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ABSTRACT. The linear decomposition attack provides a serious obstacle to
direct applications of noncommutative groups and monoids (or semigroups) in
cryptography. To overcome this issue we propose to look at monoids with only
big representations, in the sense made precise in the paper, and undertake a
systematic study of such monoids. One of our main tools is Green’s theory of
cells (Green’s relations).

A large supply of monoids is delivered by monoidal categories. We consider
simple examples of monoidal categories of diagrammatic origin, including the
Temperley—Lieb, the Brauer and partition categories, and discuss lower bounds
for their representations.
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1. INTRODUCTION

The main goal of this paper is to start connecting monoidal categories and cryp-
tography.

1A. Protocols and platform groups. Some of the most important cryptographic
protocols in use today are based on commutative groups and deliver a gold stan-
dard for cryptography (modulo the fear of quantum computers). On the other
hand, noncommutative group-based and monoid-based (or semigroup-based, but we
will stay with monoids in this paper) protocols seem to be less understood and in
many cases admit efficient attacks.

Exceptionally successful Diffie-Hellman (DH), Rivest—Shamir-Adleman (RSA)
and elliptic curve cryptography algorithms, see e.g. [Ko98], [Wa08], are based on
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the commutative group (Z/nZ)* of invertible residues modulo n and on the group
of points on an elliptic curve E over a finite field F,, respectively. Here one usually
wants these groups to contain a subgroup of large prime order and small index. For
example, in the classical DH protocol the prime p as well as a generator g € (Z/pZ)*
of the multiplicative group are public. Then party A chooses privately a € Z and
party B chooses privately b € Z. Party A communicates g%, B sends ¢g* and the
common secret is (g°)* = g% = (¢*)’. A third party C has access to n, g, g% and
g%, but finding g% from the known data is difficult as long as p — 1 contains a large
prime among its factors.

There has been many ideas and there is an extensive literature on constructing
cryptographic protocols from noncommutative groups and monoids (monoids gen-
eralize groups and we switch to saying monoids from now on), see e.g. [MSUOS8],
[MSU11] and references therein. Examples of such are Magyarik—-Wagner public
key protocol [WMS85], Anshel-Anshel-Goldfeld key exchange [AAG99], Ko—Lee et
al. key exchange protocol [KLC100] and Shpilrain-Zapata public key protocols
[SZ06].

In the literature the monoid S used in protocols is often called the platform
group/monoid. In [MR15, Section 4] there is a big list of various protocols and
platform monoids, including but not limited to the ones named above. Sometimes
these restrict to groups or matrix groups, sometimes general monoids can be used.
A prototypical example for this paper is the Shpilrain—Ushakov (SU) key exchange
protocol, see e.g. [MSUO08, Section 4.2.1], which works as follows. The public data
is a monoid S, and two sets A, B C S of commuting elements and g € S. Party
A chooses privately a,a’ € A and party B chooses privately b0’ € A. Party
A communicates aga’, B sends bgb’ and the common secret is abgb’a’ = baga’l’.
Another example that does not use commuting elements is Stickel’s secret key
exchange (St) [St05]. Here g,h € S with gh # hg are public, party A picks
a,a’ € Z>o, party B picks a,a’ € Z>o, A sends g°h?, B sends ¢’h?’, and the
common secret is g“gbhb/ he = gbgah“/hb/. Note that S can be an arbitrary monoid
in these protocols. The complexity of S determines how difficult it is to find the
common secret from the public data.

As shown by Myasnikov and Roman’kov [MR15] and also based on earlier work,
the SU and St protocols and others in this spirit, the ones named two paragraphs
above included, can be successfully attacked if S admits small nontrivial represen-
tations. This is called a linear decomposition attack or linear attack, for short.

One of the consequences of linear attacks is that finite noncommutative groups
may not be suited for cryptographic purposes as they admit nontrivial representa-
tions of moderate size. For a toy example, the symmetric group S,, has n! elements,
but admits a faithful (n—1)-dimensional representation. The dimension of this rep-
resentation is smaller than logarithmic in the size of the group, and the symmetric
group would be a poor choice for various standard noncommutative group protocols.
Likewise, finite simple groups of Lie type often admit representations of (exponen-
tially) small dimension compared to their size. With few exceptions, including
cyclic groups of prime order, which are related to the classical and well-understood
protocols, the same is true for other finite simple groups. That is, these groups
admit nontrivial representations of small dimension relative to their order. Since
any finite group G surjects onto some finite simple group, reducing the problem
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of bounding representations of G from below to that of the simple quotient, linear
attacks rule out many finite noncommutative groups.

Hence, it is not surprising that some platform groups proposed in the literature
are infinite, e.g. Artin—Tits, Thompson or Grigorchuk groups, see [MSU08, Chapter
5].

This paper explores finite monoids (mostly coming from monoidal categories)
instead of infinite groups. The questions we address are:

e What are (numerical) measures to determine whether a monoid can resist
linear attacks?

e How to find a good supply of finite monoids for cryptographic use?

1B. Linear attacks, representation gap and faithfulness. The following ob-
servations regarding monoid-based cryptography are our starting points:

(a) As explained above, monoid-based protocols such as SU or St and many
others often admit efficient attacks based on linear algebra [MR15].

