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1. Introduction

What is the least d for which a solution of the general degree n polynomial admits
a formula using only (algebraic) functions of d or fewer variables? As Abel realized, the
general degree n polynomial has Galois group S,, and this question, in modern language,
asks for the resolvent degree of the symmetric group, denoted

RD¢ (Sn) = RDc¢ (An) =: RDc¢ (Tl),

an invariant first introduced independently by Brauer [3] and Arnol’d-Shimura [1]. To
the best of our knowledge, Klein was the first to consider this question for other finite
groups, most notably the group PSL (2,F;) [24]. Note that for a finite group G with
Jordan-Holder decomposition {G1,...,Gs}, [16, Theorem 3.3] yields that

RDy(G) < max {RDx(G1),...,RDp(Gs)},

with equality if every G; can be realized as a subgroup of G.”
Following Klein and the classification of finite simple groups, one is led to the following
question [16, Problem 3.5]:

Problem 1.1 (RD(G) for finite simple G). Compute the resolvent degree of all finite
simple groups G.

To date, Problem 1.1 has only been addressed by providing upper bounds on RDy(G)
when G is a cyclic group (in which case RD;(G) = 1), an alternating group (see [21,39,44],

2 In fact, it seems reasonable to expect that the inequality can be made into an equality without assump-
tions on G.
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or [20,22,24-27,38,40] for classical references), when G is a simple factor of a Weyl group
of type Eg, E7, or Eg [15,16,35], or when G = PSL(2,F7) (see [24] for the classical
reference or [15] for a modern version).

The Classification of Finite Simple Groups says that a finite simple group G falls into
one of four categories:

. G is cyclic of prime order;
. G is an alternating group (4,,n > 5);
. G is a simple group of Lie type (of which there are 16 families); or

=~ W N

. G is one of 26 finite simple groups that do not belong to one of the infinite families
above.

The 26 groups in (4) are known as the sporadic groups. In this paper, we investigate
Problem 1.1 by giving upper bounds on RDy(G) for all sporadic groups G. For each
group G, we use the invariant theory of a projective representation over C of minimal
dimension to construct a complex G-variety Xg with the property that RDg(G) <
dim¢ (Xg). For G one of the Mathieu groups Mi1, My2, Mas, Moy, we prove nothing new:
the projective representation in these cases is just the projectivization of the permutation
representation, X¢ is the vanishing locus of the first four (My1,Mi2) or five (Mas, May)
elementary symmetric polynomials, and the bounds on RDy(G) follow from the bounds
on RDy(S,) which appear previously in the literature (with S7; and Si2 in [38], and
Sa3 and Soy in [39]). Our primary interest is thus the remaining 22 sporadic groups.
Here, our bounds appear to be genuinely new, and we obtain them by proving that the
variety X¢g is “RDéd—versal” for d < dimc¢(X¢) (see Definition 3.2, Lemma 3.6, and
Theorem 4.7 for the construction of X¢), from which the bound on RDy(G) follows by
[16, Proposition 3.10]. More explicitly, we have:

Corollary 1.2 (Appears as Corollary 4.9: explicit form of Theorem 4.7). For any field k,

we have
RDk(J5) <5, RDp(Mag) <18, RDj(He) <48,  RDy(Fiy) < 776,
RD(My) <6,  RD.(HS) <18, RDj(J1) <51, RDy(Fiss') < 779,
RD,(Myz) <7, RD(McL) <19, RDy(Fig) < 74, RD,(J,4) < 1328,
RD;,(Ms3) <8, RDy(Cos) <20, RD,(HN) <129, RD(Ly) < 2475,
RDj(Suz) <10, RDy(Coy) <20, RD.(Th) <244,  RD4(B) < 4365,
RDy(J3) <16, RDg(Coy) <21, RD;(O’N) < 338, RD(M) < 196874.
RDy(Ma3) <17,  RDy(Ru) < 26,

The proof of Theorem 4.7 is comprised of two distinct parts, which are set up in
Sections 3 and 4, respectively. First, in [16, Definition 3.8], notions of solvable versality
and RDy-versality for finite groups G were introduced. In [15], this was generalized by
defining 1) a notion of a class of accessory irrationalities € [15, Definition 4.1] and, given
such a class £, by defining 2) a notion of E-versality [15, Definition 4.4]. A connection
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to resolvent degree was briefly discussed in [15, Paragraph 4.1.3 and Lemma 4.9], along
with a discussion of historical roots of these notions of generalized versality and a call to
better understand them [15, Remark 4.10]. We build on this framework here, introducing
new examples of classes of accessory irrationalities £ = RDEd (“accessory irrationalities
of resolvent degree at most d”) which have been implicit in the literature, and broadening
[15, Definition 4.4] and the attendant lemmas to allow for arbitrary algebraic groups G.

Second, Duncan and Reichstein [14, Theorem 1.1 (a,b)] reframed versality in terms of
rational points on twisted forms. Building on this, we connect the above generalizations
of versality to the existence of “special points”—a catch-all term we use to encompass
points defined via any specified class £ of accessory irrationalities—as in Theorem 1.3.
This perspective, with £ = RD,%d7 is implicit in [35, Lemma 14.5], and our hope is that
by making it explicit, we can make it more widely known and used. Concretely, for a
field K and a class of accessory irrationalities £, let K¢ denote an &-closure of K (see
Section 2.2).

Theorem 1.3 (Appears as Theorem 3.9: generalized versality and special points). Let G
be an algebraic group over k and let X be an irreducible, generically free, quasiprojective
G-variety. Let £ be a class of accessory irrationalities. Then:

1. X is weakly E-versal if and only if for every G-torsor T — Spec(K) with K finitely
generated over k, T X (K¢) #0.

2. If G is smooth, X is E-versal if and only if for every G-torsor T — Spec(K) with K
finitely generated over k, K€-points are dense in T X.

In Section 4, we apply the framework of £-versality outlined in Section 3 to the
22 sporadic groups not equal to My1, Mi2, Mog, or May. More specifically, we use the
invariant theory of a projective representation for each sporadic group G to construct
a complex variety X which we then show is RDédG—versal for some dg < dime (Xg).
Results of Reichstein, namely [35, Theorems 1.2, 1.3], then allow us to conclude the
upper bounds on RDy(G) for all fields k.

Outline of the paper The remainder of this paper proceeds as follows. In Section 2,
we introduce the relevant background on torsors (Section 2.1), accessory irrationalities
(Section 2.2) and resolvent degree (Section 2.3). In Section 3, we recall the framework of
E-versality and connect it to the existence of £-points. In Section 4, we establish upper
bounds on the resolvent degree of the sporadic groups (Section 4.1) and understand these
bounds in terms of the prior literature (Section 4.2).

Supplementary materials Some results in this paper rely on calculations performed with
GAP [18] and SageMath [37]. Along with this paper, we have included supplementary files
which can be used to verify all computations. They can be found on the arXiv submission
of this paper, as well as at the following web address:
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https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups.

In addition to the SageMath script, we have also included the relevant data and outputs
as plain text files. The supplementary files on the arXiv can be accessed by downloading
the source package.

Correctness of information for sporadic groups The computations for the Molien se-
ries (or the coefficients thereof) for projective representations of sporadic groups in this
project rely on the GAP character table library [4] of the computer algebra system GAP
[18]. We refer the reader to [5] for details on correctness, while noting the excerpt “all
character tables contained in the ATLLAS, incorporating the corrections, and many more,
are stored electronically in the character table library [4] of the computer algebra system
GAP [19]”

Conventions

1. We define a K-variety to be a quasiprojective scheme of finite type over K. We do
not require varieties to be reduced or irreducible.

2. For a collection of homogeneous polynomials {f1,..., fs} C K [zo,...,z,], we write
V (f1,..., fs) for the subvariety of P7 determined by the (scheme-theoretic) intersec-
tion f1 =---= fs =0.

3. We denote the K-points of a variety X by X (K).

4. Unless otherwise specified, when we refer to an algebraic group, we mean an arbitrary
algebraic group (it need not be finite, linear, nor smooth).

5. Given a field K, we denote a separable closure of K by K®°P.

6. For maps between varieties, we denote regular morphisms by —, and rational maps
by --».

Acknowledgments The authors would like to thank Aaron Landesman and Daniel Litt
for helpful comments on a draft, and Alice Silverberg for help with a reference. The
authors thank the anonymous referee for helpful comments and suggestions.

2. Background

In this section, we recall the necessary background on torsors, accessory irrationalities,
and resolvent degree. We fix a ground field k.

2.1. Torsors
Consider an algebraic group G over k, i.e. a group scheme of finite type over k.

We refer the reader to [32, Chapter 5] for a good summary and list of references for
algebraic groups. For example, recall that results of Chow and Conrad (see e.g. [32,
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Theorem 5.2.20]) show that G is automatically a quasi-projective k-scheme. Let X be a
quasiprojective G-variety over k. In this section, K always denotes a finitely generated
k-field.

Definition 2.1 (G-torsors). A right (respectively, left) G-torsor over X is a flat morphism
Y — X of k-schemes such that G acts on Y on the right (respectively, left) by o : GXY —
Y and such that the map

GXY —=>Y xxY

(9:y) = (a(g,9),9),

is an isomorphism. We say that the G-torsor Y — X is split if it admits a section; this
is equivalent to its class [Y] in H'(k, G) being trivial.

Next, we introduce twisted varieties.

