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1. Introduction

What is the least d for which a solution of the general degree n polynomial admits 
a formula using only (algebraic) functions of d or fewer variables? As Abel realized, the 
general degree n polynomial has Galois group Sn and this question, in modern language, 
asks for the resolvent degree of the symmetric group, denoted

RDC(Sn) = RDC(An) =: RDC(n),

an invariant first introduced independently by Brauer [3] and Arnol’d-Shimura [1]. To 
the best of our knowledge, Klein was the first to consider this question for other finite 
groups, most notably the group PSL (2,F7) [24]. Note that for a finite group G with 
Jordan-Hölder decomposition {G1, . . . , Gs}, [16, Theorem 3.3] yields that

RDk(G) ≤ max {RDk(G1), . . . , RDk(Gs)} ,

with equality if every Gj can be realized as a subgroup of G.2
Following Klein and the classification of finite simple groups, one is led to the following 

question [16, Problem 3.5]:

Problem 1.1 (RDk(G) for finite simple G). Compute the resolvent degree of all finite 
simple groups G.

To date, Problem 1.1 has only been addressed by providing upper bounds on RDk(G)
when G is a cyclic group (in which case RDk(G) ≡ 1), an alternating group (see [21,39,44], 

2 In fact, it seems reasonable to expect that the inequality can be made into an equality without assump-
tions on G.
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or [20,22,24–27,38,40] for classical references), when G is a simple factor of a Weyl group 
of type E6, E7, or E8 [15,16,35], or when G = PSL (2,F7) (see [24] for the classical 
reference or [15] for a modern version).

The Classification of Finite Simple Groups says that a finite simple group G falls into 
one of four categories:

1. G is cyclic of prime order;
2. G is an alternating group (An, n ≥ 5);
3. G is a simple group of Lie type (of which there are 16 families); or
4. G is one of 26 finite simple groups that do not belong to one of the infinite families 

above.

The 26 groups in (4) are known as the sporadic groups. In this paper, we investigate 
Problem 1.1 by giving upper bounds on RDk(G) for all sporadic groups G. For each 
group G, we use the invariant theory of a projective representation over C of minimal 
dimension to construct a complex G-variety XG with the property that RDk(G) ≤
dimC(XG). For G one of the Mathieu groups M11, M12, M23, M24, we prove nothing new: 
the projective representation in these cases is just the projectivization of the permutation 
representation, XG is the vanishing locus of the first four (M11, M12) or five (M23, M24) 
elementary symmetric polynomials, and the bounds on RDk(G) follow from the bounds 
on RDk(Sn) which appear previously in the literature (with S11 and S12 in [38], and 
S23 and S24 in [39]). Our primary interest is thus the remaining 22 sporadic groups. 
Here, our bounds appear to be genuinely new, and we obtain them by proving that the 
variety XG is “RD≤d

C -versal” for d < dimC(XG) (see Definition 3.2, Lemma 3.6, and 
Theorem 4.7 for the construction of XG), from which the bound on RDk(G) follows by 
[16, Proposition 3.10]. More explicitly, we have:

Corollary 1.2 (Appears as Corollary 4.9: explicit form of Theorem 4.7). For any field k, 
we have

RDk(J2) ≤ 5, RDk(M24) ≤ 18, RDk(He) ≤ 48, RDk(Fi23) ≤ 776,

RDk(M11) ≤ 6, RDk(HS) ≤ 18, RDk(J1) ≤ 51, RDk(Fi24’) ≤ 779,

RDk(M12) ≤ 7, RDk(McL) ≤ 19, RDk(Fi22) ≤ 74, RDk(J4) ≤ 1328,

RDk(M22) ≤ 8, RDk(Co3) ≤ 20, RDk(HN) ≤ 129, RDk(Ly) ≤ 2475,

RDk(Suz) ≤ 10, RDk(Co2) ≤ 20, RDk(Th) ≤ 244, RDk(B) ≤ 4365,

RDk(J3) ≤ 16, RDk(Co1) ≤ 21, RDk(O’N) ≤ 338, RDk(M) ≤ 196874.

RDk(M23) ≤ 17, RDk(Ru) ≤ 26,

The proof of Theorem 4.7 is comprised of two distinct parts, which are set up in 
Sections 3 and 4, respectively. First, in [16, Definition 3.8], notions of solvable versality 
and RDk-versality for finite groups G were introduced. In [15], this was generalized by 
defining 1) a notion of a class of accessory irrationalities E [15, Definition 4.1] and, given 
such a class E , by defining 2) a notion of E-versality [15, Definition 4.4]. A connection 
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to resolvent degree was briefly discussed in [15, Paragraph 4.1.3 and Lemma 4.9], along 
with a discussion of historical roots of these notions of generalized versality and a call to 
better understand them [15, Remark 4.10]. We build on this framework here, introducing 
new examples of classes of accessory irrationalities E = RD≤d

k (“accessory irrationalities 
of resolvent degree at most d”) which have been implicit in the literature, and broadening 
[15, Definition 4.4] and the attendant lemmas to allow for arbitrary algebraic groups G.

Second, Duncan and Reichstein [14, Theorem 1.1 (a,b)] reframed versality in terms of 
rational points on twisted forms. Building on this, we connect the above generalizations 
of versality to the existence of “special points”—a catch-all term we use to encompass 
points defined via any specified class E of accessory irrationalities—as in Theorem 1.3. 
This perspective, with E = RD≤d

k , is implicit in [35, Lemma 14.5], and our hope is that 
by making it explicit, we can make it more widely known and used. Concretely, for a 
field K and a class of accessory irrationalities E , let KE denote an E-closure of K (see 
Section 2.2).

Theorem 1.3 (Appears as Theorem 3.9: generalized versality and special points). Let G
be an algebraic group over k and let X be an irreducible, generically free, quasiprojective 
G-variety. Let E be a class of accessory irrationalities. Then:

1. X is weakly E-versal if and only if for every G-torsor T → Spec(K) with K finitely 
generated over k, T X

(
KE)

�= ∅.
2. If G is smooth, X is E-versal if and only if for every G-torsor T → Spec(K) with K

finitely generated over k, KE-points are dense in T X.

In Section 4, we apply the framework of E-versality outlined in Section 3 to the 
22 sporadic groups not equal to M11, M12, M23, or M24. More specifically, we use the 
invariant theory of a projective representation for each sporadic group G to construct 
a complex variety XG which we then show is RD≤dG

C -versal for some dG ≤ dimC (XG). 
Results of Reichstein, namely [35, Theorems 1.2, 1.3], then allow us to conclude the 
upper bounds on RDk(G) for all fields k.

Outline of the paper The remainder of this paper proceeds as follows. In Section 2, 
we introduce the relevant background on torsors (Section 2.1), accessory irrationalities 
(Section 2.2) and resolvent degree (Section 2.3). In Section 3, we recall the framework of 
E-versality and connect it to the existence of E-points. In Section 4, we establish upper 
bounds on the resolvent degree of the sporadic groups (Section 4.1) and understand these 
bounds in terms of the prior literature (Section 4.2).

Supplementary materials Some results in this paper rely on calculations performed with
GAP [18] and SageMath [37]. Along with this paper, we have included supplementary files 
which can be used to verify all computations. They can be found on the arXiv submission 
of this paper, as well as at the following web address:
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https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups.

In addition to the SageMath script, we have also included the relevant data and outputs 
as plain text files. The supplementary files on the arXiv can be accessed by downloading 
the source package.

Correctness of information for sporadic groups The computations for the Molien se-
ries (or the coefficients thereof) for projective representations of sporadic groups in this 
project rely on the GAP character table library [4] of the computer algebra system GAP
[18]. We refer the reader to [5] for details on correctness, while noting the excerpt “all 
character tables contained in the ATLAS, incorporating the corrections, and many more, 
are stored electronically in the character table library [4] of the computer algebra system
GAP [19].”

Conventions

1. We define a K-variety to be a quasiprojective scheme of finite type over K. We do 
not require varieties to be reduced or irreducible.

2. For a collection of homogeneous polynomials {f1, . . . , fs} ⊆ K [x0, . . . , xn], we write 
V (f1, . . . , fs) for the subvariety of Pn

K determined by the (scheme-theoretic) intersec-
tion f1 = · · · = fs = 0.

3. We denote the K-points of a variety X by X(K).
4. Unless otherwise specified, when we refer to an algebraic group, we mean an arbitrary 

algebraic group (it need not be finite, linear, nor smooth).
5. Given a field K, we denote a separable closure of K by Ksep.
6. For maps between varieties, we denote regular morphisms by →, and rational maps 

by ���.

Acknowledgments The authors would like to thank Aaron Landesman and Daniel Litt 
for helpful comments on a draft, and Alice Silverberg for help with a reference. The 
authors thank the anonymous referee for helpful comments and suggestions.

2. Background

In this section, we recall the necessary background on torsors, accessory irrationalities, 
and resolvent degree. We fix a ground field k.

2.1. Torsors

Consider an algebraic group G over k, i.e. a group scheme of finite type over k. 
We refer the reader to [32, Chapter 5] for a good summary and list of references for 
algebraic groups. For example, recall that results of Chow and Conrad (see e.g. [32, 

https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups
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Theorem 5.2.20]) show that G is automatically a quasi-projective k-scheme. Let X be a 
quasiprojective G-variety over k. In this section, K always denotes a finitely generated 
k-field.

Definition 2.1 (G-torsors). A right (respectively, left) G-torsor over X is a flat morphism 
Y → X of k-schemes such that G acts on Y on the right (respectively, left) by σ : G ×Y →
Y and such that the map

G × Y → Y ×X Y

(g, y) 	→ (σ(g, y), y),

is an isomorphism. We say that the G-torsor Y → X is split if it admits a section; this 
is equivalent to its class [Y ] in H1(k, G) being trivial.

Next, we introduce twisted varieties.

Definition 2.2 (Twists). Let G be an algebraic group over k. Let T → Spec(K) be a 
G-torsor. G acts on T × X diagonally and yields a G-torsor T × X → T X. We say T X

is the twist of X by T .

Note that our assumption of quasiprojectivity of X implies that T X is well-defined 
as the geometric quotient of T × X by G; see [32, Section 5.12.5] for details when G is 
smooth, and [17, Proposition 2.12] in general.

