transfer to an engineering degree were whether a
student had taken a modern physics course or had enrolled
in engineering courses while listed as a physics major. The
random forest classifier achieved a ROC-AUC score of
0.93, indicating a stronger predictive performance than
random chance guessing.
The current work builds on two prior studies focusing on

the early identification of students at risk of failing or
withdrawing from an introductory physics course [1,2]. In
the first study, Zabriskie et al. [1] used random forest and
logistic regression classifiers to predict students at risk of
earning a grade lower than B in both introductory mechan-
ics and electromagnetism courses using a combination of
institutional and in-class variables. Grades of A or B rather
than A, B, and C were predicted to approximately balance
the two outcomes. The best-performing models achieved a
classification accuracy of 73% for physics 1 and 81% for
physics 2 using only data available in the first week of
class; performance improved in subsequent weeks as
additional student performance data were added. The
overall classification accuracy is the fraction of predictions
that are correct. Multiple metrics characterizing classifica-
tion algorithms are discussed in Sec. II E; classification
accuracy is defined in Eq. (1) in this section. Variable
importance measures from the random forest classifiers
indicated that college GPAwas the most important variable
for the model’s classifications until the addition of the
student’s first exam score in week 5 of the course. Students’

average homework scores and percentage of successfully
completed credit hours relative to total attempted credit
hours were also consistently found to be important to model
performance.
In the second study, Yang et al. [2] focused only on the

mechanics course and explored a slightly different classi-
fication goal, attempting to classify students likely to either
receive a grade of D or F or who would withdraw (W) from
the course. This resulted in an unbalanced dataset, with
only 10%–20% of the students across various datasets
failing or withdrawing. The sample balance is the ratio of
the students earning D, F, or W to those earning A, B, or C.
Random forest classifiers with decision thresholds tuned to
increase performance on the minority class were con-
structed, and classification accuracies were examined for
both the ABC and DFW categories. The best-performing
model achieved a total accuracy of 91% with a DFW
accuracy of 53% and an ABC accuracy of 95% using both
institutional variables and in-class variables available in the
first week of class. Again, model performance improved
with time as additional student performance data were
gathered. Institutional variables were found to be substan-
tially more important than in-class variables early in the
semester. Students’ college GPA, average homework
grades, and percentage of completed credit hours were
found to be the most important variables for improving
DFW accuracy, similar to the first study. An analysis of
model performance on demographic subgroups on two
datasets from different institutions indicated that models
trained on predominantly majority students performed
equally well on women, PEER (persons excluded due to
ethnicity or race), and first-generation college students
(FGCS), with all performance differences being within one
standard deviation of the model’s overall performance.
This work expands on these prior studies by exploring

new techniques to account for heavy sample imbalance and
improve the identification of DF students. An alternative
optimization metric robust against sample imbalance, bal-
anced accuracy (Sec. II E), was introduced. This newmetric
dramatically improved the accuracy of the identification of
unsuccessful students. This study investigated a substan-
tially larger set of variables than prior studies including
noncognitive variables and variables related to students’
high school physics preparation. Variable importance
analyses were extended to improve model interpretability,
inform future model construction, and identify minimal
subsets of variables that result in near-optimal performance.

C. Educational data mining and learning analytics

Educational data mining (EDM) is a broad field involv-
ing the use of statistical, machine learning, and traditional
data mining techniques to analyze and interpret educational
data. The field has experienced rapid growth recently, in
part due to increasingly prevalent large-scale data collec-
tion through platforms such as learning management
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systems and intelligent tutoring systems. In addition to
more standard techniques, EDM studies have used less
traditionally applied methods such as psychometric mod-
eling [5]. A 2014 review of 240 studies by Peña-Ayala
found that 88% used some form of statistical or machine
learning approach to draw conclusions from their data [6].
A 2019 review by Aldowah et al. of 402 EDM studies
found that 63% focused on computer-supported predictive
analytics, with a main focus on evaluating and monitoring
student learning. The same review also found that 26% of
studies used classification, 21% clustering, and 10%
regression [7].

A variety of statistical and machine learning methods,
including logistic regression, decision trees, random forests,
neural networks, naive Bayes, support vector machines, and
K-nearest neighbor algorithms have been used within EDM
[8]. More information on these and other machine learning
techniques can be found in several machine learning texts
[9,10] and in the Supplemental Material [11].
Learning analytics (LA) focuses on gathering and

analyzing data related to learners and the learning envi-
ronment with the goal of understanding and improving the
learning process and environment. While EDM focuses on
the technological challenge of analyzing large datasets and
developing new methods and models, LA focuses more on
the application of known predictive models to decision
making [5]. LA is a broad field encompassing many topics
including the prediction of student outcomes. In addition to
predicting student performance in courses, outcomes such
as the retention of PEER students in STEM [12] and
students’ participation in STEM careers [13] have been
explored. Such predictions can be used in early warning
systems to aid student performance and retention and to
understand what motivates performance gaps between
different groups of students [14].
LA also seeks to understand how students navigate their

courses, often by using data gathered either within the
classroom or by a course’s learning management system.
Rose et al. explored the use of explanatory learner models
and discussed associated best practices, with goals of
predicting student outcomes and offering actionable
insights as to how students interact with the material and
structure of a course [15]. Spikol et al. developed a
multimodal system utilizing computer vision, audio, and
Arduino IDE data to track student progress through a
project and identify which features of students’ group work
predicted project outcomes [16]. Process mining models of
how students use and navigate course learning management
systems using activity logs have been constructed and have
been used to compare how passing and failing students
interact with the course [17].

D. Grade prediction and persistence

Grade prediction is a common goal within EDM and LA;
machine learning techniques are commonly used for this

purpose. A 2020 review of 64 articles focusing on
predicting student behavior using machine learning by
Rastrollo-Guerrero et al. found that 70% focused on the
prediction of student performance. The two most common
methods employed in these works were support vector
machines and neural networks; decision trees, random
forests, naive Bayes, logistic regression, and K-nearest
neighbors were also frequently utilized [18]. Grade pre-
diction has also been explored for distance learning courses
[19] and a sophomore-level engineering course [20].
Such predictive tasks are often performed using heavily

unbalanced datasets, because courses generally have much
higher pass rates than fail rates. Methods to improve
performance on such unbalanced datasets have been
explored in various studies, such as upsampling, decision
threshold tuning, and feature selection [21]. Some of these
methods are explored in this work.

II. METHODS

A. Sample

The sample was collected in the introductory calculus-
based mechanics class at a large eastern land-grant uni-
versity in the United States. The overall undergraduate
student population in 2019 was 20 500 students with
demographic composition 82% White, 4% African
American, 4% Hispanic, 4% international, 4% two or more
races, with other groups representing 2% or less. The 25th
percentile to the 75th percentile range of ACT composite
scores was 21 to 27 [22]. For the class studied, the
demographic composition was 75% White, 14%
international, 4% two or more races, 2% African
American, 2% Asian, 2% Hispanic, with other groups
representing 2% or less. The sample was collected from the
Spring 2017 to the Fall 2019 semester. The class was
presented with three 50-min lectures per week and one 3-h
required laboratory session. During this time, the class was
managed by a single lead instructor who oversaw general
class policy, laboratory activities, and homework. This
instructor was knowledgeable about PER and instructed
many of the lecture sections; other faculty and staff
instructed the other sections in collaboration with the lead
instructor. The class was taught in two to three large lecture
section each semester enrolling between 50 and 160
students each. All sections used Mazur’s peer instruction
pedagogy using clickers in the lecture [23]. The laboratory
sessions featured a combination of hands-on inquiry based
activities, whiteboarding exercises, traditional laboratories,
and group problem-solving activities. There were many lab
sections each semester each enrolling a maximum of 24
students.