(b) A natural solution to this problem is to restrict to monoids that have non-
trivial representations only starting from a suitably big dimension. We call
the smallest dimension of a nontrivial S-representation the representation
gap of §. Alternatively and weaker, we also ask for the dimension of the
smallest faithful S-representation to be big, and we call this measure the
faithfulness of S. We elaborate on these in Section 2.

Remark 1B.1. Various monoid invariants similar to the representation gap and its
companions have appeared in the literature and we give some references in the
main body of the paper. However, the motivations to study these invariants in the
literature are very different from ours, and it would be very interesting to make a
connection to cryptography starting from these works.

It is thus essential to find monoids that have big representation gaps or with
faithful representations of big dimension only. Suitably defined, a big representation
gap or big faithfulness seems to be necessary, but not sufficient, condition for a
monoid to be potentially useful in cryptography, however. Moreover, one problem
not discussed here is potential information loss: multiplication by an element of a
monoid may not be invertible.

1C. Monoidal categories and monoids. A category delivers a supply of
monoids: any object X of a category S gives rise to the monoid & = Endg(X)
of its endomorphisms. It is further natural to consider monoidal categories, where
objects can be tensored ® subject to suitable axioms, for the following reasons:

(c) It would be preferable to have a family of monoids S, say one for each
n € Z>o. This is where monoidal categories enter. A single object X of a
monoidal category S produces a family of monoids {S,, = Ends(X®™)|n €
Zxo}.

(d) Commuting actions play a key role in cryptography, cf. the SU protocol re-
called above. Such commuting actions exist naturally in the setting of cat-
egories and monoidal categories. For any pair of objects X, Y of a category
S, not necessarily monoidal, there is a commuting action of the monoids
Endg(X)°P (the opposite monoid) and Endg(Y’) on the set Homg(X,Y).
Thus, categories immediately produce a significant amount of commuting
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actions. Furthermore, monoidal categories provide an even richer supply of
such actions: for any two objects X, Y the actions of the monoids Endg(X)
and Endg(Y) on X ® Y commute. It is easy to convert these to commuting
actions on sets, for instance, on the set Homg(Z, X ® Y) for Z € Ob(S).

Monoidal categories are naturally two-dimensional structures. They often
can be described via generating objects, generating morphisms and defining
relations. The latter can be understood as relations on planar diagrams or
networks, see e.g. [Sell], [TV17]. A natural problem is to construct exam-
ples of diagrammatically defined monoidal categories that may be useful for
cryptographic purposes. We start tackling this for planar diagrammatics
in Section 4 and for diagrammatics involving permutation symmetries in
Section 5.

These are our reasons to study (diagram) monoids coming from monoidal cate-
gories and we elaborate on their potential usefulness in cryptography in the main
body of the text.

There are then three additional facts regarding this project that we stress and
that we think makes our discussion interesting:

(f)

The current literature on monoidal categories (see for example [EGNO15],
[TV17] and references therein) mostly studies K-linear categories or vari-
ations of such. This means hom-spaces between the objects are K-vector
spaces for some field K. Such categories are not immediately useful from
the cryptographic or any classical computation viewpoint, since it usually
takes a prohibitive amount of data to record an element of the hom-space
between two objects (those hom-spaces tend to have exponentially big di-
mensions). One the other hand, protocols in K-linear categories with homs
between objects having moderate dimensions can be dealt with via linear
decomposition attacks, see [MR15].

It makes sense to develop set-theoretic counterparts of categories that
appear in quantum algebra, quantum topology, mathematical physics, and
TQFTs, and see whether related monoids have big representation gaps.
We provide easy examples of such in the present paper and discuss their
usefulness for cryptography, see parts of Section 4 and Section 5.

It seems hard to build secure cryptographic protocols from noncommutative
finite groups, due to finite simple groups having small representation gaps
relative to their size. For example, among finite simple groups only the
cyclic groups (of prime order) appear to be well-behaved for cryptographical
purposes, cf. Example 2C.3 and Example 2E.13.

One of our points is that representation gaps and faithfulness tend to be
bigger for suitable monoids than for groups when controlling for size. The
abstract theory of monoid representations should be useful for some general
statements in this direction, see Section 3 for some first steps.

Finally, lower bounds on dimensions of representations of monoids or growth
rates of such dimensions are not yet extensively studied in the literature,
even not for group (representation theorists seem to prefer precise numbers).

Part of this project is also to get good bounds and growth rates for simple
and faithful S-representations, for finite monoids S, see Theorem 4E.2 for
an example.



MONOIDAL CATEGORIES ... AND CRYPTOGRAPHY 333

1D. Cell theory and cryptography. Our main tool to study monoid represen-
tations are Green’s relations a.k.a. Green’s theory of cells. We explain the details
in Section 2.

An example of how cell theory enters the paper is that a monoid & can be
truncated by considering a large cell submonoid SZ, see Section 2 for definition.
Since simple S-representations are ordered by cells, SZ7 will inherit precisely the
simple S-representations for large cells. The monoids of the form SZ7 sometimes
have very few small representations. This truncation works actually in two ways,
from above and from below, using Rees factors and cell truncations, and provides
a good way to get rid of unwanted representations, cf. Section 3F.