In Section 3, we will want to move interchangeably between torsors over finitely gen-
erated k-fields and their integral models.

Definition 2.3 (Integral models). Given a G-torsor T → Spec(K) over k, an integral 
model of T → Spec(K) is a morphism Y → Y/G, where Y is a generically free G-variety 
with k (Y/G) = K, along with an isomorphism Y ×Y/G Spec(K) ∼= T .3

For further background on G-torsors, we refer the reader to [30, Ch. 3, Sec. 4] and 
[32, Section 5.12] for general results and to [35, Section 10] for connections of G-torsors 
to essential dimension and resolvent degree.

2.2. Accessory irrationalities

Accessory irrationalities appear prominently in work of Klein [25] (see also [24,26,27]
and Chebotarev [9,10]). The first formal definition of which we are aware appears in 
[15, Definition 4.1] in the language of branched covers. We recall this here, introduce 
an equivalent formulation in the language of field extensions, give new examples of E , 

3 Note that our assumption that k(Y/G) = K implies that Y/G is irreducible. In particular, all integral 
models are birational to each other.
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and introduce the notion of a closure of a field with respect to a class of accessory 
irrationalities (Definition 2.17).

Following [15, 4.1.1], we consider branched covers p : Y → X of normal k-varieties, i.e. 
dominant, finite maps. More generally, we will use branched cover to refer to a generically 
finite, dominant rational map p : Y ��� X. Branched covers form a category in the usual 
fashion, and they are preserved under pullback in the following sense: if f : X ′ → X is 
any map of normal k-varieties, then we denote by f∗Y the normalization of Y ×X X ′

and observe that f∗p : f∗Y → X ′ is again a branched cover.

Definition 2.4 (Definition 4.1 of [15]). Let k be a field. Let Varν
k denote the category of 

normal k-varieties. Let

Bran: (Varν
k)op → Cat

be the functor4 which sends a finite type normal k-scheme X to its category of branched 
covers. A class of accessory irrationalities E is a subfunctor E ⊂ Bran such that

1. For any X, E(X) ⊂ Bran(X) is a full subcategory.
2. For any X, the identity X → X is in E(X).
3. E(X

∐
X ′) = E(X) × E(X ′).

4. If E, E′ ∈ E(X), then E ×X E′ ∈ E(X).
5. If U ⊂ X is a dense open, then E(X) → E(U) is an equivalence of categories.
6. If E → X ′ → X are branched covers and if E → X is in E(X), then E → X ′ is in 

E(X ′).

For the present paper, and to make explicit the connection to the perspective in [35], 
we rephrase this in the language of field extensions.

Definition 2.5 (Definition 4.1 of [15] via field extensions). Let k be a field, let Fields/k
be the category of fields over k, and let

Fin : Fields/k → Cat

be the functor which sends a k-field K to the category of finite, semi-simple commutative 
K-algebras.5 A class of accessory irrationalities E is a subfunctor E ⊂ Fin such that:

1. For all K, E(K) ⊂ Fin(K) is a full subcategory.

4 We follow standard usage and do not distinguish between a functor and a pseudo-functor when the 
latter is the manifestly appropriate notion given the target in question. Note that the natural isomorphisms 
required for pseudo-functoriality are canonical in this case, as they come from the universal property of 
normalization and fiber product.

5 N.b. Wedderburn’s theorem implies that any finite semi-simple commutative algebra over a field is a 
finite product of finite extensions of that field.
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2. For all K, we have K ∈ E(K).
3. If E, E′ ∈ E(K), then E ⊗K E′ ∈ E(K).
4. If K ↪→ L is a finite extension of k-fields, L ↪→ E is finite, and K ↪→ L ↪→ E is in 

E(K), then E ∈ E(L).

Lemma 2.6 (Equivalence of Definitions). Definitions 2.4 and 2.5 are equivalent: the as-
signment X 	→ k(X) induces an equivalence between the category of subfunctors of Bran
satisfying the axioms of Definition 2.4 and the category of subfunctors of Fin satisfying 
the axioms of Definition 2.5.

Proof. Let E ⊂ Bran be a class of accessory irrationalities. By assumptions 3 and 5 of 
Definition 2.4, we see that E is determined up to equivalence by its restriction to the 
sub-category of irreducible, affine, normal k-varieties. For any such X, we have a natural 
equivalence of categories

Fin (k(X)) ∼= {k(E) | E → X ∈ Bran(X)}.

Denote by (k ◦ E)(X) the full sub-category of Fin(k(X)) determined by E(X) under the 
above equivalence. The assumptions of Definition 2.4 on E imply that k ◦ E satisfies the 
assumptions of Definition 2.5, as claimed.

It remains to show that any subfunctor E ⊂ Fin satisfying Definition 2.5 arises as 
above. Fix such a subfunctor E ⊂ Fin. For X ∈ Varν

k, let Ẽ(X) ⊂ Bran(X) be the full 
subcategory consisting of all branched covers Y ��� X such that for any irreducible 
component Xi ⊂ X, the restriction Y |Xi

��� Xi has

k(Xi) ↪→ k(Y |Xi
) ∈ E(k(Xi)).

This definition ensures that Ẽ ⊂ Bran satisfies Assumptions 3 and 5 of Definition 2.4. 
The remaining assumptions follow from the corresponding assumptions of Definition 2.5, 
and by direct inspection, we see that k ◦ Ẽ ∼= E as claimed. �

Motivated by classical examples in the literature (see Example 2.8), we introduce 
terminology for special classes of accessory irrationalities.

Definition 2.7 (Saturation and closure under extensions). Let E : Fields/k → Cat be a 
class of accessory irrationalities.

1. We say E is saturated if for all finite extensions of k-fields K ↪→ L, that K ↪→ L ↪→ E

is in E(K) implies that L ∈ E(K).
2. We say E is closed under extensions if for all finite extensions of k-fields K ↪→ L, 

L ∈ E(K) and E ∈ E(L) together imply that K ↪→ L ↪→ E is in E(K).

Example 2.8 (Example 4.3(3) of [15]).
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1. Let Ab(K) be the category of finite semisimple commutative K-algebras which split 
as products of abelian extensions of K. Then the assignment K 	→ Ab(K) defines a 
saturated class of accessory irrationalities which is not closed under extensions.

2. Let Sol(K) be the full subcategory of finite semisimple commutative K-algebras which 
split as products of solvable extensions of K. Then the assignment K 	→ Sol(K) defines 
a saturated class of accessory irrationalities which is closed under extensions.

Note that Sol is the closure of Ab under extensions, i.e. it is the minimal class of 
accessory irrationalities which contains Ab and is closed under extensions.

2.3. Resolvent degree

Resolvent degree was first defined independently by Brauer [3] and Arnol’d-Shimura 
[1] in the context of field extensions. The first contemporary reference on resolvent degree 
is [16]. We begin by reviewing the definition of resolvent degree for algebraic groups, and 
then introduce the notion of the resolvent degree of a functor.

2.3.1. Resolvent degree for varieties, fields, and algebraic groups
We recall the definitions here and refer the reader to [16,35,44] for more background.

Definition 2.9 (Essential dimension of a branched cover of varieties). Let Y ��� X be 
a branched cover of k-varieties (i.e. a generically finite, dominant rational map). The
essential dimension of Y ��� X over k, denoted edk(Y ��� X), is the minimal d for 
which there exists

1. a branched cover Z̃ → Z with dimk Z = d,
2. a dense Zariski open U ⊂ X,
3. a map f : U → Z, and
4. an isomorphism f∗Z̃ � Y |U over U .

Definition 2.10 (Resolvent degree of a branched cover of varieties). Let Y ��� X be 
a branched cover of k-varieties. The resolvent degree of Y ��� X over k, denoted 
RDk(Y ��� X), is the minimal d for which there exists a tower of branched covers

Xr ��� · · · ��� X0 = X,

with a factorization Xr ��� Y ��� X such that edk(Xj ��� Xj−1) ≤ d for all 1 ≤ j ≤ r.

The definition of the resolvent degree of an extension of k-fields extends straightfor-
wardly to the case of finite, semisimple commutative algebras over k-fields, and the basic 
properties carry over as well. In particular, we have the following example.



C. Gómez-Gonzáles et al. / Journal of Algebra 647 (2024) 758–793 767
Example 2.11 (The class RD≤d
k ). Fix d ≥ 0. For a k-field K, let RD≤d

k (K) denote the cat-
egory of all finite semisimple commutative K-algebras A such that RDk(A/K) ≤ d. The 
proof of [16, Lemma 2.5(2)] shows that the assignment K 	→ RD≤d

k (K) is indeed func-
torial, while that of [16, Lemma 2.7] shows that it satisfies the definition of a saturated 
class of accessory irrationalities which is closed under extensions.

Reichstein extended the above notion of essential dimension in [33] as follows:

Definition 2.12 (Essential dimension of a G-variety). Let G be an algebraic group over 
k. Let X be a generically free G-variety. The essential dimension of X ��� X/G is the 
least d such that there exists a dominant, G-equivariant rational map X ��� Y with 
d = dim(Y/G).

Following [34,35], we build on this here.

Definition 2.13 (Resolvent degree of a G-variety). Let G be an algebraic group. Let X
be a quasi-projective G-variety over k. The resolvent degree of X ��� X/G is

RDk(X ��� X/G) = min {max{RDk(E ��� X/G), edk(X|E ��� E)}} ,

where the minimum is over generically finite dominant maps E ��� X/G.

Remark 2.14. The above definition differs slightly from that of [34,35]. We show in 
Lemma 2.27 below that it agrees with Reichstein’s.

Recall that a G-variety X is primitive if G acts transitively on the set of geometrically 
irreducible components of X. A G-variety is generically free if the locus of points with 
trivial (scheme theoretic) stabilizer is dense and open. We record the following elementary 
lemma for later use.

Lemma 2.15 (Faithful and irreducible implies generically free). Let G be a finite group 
and X an irreducible G-variety. Then the action of G on X is generically free if and 
only if it is faithful.