B. Variables

The variables used in this work are introduced in Table I.
The variables used are a combination of commonly

EXPLORING TECHNIQUES TO IMPROVE … PHYS. REV. PHYS. EDUC. RES. 20, 010149 (2024)

010149-3



TABLE I. List of variables. Type indicates whether the variable is continuous (C) or dichotomous (D). Variables in a Panel must be
used as a group. Variables marked BL are the base level of a group of variables in a panel. Datasets are labeledD0 toD3; see Sec. II C for
a description of each.

Abbreviation Type Panel BL D0 D1 D2 D3 Description

TstAve C × × × × Test average.
HasGPA D × × Has college GPA.
Hwk2 C × × × × Homework average by Week 2.
Clicker2 C × × × × Total clicker percentage score Week 2 (percentage of lectures attended).
HasSurveys D × × × Both surveys completed.
PreTaken D × FMCE pretest completed.
Pretest C × × × FMCE pretest percentage.
Complete C × × Percentage of classes completed before class.
CGPA C × × College grade point average before class.
STEMCls C × × × × STEM classes completed before class.
Credit C × × × × Credit hours completed before class.
Enroll C × × × × Current hours enrolled in semester of physics class.
ACTM C × × ACT or SAT mathematics percentile score.
ACTV C × × ACT English or SAT verbal percentile score.
HSGPA C × × High school grade point average.
APCNoMP C × × × × Number of non-math or non-physics AP classes with college credit.
APPhys D × × × × Credit for AP Physics.
APCalc D × × × × Credit for AP Calculus.
HSP.NTake D × × High school physics not taken.
HSP.NAP.NA D × × High school physics class not AP—grade B, C, D.
HSP.NAP.A D × × High school physics class not AP—grade A.
HSP.APNP.NA D × × High school physics AP (test not passed)—grade B, C, D.
HSP.APNP.A D × × High school physics AP (test not passed)—grade A.
HSP.APP.NA D × × High school AP physics (test passed)—grade B, C, D.
HSP.APP.A D × × High school AP physics (test passed)—grade A.
MathReady D × × × × Was the student’s first college math class Calculus 1 or higher?
HSMathA D × Was the grade in most advanced high school math class an A?
HSMNotCal D × × Was most advanced high school math class below calculus?
HSMNotAP D × × Was most advanced high school math class calculus?
HSMAPNPass D × × Was most advanced high school math class AP calculus (test not passed)?
HSMAPPass D × × Was most advanced high school math class AP calculus (test passed)?
TRCNoMP C × × × × How many non-math and non-physics transfer classes?
TRPhys D × × × × Does the student have transfer credit for physics?
TRMath D × × × × Does the student have transfer credit for math?
Belong C × Sense of belonging in physics class.
SelfEff C × Self-efficacy towards physics class.
GrdExA D × × Does the student expect to earn an A in physics?
GrdExB D × × Does the student expect to earn a B in physics?
GrdExCDFW D × × Does the student expect to earn a C, D, F, or W in physics?
Agr C × BFI personality facet—Agreeableness.
Cns C × BFI personality facet—Conscientiousness.
Nrt C × BFI personality facet—Neuroticism.
Ext C × BFI personality facet—Extraversion.
Opn C × BFI personality facet—Openness.
Repeat D × × × × Is the student repeating the class?
Gender D × × × × Does the student identify as female?
FirstGen D × × × × Is the student a first-generation college student?
PEER D × × × × Does the student identify as PEER?
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available in-class variables such as Force and Motion
Conceptual Evaluation (FMCE) [24] pretest score and
homework average, variables that can be obtained from
the institution such as college grade point average (CGPA)
and demographic characteristics, and variables collected
for this study by the application of two survey instruments
during the class. The variables are organized into datasets
by their availability; the variables available in each dataset
are shown in Table I. Variables are labeled as continuous
(C) or dichotomous (D). Some dichotomous variables
such as the type of high school physics taken are the result
of dummy coding a multilevel categorical variable; these
are marked as being in a “Panel.” The set of variables in a
panel are not independent; one variable can be exactly
calculated from all other variables. To use the panel of
variables in a regression, one variable must be eliminated
to remove this dependency; that variable becomes the base
level of the panel. The regression coefficients of other
variables in the panel measure changes with respect to the
base level.

1. In-class variables

Some form of in-class variables should be available to
all physics instructors. For the class studied, clickers are
used to implement the Peer Instruction pedagogy [23] and
are graded for participation. The clicker average score is a
measure of attendance and is available as a running
average throughout the semester. This work used the
clicker average (Clicker2) at the end of the second week of
class. Homework is collected weekly; the homework
average score at the end of the second week was also
used (Hwk2). These variables are measured in the second
week of class because this is after the add deadline and a
homework has been reliably collected by this time. The
variables Hwk2 and Clicker2 are available for all students.
The class administers the force and motion conceptual
evaluation during the first week of class; the modified
scoring rubric suggested by Thornton et al. was used in
this work [25]. Not all students complete the FMCE; as
such, pretest scores are only available for a subset of
students; however, for all students, a dichotomous variable
PreTaken measuring whether the pretest was taken is
available.

2. Institutional variables

Colleges maintain a detailed set of information on all
students. This study accessed a subset of this information,
called institutional variables, through a request to the
university. The variables requested include demographic
variables (gender, FGCS status, PEER status) [26], high
school preparation measures (high school GPA (HSGPA),
ACT and SAT mathematics and verbal scores, and
Advanced Placement and transfer credit), and college
academic measures (college GPA and credits completed).
All students were first-time freshmen; as such, transferred

classes would have been taken as dual enrollment in high
school. A student is considered to have PEER status if they
report a race different than White or Asian or an ethnicity
different than non-Hispanic/Latino.

3. Survey instruments

Additional information was collected from the stu-
dents through two online surveys given early in the
semester. Participation in the survey was incentivized by
a small amount of course credit. The first survey
collected detailed information about the student’s
high school science and mathematics classes. The
second survey measured a set of noncognitive variables:
self-efficacy, sense of belonging, and personality. Self-
efficacy was measured using the self-efficacy for learn-
ing and performance subscale from the Motivated
Strategies for Learning Questionnaire (MSLQ) [27].
Sense of belonging was measured with three items from
Good et al. “Math Sense of Belonging” instrument [28].
Personality was measured with the Big Five Inventory
(BFI) which measures the five-factor model of person-
ality with factors: agreeableness, conscientiousness,
extraversion, neuroticism, and openness [29–31].
These noncognitive constructs have been used in many
studies examining college academic achievement [32].

C. Datasets

This work explores the prediction of student physics
grades using a sequence of nested datasets. Table I shows
the set of variables included in each dataset. For each
dataset, students without a value for all variables have been
removed. For all datasets, any continuous variables were
standardized.

1. Dataset 0 (D0)

Dataset 0 (D0) contains variables generally available for
all students who complete the course for a grade. Some in-
class data such as clicker scores or homework grades were
missing for some course sections; students without this
information were removed. D0 contains N0 ¼ 2061 com-
plete records. Students withdrawing from the course did not
have homework averages recorded because this informa-
tion was stored in the learning management system and
students were removed from this system when they with-
drew. D0 contains variables measuring demographics, AP
and transfer credit, math readiness, whether the student was
repeating the class, and three variables indicating the
availability of additional data: HasGPA, HasSurveys, and
PreTaken. D0 also contains some college-level variables
measuring credit earned and current credits enrolled. A
student is considered “math ready” if they are prepared to
enroll in calculus 1 or a more advanced mathematics class
in their first semester.
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2. Dataset 1 (D1)

Dataset 1 (D1) contains N1 ¼ 1870 complete records
and includes students inD0 with a FMCE pretest score. The
variable PreTaken is no longer useful in this dataset.