Definition 2.2 (Twists). Let G be an algebraic group over k. Let T — Spec(K) be a
G-torsor. G acts on T x X diagonally and yields a G-torsor T x X — T X. We say 1 X
is the twist of X by T

Note that our assumption of quasiprojectivity of X implies that 7 X is well-defined
as the geometric quotient of 7' x X by G see [32, Section 5.12.5] for details when G is
smooth, and [17, Proposition 2.12] in general.

In Section 3, we will want to move interchangeably between torsors over finitely gen-
erated k-fields and their integral models.

Definition 2.3 (Integral models). Given a G-torsor T' — Spec(K) over k, an integral
model of T' — Spec(K) is a morphism Y — Y/G, where Y is a generically free G-variety
with k (Y/G) = K, along with an isomorphism Y xy ¢ Spec(K) = T.*

For further background on G-torsors, we refer the reader to [30, Ch. 3, Sec. 4] and
[32, Section 5.12] for general results and to [35, Section 10] for connections of G-torsors
to essential dimension and resolvent degree.

2.2. Accessory irrationalities

Accessory irrationalities appear prominently in work of Klein [25] (see also [24,26,27]
and Chebotarev [9,10]). The first formal definition of which we are aware appears in
[15, Definition 4.1] in the language of branched covers. We recall this here, introduce
an equivalent formulation in the language of field extensions, give new examples of &,

3 Note that our assumption that k(Y/G) = K implies that Y/G is irreducible. In particular, all integral
models are birational to each other.
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and introduce the notion of a closure of a field with respect to a class of accessory
irrationalities (Definition 2.17).

Following [15, 4.1.1], we consider branched covers p: Y — X of normal k-varieties, i.e.
dominant, finite maps. More generally, we will use branched cover to refer to a generically
finite, dominant rational map p: Y --+ X. Branched covers form a category in the usual
fashion, and they are preserved under pullback in the following sense: if f: X' — X is
any map of normal k-varieties, then we denote by f*Y the normalization of Y x x X’
and observe that f*p: f*Y — X' is again a branched cover.

Definition 2.4 (Definition 4.1 of [15]). Let k be a field. Let Var) denote the category of
normal k-varieties. Let

Bran: (Var})°” — Cat

be the functor? which sends a finite type normal k-scheme X to its category of branched
covers. A class of accessory irrationalities £ is a subfunctor £ C Bran such that

. For any X, £(X) C Bran(X) is a full subcategory.

. For any X, the identity X — X is in £(X).

CEXTIX) =E(X) x E(X).

.t EE € £(X), then E xx E' € £(X).

. If U C X is a dense open, then £(X) — £(U) is an equivalence of categories.

. If E - X’ — X are branched covers and if ¥ — X is in £(X), then F — X’ is in
E(X).

ST W N

For the present paper, and to make explicit the connection to the perspective in [35],
we rephrase this in the language of field extensions.

Definition 2.5 (Definition 4.1 of [15] via field extensions). Let k be a field, let Fields/k
be the category of fields over k, and let

Fin: Fields/k — Cat

be the functor which sends a k-field K to the category of finite, semi-simple commutative
K-algebras.” A class of accessory irrationalities £ is a subfunctor £ C Fin such that:

1. For all K, £(K) C Fin(K) is a full subcategory.

4 We follow standard usage and do not distinguish between a functor and a pseudo-functor when the
latter is the manifestly appropriate notion given the target in question. Note that the natural isomorphisms
required for pseudo-functoriality are canonical in this case, as they come from the universal property of
normalization and fiber product.

5 N.b. Wedderburn’s theorem implies that any finite semi-simple commutative algebra over a field is a
finite product of finite extensions of that field.
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2. For all K, we have K € £(K).

3. f E,E' € £(K), then E ®k E' € £(K).

4. If K — L is a finite extension of k-fields, L. — F is finite, and K — L — F is in
E(K), then E € E£(L).

Lemma 2.6 (Equivalence of Definitions). Definitions 2.4 and 2.5 are equivalent: the as-
signment X — k(X) induces an equivalence between the category of subfunctors of Bran
satisfying the axioms of Definition 2./ and the category of subfunctors of Fin satisfying
the axioms of Definition 2.5.

Proof. Let £ C Bran be a class of accessory irrationalities. By assumptions 3 and 5 of
Definition 2.4, we see that £ is determined up to equivalence by its restriction to the
sub-category of irreducible, affine, normal k-varieties. For any such X, we have a natural
equivalence of categories

Fin (k(X)) 2 {k(E) | E — X € Bran(X)}.

Denote by (ko &)(X) the full sub-category of Fin(k(X)) determined by £(X) under the
above equivalence. The assumptions of Definition 2.4 on £ imply that k o £ satisfies the
assumptions of Definition 2.5, as claimed.

It remains to show that any subfunctor £ C Fin satisfying Definition 2.5 arises as
above. Fix such a subfunctor £ C Fin. For X € VarY, let £(X) C Bran(X) be the full
subcategory consisting of all branched covers Y --+ X such that for any irreducible
component X; C X, the restriction Y|x, --+ X; has

k(X:) = k(Y

x;) € E(K(X,)).

This definition ensures that £ C Bran satisfies Assumptions 3 and 5 of Definition 2.4.
The remaining assumptions follow from the corresponding assumptions of Definition 2.5,
and by direct inspection, we see that ko & = £ as claimed. O

Motivated by classical examples in the literature (see Example 2.8), we introduce
terminology for special classes of accessory irrationalities.

Definition 2.7 (Saturation and closure under extensions). Let £: Fields/k — Cat be a
class of accessory irrationalities.

1. We say & is saturated if for all finite extensions of k-fields K — L, that K — L — E
is in £(K) implies that L € £(K).

2. We say £ is closed under extensions if for all finite extensions of k-fields K — L,
L € £(K) and E € E(L) together imply that K < L — F is in £(K).

Example 2.8 (Ezample 4.3(3) of [15]).
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1. Let Ab(K) be the category of finite semisimple commutative K-algebras which split
as products of abelian extensions of K. Then the assignment K +— Ab(K) defines a
saturated class of accessory irrationalities which is not closed under extensions.

2. Let Sol(K) be the full subcategory of finite semisimple commutative K-algebras which
split as products of solvable extensions of K. Then the assignment K — Sol(K') defines
a saturated class of accessory irrationalities which is closed under extensions.

Note that Sol is the closure of Ab under extensions, i.e. it is the minimal class of
accessory irrationalities which contains Ab and is closed under extensions.

2.3. Resolvent degree

Resolvent degree was first defined independently by Brauer [3] and Arnol’d-Shimura
[1] in the context of field extensions. The first contemporary reference on resolvent degree
is [16]. We begin by reviewing the definition of resolvent degree for algebraic groups, and
then introduce the notion of the resolvent degree of a functor.

2.8.1. Resolvent degree for varieties, fields, and algebraic groups
We recall the definitions here and refer the reader to [16,35,44] for more background.

Definition 2.9 (Essential dimension of a branched cover of varieties). Let Y --» X be
a branched cover of k-varieties (i.e. a generically finite, dominant rational map). The
essential dimension of Y --+ X over k, denoted edy(Y --+ X), is the minimal d for
which there exists

a branched cover Z — Z with dimy, Z = d,
a dense Zariski open U C X,

amap f: U — Z, and

an isomorphism f*Z ~ Y|y over U.

=W =

Definition 2.10 (Resolvent degree of a branched cover of varieties). Let Y --+ X be
a branched cover of k-varieties. The resolvent degree of Y --+ X over k, denoted
RDy(Y --» X), is the minimal d for which there exists a tower of branched covers

X, - oo = Xo = X,
with a factorization X, --» Y --» X such that edy(X; --» X;_1) <dforall 1 <j<r.
The definition of the resolvent degree of an extension of k-fields extends straightfor-

wardly to the case of finite, semisimple commutative algebras over k-fields, and the basic
properties carry over as well. In particular, we have the following example.
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Example 2.11 (The class RDEd), Fix d > 0. For a k-field K, let RD,?d(K) denote the cat-
egory of all finite semisimple commutative K-algebras A such that RDy(A/K) < d. The
proof of [16, Lemma 2.5(2)] shows that the assignment K Rng(K) is indeed func-
torial, while that of [16, Lemma 2.7] shows that it satisfies the definition of a saturated

class of accessory irrationalities which is closed under extensions.
Reichstein extended the above notion of essential dimension in [33] as follows:

Definition 2.12 (Essential dimension of a G-variety). Let G be an algebraic group over
k. Let X be a generically free G-variety. The essential dimension of X --» X/G is the
least d such that there exists a dominant, G-equivariant rational map X --» Y with
d =dim(Y/G).

Following [34,35], we build on this here.

Definition 2.13 (Resolvent degree of a G-variety). Let G be an algebraic group. Let X
be a quasi-projective G-variety over k. The resolvent degree of X --+ X/G is

RDy(X --+ X/G) = min {max{RDy(F --» X/G),edy(X|g --+ E)}},
where the minimum is over generically finite dominant maps E --+ X/G.

Remark 2.14. The above definition differs slightly from that of [34,35]. We show in
Lemma 2.27 below that it agrees with Reichstein’s.

Recall that a G-variety X is primitive if G acts transitively on the set of geometrically
irreducible components of X. A G-variety is generically free if the locus of points with
trivial (scheme theoretic) stabilizer is dense and open. We record the following elementary
lemma for later use.

Lemma 2.15 (Fuaithful and irreducible implies generically free). Let G be a finite group
and X an irreducible G-variety. Then the action of G on X is generically free if and
only if it is faithful.