Proof. That generically free implies faithful is immediate. For the converse, note that 
given g ∈ G \ {1}, the (scheme theoretic) fixed set Xg ⊂ X is a closed subset, which is 
not all of X because the action is faithful. If X is irreducible, then X cannot be written 
as the union of a finite number of proper closed subsets. Therefore, X \

⋃
g∈G\{1} Xg is 

a non-empty open in which every point has trivial scheme theoretic stabilizer. As X is 
irreducible, this open is dense, and thus the action is generically free. �
Definition 2.16 (Resolvent degree of an algebraic group). Let G be an algebraic group. 
The resolvent degree of G over k is
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RDk(G) :=sup {RDk(X ��� X/G) | X is a primitive, generically free G-variety over k}.

In the course of investigating the resolvent degree of an algebraic group, it is often 
useful to pass to an extension K ′/K of bounded resolvent degree, or more generally to 
an extension K ′/K in some specified class of accessory irrationalities E ; following [1,35]
we can formalize the maximal such extension as follows.

Definition 2.17 (E-closure). Let E : Fields/k → Cat be a saturated class of accessory 
irrationalities. Let K be a k-field and fix an algebraic closure K ↪→ K. Consider the set

SE := {K ↪→ K ′ ↪→ K | K ′ ∈ E(K)}.

We define an E-closure of K to be the compositum

KE := K (SE) ↪→ K.

We say that K is E-closed if K = KE . Note that, by definition, for any finite extension 
of k-fields K ⊂ L ⊂ K, if L ∈ E(K) then L ⊂ KE . Conversely, because E is saturated, if 
L ⊂ KE , then L ∈ E(K).

Example 2.18 (Common E-closures).

1. For E = Ab, K ↪→ KAb is the usual abelian closure (i.e. maximal abelian extension).
2. For E = Sol, K ↪→ KSol is the usual solvable closure.
3. For E = RD≤d

k , we write K(d) := KRD≤d
k . This closure was first considered in [1]

and studied in some detail recently in [35]. For d = 0, K = K(0). As radicals have 
resolvent degree 1, we see KSol ↪→ K(d) whenever d ≥ 1. If d ≤ d′, then RD≤d

k is a 

subfunctor of RD≤d′

k , and one sees that K(d) ↪→ K
(
d′) as expected. For more details, 

see [35, Section 6].

2.3.2. Resolvent degree of a functor
Reichstein extended the notion of resolvent degree to “split” functors in [34, Section 

8] (see also [35, Section 7]). In this subsection, we extend this to a definition of resol-
vent degree for arbitrary functors (Definition 2.22), and we show in Lemma 2.27 that 
this definition recovers Reichstein’s definition if the functor is split. In particular, this 
establishes the equivalence of Definition 2.16 and Reichstein’s definition of the resolvent 
degree of an algebraic group [35, Definition 10.1].

We begin by defining the resolvent degree of a functor F : Fields/k → Sets, building 
on Merkurjev’s definition of essential dimension in this context [2].

Definition 2.19 (Merkurjev). Let F : Fields/k → Sets be a functor. Let K be a k-field, 
and let α ∈ F (K). Define the essential dimension of α by
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edk(α) := min{tr. degk L | α ∈ Im(F (L) → F (K))}.

Define the essential dimension of F by

edk(F ) := sup
K,α∈F (K)

edk(α).

Example 2.20 (Essential dimension of Fin). Let F = Fin as above. Let K be a k-field 
and let α : K ↪→ L be a finite extension of K, and let Y ��� X be any branched cover of 
k-varieties such that

(k(X) ↪→ k(Y )) ∼= (K ↪→ L).

Tracing through the definitions, one immediately obtains that

edk(α) = edk(L/K) = edk(Y ��� X)

where the left-hand side denotes the quantity defined in Definition 2.19, the middle term 
denotes the essential dimension of a finite extension of k-fields as in [6, Definition 2.1], 
and the right-hand side denotes the quantity of Definition 2.9.

Also recall the field theoretic formulation of Definition 2.10 [3], which by [16, Propo-
sition 2.4] is equivalent to Definition 2.10 under the assignment X 	→ k(X):

Definition 2.21 (Brauer). Let K ↪→ L be a finite extension of k-fields. The resolvent 
degree of L over K, RDk(L/K) is the minimal d for which there exists a finite tower of 
finite extensions of k-fields

K = K0 ↪→ K1 ↪→ · · · ↪→ Kr

and an embedding L ↪→ Kr over K with edk(Ki+1/Ki) ≤ d for all i.

Motivated by [16, Proposition 2.13], we combine Brauer’s and Merkurjev’s definitions 
to obtain the following.

Definition 2.22 (Resolvent degree of a functor). Let F : Fields/k → Sets be a functor. 
Let K be a k-field and let α ∈ F (K). We define the resolvent degree of α by

RDk(α) := min
L/K finite

max{RDk(L/K), edk(α|L)}

Define the resolvent degree of F by

RDk(F ) := sup RDk(α).

K,α∈F (K)
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Example 2.23 (Resolvent degree of Fin and H1(−, G)).

1. Consider the functor Fin: Fields/k → Sets. Let α : K ↪→ L be a finite extension of 
k-fields considered as an element α ∈ Fin(K). Then, by inspection

RDk(α) = RDk(L/K)

where the left-hand side is as in Definition 2.22 and the right-hand side is as in 
Brauer’s Definition 2.21.

2. For an algebraic group G over k, consider the functor H1(−, G) : Fields/k → Sets. 
For each K/k, the elements of H1(K, G) are isomorphism classes of G-torsors over 
Spec(K), where the local triviality condition is with respect to the fppf topology. 
Given a G-torsor T → K with class α ∈ H1(K, G), let X ��� X/G be an integral 
model. By inspection, we see that

RDk(α) = RDk(X ��� X/G)

where the left-hand side is as in Definition 2.22 and the right-hand side is as in 
Definition 2.13. Similarly,

RDk(H1(−, G)) = RDk(G),

i.e. for algebraic groups, the resolvent degree of H1(−, G) agrees with Definition 2.16.

In [34], Reichstein defines a notion of resolvent degree for certain functors F : Fields/k
→ MarkedSets taking values in pointed sets. Following the notation of [34], for such F
and K a k-field, let 1 ∈ F (K) denote the distinguished element.

Definition 2.24 (Split functors). A functor F : Fields/k → MarkedSets is split if for all 
K/k and all α ∈ F (K), there exists a finite extension L/K such that α|L = 1 ∈ F (L). 
In such a case, we say that α is split by L/K.

Definition 2.25 (Reichstein). Let F : Fields/k → MarkedSets be a split functor. Given 
α ∈ F (K), define the split resolvent degree of α by

RDsp
k (α) := min{RDk(L/K) | α is split by L/K}

Define the split resolvent degree of F by

RDsp
k (F ) := sup

K,α∈F (K)
RDsp

k (α).

Remark 2.26 (On split resolvent degree).
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1. Given a split functor F , we will continue to write RDk(F ) to denote the resolvent 
degree of F considered as a functor F : Fields/k → MarkedSets → Sets (i.e. where 
we forget the distinguished element). Below we will show that RDk(F ) = RDsp

k (F )
for any such F .

2. A motivating example of a split F is given by H1(−, G) for G an algebraic group. 
As above, write RDsp

k (G) := RDsp
k (H1(−, G)). As Reichstein observes [34, Conjecture 

17] (see also [35, Conjecture 1.4]), a folklore conjecture implicit in work of Tits is that 
if G is a connected complex algebraic group and K is a C-field, then every G-torsor 
over K splits over a solvable extension L/K. In particular, Tits’ conjecture implies 
that

RDsp
C (G) = RDC(G) ≤ 1

for every connected complex algebraic group G. Reichstein proves unconditionally [35, 
Theorem 1.1] that

RDsp
C (G) ≤ 5.

3. The norm-residue isomorphism theorem implies that

RDsp
k (H∗(−; μn)) = RDk(H∗(−; μn)) = 1

for every field k of characteristic prime to n. In particular, torsion Galois cohomology 
cannot detect RD > 1.

Lemma 2.27 (Equivalence of split resolvent degree for split functors). Let F : Fields/k
→ MarkedSets be a split functor. Then

RDsp
k (F ) = RDk(F ).

In particular, for G an algebraic group over k, Definition 2.16 agrees with [35, Definition 
10.1].

Proof. For any k-field K, edk(1K) = 0 by definition (since 1k|K = 1K ∈ F (K)). There-
fore, the definitions immediately give that

RDk(F ) ≤ RDsp
k (F ).

We now show the opposite inequality. Observe that it suffices to prove that for all k-fields 
K and all α ∈ F (K), we have

RDsp
k (α) ≤ RDk(α).

By [35, Lemma 7.6(b)],
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edk(α) ≥ RDsp
k (α).

But then, for any finite extension L/K, we have

max{RDk(L/K), edk(α|L)}≥max{RDk(L/K), RDsp
k (α|L)}

=max{RDk(L/K), min{RDk(L′/L) | α|L is split by L′/L}}
=min{max{RDk(L/K), RDk(L′/L)} | α|L is split by L′/L}
≥min{RDk(L′/K) | α is split by L′/K}
=:RDsp

k (α)

where the final inequality follows from [16, Lemma 2.7]. Minimizing the left hand side 
of the above inequality over all finite extensions L/K, we obtain that

RDk(α) ≥ RDsp
k (α)

as desired. �
3. Generalized versality and special points

As stated at the beginning of Section 2, we fix a ground field k throughout. By 
Definition 2.16, for any algebraic group G and any primitive, generically free G-variety 
X, we have

RDk(X ��� X/G) ≤ RDk(G).

It is natural to ask for which G-varieties X we have RDk(X ��� X/G) = RDk(G). We 
will relate this question to the notion of versality and generalizations thereof. First, we 
recall the definition of a versal G-variety.

Definition 3.1 (Section 1 of [14]). Let G be an algebraic group defined over k. We say 
that an irreducible, generically free G-variety X is:

• weakly versal for G if for every G-torsor T → Spec(K), there is a G-equivariant 
k-morphism T → X.

• versal for G if every G-invariant open subvariety of X is weakly versal.

Note that X being versal for G is closely related to G � X being a generic group 
action; the difference being that versality does not require X/G to be rational (see [14, 
Remark 2.8]).