3. Dataset 2 (D2)

Dataset 2 (D2) contains N2 ¼ 1602 complete
records; this dataset contains college-level achievement
variables including CGPA and the percentage of classes
attempted that were completed for a grade. This dataset
removes students taking the class in their fall freshman
semester from D1 because they do not have a meaningful
college GPA yet. The variable HasGPA is no longer
useful for this dataset. The dataset is also restricted to
students with basic high-school-level variables such as
high school GPA and standardized test scores (ACT
or SAT).

4. Dataset 3 (D3)

Dataset 3 (D3) containsN3 ¼ 1210 complete records; this
dataset removes students fromD2 who did not complete the
two optional surveys. The variable HasSurveys is no longer
useful for this dataset.

D. Descriptive statistics

The sequence of nested datasets D0 to D3 described
above contains different numbers of students; as the
number of records changes, the relative balance between
the ABC and DF cases also changes. Sample balance can
affect some classification statistics. The general character-
istics of the students also change. InD1, all students were in
attendance the day the FMCE pretest was given; in D2, all
students had completed a semester of college; in D3, all
students completed two optional assignments (showing
they were paying attention, communicating, and were
willing to do an optional assignment to improve their
grades). Table II presents descriptive statistics for the four
datasets. For continuous variables, the mean � standard
deviation is reported. For dichotomous variables, the
percentage of students in the high level of the variable
(students possessing that feature) is reported.

E. Classification algorithms

A classification algorithm makes predictions on a dataset
by assigning each case (student) in the dataset to one of two
levels called the positive and negative levels. To build a
classifier, a machine learning algorithm is selected, trained,
and optimized. To do this, the original dataset is randomly

TABLE II. Descriptive statistics. Continuous variables are reported as mean � standard deviation. For dichotomous variables, the
fraction of students in the high level of the variable is reported.

Dataset

Variable D0 D1 D2 D3

Test average 69.0� 16.1 70.0� 15.8 70.8� 15.1 72.1� 14.5
Physics grade DF, (DF ¼ 1) 15.0% 12.4% 11.7% 7.8%
Has CGPA 95.4% 95.2% 100% 100%
Week 2 homework percentage 85.5� 19.6 86.4� 18.3 86.1� 18.2 89.2� 14.3
Week 2 clicker percentage 84.3� 29.9 86.4� 27.9 87.0� 27.4 90.1� 23.8
Has surveys 70% 75.4% 75.7% 100%
FMCE pretest completed 90.7% 100% 100% 100%
FMCE pretest percentage 23.7� 19.7 24.0� 19.2 23.5� 19.3
College course completion percentage 92.2� 12.8 93.6� 11.5
College GPA 3.2� 0.5 3.3� 0.5
College credit earned 28.3� 17.7 27.3� 17.3 27.6� 16.2 27.4� 16.0
ACT or SAT mathematics percentage 80.7� 14.5 81.1� 14.0
ACT or SAT verbal percentage 74.2� 18.0 75.2� 17.7
High school GPA 3.8� 0.5 3.9� 0.4
Entered college math in calculus 59.4% 61.6% 64.0% 64.4%
Sense of belonging in physics 4.1� 0.7
Self-efficacy toward physics 4.1� 0.7
Physics grade expectation A 42.3%
Physics grade expectation B 40.7%
Is repeating physics class? 9.4% 7.1% 7.0% 5.3%
Gender (Female ¼ 1) 21.3% 21.9% 23% 27.4%
First-generation (FirstGen ¼ 1) 18.6% 18.0% 16.9% 16.7%
PEER (PEER ¼ 1) 8.9% 8.8% 8.8% 7.7%
N 2061 1870 1602 1210
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split into two nonoverlapping subsets, the training and the
test dataset, with stratification to preserve the sample
balance (the fraction of DF students in the full dataset).
The test dataset is not examined during the training and
optimization process. The optimized algorithm is then used
to predict each case in the test dataset. The accuracy of the
prediction is summarized by the confusion matrix shown in
Table III.
In this work, we attempt to identify students likely to be

unsuccessful in an introductory mechanics course; students
predicted to earn a D or F form our positive classification.
This leads to a very unnatural terminology where the
positive classification is the unfavorable outcome; as such,
we will work with a confusion matrix specialized to our
classification problem as shown in Table IV. A classifier
fundamentally has two success rates: αABC the rate at which
a new case who will earn an A, B, or C is classified as
earning an A, B, or C and αDF the rate at which a new case
who will earn a D or F is classified as earning a D or F.
These two rates can be calculated from the confusion
matrix. Let N be the total size of the test dataset;
N ¼ TDF þ FDF þ TABC þ FABC. The total number of
ABC cases in the test dataset is NABC ¼ TABC þ FDF;
the total number of DF cases is NDF ¼ TDF þ FABC. As
such αABC ¼ TABC=NABC and αDF ¼ TDF=NDF; in the
machine learning literature, αDF is called the sensitivity
and αABC the specificity. The confusion matrix can be
calculated from N, αABC, αDF, and one additional param-
eter, the sample balance. The sample balance, γ, is the
ratio of the size of the DF class to the ABC class,
γ ¼ NDF=NABC. In this study, the samples are substantially
unbalanced (NDF ≠ NABC) with γ ≈ 0.1 for each dataset.
Beyond αABC and αDF, prior studies calculated a number

of additional performance statistics: the overall accuracy
[Eq. (1)] [1] and the positive predictivevalue (PPV) [Eq. (2)]
[2]. The overall accuracy is the fraction of predictions of
either the DF or ABC cases which are correct.

Overall accuracy ¼ TDF þ TABC

N
¼ αABC þ γ · αDF

1þ γ
. ð1Þ

PPV is the fraction of the DF predictions that are correct.
Note that this is affected by both correct predictions for the
DF case and incorrect predictions for the ABC case.

PPV ¼ TDF

TDF þ FDF
¼ γ · αDF

γ · αDF þ ð1 − αABCÞ
. ð2Þ

Note that both the overall accuracy and the PPV depend on
the sample balance and are, therefore, influenced by
oversampling and undersampling methods. This relation
to sample balance can obscure large differences in αABC
and αDF if overall accuracy or PPV is used as the metric
optimized in the training process. In this work, we explore
optimizing an alternate metric not dependent on sample
balance, the balanced accuracy ᾱ. The balanced accuracy is
the average of the two success rates.