Proof. That generically free implies faithful is immediate. For the converse, note that
given g € G\ {1}, the (scheme theoretic) fixed set X9 C X is a closed subset, which is
not all of X because the action is faithful. If X is irreducible, then X cannot be written
as the union of a finite number of proper closed subsets. Therefore, X \ Uy 13 X9 is
a non-empty open in which every point has trivial scheme theoretic stabilizer. As X is
irreducible, this open is dense, and thus the action is generically free. 0O

Definition 2.16 (Resolvent degree of an algebraic group). Let G be an algebraic group.
The resolvent degree of G over k is
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RDy(G):=sup {RDy(X --» X/G) | X is a primitive, generically free G-variety over k}.

In the course of investigating the resolvent degree of an algebraic group, it is often
useful to pass to an extension K’/K of bounded resolvent degree, or more generally to
an extension K’/K in some specified class of accessory irrationalities &; following [1,35]
we can formalize the maximal such extension as follows.

Definition 2.17 (£-closure). Let £: Fields/k — Cat be a saturated class of accessory
irrationalities. Let K be a k-field and fix an algebraic closure K < K. Consider the set

Se ={K—> K < K| K €&K)}.
We define an £-closure of K to be the compositum
K¢ =K (S¢) = K.

We say that K is E-closed if K = K. Note that, by definition, for any finite extension
of k-fields K C L C K, if L € £(K) then L C K¢. Conversely, because € is saturated, if
L C K¢, then L € £(K).

Example 2.18 (Common &-closures).

1. For £ = Ab, K «— K" is the usual abelian closure (i.e. maximal abelian extension).

2. For £ = Sol, K — K5 is the usual solvable closure.

3. For & = RD,?d, we write K@ := KRPi", This closure was first considered in [1]
and studied in some detail recently in [35]. For d = 0, K = K. As radicals have
resolvent degree 1, we see K59 — K (4 whenever d > 1. If d < d’, then RDEd is a
subfunctor of RDEd,, and one sees that K@ — K(@) ag expected. For more details,
see [35, Section 6].

2.8.2. Resolvent degree of a functor

Reichstein extended the notion of resolvent degree to “split” functors in [34, Section
8] (see also [35, Section 7]). In this subsection, we extend this to a definition of resol-
vent degree for arbitrary functors (Definition 2.22), and we show in Lemma 2.27 that
this definition recovers Reichstein’s definition if the functor is split. In particular, this
establishes the equivalence of Definition 2.16 and Reichstein’s definition of the resolvent
degree of an algebraic group [35, Definition 10.1].

We begin by defining the resolvent degree of a functor F': Fields/k — Sets, building
on Merkurjev’s definition of essential dimension in this context [2].

Definition 2.19 (Merkurjev). Let F': Fields/k — Sets be a functor. Let K be a k-field,
and let a € F(K). Define the essential dimension of o by
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edi (@) := min{tr.deg, L | o € Im(F (L) — F(K))}.
Define the essential dimension of F' by

edi(F):= sup edg(a).
K,aeF(K)

Example 2.20 (Essential dimension of Fin). Let F' = Fin as above. Let K be a k-field
and let a: K < L be a finite extension of K, and let Y --+ X be any branched cover of
k-varieties such that

((X) = k(Y)) =2 (K <= L).
Tracing through the definitions, one immediately obtains that
edi(a) = edp(L/K) = edi(Y --+ X)

where the left-hand side denotes the quantity defined in Definition 2.19, the middle term
denotes the essential dimension of a finite extension of k-fields as in [6, Definition 2.1],
and the right-hand side denotes the quantity of Definition 2.9.

Also recall the field theoretic formulation of Definition 2.10 [3], which by [16, Propo-
sition 2.4] is equivalent to Definition 2.10 under the assignment X — k(X):

Definition 2.21 (Brauer). Let K — L be a finite extension of k-fields. The resolvent
degree of L over K, RDy(L/K) is the minimal d for which there exists a finite tower of
finite extensions of k-fields

K:Ko%Kl‘—)""—)Kr
and an embedding L — K, over K with ed(K;+1/K;) < d for all i.

Motivated by [16, Proposition 2.13], we combine Brauer’s and Merkurjev’s definitions
to obtain the following.

Definition 2.22 (Resolvent degree of a functor). Let F': Fields/k — Sets be a functor.
Let K be a k-field and let a € F(K). We define the resolvent degree of o by

RDg(a) := L/;{ni&ite max{RDy(L/K),edr(a|L)}

Define the resolvent degree of F' by

RDy(F):= sup RDg(a).
K,a€F(K)
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Example 2.23 (Resolvent degree of Fin and H'(—,G)).

1. Consider the functor Fin: Fields/k — Sets. Let a: K < L be a finite extension of
k-fields considered as an element a € Fin(K). Then, by inspection

RDy(a) = RDy(L/K)

where the left-hand side is as in Definition 2.22 and the right-hand side is as in
Brauer’s Definition 2.21.

2. For an algebraic group G over k, consider the functor H'(—,G) : Fields/k — Sets.
For each K/k, the elements of H'(K,G) are isomorphism classes of G-torsors over
Spec(K), where the local triviality condition is with respect to the fppf topology.
Given a G-torsor T' — K with class a € H'(K,G), let X --+ X/G be an integral
model. By inspection, we see that

RDj,(c) = RDy(X -+ X/G)

where the left-hand side is as in Definition 2.22 and the right-hand side is as in
Definition 2.13. Similarly,

RDy(H'(—,G)) = RDy(G),
i.e. for algebraic groups, the resolvent degree of H'(—, G) agrees with Definition 2.16.

In [34], Reichstein defines a notion of resolvent degree for certain functors F': Fields/k
— MarkedSets taking values in pointed sets. Following the notation of [34], for such F’
and K a k-field, let 1 € F(K) denote the distinguished element.

Definition 2.24 (Split functors). A functor F: Fields/k — MarkedSets is split if for all
K/k and all @ € F(K), there exists a finite extension L/K such that «|, =1 € F(L).
In such a case, we say that « is split by L/K.

Definition 2.25 (Reichstein). Let F': Fields/k — MarkedSets be a split functor. Given
a € F(K), define the split resolvent degree of « by

RD;” () := min{RDy(L/K) | a is split by L/K}
Define the split resolvent degree of F' by

RD}P(F) := . Séle(K) RD}"(«).

Remark 2.26 (On split resolvent degree).



C. Gémez-Gonziles et al. / Journal of Algebra 647 (2024) 758-793 771

1. Given a split functor F, we will continue to write RDy(F) to denote the resolvent
degree of F' considered as a functor F: Fields/k — MarkedSets — Sets (i.e. where
we forget the distinguished element). Below we will show that RDy(F) = RD;”(F)
for any such F'.

2. A motivating example of a split F' is given by H'(—,G) for G an algebraic group.
As above, write RD;?(G) := RD;P(H'(—, G)). As Reichstein observes [34, Conjecture
17] (see also [35, Conjecture 1.4]), a folklore conjecture implicit in work of Tits is that
if G is a connected complex algebraic group and K is a C-field, then every G-torsor
over K splits over a solvable extension L/K. In particular, Tits’ conjecture implies
that

RDI(G) = RDc(G) < 1

for every connected complex algebraic group G. Reichstein proves unconditionally [35,
Theorem 1.1] that

RDZ(G) < 5.
3. The norm-residue isomorphism theorem implies that
RD;7(H™ (= ptn)) = RDp(H™ (=3 ptn)) = 1

for every field k of characteristic prime to n. In particular, torsion Galois cohomology
cannot detect RD > 1.

Lemma 2.27 (Equivalence of split resolvent degree for split functors). Let F': Fields/k
— MarkedSets be a split functor. Then

RD?(F) = RDy(F).

In particular, for G an algebraic group over k, Definition 2.10 agrees with [35, Definition

10.1].

Proof. For any k-field K, edy(1x) = 0 by definition (since 1;|x = 1x € F(K)). There-
fore, the definitions immediately give that

RDy(F) < RDP(F).

We now show the opposite inequality. Observe that it suffices to prove that for all k-fields
K and all a € F(K), we have

RD;”(a) < RDg(a).

By [35, Lemma 7.6(b)],
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edi (o) > RD}P(a).
But then, for any finite extension L/K, we have

max{RDy(L/K),edi(e|r)} >max{RDy(L/K),RD;"(c|)}
=max{RDy(L/K),min{RDy(L'/L) | |y, is split by L'/L}}
=min{max{RDy(L/K),RDy(L'/L)} | |y, is split by L'/L}
>min{RDy(L'/K) | « is split by L'/K}
=:RD;”(«)

where the final inequality follows from [16, Lemma 2.7]. Minimizing the left hand side
of the above inequality over all finite extensions L/K, we obtain that

RDy(a) > RDP ()
as desired. O
3. Generalized versality and special points

As stated at the beginning of Section 2, we fix a ground field & throughout. By
Definition 2.16, for any algebraic group G and any primitive, generically free G-variety
X, we have

RDy(X --» X/G) < RD,(G).

It is natural to ask for which G-varieties X we have RDy(X --+ X/G) = RDy(G). We
will relate this question to the notion of versality and generalizations thereof. First, we
recall the definition of a versal G-variety.

Definition 3.1 (Section 1 of [1/]). Let G be an algebraic group defined over k. We say
that an irreducible, generically free G-variety X is:

o weakly versal for G if for every G-torsor T' — Spec(K), there is a G-equivariant
k-morphism T — X.
o versal for G if every G-invariant open subvariety of X is weakly versal.

Note that X being versal for G is closely related to G ~ X being a generic group
action; the difference being that versality does not require X/G to be rational (see [14,
Remark 2.8]).