In [16, Proposition 3.7], the authors show that for a finite group G and any versal 
G-variety X, RDk(G) = RDk(X ��� X/G). While versality is a sufficient condition, it 
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was known classically that versality is not necessary. Indeed, Klein showed in [25] that 
RDC(A5) = 1 by using the projective representation A5 � P 1

C (see [31] for an English 
translation), despite the fact that P 1

C ��� P 1
C/A5 is not A5-versal. This motivates the 

following generalizations of versality.

Definition 3.2 (Definition 3.8 of [16] and Definition 4.4 of [15]). Let G be an algebraic 
group defined over k and let X be an irreducible, generically free G-variety. Let E be a 
class of accessory irrationalities. We say that X is:

• weakly E-versal for G if for every G-torsor T → Spec(K), there is an extension 
K ↪→ K ′ ∈ E(K) and a G-equivariant k-morphism

T ×Spec(K) Spec(K ′) → X;

• E-versal for G if every G-invariant open subvariety of X is weakly E-versal;
• weakly RDk-versal for G if for every G-torsor T → Spec(K), there is an extension 

K ↪→ K̃ with RDk

(
K ↪→ K̃

)
≤ RDk(X ��� X/G) and a G-equivariant k-morphism

T ×Spec(K) Spec
(

K̃
)

→ X;

• RDk-versal for G if every G-invariant open subvariety of X is weakly RDk-versal.

It is immediate that for an irreducible G-variety X, we have the implications

X is versal for G ⇒ X is E-versal for G for any E .

X is solvably versal for G ⇒ X is RD≤1
k -versal for G.

X is RD≤d
k -versal for G ⇒ X is RD≤d′

k -versal for G for any d ≤ d′.

X is RD≤d
k -versal for G for

d ≤ RDk(X ��� X/G) ⇒ X is RDk-versal for G.

Klein showed that while P 1
C is not versal for A5, it is solvably versal for A5. It is 

currently unknown if RDk-versality is strictly weaker than solvable versality (see e.g. 
[11, Problem 9.3]). Nonetheless, by [16, Proposition 3.10], RDk(X ��� X/G) = RDk(G)
when X is RDk-versal for G and G is finite; note that the proof given carries over 
unchanged for general smooth algebraic groups G.

We have relatively few techniques for showing a G-variety is RDk-versal (especially 
when it is not already versal or solvably versal), and essentially none for obstructing 
the existence of RDk-versal varieties of a given dimension. For example, Hilbert’s Sextic 
Conjecture [22] — which remains open — predicts that there are no RDC-versal A6-
curves.
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The proof of [16, Proposition 3.10] (see also [15, Paragraph 4.1.3 and Lemma 4.9]), 
adapted to the context of Definition 3.2, immediately yields the following:

Proposition 3.3 (RDk(G) via RD≤d
k -versality). Let G be an algebraic group over k. Then,

RDk(G) = min
d≥0

{
max {d, dim(X)} | X is a G-variety which is RD≤d

k -versal for G
}

.

Remark 3.4 (Equivalence of Definitions). The style of Definition 3.2 has been chosen for 
ease of comparison with the literature on versality, e.g. [14]. For comparison with [15], 
and for use in what follows, we will now give an equivalent characterization in Lemma 3.6.

Definition 3.5 (G-equivariant rational correspondence). Let G be an algebraic group and 
take X, Y to be G-varieties. A G-equivariant rational correspondence from Y to X is a 
G-invariant subvariety C ⊆ Y × X such that the projection C/G → Y/G is a generically 
finite, dominant morphism.

Lemma 3.6 (E-versality via G-equivariant rational correspondences). Let G be an al-
gebraic group, X an irreducible, generically free G-variety, and E a saturated class of 
accessory irrationalities. Then X is:

• weakly E-versal for G if for any generically free G-variety Y , there exists a G-
equivariant rational correspondence C ⊆ Y ×X such that C/G → Y/G is in E(Y/G);

• E-versal for G if every non-empty G-invariant open subvariety of X is weakly E-
versal for G. Moreover, these conditions are equivalent to the conditions stated in 
[15, Definition 4.4]

Proof. We begin by proving the equivalence of the conditions of the lemma with [15, 
Definition 4.4]. First, observe that any G-equivariant rational correspondence C ⊆ Y ×X

with C/G → Y/G in E(Y/G) gives the data of [15, Definition 4.4]; indeed, item (1) of 
[15, Definition 4.4] is the given accessory irrationality, item (2) is the map C/G → X/G

(from projecting onto the second factor), and the isomorphism (3) C/G ×X/G X ∼= C

follows from generic freeness.
Conversely, given the data specified in [15, Definition 4.4], i.e. E → Y/G in E(Y/G)

with f : E → X/G and f∗X ∼= E ×Y/G Y , let

C/G := Im(E → Y/G × X/G),

C = C/G ×X/G X ⊂ Y × X.

Then, C is a G-invariant rational correspondence; C/G → Y/G is in E(Y/G), as E → Y

is; and E is saturated. We conclude that the conditions of the lemma are in fact equivalent 
to those of [15, Definition 4.4].
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Since [15, Definition 4.4] does not mention torsors, for the sake of completeness we now 
show that the conditions of [15, Definition 4.4] are equivalent to those of Definition 3.2. 
For this, it suffices to prove the statement about weak E-versality (as the statement 
about E-versality amounts to verifying that every dense Zariski open U ⊂ X is weakly 
E-versal). To go from a G-torsor T → Spec(K) as in Definition 3.2 to the data of 
[15, Definition 4.4] pick an integral model; to go the other way, restrict to a generic 
point of an irreducible component of Y/G.6 From the proof of Lemma 2.6, we see that 
under this correspondence, an extension K ↪→ K ′ is in E(K) if and only if any integral 
model E → Y/G is in E(Y/G). The equivalence of the two definitions now follows by 
inspection. �

In [14], Duncan and Reichstein connect versality to existence of rational points. Specif-
ically:

Theorem 3.7 (Versality and rational points, Theorem 1.1 (a,b) of [14]). Let G be a linear 
algebraic group over k and take X to be an irreducible, generically free, quasiprojective 
G-variety. Then, X is:

1. weakly versal if and only if for every G-torsor T → Spec(K), T X(K) �= ∅;
2. versal if and only if for every G-torsor T → Spec(K), K-points are dense in T X.

Remark 3.8 (Linear algebraic groups vs. smooth algebraic groups). Duncan and Reich-
stein restrict their attention to linear algebraic groups G (they also leave the assumption 
of “generically free” implicit in their statement). In [14, Remark 2.6], they state that this 
is “vitally important” for their reformulations of versality. On the other hand, a careful 
reading of [14, Sections 1-4] shows that linearity can be weakened to smoothness at the 
cost only of rendering their Theorem 1.1(b) (that versality is equivalent to the density 
of K-points in all twisted forms) potentially vacuous, as versal varieties do not exist for 
general smooth G.

Motivated by this result, along with [35, Lemma 4.15], we establish analogous claims 
about E-versality.

Theorem 3.9 (Generalized versality and special points). Let G be an algebraic group over 
k and let X be an irreducible, generically free, quasiprojective G-variety. Let E be a 
saturated class of accessory irrationalities. Then:

1. X is weakly E-versal if and only if for every G-torsor T → Spec(K) with K finitely 
generated over k, T X

(
KE)

�= ∅.

6 [15] writes Ỹ → Y for our Y → Y/G.
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2. If G is smooth, X is E-versal if and only if for every G-torsor T → Spec(K) with K
finitely generated over k, KE-points are dense in T X.

Remark 3.10 (Context for smoothness). Cartier showed that every algebraic group over 
a field k of characteristic 0 is smooth (see [32, Corollary 5.2.18]), so in this case, no 
assumption on G is needed in the second part of the theorem. We assume smoothness 
in order to reduce the proof to a Galois descent argument. More generally, it seems 
reasonable to expect that the theorem holds without any assumptions on G and k, at 
the cost of using fppf descent in lieu of Galois descent. We do not pursue this here.

Proof of Theorem 3.9. We begin by showing the first statement. Suppose that X is 
weakly E-versal. Let K be a field which is finitely generated over k and consider a 
G-torsor T → Spec(K) with integral model Y → Y/G. The G-equivariant isomorphism 
Y ×Y/G Spec(K) ∼= T induces

(Y × X)/G ×Y/G Spec(K) ∼= T X.

As X is weakly E-versal for G, there exists a G-equivariant rational correspondence C ⊆
Y × X with C/G ��� Y/G in E(Y/G). Taking the quotient of the inclusion C → Y × X

yields the morphism C/G → (Y ×X)/G of Y/G-varieties. We can restrict the morphisms 
C/G → Y/G and (Y ×X)/G → Y/G along the generic point Spec(K) → Y/G and obtain 
the following morphism of pullback diagrams, where Spec(L) denotes the generic point 
of C/G:

Spec(L) ��

����
���

���
���

��

Spec(K)

���
���

���
�

���
���

���
�

T X ��

��

��

Spec(K)

��

C/G

����
���

���
���

�� Y/G

���
���

���
�

���
���

���
�

(Y × X)/G �� Y/G

Since C/G → Y/G is in E(Y/G) (by assumption), L ∈ E(K) (by 5 of Definition 2.4). 
From Definition 2.17, there is an inclusion of K-fields L ↪→ KE . Consequently, the 
constructed KE -point

Spec
(
KE)

→ Spec(L) → T X,

shows that T X
(
KE)

�= ∅.
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Now, suppose that T → Spec(K) and Y → Y/G are as above and Spec
(
KE)

→ T X

is a KE -point. Since T X is a K-variety, there is a finite extension K ↪→ E such that 
Spec

(
KE)

→ T X factors as

Spec
(
KE)

→ Spec(E) → T X.

As E is saturated, E ∈ E(K). Now, let C/G denote the closure of Spec(E) in (Y ×X)/G

and take C ⊆ Y × X to be the preimage of C/G under the quotient map Y × X →
(Y × X)/G. Consequently, C is a G-invariant subvariety, C → Y is a G-equivariant, 
generically finite, dominant morphism (by construction), and C/G ��� Y/G is in E(Y/G)
by construction. From Lemma 3.6, we see that X is weakly E-versal.