Moreover, in Section 3 we will discuss so-called H-cells, how they control the
representation theory of the monoids and how large cells resist against linear at-
tacks.

Another way cells help to determine whether a given monoid could resist linear
attacks is that they give rise to what we call the semisimple representation gap,
which measures the normalized size of the cells. This numerical value is not as fine
as the representation gap or the faithfulness, but easier to compute and agrees with
the representation gap in the semisimple situation.

The representation gap, the semisimple representation gap and the faithfulness
seem to be good first tests for determining whether a given monoid resists linear
attacks. Throughout the text we list a few additional properties, partially motivated
by cell theory, that may be useful for cryptographical applications.

1E. Representation gap in some diagrammatic monoids. Let us take the
opportunity to recall some diagrammatic monoids which we will discuss in this
paper. All of these will be very familiar to the reader with background in quantum
algebra, quantum topology and alike, but they also are prominent examples in
monoid theory.

We will be very brief and details and references will follow in the main text.
We also indicate whether these monoids might be useful for cryptography in the
sense of having substantial (semisimple) representation gaps or only big faithful
representations.

Most of the monoids which we will use can be obtained as hom-subsets of the
set-theoretical partition category. We will use matchings from n bottom to n top
points of the following types (all of these are classical example, see e.g. [HR05] or
[HJ20] for summaries):

e The partition monoid Pa,, of all diagrams of partitions of a 2n-element set.

e The rook-Brauer monoid RoBr,, consisting of all diagrams with components
of sizes 1, 2.

e The Brauer monoid Br, consisting of all diagrams with components of size
2.

e The rook monoid Ro, consisting of all diagrams with components of sizes
1,2, and all partitions have at most one component at the bottom and at
most one at the top.

e The symmetric group S, consisting of all matchings with components of
size 1.



334 M. KHOVANOV, M. SITARAMAN, AND D. TUBBENHAUER

e Planar versions of these: pPa,, pRoBr, = Mo, pBr, = TL,, pRo, and
pS, =2 &1 (the latter denotes the trivial monoid). The planar rook-Brauer
monoid is also called Motzkin monoid, the planar Brauer monoid is also
known as the Temperley—Lieb monoid, and the planar symmetric group is
trivial.

Remark 1E.1. The above diagram monoids appear in many different fields of math-
ematics. This makes them on the one hand very appealing, but on the other hand
tends to cause confusion from time to time. For example, as we already indicated
above, these diagram monoids have different names that vary with the field, e.g. the
Temperley—Lieb monoid is also known as the Jones monoid or the Kauffman monoid
in monoid theory, but that name appears to be unheard-of in the representation
theoretical literature on the algebra versions of these monoids.

(1E.2) summarizes our list, see also [HJ20, Section 2.3]. In order to make com-
ponents of size one visible we use loose dotted ends. We also indicate whether their
nontrivial representations are reasonably big (the “Big reps” column), meaning af-
ter appropriate cell truncation. Hereby * means that they have such representations
but still come with an aftertaste (such as being semisimple in some cases), . means
conjectural, and EX means excluded from the discussion due to triviality. This is
explained in more details in Conclusion 4F.17 and Conclusion 5F.13.

Symbol Diagrams Big reps H Symbol Diagrams ‘ Big reps
é é é
pPa, m YES* Pa, YES?
b4
é ¢ ¢ U é é
Mo, YES. RobBr,, YES;
u/r_\\ S * My
AE2) 7, vES | B, >4—$Ll< VES*
A (A0
é é é é
pRo, YES* Ron YES*
) B 4 S 4
b HH‘ N %/ 0
N

The left half of the table above contains planar monoids, the right half symmetric
monoids.

We discuss all of these monoids and their representation gaps, respectively faith-
fulness, in Section 4 (planar) and Section 5 (symmetric).

1F. Further direction not discussed in this paper. Although truncated ver-
sions of the monoids mentioned in Section 1E have big representation gaps, big
semisimple representation gaps and are of high faithfulness, they might not be
suitable for cryptographic purposes due to their other properties.

We list here several additional examples and ideas which might be interesting
to study from the perspective of cryptography. For all of these making the setup
set-theoretical is the first crucial (and nontrivial) step:

(a) Web categories in the sense of Kuperberg [Ku96]. These monoidal cate-
gories generalize the Temperley—Lieb category from the viewpoint of repre-
sentation theory of Lie groups with Temperley—Lieb being the SL(2) case.
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A naive lower bound for the semisimple representation gap of the associ-
ated endomorphism algebras can be easily obtained. This bound is bigger
than for the Temperley—Lieb monoid itself, so this might be a fruitful di-
rection.

Note that it is not clear how to make the appearing endomorphism alge-
bras set-theoretical. For the Temperley—Lieb category what one effectively
does to make its endomorphism algebras set-theoretical is to look at prod-
ucts of light ladders (in the sense of [El15]). The same might work for other
web categories. Light ladder bases for these web categories were discussed
for example in [AST18], [El15] or [Bo20].

Note that, if one can make these web categories set-theoretical, one would
get new examples for monoid theory as well, which is interesting in its own
right.