In [16, Proposition 3.7], the authors show that for a finite group G and any versal
G-variety X, RDy(G) = RDp(X --» X/G). While versality is a sufficient condition, it
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was known classically that versality is not necessary. Indeed, Klein showed in [25] that
RDc(As) = 1 by using the projective representation As ~ P& (see [31] for an English
translation), despite the fact that P{ --» P{ /A5 is not As-versal. This motivates the
following generalizations of versality.

Definition 3.2 (Definition 3.8 of [16] and Definition 4.4 of [15]). Let G be an algebraic
group defined over k and let X be an irreducible, generically free G-variety. Let £ be a

class of accessory irrationalities. We say that X is:

o weakly E-versal for G if for every G-torsor T — Spec(K), there is an extension
K — K' € £(K) and a G-equivariant k-morphism

T X$pec(k) SPec(K') — X;

o &-versal for G if every G-invariant open subvariety of X is weakly &-versal,

weakly RDy-versal for G if for every G-torsor T — Spec(K), there is an extension
K < K with RDy, (K = f() < RDj,(X --» X/G) and a G-equivariant k-morphism

T Xspec(K) SpeC (K) - X;
e RDg-versal for G if every G-invariant open subvariety of X is weakly RDy-versal.
It is immediate that for an irreducible G-variety X, we have the implications

X is versal for G = X is E-versal for G for any €.

X is solvably versal for G = X is RD,%l—versal for G.

X is RDEd—Versal for G = Xis RD%d/-versal for G for any d < d'.
X is RD%d—Versal for G for
d <RDk(X --» X/G) = X is RDj-versal for G.

Klein showed that while ]P’(é is not versal for As, it is solvably versal for As. It is
currently unknown if RDy-versality is strictly weaker than solvable versality (see e.g.
[11, Problem 9.3]). Nonetheless, by [16, Proposition 3.10], RDg(X --» X/G) = RDy(G)
when X is RDg-versal for G and G is finite; note that the proof given carries over
unchanged for general smooth algebraic groups G.

We have relatively few techniques for showing a G-variety is RDy-versal (especially
when it is not already versal or solvably versal), and essentially none for obstructing
the existence of RDg-versal varieties of a given dimension. For example, Hilbert’s Sextic
Conjecture [22] — which remains open — predicts that there are no RD¢-versal Ag-
curves.
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The proof of [16, Proposition 3.10] (see also [15, Paragraph 4.1.3 and Lemma 4.9]),
adapted to the context of Definition 3.2, immediately yields the following;:

Proposition 3.3 (RDy(G) via RDEd—versality), Let G be an algebraic group over k. Then,
RDy(G) = %1%1 {max {d,dim(X)} | X is a G-variety which is RD:%-versal for G} .

Remark 3.4 (Equivalence of Definitions). The style of Definition 3.2 has been chosen for
ease of comparison with the literature on versality, e.g. [14]. For comparison with [15],
and for use in what follows, we will now give an equivalent characterization in Lemma 3.6.

Definition 3.5 (G-equivariant rational correspondence). Let G be an algebraic group and
take X,Y to be G-varieties. A G-equivariant rational correspondence from Y to X is a
G-invariant subvariety C' C Y x X such that the projection C/G — Y/G is a generically
finite, dominant morphism.

Lemma 3.6 (£-versality via G-equivariant rational correspondences). Let G be an al-
gebraic group, X an irreducible, generically free G-variety, and £ a saturated class of
accessory irrationalities. Then X is:

o weakly E-versal for G if for any generically free G-variety Y, there exists a G-
equivariant rational correspondence C CY x X such that C/G — Y /G is in E(Y/G);

o E-versal for G if every non-empty G-invariant open subvariety of X is weakly &-
versal for G. Moreover, these conditions are equivalent to the conditions stated in
[15, Definition 4.4]

Proof. We begin by proving the equivalence of the conditions of the lemma with [15,
Definition 4.4]. First, observe that any G-equivariant rational correspondence C C' Y x X
with C/G — Y/G in £(Y/QG) gives the data of [15, Definition 4.4]; indeed, item (1) of
[15, Definition 4.4] is the given accessory irrationality, item (2) is the map C/G — X/G
(from projecting onto the second factor), and the isomorphism (3) C/G xx,q X = C
follows from generic freeness.

Conversely, given the data specified in [15, Definition 4.4], i.e. E — Y/G in £(Y/G)
with f: £ — X/G and f*X 2 E xy,g Y, let

C/G:=Im(E —-Y/G x X/G),
C:C/GXX/GXCYXX
Then, C' is a G-invariant rational correspondence; C/G — Y/G isin E(Y/G),as E =Y

is; and £ is saturated. We conclude that the conditions of the lemma are in fact equivalent
to those of [15, Definition 4.4].
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Since [15, Definition 4.4] does not mention torsors, for the sake of completeness we now
show that the conditions of [15, Definition 4.4] are equivalent to those of Definition 3.2.
For this, it suffices to prove the statement about weak E-versality (as the statement
about £-versality amounts to verifying that every dense Zariski open U C X is weakly
E-versal). To go from a G-torsor T — Spec(K) as in Definition 3.2 to the data of
[15, Definition 4.4] pick an integral model; to go the other way, restrict to a generic
point of an irreducible component of Y/G.° From the proof of Lemma 2.6, we see that
under this correspondence, an extension K — K’ is in £(K) if and only if any integral
model E — Y/G is in £(Y/G). The equivalence of the two definitions now follows by
inspection. 0O

In [14], Duncan and Reichstein connect versality to existence of rational points. Specif-
ically:

Theorem 3.7 (Versality and rational points, Theorem 1.1 (a,b) of [14]). Let G be a linear
algebraic group over k and take X to be an irreducible, generically free, quasiprojective
G-variety. Then, X is:

1. weakly versal if and only if for every G-torsor T — Spec(K), T X (K) # 0;
2. wversal if and only if for every G-torsor T — Spec(K), K -points are dense in Tx.

Remark 3.8 (Linear algebraic groups vs. smooth algebraic groups). Duncan and Reich-
stein restrict their attention to linear algebraic groups G (they also leave the assumption
of “generically free” implicit in their statement). In [14, Remark 2.6], they state that this
is “vitally important” for their reformulations of versality. On the other hand, a careful
reading of [14, Sections 1-4] shows that linearity can be weakened to smoothness at the
cost only of rendering their Theorem 1.1(b) (that versality is equivalent to the density
of K-points in all twisted forms) potentially vacuous, as versal varieties do not exist for
general smooth G.

Motivated by this result, along with [35, Lemma 4.15], we establish analogous claims
about £-versality.

Theorem 3.9 (Generalized versality and special points). Let G be an algebraic group over
k and let X be an irreducible, generically free, quasiprojective G-variety. Let £ be a

saturated class of accessory irrationalities. Then:

1. X is weakly €-versal if and only if for every G-torsor T — Spec(K) with K finitely
generated over k, T X (K¢) #0.

6 [15] writes Y — Y for our Y — Y/G.
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2. If G is smooth, X is E-versal if and only if for every G-torsor T — Spec(K) with K
finitely generated over k, K€-points are dense in T X.

Remark 3.10 (Contezt for smoothness). Cartier showed that every algebraic group over
a field k of characteristic 0 is smooth (see [32, Corollary 5.2.18]), so in this case, no
assumption on G is needed in the second part of the theorem. We assume smoothness
in order to reduce the proof to a Galois descent argument. More generally, it seems
reasonable to expect that the theorem holds without any assumptions on G and k, at
the cost of using fppf descent in lieu of Galois descent. We do not pursue this here.

Proof of Theorem 3.9. We begin by showing the first statement. Suppose that X is
weakly E-versal. Let K be a field which is finitely generated over k£ and consider a
G-torsor T' — Spec(K) with integral model Y — Y/G. The G-equivariant isomorphism
Y Xy,q Spec(K) = T induces

(Y x X)/G xyg Spec(K) = "X

As X is weakly E-versal for G, there exists a G-equivariant rational correspondence C' C
Y x X with C/G --+ Y/G in £(Y/G). Taking the quotient of the inclusion C — Y x X
yields the morphism C/G — (Y x X)/G of Y/G-varieties. We can restrict the morphisms
C/G —Y/Gand (Y xX)/G — Y/G along the generic point Spec(K) — Y/G and obtain
the following morphism of pullback diagrams, where Spec(L) denotes the generic point
of C/G:

Spec(L) Spec(K)

\\\\\\\\$71x Q§§§§\§§pail()
J
I ™~

Y x X)/G Y/G

Since C/G — Y/G is in £(Y/G) (by assumption), L € £(K) (by 5 of Definition 2.4).
From Definition 2.17, there is an inclusion of K-fields L — K¢. Consequently, the
constructed K€-point

Spec (K‘g) — Spec(L) = T X,

shows that "X (K¢) # (.
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Now, suppose that T'— Spec(K) and Y — Y/G are as above and Spec (Kg) - Tx
is a K¢-point. Since T X is a K-variety, there is a finite extension K < E such that
Spec (Kg) — TX factors as

Spec (K‘g) — Spec(F) — T X.

As € is saturated, E € £(K). Now, let C/G denote the closure of Spec(E) in (Y x X)/G
and take C C Y x X to be the preimage of C'/G under the quotient map ¥ x X —
(Y x X)/G. Consequently, C is a G-invariant subvariety, C' — Y is a G-equivariant,
generically finite, dominant morphism (by construction), and C/G --+ Y/G is in E(Y/QG)
by construction. From Lemma 3.6, we see that X is weakly -versal.