It remains to show the second claim. First, note that for any variety Z and field 
K̃, K̃-points are dense in Z if and only if each Zariski open of Z contains a K̃-point. 
Next, in the setting of the theorem, for a Zariski open V ⊂ T X, consider the quotient 
map q : T × X → T X, along with the projection map pX : T × X → X, and set U =
pX(q−1(V )) ⊂ X.

By inspection, U ⊂ X is a G-invariant Zariski open, and V ⊂ T U . Therefore, if 
T X

(
KE)

is dense in T X, then T U
(
KE)

�= ∅ for every G-invariant Zariski open U ⊂ X. 
From our argument above, we conclude that every such U is weakly E-versal for G, and 
thus X is E-versal for G. It remains to show the converse.

Suppose that X is E-versal for G. We need to show that T X
(
KE)

is dense. As G is 
smooth, we can identify étale and fppf cohomology with coefficients in G (see e.g. [30, 
Remark III.4.8(a)]); this allows us to make arguments via Galois descent.

Recall that a (right) G-torsor T → Spec(K) with cocycle τ ∈ H1(K, G) is also a 
(left) Gτ -torsor, where Gτ is the inner twist of G over K determined by τ . We can see 
this explicitly as follows. Indeed, let Ksep denote a separable closure of K. Then, letting 
Gal(K) := AutK(Ksep), we obtain a 1-cocycle

τ : Gal(K) → G(Ksep)

from T by picking an element 0 ∈ T (Ksep). Explicitly, τ is defined to be the map such 
that for σ ∈ Gal(K)

σ0 = 0 · τ(σ)

where we write σx to denote the σ-translate of a Ksep point x of a K-variety. Note that 
τ(σ) is uniquely determined because T (Ksep) is a principal right G(Ksep)-set. Further, 
the choice of 0 determines an isomorphism of right G(Ksep)-sets

ϕ0 : G(Ksep)
∼=→ T (Ksep)

g 	→ 0 · g

The left action of G(Ksep) on itself now defines a left G(Ksep)-action on T (Ksep) via
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g · (0 · h) := 0 · gh.

By inspection, this is not equivariant for the standard Gal(K)-action on G(Ksep), but 
rather for the τ -twisted action

σ · g := τ(σ) (σg)
(
τ(σ)−1)

.

By Galois descent, just as in [32, 5.12.5.1], we conclude that T → Spec(K) is actually a 
Gτ − G bitorsor, and therefore, the twist T X carries a left action of Gτ .

Now, given a Zariski open V ⊂ T X as above, consider the Zariski open Gτ · V ⊂ T X. 
Then V

(
KE)

�= ∅ if and only if Gτ · V
(
KE)

�= ∅. Now let q : T × X → T X denote the 
quotient map, let pX : T ×X → X denote the projection, and set U := pX(q−1(V )) ⊆ X. 
Note that U is a G-invariant Zariski open by inspection. Since X is E-versal for G, U is 
weakly E-versal. By the proof of the first statement of the theorem above, we have that 
T U

(
KE)

�= ∅. To conclude, we claim that

Gτ · V = T U.

Granting this claim, we have, by the above, that V
(
KE)

�= ∅, and thus that T X
(
KE)

is dense in T X, as claimed. We prove the claim by a straightforward Galois descent 
argument. Indeed, our choice of 0 ∈ T (Ksep) determines an isomorphism

T U(Ksep) ∼= {(0 · g, u) ∈ G(Ksep) × U(Ksep)}/(0 · g, u) ∼ (0, g · u)

= {(0 · g, x) ∈ G(Ksep) × X(Ksep) | ∃[(0 · h, v)] ∈ V (Ksep) s.t. h · v = x}
/(0 · g, x) ∼ (0, g · x)

= {(0 · gh, v) ∈ G(Ksep) × X(Ksep) | [(0 · h, v)] ∈ V (Ksep)}
/(0 · g, x) ∼ (0, g · x)

= (Gτ · V )(Ksep).

By inspection, this isomorphism is Gal(K)-equivariant, and thus T U = Gτ · V as 
claimed. �

Taken together, Proposition 3.3 and Theorem 3.9 allow us to re-contextualize problems 
about the resolvent degree of algebraic groups as questions about special points on twists 
of G-varieties. Indeed, we can ask about necessary and sufficient conditions for a variety 
over K to have an E-point or a dense collection of E-points. As an example, we have the 
following, which appeared as [15, Lemma 4.7] for the case of finite G.

Lemma 3.11 (E-versality and composition). Let G be a smooth algebraic group over k, 
let E be a saturated class of accessory irrationalities which is closed under extensions, 
and let Y be a primitive G-variety which is E-versal for G. Suppose X is an irreducible, 
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generically free G-variety which admits a G-equivariant rational correspondence C ⊂
Y × X such that C → X is dominant and C/G → Y/G is in E(Y/G). Then X is 
E-versal.

Remark 3.12 (Representatives for E-versality). In contrast to the definition of E-versality, 
Lemma 3.11 allows us to test E-versality of X by looking at correspondences from the 
single G-variety Y , rather than from all G-varieties.

Proof of Lemma 3.11. For weak E-versality, let Z be a generically free G-variety. From 
Lemma 3.6, there is a G-equivariant rational correspondence D ⊆ Z × Y with D/G →
Z/G in E(Z/G). Then, we can consider C ×Y D ⊆ Z × X, which is G-invariant, and we 
see that (C ×Y D)/G → D/G → Z/G is in E(Z/G) because (C ×Y D)/G → D/G is in 
E(D/G), D/G → Z/G is in E(Z/G), and E is closed under extensions.

For E-versality, by Theorem 3.9, it suffices to show that T X(KE) is dense in T X

for any G-torsor T → Spec(K). Fix such a T . By Theorem 3.9, T Y (KE) is dense in 
T Y . By assumption, C → Y is generically finite, dominant and C/G → Y/G is in 
E(Y/G). Therefore, by the definition of KE as an E-closure, the density of T Y (KE) in 
T Y implies that T C

(
KE)

is dense in T C as well. But, the map T C → T X is dominant, 
by assumption, so we conclude that T X

(
KE)

is dense in T X as claimed. �
Theorem 3.9 connects (weak) E-versality of X for G to existence of special points 

(i.e. KE -points), but still requires one to consider twists of X by all torsors over finitely 
generated k-fields. Just as Proposition 3.3 allows us to reduce from all G-varieties X to 
those which are E-versal, the following definition will give us the language to reduce the 
class of torsors one must consider.

Definition 3.13 (E-versality for G-torsors). Let G be an algebraic group over k. Let E
be a class of accessory irrationalities. A G-torsor T → Spec(K) is E-versal for G if 
there exists any integral model Y → Y/G of T → Spec(K) such that Y is an E-versal 
G-variety.

Note that, because all integral models are birational to each other, if T → Spec(K) is 
E-versal, then every integral model Y → Y/G is E-versal. We can now restate a variant 
of Lemma 3.11 as follows:

Lemma 3.14 (An equivalent version of Lemma 3.11). Let G be a smooth algebraic group 
over k. Let E be a saturated class of accessory irrationalities that is closed under ex-
tensions. Suppose that T → Spec(K) is a G-torsor which is E-versal for G and X is a 
generically free G-variety. Then, X is E-versal if and only if T X has a dense collection 
of KE -points.

Proof. From Theorem 3.9, if X is E-versal, then T X has a dense collection of KE -points.
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Now, suppose that T X has a dense collection of KE -points and let Y → Y/G be an 
integral model of T → Spec(K) (which, as remarked above, is E-versal because T →
Spec(K) is). Let Spec

(
KE)

→ T X be a KE -point of T X. As established in the proof of 
Theorem 3.9, T X is the generic fiber of (Y ×X)/G → Y/G and we take C/G ⊆ (Y ×X)/G

to be the closure of our KE-point Spec
(
KE)

→ T X. We set C = C/G ×(Y ×X)/G (Y ×X)
and observe that C ⊆ Y ×X is a G-equivariant rational correspondence with C/G → Y/G

in E(Y/G), by construction. By assumption, Y → Y/G is E-versal and thus X is E-versal 
by Lemma 3.11. �

In another direction, we also have:

Lemma 3.15 (E-versality for non-abelian, finite, simple groups). Assume char(k) = 0. Let 
G be a non-abelian, finite, simple group G, let E be a class of accessory irrationalities, 
and let X be a smooth, irreducible, generically free G-curve over k. Then X is weakly 
E-versal for G if and only if X is E-versal for G.

Proof. By definition, E-versality immediately implies weak E-versality. Now, suppose 
that X is weakly E-versal. Let Y be a generically free G-variety with dim(Y ) ≥ 1 and 
consider a G-equivariant rational correspondence C ⊆ Y × X with C/G → Y/G in 
E(Y/G). It suffices to show that the G-equivariant map C → X is dominant. Denote 
the scheme-theoretic image of C in X by Z. Then, Z is an irreducible G-invariant 
subscheme. If dim(Z) = 1, then the map is dominant and we are done. Now, suppose 
that dim(Z) = 0. Then, Zred ∈ X is a fixed point for G. However, the stabilizer of any 
point in X is abelian [36, Theorem 1.1], hence there are no fixed points for G and thus 
dim(Z) ≥ 1. �

Let us now revisit Hilbert’s Sextic Conjecture. In light of Proposition 3.3, Theorem 3.9, 
and Lemma 3.15, we can re-state the conjecture as follows:

Conjecture 3.16 (Hilbert’s Sextic Conjecture). Let T → Spec (C(x, y)) be the A6-torsor 
associated to the Valentiner action A6 � P 2

C. For any smooth, irreducible, generically 
free A6-curve X, T X

(
C(x, y)(1)) = ∅.

Similarly, [11, Problem 9.3] for A6 can be re-stated as:

Problem 3.17 (Chernousov-Gille-Reichstein). Does there exist a smooth, irreducible, 
generically free A6-curve X with T X

(
C(x, y)Sol) �= ∅?