Soergel bimodules or categorified quantum groups in various flavors.

Soergel bimodules [S092] form monoidal categories attached to a Coxeter
system. These were diagrammatically reinterpreted in [EK10] and [EW16],
see also [EMTW20] for a summary. For starters, one can look at the di-
hedral case [El16] and see whether its set-theoretic modifications can give
interesting monoids. Looking at the analogs of light ladders, called light
leaves in [Li08], might be crucial. Let us note that some set-theoretical
variations of Soergel diagrammatics exist in the literature, see for example
[CGGS20, Section 4], but their usefulness in cryptography has not been
explored.

Categorified quantum groups originate in [Lal0], [KL09] and [Ro08], see
also [KL11], [KL10]. These are also diagrammatic in nature and promising
candidates, but may be harder to work with than Soergel bimodules.

As for web categories, set-theoretical versions of these would give novel
examples in monoid theory.

Foams are suitably decorated 2-dimensional CW-complexes, defined ab-
stractly or embedded in R3. They originate and most prominently appear
in the study of link homologies, see for example [Kh04], [EST17], [RW20]
or [ETW18]. Using the universal construction from [BHMV95], they can
be easily modified, see e.g. [EST16] or [KK20].

Similarly as in the previous points, if foams could be made set-theoretical,
that would provide a big supply of potentially interesting monoids.

The representation gap and the faithfulness of S depend on the underlying
field. To get rid of the dependence of the field, it should be useful to consider
integral representation of groups or monoids. This direction is widely open
and not much appears to be known. However, their categorifications, called
2-representations, have been studied a lot in the recent years.

Potential directions are:

(i) 2-representations of tensor and fusion categories, see e.g. [EGNO15,
Section 7] for a book chapter discussing these. Various diagrammatic
fusion categories might be of interest to study here, see [MPS17] for
a compelling list of examples. These diagrammatic fusion categories
also generalize T L, so it is expected that the list given in [MPS17]
has suitable big ranks.
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(ii) 2-representations of fiat 2-categories, see e.g. [Mal7] for a slightly out-

dated summary. For example, Soergel bimodules tend to have simple
2-representations of very big rank, see [MMM™19] for a classification.
Other versions of 2-representations of Soergel bimodules might also be
useful, see e.g. [MT19] or [MMMT20].
Another advantage of studying 2-representations of fiat 2-categories
from the viewpoint of cryptography is that cell theory generalizes from
monoids to these 2-categories, see e.g. [MMM™21], which served as a
partial motivation for Section 3.

(e) Another approach is to use semirings for building cryptographic protocols,

as proposed in [GS14], [GS19], [RS21], see also [Du20], which contains a
detailed review of the literature.

A linear attack on a semiring-based protocol would require the semir-
ing to act on a vector space or a module, and it is not even clear how a
semiring can act linearly on anything. There is the notion of a semimod-
ule over a semiring, which is much closer to set theory compared to that
of a module over a ring, and the theory of semimodules over semirings is
computationally difficult, even for semimodules over the Boolean semiring
B ={0,1|1 + 1 = 1}, see for example [CC19]. A semiring can appear from
a linear structure, as the Grothendieck semiring of an additive category.
However, realizing even the Boolean semiring (or the tropical semiring) in
this way appears rather nontrivial, due to impossibility of an isomorphism
1@ 1 = 1 in a monoidal category, cf. [KT19] which discusses ways to
resolve such problems in similar situations.

2. REPRESENTATION GAPS AND FAITHFULNESS

For background we refer the reader to standard textbooks such as [Be98], re-

spectively [St16], for the basic theory of finite-dimensional representations of finite-
dimensional algebras (such as monoid algebras), respectively, finite monoids.

Notation 2.1. We let S denote a finite monoid. If not stated otherwise, we work
over an arbitrary field K and consider only finite-dimensional (left) S-representation
with ground field K. The adjective small and big used for S-representations will
mean dimension-wise, where dimension is measured with respect to K.

2A. Representation gaps. We start with a subtle difference between groups and
monoids: the latter may have two types of “trivial” representations.

Definition 2A.1. Let G C S be the subgroup of all invertible elements of S, i.e.
G is the group of units. Then we define trivial representations

1 ifseg,

I;:S§—=K, s—1.
0 else,

Ip: S = K, 5!—){

An S-representation M is called trivial if M = 1, or M = 1,.

The subscripts b and ¢ are short for bottom and top, respectively. The top trivial

representation 1; is also what is called the trivial representation 1 of S, the unit
object of the monoidal category of representations of S with 1 ® M = M for any
S-representation M.



MONOIDAL CATEGORIES ... AND CRYPTOGRAPHY 337

Remark 2A.2. The notation is justified as follows. The S-representation 1, is one
of the simple S-representations associated with the bottom J-cell J, = G, while
the S-representation 1; is associated with the top J-cell J;, cf. Lemma 3A.9.

Remark 2A.3. With respect to Remark 2A.2 and Section 3, we warn the reader
familiar with monoid theory that the order we use for J-cells (a.k.a. Green’s J-
classes) is opposite of the one often used in monoid theory. Thus, what we call
bottom/top is usually the top/bottom in monoid theory. In contrast, our convention
matches most of the cellular algebra literature.