It remains to show the second claim. First, note that for any variety Z and field
K K- points are dense in Z if and only if each Zariski open of Z contains a K- point.
Next, in the setting of the theorem, for a Zariski open V' C X, consider the quotient
map ¢: T x X — T X, along with the projection map px: T x X — X, and set U =
px(a1(V)) € X.

By inspection, U C X is a G-invariant Zariski open, and V C TU. Therefore, if
Tx (KS) is dense in 7 X, then TU (Kg) # () for every G-invariant Zariski open U C X.
From our argument above, we conclude that every such U is weakly £-versal for G, and
thus X is £-versal for G. It remains to show the converse.

Suppose that X is E-versal for G. We need to show that 7 X (Kg) is dense. As G is
smooth, we can identify étale and fppf cohomology with coefficients in G (see e.g. [30,
Remark I11.4.8(a)]); this allows us to make arguments via Galois descent.

Recall that a (right) G-torsor T — Spec(K) with cocycle 7 € H'(K,G) is also a
(left) GT-torsor, where G” is the inner twist of G over K determined by 7. We can see
this explicitly as follows. Indeed, let K*°P denote a separable closure of K. Then, letting
Gal(K) := Autx (K5°P), we obtain a 1-cocycle

7: Gal(K) — G(K*P)

from T by picking an element 0 € T'(K*°P). Explicitly, 7 is defined to be the map such
that for o € Gal(K)

0=0-7(0)

where we write “x to denote the o-translate of a K®°P point x of a K-variety. Note that
7(0) is uniquely determined because T'(K®°P) is a principal right G(K*°P)-set. Further,
the choice of 0 determines an isomorphism of right G(K%°P)-sets

po: G(K*P) 5 T(K*P)
g—0-g

The left action of G(K%°P) on itself now defines a left G(K®P)-action on T'(K*°P) via
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g-(0-h):=0-gh.

By inspection, this is not equivariant for the standard Gal(K)-action on G(K*®°P), but
rather for the 7-twisted action

o-g:=7(0)("9) (r(0)7") -

By Galois descent, just as in [32, 5.12.5.1], we conclude that T' — Spec(K) is actually a
G™ — @ bitorsor, and therefore, the twist 7 X carries a left action of GT.

Now, given a Zariski open V' C T X as above, consider the Zariski open G™ -V C Tx.
Then V (K¢) # 0 if and only if G™ -V (K¢) # 0. Now let ¢: T x X — TX denote the
quotient map, let px : T'x X — X denote the projection, and set U := px (¢~ 1(V)) C X.
Note that U is a G-invariant Zariski open by inspection. Since X is £-versal for G, U is
weakly E-versal. By the proof of the first statement of the theorem above, we have that
Tu (K¥) # 0. To conclude, we claim that

G- v="u

Granting this claim, we have, by the above, that V' (KE) # 0, and thus that 7 X (K‘g)
is dense in 7X, as claimed. We prove the claim by a straightforward Galois descent
argument. Indeed, our choice of 0 € T(K5°P) determines an isomorphism

TU(K*) 2 {(0- g,u) € GIK*P) x UK*®)}/(0- g,u) ~ (0,9 )
={(0-g,2) € G(K®*P) x X(K*P) | J[(0- h,v)] € V(K*P) st. h-v ==z}
/(0-g,2) ~ (0,9 )
— (0 gh,v) € GUE™™) x X(K*P) | [(0-h,v)] € V(K*P)}
/(0-g,2) ~ (0,9 - )
= (G - V)(K*P).

By inspection, this isomorphism is Gal(K)-equivariant, and thus “U = G7 -V as
claimed. O

Taken together, Proposition 3.3 and Theorem 3.9 allow us to re-contextualize problems
about the resolvent degree of algebraic groups as questions about special points on twists
of G-varieties. Indeed, we can ask about necessary and sufficient conditions for a variety
over K to have an £-point or a dense collection of £-points. As an example, we have the
following, which appeared as [15, Lemma 4.7] for the case of finite G.

Lemma 3.11 (£-versality and composition). Let G be a smooth algebraic group over k,
let € be a saturated class of accessory irrationalities which is closed under extensions,
and let Y be a primitive G-variety which is €-versal for G. Suppose X is an irreducible,
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generically free G-variety which admits a G-equivariant rational correspondence C' C
Y x X such that C — X is dominant and C/G — Y/G is in E(Y/G). Then X is
E-versal.

Remark 3.12 (Representatives for £-versality). In contrast to the definition of £-versality,
Lemma 3.11 allows us to test £-versality of X by looking at correspondences from the
single G-variety Y, rather than from all G-varieties.

Proof of Lemma 3.11. For weak &-versality, let Z be a generically free G-variety. From
Lemma 3.6, there is a G-equivariant rational correspondence D C Z x Y with D/G —
Z/G in £(Z/@G). Then, we can consider C Xy D C Z x X, which is G-invariant, and we
see that (C xy D)/G — D/G — Z/G is in £(Z/G) because (C xy D)/G — D/G is in
E(D/G), D/G — Z/G is in £(Z/G), and £ is closed under extensions.

For &-versality, by Theorem 3.9, it suffices to show that X (K€) is dense in 7 X
for any G-torsor T" — Spec(K). Fix such a T. By Theorem 3.9, 7Y (K?) is dense in
Ty . By assumption, C' — Y is generically finite, dominant and C/G — Y/G is in
E(Y/G). Therefore, by the definition of K¢ as an E-closure, the density of 7Y (K¥) in
Ty implies that 7C (Kg) is dense in 7 C as well. But, the map 7C' — 7 X is dominant,
by assumption, so we conclude that T X (K 5) is dense in 7 X as claimed. O

Theorem 3.9 connects (weak) E-versality of X for G to existence of special points
(i.e. K¢-points), but still requires one to consider twists of X by all torsors over finitely
generated k-fields. Just as Proposition 3.3 allows us to reduce from all G-varieties X to
those which are £-versal, the following definition will give us the language to reduce the
class of torsors one must consider.

Definition 3.13 (£-versality for G-torsors). Let G be an algebraic group over k. Let &
be a class of accessory irrationalities. A G-torsor T — Spec(K) is E-versal for G if
there exists any integral model Y — Y/G of T' — Spec(K) such that Y is an E-versal
G-variety.

Note that, because all integral models are birational to each other, if T — Spec(K) is
E-versal, then every integral model Y — Y/G is £-versal. We can now restate a variant
of Lemma 3.11 as follows:

Lemma 3.14 (An equivalent version of Lemma 3.11). Let G be a smooth algebraic group
over k. Let £ be a saturated class of accessory irrationalities that is closed under ex-
tensions. Suppose that T — Spec(K) is a G-torsor which is E-versal for G and X is a
generically free G-variety. Then, X is E-versal if and only if T X has a dense collection
of K¢ -points.

Proof. From Theorem 3.9, if X is E-versal, then 7 X has a dense collection of K€-points.
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Now, suppose that 7 X has a dense collection of K®-points and let ¥ — Y/G be an
integral model of T" — Spec(K) (which, as remarked above, is £-versal because T' —
Spec(K) is). Let Spec (Kg) — TX be a K€-point of 7 X. As established in the proof of
Theorem 3.9, 7 X is the generic fiber of (Y x X)/G — Y/G and we take C/G C (Y xX)/G
to be the closure of our K¢-point Spec (K¢) — TX. Weset C=C/G X(yxxy/a (Y xX)
and observe that C' C Y x X is a G-equivariant rational correspondence with C/G — Y/G
in £(Y/G), by construction. By assumption, Y — Y/G is E-versal and thus X is E-versal
by Lemma 3.11. O

In another direction, we also have:

Lemma 3.15 (€-versality for non-abelian, finite, simple groups). Assume char(k) = 0. Let
G be a non-abelian, finite, simple group G, let £ be a class of accessory irrationalities,
and let X be a smooth, irreducible, generically free G-curve over k. Then X is weakly

E-versal for G if and only if X is E-versal for G.

Proof. By definition, £-versality immediately implies weak E-versality. Now, suppose
that X is weakly E-versal. Let Y be a generically free G-variety with dim(Y) > 1 and
consider a G-equivariant rational correspondence C C Y x X with C/G — Y/G in
E(Y/@). Tt suffices to show that the G-equivariant map C' — X is dominant. Denote
the scheme-theoretic image of C' in X by Z. Then, Z is an irreducible G-invariant
subscheme. If dim(Z) = 1, then the map is dominant and we are done. Now, suppose
that dim(Z) = 0. Then, Z*¢ € X is a fixed point for G. However, the stabilizer of any
point in X is abelian [36, Theorem 1.1], hence there are no fixed points for G and thus
dim(Z) > 1. O

Let us now revisit Hilbert’s Sextic Conjecture. In light of Proposition 3.3, Theorem 3.9,
and Lemma 3.15, we can re-state the conjecture as follows:

Conjecture 3.16 (Hilbert’s Sextic Conjecture). Let T — Spec (C(z,y)) be the Ag-torsor
associated to the Valentiner action Ag ]P’é. For any smooth, irreducible, generically
free Ag-curve X, "X (C(z,y)M) = 0.