Balanced accuracy ¼ ᾱ ¼ αABC þ αDF
2

. ð3Þ

In general, as part of the optimization process for a
machine learning model, the model is tuned to optimize
some performance metric. Most machine learning algo-
rithms calculate the probability of the DF outcome for each
student. To convert this probability into a classification, a
“decision threshold,” η, is selected. Students with proba-
bility above η are assigned to the DF class; those with
probability below η to the ABC class. The default value of η
is usually η ¼ 0.5. This default value was used in Zabriskie
et al. [1], producing an acceptable overall accuracy.
However, αABC ≫ αDF, indicating that the classifier was
much better at identifying A, B, and C students than D and
F students. In Yang et al. [2], the decision threshold was
tuned until αDF ¼ PPV so that the fraction of the D and F
students who were identified was set equal to the fraction
of the D and F predictions that were correct. While a
fairly intuitive criterion balancing the rate of identifica-
tion with the accuracy of identification, this tuning sets
γ ¼ ð1 − αABCÞ=ð1 − αDFÞ. For very unbalanced samples,
this also results in αABC ≫ αDF. In this work, models are
tuned to maximize balanced accuracy, ᾱ; the maximum of ᾱ
generally occurs near αABC ¼ αDF, producing a classifier
that is equally accurate for all students.
One way to classify students is simply to guess. A

pure guessing classifier has αABC ¼ αDF ¼ 0.5 yielding
ᾱ ¼ 0.5. One might also simply guess that all students
were in the majority case (ABC) yielding αABC ¼ 1 and
αDF ¼ 0 for a balanced accuracy of ᾱ ¼ 0.5. This all-
majority guessing scheme would produce an overall
accuracy [Eq. (1)] close to 0.9 due to the sample balance
γ ≈ 0.1, indicating its lack of utility as an evaluation
metric for this case. The use of balanced accuracy
effectively weights correct prediction of the minority
class more heavily, inversely to the sample balance,
causing the model to equally prioritize performance on
both classes on the training dataset. When comparing the

TABLE III. Confusion matrix.

Actual negative Actual positive

Predicted negative True negative (TN) False negative (FN)
Predicted positive False positive (FP) True positive (TP)

TABLE IV. Confusion matrix for this study.

Actual ABC Actual DF

Predicted ABC True ABC (TABC) False ABC (FABC)
Predicted DF False DF (FDF) True DF (TDF)
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models constructed in this paper, one should consider
their improvement over the pure guessing classifiers.

F. Logistic regression classifiers

Machine learning offers a wealth of classification
algorithms; the algorithm most used in PER is logistic
regression (LR). Additional algorithms are discussed in
the Supplemental Material [11]. Logistic regression is
similar to linear regression where a continuous dependent
variable is predicted by a linear combination of indepen-
dent variables; however, in logistic regression, the log
odds of a dichotomous outcome is predicted using a linear
combination of independent variables. The odds of an
event happening is the ratio of the probability the event
happens P divided by the probability that it does not
happen 1 − P; odds ¼ P=ð1 − PÞ. The probability of the
event can be calculated from the log odds and the results
converted into a classification prediction by selecting a
decision threshold η where the DF outcome is predicted if
P > η. Such a classifier can be implemented in the “R”
programming language; a working example of a logistic
regression classifier is shown in the Supplemental
Material [11].

As in Yang et al. [2], decision threshold tuning (DTT)
can be used to adjust the decision threshold to produce
models with improved performance. Yang et al. [2]
adjusted models by modifying the decision threshold
until αDF was equal to the PPV; this, however, still
produced models where αDF was much smaller than
αABC. In the current work, model parameters are adjusted
(“tuned”) until ᾱ is maximized which generally produces
models where the ABC success rate, αABC, and the DF
success rate, αDF, are approximately equal. DTT is needed
because of the unbalanced nature of the sample. If only
10% of the students receive a D or F, then the default
classification probability for LR of 0.5 is much too large;
it should be commensurate with the actual probability of
receiving a D or F.
A potential issue in the use of machine learning models

is the possibility of the model “overfitting” to the training
data, that is, overly optimizing model performance on the
training data at the expense of worse generalization to
unseen data. The high multicollinearity of educational
datasets may make some variables redundant; the machine
learning algorithm can use these redundant variables to
specialize the model to small groups of students in the
training dataset. A commonly used method to reduce
overfitting of LR models is regularization which penalizes
large regression coefficients. For this work, L2 regulari-
zation was used which introduces an additional term to the
model’s loss function that penalizes it according to the L2
norm of the variable weights (regression coefficients) in the
linear model. The strength of this regularization is con-
trolled by a coefficient treated as a model hyperparameter.
The base implementation of LR in “R” does not include the

option of regularization, but the base implementation in the
Python library scikit-learn does.
Other machine learning methods were explored in this

study and their performance was described in the
Supplemental Material [11], but LR was ultimately selected
for a combination of its relatively fast training times, better
performance, and higher familiarity within PER. For more
details, see the discussion of RQ1 in Sec. IVA.

G. SMOTE upsampling

DTT adjusts the classification threshold probability to
compensate for the unbalanced ABC and DF outcomes.
Other methods exist to address this problem. While DTT
successfully mitigates problems introduced by sample
imbalance for LR classifiers, it does not work for all
machine learning algorithms. Support vector machine
classifiers, for example, do not generate any probabilities
and, therefore, DTT cannot be used. One method, applied
unsuccessfully in other PER works on grade prediction
[1,2], is the synthetic minority oversampling technique
(SMOTE) that manufactures new minority cases (DF
students) by interpolating between small groups of existing
cases. SMOTE creates synthetic minority class data points
by drawing lines between a minority data point and its
nearest k minority class neighbors in the vector space of
features and by randomly picking a point from one of these
lines as a new synthetic data point. By creating artificial DF
cases, SMOTE can produce a balanced dataset.

H. Variable importance

One natural method to prevent overfitting, and the
loss of predictive accuracy in the test dataset which comes
with it, is to restrict the number of variables to those most
important to making the prediction. The identification and
use of only important variables is called feature selection;
to perform feature selection, one must calculate a measure
of “variable importance.” Many feature selection algo-
rithms exist; some simply examine whether the variable
is significant in the logistic regression, while others set a
threshold for the amount of additional variance that must be
explained for retention in the model.
Machine learning using classification introduces a num-

ber of measures of variable importance. These measures
can help identify which variables provide the model with
the most discriminatory power between the classes and
inform future model construction and data collection. The
first measure utilized in this study, first-in variable impor-
tance, represents the change in balanced accuracy from a
null model containing only the intercept to a model
containing an intercept and the variable. The null model
has ᾱ ¼ 0.5 because it guesses the student’s classification,
therefore, αDF ¼ 0.5 and αABC ¼ 0.5. For example, CGPA
has a first-in importance of 0.25, which means a model
containing only CGPA has ᾱ ¼ 0.75. The second measure,
sampled variable importance, represents the average
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change in balanced accuracy when the feature is present in
a model trained on a subset of randomly sampled features
from the full dataset versus when the feature is dropped
from the sampled features and the model retrained. The size
of the subset is often set to

ffiffiffi

k
p

where k is the number of
variables; this was not effective for the smallest datasets. In
this work, multiple subset sizes were examined and the one
that best optimized the feature selection models was used.
The third measure, last-in variable importance, represents
the average change in balanced accuracy when the variable
is added as the last variable to a model containing all other
variables in the dataset.
The three measures indicate different properties of the

variables. Variables with high first-in importance are
useful as starting points when attempting to construct
simpler models with fewer variables, as they already
provide substantial predictive power by themselves.
Sampled feature importance describes how variables
contribute on average when included in a variety of
different models, providing a more general sense of a
variable’s predictive power. Sampled importance is also
relatively computationally expensive to calculate: it is
important that variables are tested in a wide variety of
random subsamples of the full variable set to provide the
best importance estimates. Variables with high last-in
importance provide contributions to a model’s predictive
power even in the presence of all other variables. This
represents the predictive power unique to the variable not
shared by the other variables.
The feature selection method used to train the machine

learning models was sampled variable importance. Variable
importance measures using first-in, last-in, and sampled
variable importance are presented in Sec. III B.