Lemma 2A.4. Both, 1, and 1, are simple S-representations of dimension one.
Moreover, 1, = 14 if and only if S is a group.

Proof. Immediate from the definitions. ]

Notation 2A.5. We write 1, short for either 1, or 1;. In particular, ]lgim means
any of the 2™ possible direct sums of 1, and 1; with m symbols in total.

For cryptographic purposes it should be interesting to collect examples of natu-
rally occurring finite monoids S such that any representation of sufficiently small
dimension relative to |S], the size of S, is suitably trivial. Note that all elements of
S\ G act in the same way on any of the direct sums ﬂ;‘im and these representations
cannot distinguish any two elements of S\ G. Thus, suitably trivial could mean
being isomorphic to 1;7™ which we take as the definition. To state our definition
let &1 be the trivial monoid with one element, and let Sp,; be the monoid on the
set {ao} U {1} with unit 1 and multiplication ag - ag = agp otherwise.

Definition 2A.6. A pair (S,K) of a monoid, with S % S§; and § 2 Sp,1, and
a field K is called m-trivial if S-representations M with dimg (M) < m satisfy
M= ]lgidlm”‘(M). Moreover, by conventions, S and Sp;; are (—1)-trivial for all K.
The maximal m such that (S,K) is (m — 1)-trivial is called the representation

gap of (§,K) and is denoted by gapg(S).

Remark 2A.7. The two monoids S; and Sp.; are the only two monoids for which
every representation is a direct sum of trivial representations. Hence, their repre-
sentation gap would be infinity if we would use the same definition for m-triviality
as for other monoids. Since we define S; and Sp;1 to be (—1)-trivial we have
gap (S1) = gapk (Soi) = 0.

Note that the m-triviality is a lower bound on the dimension of the smallest
nontrivial simple S-representation, assuming the absence of extensions between
trivial representations 1; and 1,, see also Lemma 2A.14 and Lemma 2B.2.

Definition 2A.8. A monoid § is called m-trivial if (S,K) is m-trivial for all K.
The maximal m such that S is (m — 1)-trivial is called the representation gap of
S and is denoted by gap, (S).

Remark 2A.9. In group theory the representation gap and similar notions are well-
known invariants studied by many people and with a number of applications, see
[BGO8] or [Go08] for examples. However, the motivations in those papers are dif-
ferent from the ones in this paper and it would be interesting to make a connection.

Notation 2A.10. Below we will meet several notions similar to gapg (S) and gap, (S).
For all of them it makes sense to vary the field which we indicated using *. Whenever
the difference does not play a role we simply write gap(S).
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Remark 2A.11 (Main task 1). For cryptographic applications it should be useful to
have a supply of monoids {S,,|n € Z>¢} with exponentially big gap(S,,) as n — cc.

Example 2A.12. A pair (§ 2 S1,K) or (S % So.1,K) is O-trivial if and only if any
there exists a one-dimensional S-representation which is nontrivial. In particular,
if S has a nontrivial one-dimension representation, then gapg(S) = 1.

Lemma 2A.13. The pair (S,K) is m-trivial if and only if S-representations M
with dimg (M) = m satisfy M = 1;7™.

Proof. By the unique decomposition property of finite-dimensional representations.
|

Lemma 2A.14. Assume that S has at least one nontrivial simple representation.
We have

gapg(S) < min{dimg(Lk)|Lk is a nontrivial simple S-representation} < |S| — 1.

Moreover, when K is algebraically closed, then |S| — 1 on the right can be replaced
by \/|S| — 1. In all cases, when S is not a group, then every appearance of |S| — 1
can be replaced by |S| — 2.

Proof. The first inequality follows directly from the definitions. To see the second
inequality observe that simple S-representations appear in the Jordan—Holder filtra-
tion of K&, the monoid algebra, so their dimensions are bounded by dimg (KS) =
|S|. Since the trivial representations 1, must appear as composition factors we
actually get |S| — 2 or |S| — 1 as an upper bound, depending on whether 1, % 1
or not. When K is algebraically closed we have the inequality 3, dimg(L)? < |S|
where the sum runs over all simple S-representations. This implies the final claim
after again taking into account that 1,; must appear as composition factors. (Il

Remark 2A.15. Note that we assume that S has at least one nontrivial simple
representation in Lemma 2A.14. This restriction is necessary. For example, let

....n—1;1 be the monoid on {ay,...,a,—1} U {1} with unit 1 and multiplication
aja; = a; otherwise. Then the only simple Sp,....n—1;1-representations are 1., as
follows directly from Proposition 3B.5. Thus, the middle number in Lemma 2A.14
is ambiguous.

Example 2A.16. Let S, = Aut({1,...,n}) be the symmetric group on {1,...,n}.
For char(K) # 2 there is a 1-dimensional nontrivial simple S,,-representation, called
the sign representation. Hence, gapy(S,) = 1 unless char(K) = 2, which implies
gap,(S,) = 1. Since |S,| = n!, the ratio between the representation gap and the
size of S, is thus very small. Even if one would argue that the sign representation
is close to trivial, there is still the standard S,-representation of dimension n — 1.
So gapg(S) <m —1 by Lemma 2A.14, which is still small compared to n!.