Similarly, [11, Problem 9.3] for Ag can be re-stated as:

Problem 3.17 (Chernousov-Gille-Reichstein). Does there exist a smooth, irreducible,
generically free Ag-curve X with 7X (C (z, y)SC)l) #£ (7

More generally, showing that RD(G) > 1 is a question of obstructing the existence
of KM-points for a sufficient supply of K-curves (namely, twists of G-curves over k).
Many tools in the literature for obstructing rational points appear to be inadequate for
this. For example, by [29, Theorem 16.1], the Brauer group of a solvably closed field is
trivial. More generally, the same holds for H!(—, Q) for any connected algebraic group
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Cluster Generation Description Groups
Happy Family First The Mathieu Groups Mi1,Mis, Maa, Moag, Moy,
Happy Family Second The Leech Lattice Groups Coq, Cog, Cogz, Suz, McL, HS, Jo,
Happy Family Third Other Monster Subgroups Fiszo, Fiag, Fiay’, Th, HN, He, B, M,
The Pariahs The Pariahs J1,J3,J4, O’N, Ru, Ly.

Fig. 1. Historical Organization of Sporadic Groups.

G without simple factors of type Eg (see [35, Theorem 1.1]); conjecturally, the same
holds for all connected algebraic groups (see [35, Conjecture 1.4] and the discussion just
preceding it). It would be instructive to turn this observation (that G connected implies
H'(K®°' @) = 1) into a proof that Brauer-Manin style invariants are insufficient to
obstruct solvable points on varieties over e.g. two-dimensional C-fields. We echo Poonen’s
view in [32, p. 257] that “We need some new obstructions!”

4. Resolvent degree and the sporadic groups
4.1. Upper bounds on the resolvent degree of the sporadic groups

Recall that the Classification of Finite Simple Groups consists of 18 infinite families
and 26 sporadic groups. The 26 sporadic groups are often organized as in Fig. 1.

From [35, Theorems 1.2 and 1.3], RD;(G) < RD¢(G) for any finite simple group.
Thus, to determine upper bounds on the resolvent degree of the sporadic groups, it
suffices to work over C. For each sporadic group G, we will determine a complex G-variety
X¢ such that RD¢(G) < dime (X¢g). We begin by considering a minimal dimensional
projective representation. It is immediate that any linear representation of G yields a
projective representation of GG, however these are not the only projective representations
of G. Indeed, there are groups I' such that the projectivizations of linear representations
of ' correspond exactly to projective representations of G. Such a group I' is called a
Schur cover of G (or sometimes a Schur representation group of 7). Each sporadic group
G is perfect, hence the Schur covers of G are isomorphic and so we simply refer to the
Schur cover of G henceforth. Explicitly, the Schur cover of GG is a central extension of
G by the Schur multiplier Sch(G) = H? (G, C*), which is a finite abelian group whose
exponent divides the order of G. For more on projective representations of finite groups,
we refer the reader to [23, Chapter 11].

Given G and a projective representation P(p) : G — PGL(V) coming from a linear
representation p of the Schur cover, we are not interested in just P (V'), but G-invariant
subvarieties thereof. We can construct such invariant subvarieties by looking at the
vanishing of G-invariant polynomials. Note that the vector space of homogeneous poly-
nomials of degree d which are invariant under the Schur cover of G is Sym¢ , (VV). We
set my(p) = dim (Symic (VV)) and note that the Molien series of p is the generating
function

M(p;t) := Z ma(p)te.

d>0
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We now introduce notation for the minimal projective representations for each spo-
radic group and address computing the relevant Molien series.

Notation 4.1 (Representations of sporadic groups). For the groups G = My1, Mas, Moy,
J1, Ja, Cos, Cos, Fisg, Fisz, HS, McL, He, HN, Th, Ly, B, and M, a projective rep-
resentation of minimal dimension arises as the projectivization of an irreducible linear
representation of G. When G is not one of HS, McL, Fisa, or B, this claim is immediate,
as the Schur multiplier is trivial. For the cases G = HS, McL, Fiss, and B, one can
verify this claim by inspecting the character tables of the Schur covers. We set d(G)
to be the minimal dimension of a non-trivial linear representation of G and pg to be
the representation corresponding to the first character x in the ATLAS character table
for G for which x(1) = d(G) (note that pg is necessarily irreducible by our minimality
assumption). Additionally, set Vi to be the vector space corresponding to pg.

For the groups G = Mgy, Ja, J3, Co1, Fisy’, Suz, Ru, and O’N, a projective represen-
tation of minimal dimension only arises as the projectivization of an irreducible linear
representation of the Schur cover of G. Correspondingly, we set a(G) = |Sch(G)|, d(G)
to be the minimal dimension of a non-trivial representation of the Schur cover (denoted
by a.G), pc to be the representation corresponding to the first character in the ATLAS
character table for a.G for which x(1) = d(G) (as above, our minimality assumption
guarantees that p¢ is irreducible), and Vi to be the vector space corresponding to pg.

When G is clear from the context, we simply write a and d. Additionally, we note
that the order of the characters in the ATILAS [12] is the same as in GAP character table
library [4].

Remark 4.2 (Schur multiplier Mas). In [7, p.739-741], it is incorrectly claimed that
a (Mag) = 3. In the correction [8], it is incorrectly asserted that a (Maz) = 6. Finally, [28,
Section V] correctly establishes that Sch (Mag) = Z/127Z.

Remark 4.3 (The unique case of M2 ). There is another error in [7, p.739-741], where they
incorrectly claim that a (My3) = 1. However, [8] correctly establishes that a (M;2) = 2.

An observant reader may have noticed that M;s does not appear in Notation 4.1.
While we will use the same notation conventions, pyp,, is not a projective representation
of minimal dimension for Mjs. While the Schur cover 2. M;s admits a 10-dimensional
linear representation, we will instead take pn,, to be the first 11-dimensional linear
representation of pyr,,. We will justify this choice in Remark 4.11, after we prove Theo-
rem 4.7.

Remark 4.4 (Computation of Molien series / Molien series coefficients). For the sporadic
groups G where |G| and d(G) are sufficiently small (Mj1, M2, Moo, Moz, May, Jq, Jo,
J3, Cog, Coq, Coy, Suz, HS, McL, Ru, and He), we compute the Molien series M (pg;t)
as a rational function using the character table library [4] in SageMath by accessing GAP.
For the remaining groups G (J4, Fiaa, Fisg, Fias’, HN, Th, O’N, Ly, B, and M), we store
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data for pg from the character table library [4], which we then use to compute the first
20 coefficients m1 (pg), ..., mao (pa) of M (pg;t) in SageMath. The SageMath script,
data files (for J4, Fisa, Fiss, Fias’, HN, Th, O’N, Ly, B, and M), and output files (for all
sporadic groups), are available at

https://www.alexandersutherland.com/research/RD-for-the-Sporadic-Groups,

or by downloading the source package on the arXiv version of this work. Additionally,
for every sporadic group G, we record the beginning of the power series expansion of
M (pg;t) in Appendix A.

For each sporadic group G, Fig. 2 records dim (P (V¢)) and a list of the degrees of
the invariants we will use in what follows. Note that ordering of the groups in Fig. 2
is determined by dim (P (V)). Our construction for Jo does not require any invariants,
so we leave the corresponding entry blank. Additionally, our proof will use the minimal
dimensional permutation representation for the sporadic groups other than Mi;, Mjo,
Moss, and Moy, hence Fig. 2 includes dim (Perm¢) as well. For each G, we denote this
representation by Permg and observe that dim (Permeg) = [G : H|, where H is a maximal
subgroup of G of maximal order. For details on maximal subgroups, see [13] when G = M,
[42] when G = Figg, Fiss, Fisy’, J4, Th, and B, [43] for a survey, and [12]) for all other
cases.

We now introduce the notation required for Theorem 4.7.

Notation 4.5 (Notation for Theorem J.7). Let G be a sporadic group. When mg (pg) = 7,
we denote a basis for Symz.c (VYY) by f(fl, cee ffj. When j = 1, we simply write f$.
Without loss of generality, we order the basis such that the basis elements which are
algebraically independent from lower degree invariants are listed first; see Remark 4.6
for more details. When the group G is clear from context, we omit the superscript. Using
this notation, we now define the relevant G-invariant subvarieties of V. Specifically, we
will define a variety X = Zg N Yg. We begin with the cases where Y is non-trivial:

Iy =V (fan), Yiy, =V (f2, f3),
Iy, =V (fa0), Yig, =V (f2, f3),
s =V (fas f51) Yo, =V (f2, f3)
Zys =V (far, f5), Yus =V (f2),
Zyver =V (f5), Yrmer =V (f2),
Znse =V (fa1, f51) 5 Yoy =V (f2, f3)
Zcoy =V (f6,1) Yoo, = V (f2),
Zco, =V (fs,1) Yoo, = V (f2),
Zco, =V (f121), Yoo, = V (f2),
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Group G | dim (P (Vg)) | Degrees of Relevant Invariants dim (Permg)
Jo 5 N/A 100
M, 9 2,3, 4 11
Mao 9 4 22
Mo 10 2,3, 4 12
Suz 11 12 1782
Js 17 6 85
Mas 21 2,3, 4,5 23
HS 21 2,4, 5 100
MecL 21 2,5 275
Mas 22 2,3, 4,5 24
Cos 22 2,6 276
Coo 22 2,8 2300
Coy 23 2, 12 98280
Ru 27 4 4060
He 50 3,4 2058
J1 55 2,3,4,4 266
Fiag 77 2,6, 8 3510
HN 132 2,6,7 1140000
Th 247 2,8,8 143127000
O'N 341 6,6, 6 122760
Fiag 781 2,3,4,5,5 31671
Figy’ 782 3,6,6 306936
i 1332 4,6,6,7 173067389
Ly 2479 6, 6, 6, 6 8835156
B 4370 2,4,6,8,8 13571955000
M 196882 2,.3,4,5,6,6,6,7 97239461142009186000

Fig. 2. Dimensions of Projective Representations and Degrees of Invariants.