III. RESULTS

A. Logistic regression

Table V presents the results of applying LR predicting
earning a D or F in the class from all variables in each
dataset (excluding the test average). All calculations were
performed using the scikit-learn library in Python [33], the
imbalanced-learn library for SMOTE upsampling [34],
and the scikit-lego library for decision threshold tuning
[35]. The Python implementation provides a richer and
easier to customize implementation of a number of
machine learning algorithms than those in “R.” A series
of LR-based models were used to attempt to improve
prediction accuracy over an initial baseline LR model
using default parameters. All models in Table V optimize
the machine learning algorithm to maximize the balanced
accuracy, ᾱ, when applied to the training dataset and are
then applied to predict outcomes in the test dataset (which
is not examined during training). Each model was fit 500
times on a dataset that sampled the original dataset with
replacement (the data were bootstrapped). Because 500

replications were used, the standard error in the ᾱ is the
standard deviation divided by

ffiffiffiffiffiffiffiffi

500
p

; as such, a 1%
difference in ᾱ is generally a significant difference.
Both the train-test split and the bootstrapping were done
such that the sample balance was preserved. For this study,
a 70-30 train-test split was used.
The decision threshold is a model hyperparameter, a

parameter external to the fitting process that governs
model training. Grid-search cross validation as imple-
mented in the Python scikit-learn library was used to
select the decision threshold. This method is an extension
of K-fold cross validation, which separates the training
data into K equally sized subsamples or “folds” of the
dataset. Each fold is then treated as a test dataset with the
remaining folds used as a training set. This methodology
helps to prevent overfitting and provides better general-
izability to unseen data. Grid-search cross validation
builds on this by constructing models with every possible
permutation of hyperparameters provided (e.g., a list of
potential decision thresholds) and identifying which
hyperparameters optimize model performance for a given
metric, in this case, the balanced accuracy. For this study,
fivefold cross validation was used.
To evaluate the different classification methods, an

overall range of balanced accuracy is helpful. In
Table VII, we present our suggested variables for
classification using our suggested algorithm and tuning;
this model achieves a balanced accuracy of 82% on D2

and D3. For D2, we then add the overall semester test
average to the model. The test scores form 70% of the
grade in the class studied and their average is easily the
most valuable variable for the prediction of student
grades. The addition of the test average increased bal-
anced accuracy to only 89%. As such, there seems to be a
ceiling on balanced accuracy for any reasonable set of
variables.
Table V presents the results of several optimization

techniques discussed in Sec. II applied to an LR classifier.
Figure 1 provides a graphical representation of the same
data for ease of comparison. The baseline model uses LR
with the default settings that would be found in “R” with no
regularization and with a decision threshold of η ¼ 0.5.
This was the model used in Zabriskie et al. [1]. As in that
work, the classifier was excellent at correctly classifying
passing students (αABC ¼ 0.97), but fairly poor at correctly
classifying failing students (αDF ¼ 0.36).

1. Decision threshold tuning

The decision threshold is the probability associated with
a probabilistic classifier’s ultimate classification: in our
case, if the logistic regression yields a probability higher
than the selected threshold for a student, that student is
classified as at risk. Decision threshold tuning (DTT)
changes the ABC and DF accuracy associated with a
classifier. In this study, the threshold was selected to

EXPLORING TECHNIQUES TO IMPROVE … PHYS. REV. PHYS. EDUC. RES. 20, 010149 (2024)

010149-9



optimize balanced accuracy which produced approximately
equivalent performance on both at-risk and not-at-risk
students. Table V shows that using DTT with LR (the
decision threshold tuning entry in Table V) substantially
improved balanced accuracy over the baseline model for all
datasets. It also produced models with similar ABC and DF
accuracy.

2. Overfitting

Examination of Table V shows that, for most models, the
balanced accuracy of the test data predictions is approx-
imately equal and slightly smaller than the balanced
accuracy of the training data predictions. The training data
predictions are expected to be better than the test

TABLE V. Exploration of different optimizations of logistic regression models. ᾱtest is the balanced accuracy of the test dataset. ᾱtrain is
the balanced accuracy of the training dataset. αDF is the success rate in predicting the DF students. αABC is the success rate in predicting
ABC students. All are reported as mean � standard deviation. Note that models in this table and all future tables were evaluated on 500
bootstrapped samples; as such, the standard errors are the standard deviation divided by

ffiffiffiffiffiffiffiffi

500
p

so that a 1% change is generally a
significant difference. The test dataset balanced accuracy is bolded.

Algorithm ᾱtest ᾱtrain αDF αABC

Dataset 0
Baseline 0.66� 0.02 0.67� 0.01 0.36� 0.05 0.97� 0.01
Decision threshold tuning (DTT) 0.78� 0.02 0.79� 0.01 0.76� 0.06 0.79� 0.05
Regularization 0.66� 0.02 0.67� 0.01 0.36� 0.04 0.97� 0.01
SMOTE 0.78� 0.02 0.79� 0.01 0.73� 0.05 0.82� 0.02
DTT variable importance 0.77� 0.03 0.79� 0.02 0.76� 0.07 0.79� 0.05
DTT regularization 0.78� 0.02 0.79� 0.01 0.76� 0.05 0.81� 0.04
DTT SMOTE 0.77� 0.02 0.79� 0.01 0.75� 0.06 0.80� 0.05
Regularization SMOTE 0.78� 0.02 0.79� 0.01 0.73� 0.04 0.83� 0.02

Dataset 1
Baseline 0.65� 0.02 0.66� 0.01 0.33� 0.05 0.97� 0.01
Decision threshold tuning (DTT) 0.78� 0.03 0.80� 0.01 0.75� 0.08 0.81� 0.06
Regularization 0.65� 0.03 0.65� 0.01 0.32� 0.05 0.97� 0.01
SMOTE 0.77� 0.02 0.80� 0.01 0.73� 0.05 0.82� 0.02
DTT variable importance 0.78� 0.03 0.79� 0.02 0.76� 0.07 0.79� 0.06
DTT regularization 0.78� 0.02 0.79� 0.01 0.75� 0.06 0.81� 0.05
DTT SMOTE 0.77� 0.02 0.80� 0.01 0.74� 0.07 0.80� 0.05
Regularization SMOTE 0.78� 0.02 0.79� 0.01 0.73� 0.05 0.83� 0.02

Dataset 2
Baseline 0.70� 0.03 0.72� 0.02 0.43� 0.06 0.97� 0.01
Decision threshold tuning (DTT) 0.82� 0.02 0.84� 0.01 0.83� 0.07 0.81� 0.05
Regularization 0.70� 0.03 0.72� 0.02 0.42� 0.06 0.97� 0.01
SMOTE 0.82� 0.02 0.84� 0.01 0.79� 0.05 0.84� 0.02
DTT variable importance 0.82� 0.02 0.83� 0.01 0.83� 0.07 0.81� 0.05
DTT regularization 0.82� 0.02 0.84� 0.01 0.82� 0.06 0.82� 0.04
DTT SMOTE 0.81� 0.02 0.84� 0.01 0.82� 0.07 0.80� 0.05
Regularization SMOTE 0.82� 0.02 0.84� 0.01 0.80� 0.05 0.84� 0.02