More generally, showing that RDk(G) > 1 is a question of obstructing the existence 
of K(1)-points for a sufficient supply of K-curves (namely, twists of G-curves over k). 
Many tools in the literature for obstructing rational points appear to be inadequate for 
this. For example, by [29, Theorem 16.1], the Brauer group of a solvably closed field is 
trivial. More generally, the same holds for H1(−, G) for any connected algebraic group 
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Cluster Generation Description Groups
Happy Family First The Mathieu Groups M11, M12, M22, M23, M24,
Happy Family Second The Leech Lattice Groups Co1, Co2, Co3, Suz, McL, HS, J2,
Happy Family Third Other Monster Subgroups Fi22, Fi23, Fi24’, Th, HN, He, B, M,
The Pariahs The Pariahs J1, J3, J4, O’N, Ru, Ly.

Fig. 1. Historical Organization of Sporadic Groups.

G without simple factors of type E8 (see [35, Theorem 1.1]); conjecturally, the same 
holds for all connected algebraic groups (see [35, Conjecture 1.4] and the discussion just 
preceding it). It would be instructive to turn this observation (that G connected implies 
H1(KSol, G) = 1) into a proof that Brauer-Manin style invariants are insufficient to 
obstruct solvable points on varieties over e.g. two-dimensional C-fields. We echo Poonen’s 
view in [32, p. 257] that “We need some new obstructions!”

4. Resolvent degree and the sporadic groups

4.1. Upper bounds on the resolvent degree of the sporadic groups

Recall that the Classification of Finite Simple Groups consists of 18 infinite families 
and 26 sporadic groups. The 26 sporadic groups are often organized as in Fig. 1.

From [35, Theorems 1.2 and 1.3], RDk(G) ≤ RDC(G) for any finite simple group. 
Thus, to determine upper bounds on the resolvent degree of the sporadic groups, it 
suffices to work over C. For each sporadic group G, we will determine a complex G-variety 
XG such that RDC(G) ≤ dimC (XG). We begin by considering a minimal dimensional 
projective representation. It is immediate that any linear representation of G yields a 
projective representation of G, however these are not the only projective representations 
of G. Indeed, there are groups Γ such that the projectivizations of linear representations 
of Γ correspond exactly to projective representations of G. Such a group Γ is called a
Schur cover of G (or sometimes a Schur representation group of G). Each sporadic group 
G is perfect, hence the Schur covers of G are isomorphic and so we simply refer to the
Schur cover of G henceforth. Explicitly, the Schur cover of G is a central extension of 
G by the Schur multiplier Sch(G) = H2 (G,C∗), which is a finite abelian group whose 
exponent divides the order of G. For more on projective representations of finite groups, 
we refer the reader to [23, Chapter 11].

Given G and a projective representation P (ρ) : G → PGL(V ) coming from a linear 
representation ρ of the Schur cover, we are not interested in just P (V ), but G-invariant 
subvarieties thereof. We can construct such invariant subvarieties by looking at the 
vanishing of G-invariant polynomials. Note that the vector space of homogeneous poly-
nomials of degree d which are invariant under the Schur cover of G is Symd

a.G (V ∨). We 

set md(ρ) = dim
(

Symd
a.G (V ∨)

)
and note that the Molien series of ρ is the generating 

function

M(ρ; t) :=
∑

md(ρ)td.

d≥0
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We now introduce notation for the minimal projective representations for each spo-
radic group and address computing the relevant Molien series.

Notation 4.1 (Representations of sporadic groups). For the groups G = M11, M23, M24, 
J1, J4, Co3, Co2, Fi22, Fi23, HS, McL, He, HN, Th, Ly, B, and M, a projective rep-
resentation of minimal dimension arises as the projectivization of an irreducible linear 
representation of G. When G is not one of HS, McL, Fi22, or B, this claim is immediate, 
as the Schur multiplier is trivial. For the cases G = HS, McL, Fi22, and B, one can 
verify this claim by inspecting the character tables of the Schur covers. We set d(G)
to be the minimal dimension of a non-trivial linear representation of G and ρG to be 
the representation corresponding to the first character χ in the ATLAS character table 
for G for which χ(1) = d(G) (note that ρG is necessarily irreducible by our minimality 
assumption). Additionally, set VG to be the vector space corresponding to ρG.

For the groups G = M22, J2, J3, Co1, Fi24’, Suz, Ru, and O’N, a projective represen-
tation of minimal dimension only arises as the projectivization of an irreducible linear 
representation of the Schur cover of G. Correspondingly, we set a(G) = |Sch(G)|, d(G)
to be the minimal dimension of a non-trivial representation of the Schur cover (denoted 
by a.G), ρG to be the representation corresponding to the first character in the ATLAS

character table for a.G for which χ(1) = d(G) (as above, our minimality assumption 
guarantees that ρG is irreducible), and VG to be the vector space corresponding to ρG.

When G is clear from the context, we simply write a and d. Additionally, we note 
that the order of the characters in the ATLAS [12] is the same as in GAP character table 
library [4].

Remark 4.2 (Schur multiplier M22). In [7, p.739-741], it is incorrectly claimed that 
a (M22) = 3. In the correction [8], it is incorrectly asserted that a (M22) = 6. Finally, [28, 
Section V] correctly establishes that Sch (M22) ∼= Z/12Z.

Remark 4.3 (The unique case of M12). There is another error in [7, p.739-741], where they 
incorrectly claim that a (M12) = 1. However, [8] correctly establishes that a (M12) = 2.

An observant reader may have noticed that M12 does not appear in Notation 4.1. 
While we will use the same notation conventions, ρM12 is not a projective representation 
of minimal dimension for M12. While the Schur cover 2. M12 admits a 10-dimensional 
linear representation, we will instead take ρM12 to be the first 11-dimensional linear 
representation of ρM12 . We will justify this choice in Remark 4.11, after we prove Theo-
rem 4.7.

Remark 4.4 (Computation of Molien series / Molien series coefficients). For the sporadic 
groups G where |G| and d(G) are sufficiently small (M11, M12, M22, M23, M24, J1, J2, 
J3, Co3, Co2, Co1, Suz, HS, McL, Ru, and He), we compute the Molien series M (ρG; t)
as a rational function using the character table library [4] in SageMath by accessing GAP. 
For the remaining groups G (J4, Fi22, Fi23, Fi24’, HN, Th, O’N, Ly, B, and M), we store 
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data for ρG from the character table library [4], which we then use to compute the first 
20 coefficients m1 (ρG) , . . . , m20 (ρG) of M (ρG; t) in SageMath. The SageMath script, 
data files (for J4, Fi22, Fi23, Fi24’, HN, Th, O’N, Ly, B, and M), and output files (for all 
sporadic groups), are available at

https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups,

or by downloading the source package on the arXiv version of this work. Additionally, 
for every sporadic group G, we record the beginning of the power series expansion of 
M (ρG; t) in Appendix A.

For each sporadic group G, Fig. 2 records dim (P (VG)) and a list of the degrees of 
the invariants we will use in what follows. Note that ordering of the groups in Fig. 2
is determined by dim (P (VG)). Our construction for J2 does not require any invariants, 
so we leave the corresponding entry blank. Additionally, our proof will use the minimal 
dimensional permutation representation for the sporadic groups other than M11, M12, 
M23, and M24, hence Fig. 2 includes dim (PermG) as well. For each G, we denote this 
representation by PermG and observe that dim (PermG) = [G : H], where H is a maximal 
subgroup of G of maximal order. For details on maximal subgroups, see [13] when G = M, 
[42] when G = Fi22, Fi23, Fi24’, J4, Th, and B, [43] for a survey, and [12]) for all other 
cases.

We now introduce the notation required for Theorem 4.7.

Notation 4.5 (Notation for Theorem 4.7). Let G be a sporadic group. When md (ρG) = j, 
we denote a basis for Symd

a.G (V ∨
G ) by fG

d,1, . . . , fG
d,j . When j = 1, we simply write fG

d . 
Without loss of generality, we order the basis such that the basis elements which are 
algebraically independent from lower degree invariants are listed first; see Remark 4.6
for more details. When the group G is clear from context, we omit the superscript. Using 
this notation, we now define the relevant G-invariant subvarieties of VG. Specifically, we 
will define a variety XG = ZG ∩ YG. We begin with the cases where YG is non-trivial:

ZM11 = V (f4,1) , YM11 = V (f2, f3) ,

ZM12 = V (f4,1) , YM12 = V (f2, f3) ,

ZM23 = V (f4,1, f5,1) , YM23 = V (f2, f3) ,

ZHS = V (f4,1, f5) , YHS = V (f2) ,

ZMcL = V (f5) , YMcL = V (f2) ,

ZM24 = V (f4,1, f5,1) , YM24 = V (f2, f3) ,

ZCo3 = V (f6,1) , YCo3 = V (f2) ,

ZCo2 = V (f8,1) , YCo2 = V (f2) ,

ZCo1 = V (f12,1) , YCo1 = V (f2) ,

https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups
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Group G dim (P (VG)) Degrees of Relevant Invariants dim (PermG)
J2 5 N/A 100

M11 9 2, 3, 4 11
M22 9 4 22
M12 10 2, 3, 4 12
Suz 11 12 1782
J3 17 6 85

M23 21 2, 3, 4, 5 23
HS 21 2, 4, 5 100

McL 21 2, 5 275
M24 22 2, 3, 4, 5 24
Co3 22 2, 6 276
Co2 22 2, 8 2300
Co1 23 2, 12 98280
Ru 27 4 4060
He 50 3, 4 2058
J1 55 2, 3, 4, 4 266

Fi22 77 2, 6, 8 3510
HN 132 2, 6, 7 1140000
Th 247 2, 8, 8 143127000

O’N 341 6, 6, 6 122760
Fi23 781 2, 3, 4, 5, 5 31671
Fi24’ 782 3, 6, 6 306936

J4 1332 4, 6, 6, 7 173067389
Ly 2479 6, 6, 6, 6 8835156
B 4370 2, 4, 6, 8, 8 13571955000
M 196882 2, 3, 4, 5, 6, 6, 6, 7 97239461142009186000

Fig. 2. Dimensions of Projective Representations and Degrees of Invariants.