XMy =
Xcos =
Xco, =
Xco, =

X, =

f3, fa1, fa2),
fo, fs,1)
fe, f7),

fsa: fs2),
f2, f3, fa1) € P (Vay,
f2, f3, fan) C P

f2, f35 fax, fs1) C
for f5) € P (Varer) = P,
_p22
:]P;QQ:

f 7f6,1) - P (VCOS)
f 7f8,1) g P (VCOQ)
f af12,1) cP (VCol)

A~ A~ I~ I~ o~~~ N o~ o~

f2af67f8 1) cP (VF122) =

f af37f4,17f5,1) g P (VM24) =

fas fa1, f5) © P (Vas) = P,

22
P,

:P23
f af37f4,17f4,2) g P (V]l) =
IP)77

55
P°?,
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Xu~ =V (f2, f6, fr) € P (Van) = P2,
Xth =V (f2, fs1, fs,2) € P (Vy) = P47,

In the following cases, we have X¢ = Zg and Y = P (Vi):

Iy = Xp, = V (f1) C P (Vany,) = P?,
Zsus = Xsuz = V (f12) € P (Vous) = PV,
Zy, = Xy, =V (fs) CP (Vy,) =P,
Zin = Xpu =V (f1) € P (Vra) = P?,
Zye = Xue = V (f3, f1) € P (Viae) = P,
Zon = Xon =V (fe1, fe,2, fo.3) € P (Vo) = P31,
Zpisy = Xvisy = V (f2. f3, fa1: 5,1, f5.2) € P (Viiy,) = P,
Zriye = Xvipy = V (f3, fo,1, fo.2) P (Vi) = P72,
Zy, = X5, =V (fa, fo1, fo2, fr1) C P (V3,) = P12,
Ziy = Xiy =V (f6.1. fo,2: fo.3, fo.a) C P (Viy) = P77,
Zp = Xp =V (fo, fa1, fo.1, fs1, fs,2) € P (Vi) = PP,
Zn =X =V (fo, 3, fa1, fo1. for, fo.2. fos, fr1) C P (Vig) = P1905%2,

In the exceptional case of Jo, we further have that X, = Z;, =Yj, = P (V3,) = P5.

Remark 4.6 (Non-uniqueness of X¢, Yo, Zc). We note that the Xg, Yg, and Zg are
only defined up to a choice of invariant polynomials. As an example, consider the case
G = Cog. First, note that ma (pcos) = 1 and thus f2 is unique up to a constant. Next,
m4 (pcos) = 1 and thus the only degree four invariant, up to scaling, is ( f2)2. Finally,

me (pco,) = 2 and so we take fg1 to be any polynomial in Sym¢,,, (V%,, )\ Span {(f2)3}

and fs2 to be any polynomial in Span{( fg)g}. However, all of the arguments that
follow depend only on the degrees of the intersections defining X¢, Y4, and Zg and are
consequently independent of this choice.

We are now ready to give upper bounds on the resolvent degree of the sporadic groups.

Theorem 4.7 (Bounds on resolvent degree of the sporadic groups). For each sporadic
group G, we have

RDk(G> < dim¢ (Xg),

for every field k. Further, for G not equal to My1, Mo, Mag, Moy, the variety X¢g is
RDédG -versal for dg = RD¢ (deg(Z¢)).
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Remark 4.8. We expect that the variety X¢ is RD,?dG—Versal for the Mathieu groups
M;j1, M2, Mag, Moy, but proving this requires new techniques.

We will also give an explicit form of Theorem 4.7 in Corollary 4.9.

Proof. As observed above, by [35, Theorems 1.2 and 1.3], it suffices to prove the
theorem for ¥ = C. When G is one of Mj;, Mo, Mas, or May, the upper bounds
on RDc(G) are classical. In these cases, M,, < S, and the bounds follow from
the inequality RD¢(M,) < RD¢(S,) [16, Lemma 3.13] and the classical upper
bounds on RD¢(S,) (see [39, Theorem 3.7] for the construction and the bounds on
Sa3, S24; see [16,39] for modern references for Si;,S12 or [22,38] for classical refer-
ences).

We now restrict to the case where G is not one of Miq, Mo, Moz, Mos. Note that
de < dimc¢ (X¢), hence Proposition 3.3 yields that we need only show that each Xg
is RDédG—versal. Since finite groups are smooth, Theorem 3.9 allows us to reduce to
showing that a) X is generically free, and b) for every G-torsor T'— Spec(K) with K
finitely generated over C, K (4¢)-points are dense in © X .

We start with generic freeness. Since G is simple, and the representation pg is ir-
reducible, we see that P (V) has no fixed points and thus is a faithful G-variety. By
Lemma 2.15, it suffices to show that Xq is irreducible, but this follows for degree rea-
sons. Indeed, for all simple sporadic G not equal to My1, M12, Mas, or Moy, the degree
of X is less than the cardinality of the smallest permutation representation of G (see
Fig. 2 and preceeding discussion). Since X has at most deg X irreducible components,
and since G permutes them, we conclude that X¢ is irreducible, and thus generically
free.

To apply Theorem 3.9 to conclude the RDédG—versality of X¢, we just need to
show that K(4¢) points are dense in every twisted form of Xg. As observed in
[35, Proof of Proposition 14.1 (p.33)], the G-equivariant closed immersion Xg <
P (Vi) naturally induces the closed immersion ” X < *P (V). Note that " P (Vg)
is a Severi-Brauer variety and thus splits over K5°! C K(de) by the Merkurjev-
Suslin theorem [29]. It follows that © X is an intersection of hypersurfaces in P (V)
over K@) of the same degrees as for Xg. Indeed, the same argument applies to
TYe < TP (Vg) and TZg — TP (V) and we have "Xg = TZ¢ N TYs over
K(da)

Now, observe that for each G, we either have that Yo = P (Vi) (and thus X¢g =
Zg) or Yo = V (f§). In the first case, we have deg(X¢) = deg(Zg) = dg, and the
density of K(4¢)-points is immediate. In the second case, Y¢ is a quadric hypersurface
and Xg = Yo N Zg, hence [35, Lemma 14.4(b)] yields that K(4¢)-points are dense on
Xa. O
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Corollary 4.9 (Explicit form of Theorem /.7). For any field k, we have

RD;(J2) <5, RDy(Ma) <18, RDj(He) <48, RDj(Fiss) < 776,
RD;(Mi;) <6, RDy(HS) <18,  RDy(J1) <51, RDg(Fias’) <779,
RD; (M) <7, RDj(McL) <19, RDy(Fis) < 74, RDy,(J4) < 1328,
RD;(Mss) <8, RDj(Cos) <20, RD.(HN) <129, RD,(Ly) < 2475,
RDj,(Suz) <10, RD4(Cos) <20, RD,(Th) <244,  RD,(B) < 4365,

RD;(Js) <16, RDy(Coi) <21, RDz(O'N) <338,  RD.(M) < 196874.
RDy(Mas) <17,  RD.(Ru) < 26,

Remark 4.10 (Further expectations). In the cases where G is one of Mao, Ru, He, Fiag,
or Fiyy’, we expect that we can do slightly better. Indeed, we believe that we can replace
Xg, Yg, and ZG with

Inzs =V (f6) s Y, =V (fa),
Zra =V (fs), Yrw =V (1),
Ze =V (fu, f5), Yire =V (f3),

Zyiye =V (f3, 5.1, f5.2, fo) - Yriys = V (f2, f3),

Zrige =V (fo, fo2: fo) » Vi = V (f3),

Xioy = V (f4, f6) € P (Vary,) = P?,

Xeu =V (f1, fs) P (Via) = P77,

Xbte = V (f3, f1, f5) € P (Vire) = P,

Xrigs = V (fou f3, fa fs.1, 5,20 f6) © P (Vigy) = P™1,

Xrine =V (f3, fo.1, fo,2: fo) C P (Vi) = P72,

In these cases, one can use the polar cone methods of [39] to construct linear subvarieties
of suitable dimension and satisfactorily low resolvent degree on each YG However, new
methods are required to show that each XG = YG N ZG is generically free.

Remark 4.11 (The unique case of Mia, II). As noted in Remark 4.3, ppp,, is the only
case where we are not using a projective representation of minimal dimension. As we
have seen, we constructed

XMlg =V (fQ,f3af4) - P =P (VM12)'

Now, let pyp,, be the first 10-dimensional representation of the Schur cover 2. M5. The
lowest degree invariants of py,, have degrees 6, 8, 8, and 8 respectively. Consequently,
the best analogous construction would yield

Xny, =V (f) CP =P (VMlz) .
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Since dim (Xy,,) < dim S)Z'Mlz), Xy, is the preferred construction.
For every other sporadic group G with non-trivial Schur cover a.G, either there is
not a lower dimensional projective representation or the dimension of the new projective

representation is small enough to outweigh any differences in the invariant theory.
4.2. Context for sporadic group bounds

We conclude by providing additional context for these numerical results and connect
the bounds for the Mathieu groups to known bounds for symmetric groups.