Dataset 3
Baseline 0.67� 0.04 0.73� 0.02 0.36� 0.08 0.98� 0.01
Decision threshold tuning (DTT) 0.78� 0.03 0.84� 0.02 0.80� 0.10 0.77� 0.07
Regularization 0.67� 0.04 0.72� 0.02 0.36� 0.09 0.98� 0.01
SMOTE 0.77� 0.04 0.87� 0.02 0.69� 0.09 0.85� 0.02
DTT variable importance 0.80� 0.04 0.83� 0.02 0.80� 0.10 0.80� 0.07
DTT regularization 0.81� 0.03 0.83� 0.02 0.81� 0.08 0.82� 0.04
DTT SMOTE 0.76� 0.04 0.82� 0.04 0.84� 0.10 0.68� 0.12
Regularization SMOTE 0.82� 0.03 0.84� 0.02 0.81� 0.07 0.83� 0.02
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predictions because the model was constructed on the
training data while the test data represents completely new
observations. For D3, the model with DTT performs
substantially better (6%) on the training dataset than on
the test dataset. When performance on the training dataset

substantially exceeds performance on the test dataset, the
data are being “overfit,” the training model is being overly
specialized to the training cases and ceases to perform as
well on the new cases provided by the test dataset. This
happens forD3 because of the combination of a larger set of
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FIG. 1. The test and train balanced accuracy, test DF accuracy, and test ABC accuracy of each machine learning method on datasets 0
to 3. The figure presents a graphical representation of Table V. For reading in grayscale, each group of columns is in the same order as the
legend at the bottom. “Base” represents baseline, “D” represents decision threshold tuning (DTT), “R” represents regularization, “S”
represents SMOTE, “D/VarImp” represents DTTwith variable importance, “D/R” represents DTTwith regularization, “D/S” represents
DTT with SMOTE, and “S/R” represents SMOTE with regularization.
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variables and a smaller number of students. The capability
of detecting overfitting is a substantial strength of the train-
test split methodology. Modeling methodologies that do not
use a test-train split generally employ fit statistics which
increase with additional parameters making the detection of
overfitting difficult.

3. Feature selection

Both feature selection and regularization are meant to
reduce overfitting and improve the generalizability of
models to unseen data. Feature selection does this by
including only a subset of variables from the full dataset
that meet some criteria of inclusion. Regularization penal-
izes large regression coefficients during the fitting process
to reduce model complexity, as complex models are more
prone to overfitting.
The results of the feature selection analysis based on

sampled feature importance, as discussed in Sec. II H, are
shown in the DTT Variable Importance entries in Table V.
A model was constructed with a subset of the available
variables and the variable of interest; the variable of interest
was then removed and the change in balanced accuracy
recalculated. Only variables with an average change in
balanced accuracy above some threshold were retained.
Both the number of variables in the sample and the
threshold for retaining variables were treated as hyper-
parameters; the hyperparameter space was searched for
optimal combinations. Model performance forD0 toD2 did
not change when feature selection was added to the
algorithm using LR with DTT, but performance increased
2% for D3 and the amount of overfitting was reduced by
50%. Implementing and tuning the variable importance
models was challenging and computationally expensive; an
alternate, computationally less intensive method to reduce
overfitting would be helpful.

4. Regularization

Models using regularization without DTT performed
approximately as well as the baseline model (entry regu-
larization in Table V). Models using DTT and regulariza-
tion (entry DTT regularization in Table V) performed
equally to or outperformed those with DTT and variable
importance (and require a fraction of the computational
time to tune). These models also showed the same small
amount of overfitting on D3 that was observed in the
smaller datasets.

5. SMOTE upsampling

SMOTE upsampling generates synthetic cases of the
minority class by randomly selecting points on lines drawn
between minority class records (in our case, it generates
synthetic records for failing students). Performance
differences between classes are common in imbalanced
datasets; by removing this imbalance through generating a

sufficient number of synthetic records, more equal perfor-
mance on the two classes can be obtained.
Table V shows the results of using SMOTE to create

training datasets with equal numbers of DF and ABC
students. Models using SMOTE alone improved perfor-
mance over the baseline model (entry SMOTE in Table V)
by about the same amount as DTT improved the baseline
model. DTT did not improve the performance of models
also using SMOTE (entry DTT SMOTE in Table V); they
both solve the same problem. Models using SMOTE and
regularization (entry regularization SMOTE in Table V)
were equal to or better than all other models. Prior PER
works [1,2] likely failed to find SMOTE as an effective
method of improving classification results because the
metric optimized (overall accuracy, PPV) was sensitive
to sample balance.

6. Alternate algorithms

One attractive feature of classification using machine
learning is the extensive variety of algorithms offering the
possibility of improving accuracy simply by using a
different set of computer codes. The Supplemental
Material [11] explores alternate algorithms including naive
Bayes, random forests, support vector machines, and K-
nearest neighbors using SMOTE to eliminate sample
imbalance. Unfortunately, all produced models with similar
predictive accuracy as LR at best. Likewise, ensemble
models were also investigated where multiple different
classifiers were constructed and allowed to vote on the
classification. These also did not improve balanced accu-
racy above that of LR. While a fairly complex educational
dataset, predicting student outcomes with the data used in
this work does not require these additional algorithms.

7. Dataset performance differences

There are many differences between the four datasets
including size and sample balance. The Supplemental
Material [11] contains an investigation of the effects of
these differences. Neither the difference in size nor the
difference in sample balance affected prediction accuracy.
The samples also contain somewhat different populations
of students. For example, D1 contains students in atten-
dance when the pretest was given, while D3 contains
students willing to complete two optional surveys for
bonus points. Dataset 3 was fit with the variables available
in the other datasets; the balanced accuracy was 0.01 to
0.02 higher for D0 to D2 indicating the population in D3 is
slightly harder to predict.

8. Summary

In summary, LR using SMOTE with regularization
produced the best-performing classifiers; however, their
performance was equal to that of DTT with regularization
forD0 toD2 and only improved performance by 1% forD3.
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As such, the intuitively simpler DTT with regularization
may be the best choice for grade classification on datasets
with a large number of variables. For D0 to D2, LR with
DTT alone produced models with performance equal to the
best models. Logistic regression with DTT is straightfor-
ward to implement in “R” (a working sample is provided in
the Supplemental Material [11]) and may represent the best
choice for instructors wishing to identify at-risk students.

B. Variable importance

Figure 2 presents the three measures of variable impor-
tance for D3 which contained every available variable.
Tables with variable importance measures for all datasets
are provided in the Supplemental Material [11].
The variables Hwk2 and CGPAwere of high importance,

placing in the top three of all of the importance metrics. The
percentage of attempted credit hours successfully com-
pleted for credit, Complete, was the highest first-in and the
third highest sampled importance but had a moderate last-in
importance. This suggests it is collinear with other varia-
bles, likely with CGPA. High school GPA and high school
physics were also of relatively high importance on all
metrics but not as important as the variables above. These
variables had lower last-in importance than the variables

above suggesting the majority of their predictive power was
present in other variables. Grade expectation and consci-
entiousness were consistently the most predictive non-
cognitive variables with predictive power commensurate,
but somewhat smaller, than the high school variables in
both first-in and sampled importance; however, they had
very little last-in importance. This again indicates that most
of their predictive power is carried by other variables.
Note that the last-in predictive power of most variables

was small. Several variables had negative last-in impor-
tances, suggesting they worsened model performance when
included as the final variable. These variables contributed
to overfitting when added as the last variable in the model.
The predictive power of groups of variables is described

in Table VI. As might be expected from the individual
variable importances, the in-class and college groups which
include Hwk2 and CGPA were the most predictive,
achieving a balanced accuracy of 0.77 on their own.
General high school preparation, high school math, and
high school physics also had substantial predictive power
on their own (0.67, 0.66, and 0.64 respectively), but less
power than the college and in-class variables. The student’s
expected grade was of equal power to their high school
physics preparation. Noncognitive and demographic vari-
ables had little predictive power.
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FIG. 2. The increase in balanced accuracy predicting dataset 3 when (a) First in—the variable is added to the null model containing
only the intercept, (b) sampled—the variable is added to a randomly sampled set of variables, and (c) last in—the variable is added as the
last variable in the full model. The length of the error bar is the standard error based on 500 replications.
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C. Suggested variable sets and algorithms