Example 2A.17. For the monoid in Remark 2A.15 we have gap, (So.1) = 0 for
n = 1 and gap,(So,....n—1,1) = 2 otherwise. This is not hard to verify, see also
Example 2B.1.

2B. Extensions and representation gaps. We now discuss extensions. These
results are essentially in the literature, but we decided to keep the proofs for con-
venience of the reader. We elaborate on the literature in Remark 2B.13.

We start with an example showing that there can be arbitrary complicated ex-
tensions, even with only trivial composition factors:
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Example 2B.1. Back to Example 2A.17. One can check that KSy
split basic algebra whose quiver I' is of the form

on—1;1 18 a

n=1:I'=e o n=2:I'=e—2e n=3:T=e23e,

and so on, i.e. one has two vertices and n — 1 edges for KSy, ... p—1;1-

Let us use the convention on path algebras where paths are composed from right
to left. Then an isomorphism that realizes these descriptions sends ag to the initial
vertex (on the left-hand side above), 1 — ag to the terminal vertex and, for n > 2,
a; — ag to the ith edge, counting e.g. from top to bottom in the illustration, for
ie{l,...,n—1}.

By usual quiver representation theory it follows that KSp, ... ,—1,1 is semisimple
for n = 1, has finite representation type for n = 2, tame representation type for
n = 3 and is of wild representation type for n > 4.

However, as we have seen in Example 2A.17, Sy ,,—1,1 has only the trivial simple
representations 1, and is 1-trivial unless n = 1. Thus, in general, Sy . 1,1 has
many nontrivial extensions of the form 0 — 1,y — M — 1;; — 0 with only
trivial composition factors for M.

Lemma 2B.2. A pair (S,K) is m-trivial if and only if any nontrivial simple S-
representation has dimension at least m=+1 and all extensions 0 — 1y — M —
1yt — 0 for dimg (M) < m split.

Proof. Being m-trivial clearly implies the second statement. The converse follows
by induction on m showing that any S-representation M with dimg (M) < m is a
direct sum of 1. O

Remark 2B.3. If S = G is a group so that 1, = 1;, then having no nontrivial
extensions 0 — 1y, — M — 1 — 0 is equivalent to H*(S,K) = 0, here
S acts on K trivially: s — 1 for all s € §. Moreover, for any monoid S, recall
that H'(S,K) consists of all homomorphisms from S to (K,+). In particular,
H'(S,K) 220 if and only if the only homomorphism from S to (K, +) is the trivial
one. We will use this below, in particular, maps from S are always to (K, +).

We consider now the four possible cases of extensions of 1, by 1. Precisely,
let M be an S-representation. Suppose there is a short exact sequence

0— 1y — M — 1y — 0, meaning all four possibilities.

Choosing a basis of M compatible with the corresponding filtration, the action of
each a € § in the basis will be given by an upper-triangular matrix, with either
0 or 1 in each diagonal entry (when the corresponding term is either 1, or 1,
respectively). The remaining (1, 2)-entry is denoted by f(a), so that the extension
is described by a function f: & — K. The condition (ab)m = a(bm) for m € M
translates into four possible relations on f depending on the types of the trivial
representations involved:

Case (tt). This case is the same as for groups, cf. Remark 2B.3, that is:

Lemma 2B.4. We have H'(S,K) 22 0 if and only if S has only the trivial extension
of the form (0 — 1, — M — 1, — 0.

Proof. Extensions of the form 0 — 1; — M — 1; — 0, viewed as elements
of Ext*(1,, 1,), are classified by functions f: S — K such that f(ab) = f(a)+ f(b)
for a,b € S. Any such extension is trivial if and only if H*(S,K) = 0. O
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Case (bt). Recall that G C S denotes the group of units of S.

Consider the symmetric and transitive closure of the relation ab =, a for a,b €
S\ G, and denote the closure by =, as well. We call § with a unique equivalence
class in §'\ G under =, a right-connected monoid.

Remark 2B.5. Note that groups S = G are not right-connected since for groups we
have § \ G = (), and the empty set has no equivalence classes under =,

We obtain a sufficient condition for the triviality of extensions:

Lemma 2B.6. If S is right-connected, then S has only the trivial extension of the
form 00— 1, — M — 1, — 0.

Proof. Extensions of the form 0 — 1, — M — 1; — 0, viewed as elements
of Ext!(1;, 1), are classified by functions f: & — K such that

. f(a) ifaeS\G,
(2B.7) I b){f(a)+f(b) ifacg,

modulo the one-dimensional subspace of functions that are constant on &\ G and
zero on G. To see this, in a compatible basis {vy,v2} of M the action of a € S\ G

and b € G is given by
o (3 1), 0o 5 20

leading to the above equations. Moreover, the basis {vi,v2} can be changed to
{v1,v3 + Av1 } while preserving its compatibility with the sequence 0 — 1, —
M — 1; — 0, explaining why one needs to mod out by functions that are
constant on S\ G and zero on G.