ZJ1 = V (f3, f4,1, f4,2) , YJ1 = V (f2) ,

ZFi22 = V (f6, f8,1) , YFi22 = V (f2) ,

ZHN = V (f6, f7) , YHN = V (f2) ,

ZTh = V (f8,1, f8,2) , YTh = V (f2) ,

XM11 = V (f2, f3, f4,1) ⊆ P (VM11) = P 9,

XM12 = V (f2, f3, f4,1) ⊆ P (VM12) = P 10,

XM23 = V (f2, f3, f4,1, f5,1) ⊆ P (VM23) = P 21,

XHS = V (f2, f4,1, f5) ⊆ P (VHS) = P 21,

XMcL = V (f2, f5) ⊆ P (VMcL) = P 21,

XM24 = V (f2, f3, f4,1, f5,1) ⊆ P (VM24) = P 22,

XCo3 = V (f2, f6,1) ⊆ P (VCo3) = P 22,

XCo2 = V (f2, f8,1) ⊆ P (VCo2) = P 22,

XCo1 = V (f2, f12,1) ⊆ P (VCo1) = P 23,

XJ1 = V (f2, f3, f4,1, f4,2) ⊆ P (VJ1) = P 55,

XFi22 = V (f2, f6, f8,1) ⊆ P (VFi22) = P 77,
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XHN = V (f2, f6, f7) ⊆ P (VHN) = P 132,

XTh = V (f2, f8,1, f8,2) ⊆ P (VTh) = P 247.

In the following cases, we have XG = ZG and YG = P (VG):

ZM22 = XM22 = V (f4) ⊆ P (VM22) = P 9,

ZSuz = XSuz = V (f12) ⊆ P (VSuz) = P 11,

ZJ3 = XJ3 = V (f6) ⊆ P (VJ3) = P 17,

ZRu = XRu = V (f4) ⊆ P (VRu) = P 27,

ZHe = XHe = V (f3, f4) ⊆ P (VHe) = P 50,

ZO’N = XO’N = V (f6,1, f6,2, f6,3) ⊆ P (VO’N) = P 341,

ZFi23 = XFi23 = V (f2, f3, f4,1, f5,1, f5,2) ⊆ P (VFi23) = P 781,

ZFi24’ = XFi24’ = V (f3, f6,1, f6,2) ⊆ P (VFi24’) = P 782,

ZJ4 = XJ4 = V (f4, f6,1, f6,2, f7,1) ⊆ P (VJ4) = P 1332,

ZLy = XLy = V (f6,1, f6,2, f6,3, f6,4) ⊆ P (VLy) = P 2479,

ZB = XB = V (f2, f4,1, f6,1, f8,1, f8,2) ⊆ P (VB) = P 4370,

ZM = XM = V (f2, f3, f4,1, f5,1, f6,1, f6,2, f6,3, f7,1) ⊆ P (VM) = P 196882.

In the exceptional case of J2, we further have that XJ2 = ZJ2 = YJ2 = P (VJ2) = P 5.

Remark 4.6 (Non-uniqueness of XG, YG, ZG). We note that the XG, YG, and ZG are 
only defined up to a choice of invariant polynomials. As an example, consider the case 
G = Co3. First, note that m2 (ρCo3) = 1 and thus f2 is unique up to a constant. Next, 
m4 (ρCo3) = 1 and thus the only degree four invariant, up to scaling, is (f2)2. Finally, 
m6 (ρCo3) = 2 and so we take f6,1 to be any polynomial in Sym6

Co3

(
V ∨

Co3

)
\Span

{
(f2)3

}
and f6,2 to be any polynomial in Span

{
(f2)3

}
. However, all of the arguments that 

follow depend only on the degrees of the intersections defining XG, YG, and ZG and are 
consequently independent of this choice.

We are now ready to give upper bounds on the resolvent degree of the sporadic groups.

Theorem 4.7 (Bounds on resolvent degree of the sporadic groups). For each sporadic 
group G, we have

RDk(G) ≤ dimC(XG),

for every field k. Further, for G not equal to M11, M12, M23, M24, the variety XG is 
RD≤dG-versal for dG = RDC(deg(ZG)).
C
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Remark 4.8. We expect that the variety XG is RD≤dG

k -versal for the Mathieu groups 
M11, M12, M23, M24, but proving this requires new techniques.

We will also give an explicit form of Theorem 4.7 in Corollary 4.9.

Proof. As observed above, by [35, Theorems 1.2 and 1.3], it suffices to prove the 
theorem for k = C. When G is one of M11, M12, M23, or M24, the upper bounds 
on RDC(G) are classical. In these cases, Mn < Sn and the bounds follow from 
the inequality RDC(Mn) ≤ RDC(Sn) [16, Lemma 3.13] and the classical upper 
bounds on RDC(Sn) (see [39, Theorem 3.7] for the construction and the bounds on 
S23, S24; see [16,39] for modern references for S11, S12 or [22,38] for classical refer-
ences).

We now restrict to the case where G is not one of M11, M12, M23, M24. Note that 
dG ≤ dimC (XG), hence Proposition 3.3 yields that we need only show that each XG

is RD≤dG

C -versal. Since finite groups are smooth, Theorem 3.9 allows us to reduce to 
showing that a) XG is generically free, and b) for every G-torsor T → Spec(K) with K
finitely generated over C, K(dG)-points are dense in T XG.

We start with generic freeness. Since G is simple, and the representation ρG is ir-
reducible, we see that P (VG) has no fixed points and thus is a faithful G-variety. By 
Lemma 2.15, it suffices to show that XG is irreducible, but this follows for degree rea-
sons. Indeed, for all simple sporadic G not equal to M11, M12, M23, or M24, the degree 
of XG is less than the cardinality of the smallest permutation representation of G (see 
Fig. 2 and preceeding discussion). Since XG has at most deg XG irreducible components, 
and since G permutes them, we conclude that XG is irreducible, and thus generically 
free.

To apply Theorem 3.9 to conclude the RD≤dG

C -versality of XG, we just need to 
show that K(dG) points are dense in every twisted form of XG. As observed in 
[35, Proof of Proposition 14.1 (p.33)], the G-equivariant closed immersion XG ↪→
P (VG) naturally induces the closed immersion T XG ↪→ TP (VG). Note that TP (VG)
is a Severi–Brauer variety and thus splits over KSol ⊆ K(dG) by the Merkurjev-
Suslin theorem [29]. It follows that T XG is an intersection of hypersurfaces in P (VG)
over K(dG) of the same degrees as for XG. Indeed, the same argument applies to 
T YG ↪→ TP (VG) and T ZG ↪→ TP (VG) and we have T XG = T ZG ∩ T YG over 
K(dG).

Now, observe that for each G, we either have that YG = P (VG) (and thus XG =
ZG) or YG = V

(
fG

2
)
. In the first case, we have deg (XG) = deg (ZG) = dG, and the 

density of K(dG)-points is immediate. In the second case, YG is a quadric hypersurface 
and XG = YG ∩ ZG, hence [35, Lemma 14.4(b)] yields that K(dG)-points are dense on 
XG. �
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Corollary 4.9 (Explicit form of Theorem 4.7). For any field k, we have

RDk(J2) ≤ 5, RDk(M24) ≤ 18, RDk(He) ≤ 48, RDk(Fi23) ≤ 776,

RDk(M11) ≤ 6, RDk(HS) ≤ 18, RDk(J1) ≤ 51, RDk(Fi24’) ≤ 779,

RDk(M12) ≤ 7, RDk(McL) ≤ 19, RDk(Fi22) ≤ 74, RDk(J4) ≤ 1328,

RDk(M22) ≤ 8, RDk(Co3) ≤ 20, RDk(HN) ≤ 129, RDk(Ly) ≤ 2475,

RDk(Suz) ≤ 10, RDk(Co2) ≤ 20, RDk(Th) ≤ 244, RDk(B) ≤ 4365,

RDk(J3) ≤ 16, RDk(Co1) ≤ 21, RDk(O’N) ≤ 338, RDk(M) ≤ 196874.

RDk(M23) ≤ 17, RDk(Ru) ≤ 26,

Remark 4.10 (Further expectations). In the cases where G is one of M22, Ru, He, Fi23, 
or Fi24’, we expect that we can do slightly better. Indeed, we believe that we can replace 
XG, YG, and ZG with

Z̃M22 = V (f6) , ỸM22 = V (f4) ,

Z̃Ru = V (f8) , ỸRu = V (f4) ,

Z̃He = V (f4, f5) , ỸHe = V (f3) ,

Z̃Fi23 = V (f4, f5,1, f5,2, f6) , ỸFi23 = V (f2, f3) ,

Z̃Fi24’ = V (f6,1, f6,2, f9) , ỸFi24’ = V (f3) ,

X̃M22 = V (f4, f6) ⊆ P (VM22) = P 9,

X̃Ru = V (f4, f8) ⊆ P (VRu) = P 27,

X̃He = V (f3, f4, f5) ⊆ P (VHe) = P 50,

X̃Fi23 = V (f2, f3, f4, f5,1, f5,2, f6) ⊆ P (VFi23) = P 781,

X̃Fi24’ = V (f3, f6,1, f6,2, f9) ⊆ P (VFi24’) = P 782.

In these cases, one can use the polar cone methods of [39] to construct linear subvarieties 
of suitable dimension and satisfactorily low resolvent degree on each ỸG. However, new 
methods are required to show that each X̃G = ỸG ∩ Z̃G is generically free.

Remark 4.11 (The unique case of M12, II). As noted in Remark 4.3, ρM12 is the only 
case where we are not using a projective representation of minimal dimension. As we 
have seen, we constructed

XM12 = V (f2, f3, f4) ⊆ P 10 = P (VM12) .

Now, let ρ̃M12 be the first 10-dimensional representation of the Schur cover 2. M12. The 
lowest degree invariants of ρ̃M12 have degrees 6, 8, 8, and 8 respectively. Consequently, 
the best analogous construction would yield

X̃M12 = V (f6) ⊆ P 9 = P
(

ṼM12

)
.
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Since dim (XM12) < dim
(

X̃M12

)
, XM12 is the preferred construction.

For every other sporadic group G with non-trivial Schur cover a.G, either there is 
not a lower dimensional projective representation or the dimension of the new projective 
representation is small enough to outweigh any differences in the invariant theory.

4.2. Context for sporadic group bounds

We conclude by providing additional context for these numerical results and connect 
the bounds for the Mathieu groups to known bounds for symmetric groups.