Figure 2 shows that the four most important variables
using sampled variable importance were Hwk2, Clicker2,
CGPA, and Complete. The first two are easily accessible
for many physics instructors without additional effort.
Beyond these, many classes give conceptual physics
pretests; as such, the scores on these instruments are
available without additional effort. Most institutions could
provide CGPA upon request. Many other variables used in
this work would require either a substantive interaction
with institutional research or the deployment of optional
survey instruments; both adding to the time burden on the

instructor. The similarity of the performance of many
models in Table V and the variable importance results of
Sec. III B suggest that it may be possible to produce very
good models with a limited set of variables. Table VII
shows the results of fitting only what we believe are the
most easy to obtain important variables. They will be
called “convenient” variables. Comparison with Table V
shows models including only Hwk2, Clicker2, Pretest,
and CGPA perform as well as the full model for D2 and
D3. Models containing only Hwk2 and Clicker2 perform
only 1% less well than the best models for D0 and D1.
Adding CGPA to the Hwk2 and Clicker2 models

TABLE VI. Predictive power of variable groups predicting dataset 3. ᾱtest is the balanced accuracy of the test dataset. ᾱtrain is the
balanced accuracy of the training dataset. αDF is the success rate in predicting DF students. αABC is the success rate in predicting ABC
students. All are reported as mean � standard deviation. The test dataset balanced accuracy is bolded.

Group ᾱtest ᾱtrain αDF αABC Variables

Demographics 0.51� 0.02 0.53� 0.02 0.26� 0.33 0.77� 0.34 Gender, FirstGen, PEER
In-class 0.77� 0.04 0.77� 0.02 0.75� 0.09 0.79� 0.03 Hwk2, Clicker2
College 0.77� 0.03 0.78� 0.02 0.78� 0.09 0.75� 0.05 Complete, CGPA, STEMCls, Credit, Enroll
AP/transfer 0.57� 0.03 0.60� 0.02 0.81� 0.13 0.34� 0.10 APCNoMP, APPhys, APCalc

TRCNoMP, TRPhys, TRMath
HS general 0.67� 0.04 0.69� 0.02 0.76� 0.13 0.58� 0.07 ACTM, ACTV, HSGPA, MathReady
HS physics 0.64� 0.04 0.66� 0.02 0.74� 0.14 0.54� 0.09 HSP.NAP.NA, HSP.NAP.A, HSP.APNP.NA

HSP.APNP.A, HSP.APP.NA, HSP.APP.A
HS math 0.66� 0.04 0.68� 0.01 0.81� 0.14 0.52� 0.09 HSMathA, HSMNotAP, HSMAPNPass,

HSMAPPass
Noncognitive 0.59� 0.04 0.63� 0.02 0.68� 0.19 0.51� 0.14 Belong, SelfEff, Agr, Cns, Nrt, Ext, Opn
Grade expectation 0.64� 0.03 0.64� 0.01 0.83� 0.06 0.44� 0.02 GradeExp

TABLE VII. Predictive power of convenient variables. ᾱtest is the balanced accuracy of the test dataset. ᾱtrain is the balanced accuracy
of the training dataset. αDF is the success rate in predicting DF students. αABC is the success rate in predicting ABC students. All are
reported as mean � standard deviation. The test dataset balanced accuracy is bolded.

ᾱtest ᾱtrain αDF αABC Variables

Dataset 0
0.76� 0.02 0.77� 0.01 0.75� 0.05 0.78� 0.03 Hwk2, Clicker2

Dataset 1
0.77� 0.02 0.77� 0.01 0.76� 0.06 0.78� 0.03 Hwk2, Clicker2
0.77� 0.02 0.78� 0.01 0.76� 0.06 0.78� 0.04 Hwk2, Clicker2, Pretest

Dataset 2
0.77� 0.03 0.78� 0.01 0.74� 0.07 0.80� 0.03 Hwk2, Clicker2
0.77� 0.03 0.78� 0.01 0.73� 0.07 0.82� 0.04 Hwk2, Clicker2, Pretest
0.80� 0.03 0.81� 0.01 0.81� 0.08 0.80� 0.05 Hwk2, Clicker2, CGPA
0.82� 0.02 0.83� 0.01 0.83� 0.06 0.81� 0.04 Hwk2, Clicker2, Pretest, CGPA
0.89� 0.02 0.90� 0.01 0.90� 0.06 0.87� 0.03 Hwk2, Clicker2, Pretest, CGPA, TestAve

Dataset 3
0.77� 0.04 0.77� 0.02 0.75� 0.09 0.79� 0.03 Hwk2, Clicker2
0.76� 0.04 0.77� 0.02 0.69� 0.10 0.83� 0.06 Hwk2, Clicker2, Pretest
0.80� 0.03 0.81� 0.01 0.83� 0.08 0.80� 0.04 Hwk2, Clicker2, CGPA
0.82� 0.03 0.83� 0.02 0.84� 0.09 0.80� 0.05 Hwk2, Clicker2, Pretest, CGPA
0.81� 0.03 0.83� 0.01 0.84� 0.09 0.79� 0.05 Hwk2, Clicker2, Pretest, CGPA, GradeExp
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improved balanced accuracy by 3% for D2 and 4% for D3.
Examination of Table VII shows that the addition of
the pretest to Hwk2 and Clicker2 does not increase
balanced accuracy for any dataset; however, the addition
of pretest to Hwk2, Clicker2, and CGPA increases bal-
anced accuracy by 2% in both D2 and D3. With this
restricted set of variables, regularization is no longer
needed. The Supplemental Material [11] refits the results
of Table VII without regularization; the balanced accuracy
of all models was identical.
As such, an instructor wishing to implement a classi-

fication algorithm for their students using a small set of
fairly easy to obtain variables can use the in-class variables
they have available (in this case, Hwk2 and Clicker2) with
logistic regression using DTT (a working code sample in
“R” is presented in the Supplemental Material [11]).
Instructors wishing to improve classification accuracy by
5% to 6% could request the student’s CGPA from institu-
tional records. With CGPA, the addition of pretest scores
can increase balanced accuracy by an additional 2%. The
results above suggest these classifiers perform nearly as
well as those using much larger sets of variables and more
sophisticated algorithms.

IV. DISCUSSION

A. Research questions

This work investigated three research questions. These
have been discussed in detail in the previous section and
will be summarized below.
RQ1: How can machine learning outcomes be optimized

to most effectively predict student outcomes early in physics
classes? By employing techniques to account for the large
sample imbalance between students who pass and fail an
introductory mechanics course, models using a combina-
tion of in-class, and institutional data available by the
second week of the course were constructed. Both tuning
the classification decision threshold to optimize balanced
accuracy and using SMOTE upsampling yielded the best-
performing models with a balanced accuracy of 82% for
D2. The model using DTT had almost identical perfor-
mance on both passing and failing students, with a DF
accuracy of 83% and an ABC accuracy of 81%. The
SMOTE model had a slightly larger performance gap
between the two classes, with a DF accuracy of 79%
and an ABC accuracy of 84%. Both represent a substan-
tially more balanced performance on the two outcomes
relative to a pure guessing model, as well as the baseline
logistic regression model. The baseline model, which made
no attempt to correct the sample imbalance, had a DF
accuracy of 43% and an ABC accuracy of 97%.
Regularization and feature selection methods helped pre-
vent overfitting of the training data and improved the
generalizability of the model to test data, but these effects
were only substantial on dataset 3, which had both the

smallest number of students and the largest number of
variables included.
Machine learning algorithms other than LR were