If f satisfies (2B.7), then the fact that f(ab) = f(a) for a € S\ G and b € S,
together with right-connectedness implies that f is constant on S\ G. Fix b € S\ G
(the set S\ G is nonempty by right-connectedness). Then, if a € G, we have
ab € 8\ G and so f(b) = f(ab) = f(a) + f(b), whence f(a) = 0. Thus, f vanishes
on G. We deduce that Ext*(1,, 1) 2 0 by the previous paragraph. a

Case (tb). A monoid S is called left-connected if the opposite monoid S is right-
connected.

Lemma 2B.8. If S is left-connected, then S has only the trivial extension of the
form0— 1, — M — 1, — 0.

Proof. Dual to Lemma 2B.6. O

Case (bb). Finally, we call a monoid S null-connected if any noninvertible element
of § can be written as a product of two noninvertible elements. That is, for a € S\G
we have a = be for some b,c € S\ G. Note that groups are null-connected.

Lemma 2B.9. If S is null-connected and H* (G,K) 20, then S has only the trivial
extension of the form 0 — 1, — M — 1, — 0.
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Proof. The extensions as in the statement, when viewed as elements of Ext’ (Lp, Lyp),
are classified by functions f: & — K such that

0 if a,be S\ G,
JH@ 410 itabeg,
J@b) =145 ifaeS\G,beg,

f() ifaeG,beS\G.

Similarly as before, one can see this by writing the action on M in a compatible

basis as
a— (8 f%a)), b— ((1) f(lb)),

where a € S\ G and b € G. The rest of the argument is similar to Lemma 2B.6 and
omitted. U

We say that a monoid S is well-connected if it is either a group or right-connected,
left-connected and null-connected.

Theorem 2B.10. Assume S is well-connected and H'(G,K) = 0. Then:

(a) Any short exact sequence
00—y — M — 1y — 0
splits.
(b) We have
(2B.11) gapg (S) = min{dimg (L)|L % Ly is a simple S-representation}.

In particular, for groups S = G it suffices to check whether Hl(g,K) =~ (0 to ensure
that (2B.11) holds.

Moreover, if S is semisimple over K, then S is well-connected and Hl(g7 K) =0,
so (a) and (b) hold.

Proof. Well-connected and H'(G,K) 22 0 imply Claim (a). This claim follows from
Remark 2B.3, and the statements in Lemma 2B.4, Lemma 2B.8, Lemma 2B.6 and
Lemma 2B.9.

Well-connected and H*(G,K) = 0 imply Claim (b). This follows from (a) and
the definitions.

Groups. Since 1, = 1, Lemma 2B.4 handles this case. It hence suffices to check
H'(G,K) 2 0 for groups.

We now assume that S is semisimple over K.

Left and right-connectivity. Assume that S is not a group. To see that S is
right-connected note that the S-representation 1, is projective. Thus, there exists
e € S with e = e and 1; = KSe. Let a,b € S with a in the support of e and
b€ S\ G. Then, since be = e, we get that there exists ¢ € S with a = bc so S is
right-connected. Finally, taking the opposite monoid preserves semisimplicity, so
the same arguments as for right-connectivity imply left-connectivity.

Null-connectivity. Recall that ideals in semisimple algebras are (unital) semisim-
ple algebras. Hence, K(S \ G)/(S \ G)? is semisimple, so it cannot be nilpotent.
This implies that (S\ G) = (S\ G)?, and thus, S is well-connected.
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The cohomology vanishes. The surjection KS — KG given by a — a for a € G
and a — 0 for a € §\ G implies that G is semisimple over K if S is. Thus, we get
H'(G,K) = 0. O

Remark 2B.12. Note that for upper bounds for gap(S) it suffices to find some
nontrivial simple S-representation, but for lower bounds or the explicit value of
gap(S) we will calculate H(S, K) and H' (G, K).

Remark 2B.13. The paper [MS12a] computes certain quivers for monoid algebras
with the computation of a generalization of Ext'(1,, 1,) being a main point. The
above lemmas are deducible from their computations, more precisely from [MS12a,
Section 7]. In fact, [MS12a, Section 7] work in much greater generality and the
setting with 1; and 1, is a very special case.

Remark 2B.14. Using ideas in [MS12a], one can get a description of Ext!' (1, 1)
as in the proof of Lemma 2B.6. That is, one can prove that Ext!(1,, 1,) =

ﬁO(A(PT),K)g (reduced cohomology) where P, is the poset of proper principal
right ideals of S and A(P,) is its order complex. There is, of course, the dual
version for Extl(ﬂb, 1,) using proper principal left ideals of S. Let us also mention
that the special case of this result where G is trivial was explicitly proved in [MSS15]
and a different proof was given in [MSS21] for left regular bands.

Similarly, following the ideas in [MS12a], one can show that Ext'(1,, 1) =
H'(G,K) @ KI9/A\9l where A = (S\ G)/(S\ G)2.

Recall for monoid theory that a € S is called von Neumann regular if it can
be written as a = aba for some b € S, and S is von Neumann regular if all of its
elements are. Examples of von Neumann regular monoids are the diagram monoids
in (1E.2). As a final statement in this section we add:

Lemma 2B.15. If S is von Neumann regular, then S is null-connected.