Mathieu groups and symmetric groups As noted in Section 1, RDk(G) for finite simple 
groups has only been addressed in the literature when G is a cyclic group (for which 
RDk ≡ 1 by Kummer theory), an alternating group [21,39,44], when G = W (E6)+, 
W (E7)+, or W (E8)+ (see [16, Section 8] for E6 and E7, see [35, Proposition 15.1] for 
E6, E7, and E8), or when G = PSL(2, 7) ([24], [15, Proposition 4.13]). Nonetheless, each 
of the Mathieu groups have explicit embeddings Mn ↪→ Sn for n = 11, 12, 22, 23, 24 and 
thus RDk(Mn) ≤ RDk(Sn) [16, Lemma 3.13]. At present, this paper contributes nothing 
new for M11, M12, M23, M24. In the case of M22, our bound of 8 significantly beats the 
bound RDC(S22) ≤ 16 [39, Theorem 3.7]. As remarked above, it would be interesting to 
confirm that for M11, M12, M23, M24, the variety XG is also RD≤dG

C -versal. It would also 
be interesting to know for which n and which fields k we have RDk(Mn) < RDk(Sn), 
and for which n and which fields k we have RDk(Mn) = RDk(Sn).

Relations between the sporadic groups For a finite group H and a subgroup H ′, we 
have RDk(H ′) ≤ RDk(H) [16, Lemma 3.13]. Additionally, for a short exact sequence of 
algebraic groups

1 → A → B → C → 1,

we have that RDk(B) ≤ max {RDk(A), RDk(C)} ([16, Theorem 3.3] for finite groups, 
[35, Proposition 10.8] in general).

For any sporadic group S which is a subquotient of another sporadic group G, with 
H < G and S = H/H ′, we only have the inequalities

RDk(H) ≤ RDk(G), RDk(H) ≤ max {RDk(S), RDk(H ′)} .

Nonetheless, it is natural to ask how the bounds given by dim (XS) and dim (XG) in 
Theorem 4.7 compare.

The ATLAS contains a table of which sporadic groups S are subquotients of another 
sporadic group G [12, p.238], which we include below. Let (G, S) be the cell corresponding 
to row G and column S. Note that (G, S) has a + with a green background if S is a 
subquotient of G; (G, S) has a − with a red background if S is not a subquotient of G; 
(G, S) has a • with a yellow background when G = S; and (G, S) is black when |G| < |S|.
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Fig. 3. Sporadic Groups Subquotient Table from the ATLAS, I. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

We implement two changes from the table in the ATLAS. Firstly, at the time of 
publishing the ATLAS, it was unknown if J1 is a subquotient of M. Wilson showed 
that J1 is not a subgroup of M in [41], which completed the proof that J1 is not a 
subquotient of M, and we have updated the (M, J1) cell as a result. Secondly, due to 
page size restrictions, we split the single table in the ATLAS into two smaller tables: 
Figs. 3 and 4.

Finally, we note that

dim (XJ2) < dim (XM11) ≤ dim (XM12) < dim (XM22) < dim (XSuz) < dim (XJ3)

< dim (XM23) < dim (XM24) = dim (XHS) < dim (XMcL) < dim (XCo3) = dim (XCo2)

< dim (XCo1) < dim (XRu) < dim (XHe) < dim (XJ1) < dim (XFi22) < dim (XHN)

< dim (XTh) < dim (XO’N) < dim (XFi23) < dim (XFi24’) < dim (XJ4) < dim (XLy)

< dim (XB) < dim (XM) ,

and thus one can verify using Figs. 3 and 4 that whenever S is a subquotient of G, we 
have dim (XS) ≤ dim (XG).

Linear representations, projective representations, and XG Let G be a finite simple 
group. Every non-trivial linear and projective representation of G is faithful, so the 
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Fig. 4. Sporadic Groups Subquotient Table from the ATLAS, II.

Group G dim (WG) dim (P (VG)) dim (XG)
M11 10 9 6
M12 11 10 7
M23 22 21 17
HS 22 21 18

McL 22 21 19
M24 23 22 18
Co3 23 22 20
Co2 23 22 20
He 51 50 48
J1 56 55 51

Fi22 78 77 74
HN 133 132 129
Th 248 247 244

Fi23 782 781 776
J4 1333 1332 1328
Ly 2480 2479 2475
B 4371 4370 4365
M 196883 196882 196874

Fig. 5. Minimal Linear Representations, Projective Representations, and XG.

Group G dim (WG) dim (P (VG)) dim (XG) a.G

J2 14 5 5 2. J2

M22 20 9 8 12. M22

Suz 143 11 10 6. Suz
J3 85 17 16 3. J3

Co1 276 23 21 2. Co1

Ru 378 27 26 2. Ru
O’N 10944 341 338 3. O’N
Fi24’ 8671 782 779 3. Fi24’

Fig. 6. Minimal Linear Representations, Projective Representations, XG, and the Schur Covers.

corresponding quotient maps yield upper bounds on RDk(G) [15, Example 4.6]. For each 
sporadic group G, we now compare XG with a minimal-dimensional linear representation 
WG and a minimal-dimensional projective representation P (VG) (continuing with the 
notation of Notation 4.1). In the cases where the linear representation comes from the 
Schur cover, we include the Schur cover as well (see Fig. 5 and 6).
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Group Initial Terms for the Power Series Expansion of M (ρG; t)
J2 1 + t12 + t20 + 2t24 + t28 + 2t30 + 3t32 + t34 + 4t36 + 2t38 + O

(
t40)

M11 1 + t2 + t3 + 2t4 + 3t5 + 5t6 + 6t7 + 11t8 + 16t9 + 26t10 + 38t11 + 61t12 + 91t13 + O
(
t14)

M12 1 + t2 + t3 + 2t4 + 2t5 + 5t6 + 4t7 + 9t8 + 10t9 + 17t10 + 20t11 + 36t12 + 39t13 + 67t14 + O
(
t15)

M22 1 + t4 + t6 + 2t8 + 3t10 + 6t12 + 9t14 + 15t16 + 26t18 + O
(
t20)

Suz 1 + t12 + t18 + 3t24 + 3t30 + 7t36 + O
(
t40)

J3 1 + t6 + t9 + 10t12 + 26t15 + 143t18 + 680t21 + 3310t24 + 14229t27 + 55826t30 + O
(
t33)

M23 1 + t2 + t3 + 2t4 + 3t5 + 6t6 + 9t7 + 17t8 + 27t9 + 49t10 + 86t11 + 159t12 + 292t13 + O
(
t14)

HS 1 + t2 + 2t4 + t5 + 5t6 + 3t7 + 12t8 + 9t9 + 29t10 + 28t11 + 77t12 + 87t13 + 220t14 + O
(
t15)

McL 1 + t2 + t4 + t5 + 2t6 + 3t7 + 5t8 + 6t9 + 10t10 + 14t11 + 21t12 + 29t13 + 48t14 + 70t15 + O
(
t16)

M24 1 + t2 + t3 + 2t4 + 2t5 + 5t6 + 5t7 + 11t8 + 14t9 + 25t10 + 35t11 + 65t12 + 89t13 + O
(
t14)

Co3 1 + t2 + t4 + 2t6 + 3t8 + t9 + 5t10 + 2t11 + 9t12 + 3t13 + 14t14 + 7t15 + 23t16 + 13t17 + O
(
t18)

Co2 1 + t2 + t4 + t6 + 2t8 + 3t10 + t11 + 5t12 + t13 + 7t14 + 2t15 + 11t16 + 3t17 + 16t18 + O
(
t19)

Co1 1 + t2 + t4 + t6 + t8 + t10 + 2t12 + 2t14 + 3t16 + 4t18 + O
(
t20)

Ru 1 + t4 + 2t8 + 6t12 + 2t14 + 22t16 + 27t18 + 154t20 + 439t22 + 1966t24 + 7189t26 + O
(
t28)

He 1 + t3 + t4 + t5 + 4t6 + 5t7 + 13t8 + 30t9 + 82t10 + 245t11 + 907t12 + 3424t13 + O
(
t14)

J1 1 + t2 + t3 + 8t4 + 34t5 + 361t6 + 2820t7 + 22346t8 + 156939t9 + 1021469t10 + O
(
t11)

Fi22 1 + t2 + t4 + 2t6 + 5t8 + t9 + 13t10 + 4t11 + 60t12 + 31t13 + 488t14 + 912t15 + O
(
t16)

HN 1 + t2 + t4 + 2t6 + t7 + 5t8 + 6t9 + 27t10 + 92t11 + 637t12 + 5018t13 + 47239t14 + O
(
t15)

Th 1 + t2 + t4 + t6 + 4t8 + 15t10 + 50t11 + 1854t12 + 31610t13 + 607473t14 + O
(
t15)

O’N 1 + 16t6 + 426595t9 + 14039408007t12 + 230067642077481t15 + O
(
t18)

Fi23 1 + t2 + t3 + 2t4 + 3t5 + 9t6 + 15t7 + 57t8 + 324t9 + 7961t10 + 456255t11 + O
(
t12)

Fi24’ 1 + t3 + 3t6 + 11t9 + 355t12 + 17843536t15 + 1848868683076t18 + O
(
t21)

J4 1 + t4 + 2t6 + 2t7 + 31t8 + 521t9 + 60960t10 + 7118797t11 + 795955946t12 + O
(
t13)

Ly 1 + 23t6 + 21041t7 + 697156t8 + 191631120t9 + 47708455027t10 + O
(
t11)

B 1 + t2 + 2t4 + 3t6 + 7t8 + 20t10 + 3t11 + 243t12 + 8164t13 + 2665262t14 + O
(
t15)

M 1 + t2 + t3 + 2t4 + 2t5 + 6t6 + 6t7 + 16t8 + 27t9 + 68t10 + 182t11 + 956t12 + O
(
t13)

Fig. 7. Power Series Expansions.

Data availability

We have shared the link to our data and code at the Attach File step.

Appendix A. Power series expansions of Molien series

For each sporadic group G, we record the initial terms of the power series expansions 
of M (ρG; t) in Fig. 7.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /
10 .1016 /j .jalgebra .2024 .02 .025.
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