explored; these results are described in the Supplemental
Material [11]. Support vector machine and random forest
classifiers achieved comparable balanced accuracy to LR,
but generally took longer to train. Other methods produced
lower balanced accuracy than LR. Ensemble methods
where multiple classifiers are built and vote on the
classification were also investigated but performed mark-
edly worse than the LRmodels. As such, LR using SMOTE
upsampling produced the most accurate results. LR with
DTT and regularization produced equivalent results except
for dataset 3 where the balanced accuracy for the test
dataset was 1% lower. These models produced significantly
higher DF accuracy than prior PER studies [1,2].
RQ2: How does the performance of the algorithms

change with the addition of new types of variables such
as noncognitive or institutional variables? What factors
are most important in the prediction of student success in
physics classes? In general, the addition of both a richer set
of high school variables and noncognitive variables did not
improve prediction accuracy. This was partially the result
of students in dataset 3 being somewhat more difficult to
predict (1% to 2%) as shown in the Supplemental Material
[11]. Three variable importance metrics were used to
evaluate the importance of each variable to the model’s
classification performance: first-in importance, sampled
importance, and last-in importance. Results from all three
suggest that both institutional and in-class variables are of
high importance to the model’s classification results;
however, only a few institutional variables were of high
importance. Noncognitive variables such as students’ grade
expectations, self-efficacy, sense of belonging, and person-
ality were less important to the models and did not provide
substantial predictive power. The in-class variables corre-
sponding to the average second-week homework and
clicker participation scores and the student’s CGPA were
consistently of high importance across multiple variable
importance metrics.
RQ3: How does the performance of the optimized model

compare with that using a limited set of variables easily
accessible to physics instructors?Models trained on only a
subset of the available features had comparable perfor-
mance to the model trained on the full dataset. As shown in
Table VII, onD2, a balanced accuracy of 82% was obtained
using a model trained only on the second week average
homework and clicker scores, CGPA, and FMCE pretest
scores. This was equivalent to the performance of the
model trained on all variables available in D2 and uses
common variables obtainable by the second week through
in-class grade collection and an institutional data request. A
model provided with only second week average homework
and clicker scores achieved a balanced accuracy of 77% on
D0 to D3, a marked increase over pure guessing without
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any use of variables external to the course itself. These
results suggest that strong predictive models can be con-
structed even from relatively small sets of features. Table VI
supports this observation showing the in-class and institu-
tional variable sets with equal predictive power and much
higher predictive power than other groups.
This further supports the conclusion that the collection of

extensive institutional datasets or augmenting in-class and
institutional data with additional survey data may not lead
to improved prediction accuracy.

B. Other observations

Machine learning contributes an important new concep-
tual technology to the exploration of dichotomous out-
comes, the idea of classification. A LR model intrinsically
assigns a probability of passing to each student. By
applying a decision threshold, this probability is turned
into a classification prediction. Using the confusion matrix
allows the computation of a rich suite of statistics to
characterize many features of this prediction: not only
how often the prediction is right but also the features of
incorrect predictions. Are you more likely to predict an
eventually failing student will succeed or an eventually
successful student will fail? These additional metrics
beyond the simple prediction of the probability of success
should allow for a more nuanced exploration of the features
that make certain students difficult to predict and the
features that cause the classifier to make certain kinds of
errors.
One primary methodology in machine learning, the

division of data into a training and test dataset, would
also be generally useful in PER. This methodology allowed
the detection of overfitting; something that is likely a
common problem in PER, but which is often not explored.
Machine learning methods also provide new ways to

characterize variable importance; both sampling the vari-
ables and examining the change in balanced accuracy (or
one of many other classification metrics) provided a
promising technique to reduce multicollinearity and pro-
vided a much more intuitive measure of variable impor-
tance. Traditional measures of variable importance examine
the additional variance explained or the size of the statistics
used to characterize significance (such as t); the increase in
the balanced accuracy when the variable is added to
the model is far more intuitive and gives a measure of the
practical importance of the addition of a variable to the
model. The test-train split methodology also allowed for
variables with negative importance; variables which made
the models worse when added. This provides another way
to detect overfitting.

C. Ethical considerations

Classification predictions are a tool to help instructors
improve learning outcomes; they can be properly used or
misused. Instructors must take care to ensure that model

results do not bias their treatment of individual students.
No model is 100% accurate; students identified as being at
risk of failure may earn a passing grade in the course;
those not identified as at risk may fail. Additionally,
results should not be used to exclude students classified as
not at risk from additional instructional resources:
changes made to a course’s structure to benefit at-risk
students should also be made available to all students.
Instructors should also be aware that the accuracy of
predictive models is sensitive to a particular course’s
instructional conditions [36] and should be cognizant of
broader ethical considerations regarding the use of institu-
tional data [37]. In particular, care should be taken to
examine how model performance differs across different
demographic subgroups in the data. A model trained on
data consisting primarily of students from a majority
group may display performance differences in its classi-
fication of students from minoritized groups.
The Supplemental Material [11] presents an analysis

exploring classification accuracy for women, PEER, and
FGCS students. Classification models were trained on all
students; these models were then used to predict women,
PEER students, and FGCS students. Generally, the suc-
cess rate for predicting D or F grades, αDF, was similar for
the majority of students and other students; however, the
αDF was somewhat lower for women while αABC was
higher. Conversely, αDF was higher for PEER students and
αABC lower. Performance on FGCS students was close to
the overall performance on D2 and D3. This suggests the
decision threshold should be somewhat retuned when
predicting women and PEER students. In general, model
accuracy was not improved by building the classifier on
only students from the demographic subgroups. When
possible, instructors using classification should confirm
the accuracy for all groups of interest.

D. Future—Using classification in the classroom

Classification has many potential uses in the class-
room. Classification could be used as part of a class early
warning system that provides students with a visual
indication of their status [14]. The classification could
be used to direct additional monitoring of or messaging to
at-risk students. The messaging could take the form of
general advice on how to get additional help in the class
or reminders of class policy such as the acceptance of
homework after the due date for a small penalty. The
classification could also be used to organize subgroups
such as lab groups within the class. Additional research
would be needed to determine how to do so effectively. In
general, a student’s risk classification represents another
variable that instructors and researchers can use to
improve student outcomes. Additional research would
be needed to determine which of these possible methods
are most effective and to determine how to best apply
each method.
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V. LIMITATIONS

This study was performed using data from a single
course at a single large research university with a majority
White male enrollment. The results should be replicated in
many other classes at different levels at different institu-
tions to determine if the results are generalizable. It is
particularly important that this be done for institutions
with student populations with a different demographic
composition and for institutions other than research
universities.
The methods achieved substantial predictive accuracy

but not perfect accuracy. The features of students incor-
rectly classified by the optimal models should be inves-
tigated to identify additional information that could be
collected to further improve prediction accuracy.

VI. CONCLUSIONS

Machine learning models were constructed to predict if a
student was at risk or not at risk of failing an introductory
mechanics course. Models were trained on a combination
of in-class, institutional, and noncognitive variables

available by the second week of class; early prediction
was prioritized so that student interventions might be
implemented early in the semester. Logistic regression
models combined with either decision threshold tuning
or SMOTE upsampling yielded the best results overall,
with nearly equal performance on both passing and failing
students. Variable importance metrics suggest that students’
average homework scores and their college GPAs were
among the variables most important to the models’ decision
making. A logistic regression classifier with decision
threshold tuning using homework grades, clicker scores,
and college GPA had performance near models using an
extensive set of variables and may be the best choice for in-
class prediction. Various other machine learning algorithms
and techniques were not effective at improving model
performance over logistic regression.
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