Mathieu groups and symmetric groups As noted in Section 1, RDy(G) for finite simple
groups has only been addressed in the literature when G is a cyclic group (for which
RD; = 1 by Kummer theory), an alternating group [21,39,44], when G = W (Eg)™,
W (E7)", or W (Eg)" (see [16, Section 8] for Eg and Er, see [35, Proposition 15.1] for
Es, E7, and Eg), or when G = PSL(2,7) ([24], [15, Proposition 4.13]). Nonetheless, each
of the Mathieu groups have explicit embeddings M,, < S,, for n = 11, 12, 22, 23, 24 and
thus RDy (M,,) < RDg(S,) [16, Lemma 3.13]. At present, this paper contributes nothing
new for My, My, Mo, Moy. In the case of Mas, our bound of 8 significantly beats the
bound RD¢ (S22) < 16 [39, Theorem 3.7]. As remarked above, it would be interesting to
confirm that for My, M12, Mag, Moy, the variety X¢ is also RDédG—Versal. It would also
be interesting to know for which n and which fields k& we have RDy(M,,) < RDy(Sy,),
and for which n and which fields k& we have RDy(M,,) = RDy(S,,).

Relations between the sporadic groups For a finite group H and a subgroup H’, we
have RDy(H') < RDy(H) [16, Lemma 3.13]. Additionally, for a short exact sequence of
algebraic groups

1-A—-B—-C—1,

we have that RDy(B) < max {RDy(A), RDy(C)} ([16, Theorem 3.3] for finite groups,
[35, Proposition 10.8] in general).

For any sporadic group S which is a subquotient of another sporadic group G, with
H < G and S = H/H’, we only have the inequalities

RDy(H) < RDy(G),  RDy(H) < max {RDy(S), RDy(H')}.

Nonetheless, it is natural to ask how the bounds given by dim (Xg) and dim (X¢g) in
Theorem 4.7 compare.

The ATILLAS contains a table of which sporadic groups S are subquotients of another
sporadic group G [12, p.238], which we include below. Let (G, S) be the cell corresponding
to row G and column S. Note that (G,S) has a + with a green background if S is a
subquotient of G; (G, S) has a — with a red background if S is not a subquotient of G;
(G, S) has a e with a yellow background when G = S; and (G, S) is black when |G| < |S].
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M11 Mlg Jl Mgz Jg Mgg HS Jg M24 McL He Ru Suz O’'N COg C02

Fig. 3. Sporadic Groups Subquotient Table from the ATLAS, I. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

We implement two changes from the table in the ATILAS. Firstly, at the time of
publishing the ATILAS, it was unknown if J; is a subquotient of M. Wilson showed
that J; is not a subgroup of M in [41], which completed the proof that J; is not a
subquotient of M, and we have updated the (M, J;) cell as a result. Secondly, due to
page size restrictions, we split the single table in the ATILAS into two smaller tables:
Figs. 3 and 4.

Finally, we note that

dim (Xj,) < dim (Xm,,) < dim (Xy,,) < dim (Xn,,) < dim (Xgy,) < dim (X;,)
< dim (X, ) < dim (X, ) = dim (Xps) < dim (Xyer,) < dim (Xco,) = dim (Xco,)
< dim (X¢o, ) < dim (Xgy) < dim (Xpe) < dim (Xj,) < dim (Xpy,,) < dim (Xpn)
< dim (Xtp) < dim (Xon) < dim (Xpiy,) < dim (Xpi,,) < dim (Xj,) < dim (X1y)
< dim (Xp) < dim (Xu),

and thus one can verify using Figs. 3 and 4 that whenever S is a subquotient of G, we
have dim (Xg) < dim (X¢).

Linear representations, projective representations, and Xg Let G be a finite simple
group. Every non-trivial linear and projective representation of G is faithful, so the
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Fi22 HN Ly Th Figg COl J4 Fi24 B M

Fisg .
HN =
Ly —
Th —
Figz | +
C01
Ju =
Fiay” |+
B +
M +

Fig. 4. Sporadic Groups Subquotient Table from the ATLAS, II.

Group G | dim (Wg) | dim (P (Vg)) | dim(Xg)
M, 10 9 6
M;2 11 10 7
Mas 22 21 17
HS 22 21 18
McL 22 21 19
Moy 23 22 18
Cos 23 22 20
Coz 23 22 20

He 51 50 48
J1 56 55 51
Fiso 78 s 74
HN 133 132 129
Th 248 247 244
Fiag 782 781 776
Ja 1333 1332 1328
Ly 2480 2479 2475
B 4371 4370 4365
M 196883 196882 196874

Fig. 5. Minimal Linear Representations, Projective Representations, and X¢.

Group G | dim (W¢g) | dim (P (Vg)) | dim (X¢g) a.G
J2 14 5 5 2.Js
Moo 20 9 8 12. Moo
Suz 143 11 10 6. Suz
J3 85 17 16 3.J3
Coq 276 23 21 2.Co;
Ru 378 27 26 2. Ru
O’N 10944 341 338 3.0’'N
Figa’ 8671 782 779 3. Fiay’

Fig. 6. Minimal Linear Representations, Projective Representations, X, and the Schur Covers.

corresponding quotient maps yield upper bounds on RDy(G) [15, Example 4.6]. For each
sporadic group G, we now compare X with a minimal-dimensional linear representation
We and a minimal-dimensional projective representation P (Vi) (continuing with the
notation of Notation 4.1). In the cases where the linear representation comes from the
Schur cover, we include the Schur cover as well (see Fig. 5 and 6).
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Group Initial Terms for the Power Series Expansion of M (pg;t)

J2 1+ t12 + t20 + 2t24 + t28 + 2t30 + 3t32 + t34 + 4t36 + 2t38 +0 (t40)

My 1+¢% 4+ +2¢* +3¢° +5¢5 +6¢7 +11¢% + 16¢° + 26¢'° + 38" + 6142 + 91¢'% + O (+1*)
Miz | 148 + 6% 4+ 26" +26° 4+ 5¢° + 4¢7 + 9¢® + 10t° +17¢'° + 20" + 36t'% + 39¢% + 67¢'* + O (19)
Maa 1+ ¢ 4+1% + 265 + 360 + 6¢'% 4+ 96" + 15¢' + 26¢'% + O (¢29)

Suz 1+¢"2 4218 4+ 362 + 3630 + 7430 + O (¢9)

Js 1+¢% +1° + 106" + 26¢'° + 143¢"° + 680¢%! + 3310t* + 14229¢°7 + 55826t°° + O (+*%)
Mas 1+¢% 4+ + 26" +3t° + 665 +9¢7 +17¢% + 27¢° + 49¢'° + 86t'" 4 159¢"% + 292¢° + O (¢'4)
HS 1+¢% 426" +° + 565 + 3¢7 +12¢% + 9¢° + 20¢10 + 28¢' + 776" + 87¢13 4 220t + O (¢1F)
McL | 148>+ ¢ +1° + 2t + 317 + 5t% + 6t° +10¢"° + 14¢"" 4 218" + 29¢™% + 484 + 70¢'° + O (+'°)
Moy 1+ + 4% + 26 + 26° + 5% + 5¢7 4+ 11¢% 4 14¢° + 25¢'° 4 35¢" 4 65¢'2 4 89¢'° + O (¢'%)
Cos 14+ 4+ + 26 + 3% +¢7 + 500 + 26" +9¢"2 4+ 38" + 14¢ + 70 + 23170 + 13t + O (¢19)
Coy T+ 418 42685 + 3870 + ¢ 5612 4418 4 7t 4 2t + 11410 + 3¢17 + 168 + O (¢19)
Coy 1+ ¢ 410+ 65 4420 4 2612 4 261 + 3¢2° + 4478 + 0 (+29)

Ru 1+t +26% + 6612 + 26" 4 22616 4 27¢"8 4 154¢%° + 439¢%% + 1966t>* + 7189t%° + O (¢°%)
He 1+ 6%+ ¢* +¢° + 4% + 57 + 13¢5 + 30¢° + 8240 + 245t 4+ 907412 + 3424¢% + O (+*9)

J1 1+¢% 4+ % + 8t + 34¢° 4+ 361¢° 4 2820t7 + 22346t° + 156939¢° + 1021469t'° + O (¢1)
Fiaz 1+ 6%+ + 265 + 565 +¢° + 13¢2° + 44! 4+ 60¢22 + 31¢1% + 488 + 912¢'° + O (¢19)

HN 1+ 6% +¢* + 265 + 17 + 5% + 6¢° + 27¢1° + 9241 + 637412 + 5018t° + 47239t + O (¢*°)
Th 1+¢% 4+ % +¢% + 4¢® + 15¢1° + 5041 + 1854¢12 + 31610t*° + 607473t + O (¢17)

O'N 1+ 16t° + 426595t° + 14039408007¢2 + 230067642077481¢*° + O (¢'%)
Fiag 1+ 6%+ 3 + 26" +3t° + 9t + 15¢7 + 575 + 324¢° + 7961¢'° + 456255t + O (¢'?)
Fiog’ 1+ 3 4 3t% + 11¢° + 355¢'2 + 17843536t'° + 1848868683076t'° + O (¢21)

Ja 1+ t* 4 2t° + 267 + 3145 + 521¢° + 60960t + 7118797¢' " + 795955946t + O (¢**)

Ly 1+ 23t° 4 21041¢7 4 697156t° + 191631120¢° + 47708455027¢'° + O ('!)

B 1+ % + 26" 4 3t + 76% 4 20610 + 3¢ + 24342 + 8164413 + 2665262t + O (¢1°)

M 1+ + ¢ + 20" + 265 + 6% + 667 +16t5 + 27¢° + 6810 4 182¢1 + 956t'% + O (¢'¥)

Fig. 7. Power Series Expansions.

Data availability

We have shared the link to our data and code at the Attach File step.

Appendix A. Power series expansions of Molien series

For each sporadic group G, we record the initial terms of the power series expansions
of M (pg;t) in Fig. 7.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/
10.1016/j.jalgebra.2024.02.025.
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