Proof. Any a € S\ G satisfies a = aba for some b € S. Since ba € S\ G whenever
a € 8§\ G, null-connectivity follows. O

2C. Examples. The following is well-known. But since it is an important example
for cryptography, see e.g. Example 2C.2, we state and prove it here.
Proposition 2C.1. Let C,, = Z/nZ be the cyclic group of order n > 1.

(a) We have gapg(Cr,) = min{r —1|r prime, v | n}. (In particular, gapg(Cn) =
n—1if n is prime.)

(b) Let F, denote a finite field with ¢ = p* elements, where p is a prime.
(i) For ged(n,q—1) > 1 we have gapr, (Cp) =1.

(i) For ged(n,q —1) =1 and p | n we have gapg, (Cn) = 2.
(iii) For ged(n,q —1) = 1 and p { n we have gapy, (C,) = min {d €
Zxo| ged(n,q? — 1) # 1}.

(c) For any field K we have gapg(C,) = min,(gapk(C,)), where the minimum
is taken over all prime divisors v of n.
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Proof.

Case (a). First we have H'(C,,, Q) 2 0, so by Theorem 2B.10 it suffices to look at
the dimensions of simple C,,-representations.

To this end, recall that representations of C,, are semisimple over Q. The poly-
nomial X™ — 1 has no repeated roots over Q and factors as X" — 1 = Hd|n d,
for ®4 the dth cyclotomic polynomial. The Chinese reminder theorem then gives
QlC,] = Dy, QIX]/(®4), and we see that there are simple Cy-representations
for each ®; which are of the respective degrees deg®y; = ¢(d). This implies
gapg(Crn) = min{p(d)|d divides n}. However, since a | b implies ¢(a) | p(b) we
get the claimed formula from this expression.

Case (b). There is a nontrivial one-dimensional C,-representation over Fy exactly
when ged(n, ¢ — 1) > 1, implying (i). In case (ii), there exists a nontrivial homo-
morphism C,, — Fy, where the latter is considered an abelian group under addition,
giving a nontrivial selfextension of the trivial representation of C,.

In the remaining case (iii), when ged(n,qg—1) = 1 and p 1 n, the trivial represen-
tation has no selfextensions and it is the unique (up to isomorphism) representation
of dimension one over ;. The representation gap gapg, (Cy) is then the dimension
d > 2 of the smallest nontrivial simple representation. Such a representation cor-
responds to a nontrivial homomorphism C,, — GL(d,F,). Since ged(n, g —1) =1
this homomorphism does not take C,, to multiples of the identity matrix. So d is
the smallest number such that ged (n,| GL(d,Fy)|) # 1. The order of GL(d,F,),
up to factors of ¢ — 1, which are coprime to n, is (¢ — 1)(¢? — q) ... (g% — ¢@1).
We see that the smallest d with ged (n, | GL(d, F,)|) # 1 is the smallest d such that

ged(n,q* —1) # 1.
Case (c¢). This follows from (a) and (b). O

Example 2C.2. The groups C, lie at the heart of many standard cryptographic
protocols, see e.g. [Ko98, Section 1.4]. By Proposition 2C.1 these groups have a
quite big representation gap over Q. However, the situation varies depending on
the ground field, and over C the representation gap is small. In particular, for
cryptographical purposes the point is that protocols are broken as soon as C, is
identified explicitly. For n + 1 = p with p a large prime the classical protocols
“disguise” C, since finding a generator of (Z/pZ)*, meaning finding an explicit
isomorphism of groups (Z/pZ)* = C,, is difficult.

Let n be a prime number. Over a characteristic zero field K that contains a prim-
itive root of unity £ of order r, all simple C,-representations are one-dimensional,
and gapg(C,) = 1. Instead, as argued in the proof of Proposition 2C.1, over
the prime field Q there are two simple C,-representations: the trivial 1 and an
(n — 1)-dimensional representation M, the complement of the trivial in the regular
representation. The representation M over a larger field that contains £ splits into
the direct sum of one-dimensional C,-representations, which are Galois conjugates
of each other.

Thus, for n prime Proposition 2C.1 and Example 2C.2 imply that C, has a
substantial representation gap n — 1 over Q, close to its cardinality n = |Cp|.

Example 2C.3. Proposition 2C.1 discusses the cyclic groups C,,. These are simple
if n is a prime and the only commutative groups among the finite simple groups.
Let us briefly discuss other finite simple groups:
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(a) The alternating groups A, C S, of size %’ behave similarly to the sym-
metric groups, cf. Example 2A.16. They are a bit better in the sense that
they do not have a sign representation. However, over Q the standard rep-
resentation of S,, restricts to a simple A,-representation. Over other fields
this representation might not be simple. But if it is not, then it contains
an even smaller nontrivial simple in its Jordan—Holder filtration. Hence,

gap,(A,) <n-—1.

(b) The biggest part of the periodic table of simple groups is the finite groups
of Lie type. (We consider the family of finite groups of Lie type in a very
vague sense. In fact, the symmetric groups are secretly also part of this
family, using the analogy that S,, «~ GL,,(F1).) Most of these should have
small representation gap over the defining field. To see this consider the
group PSL,(F,) for ¢ = p* and p a prime. This is a finite simple group

(unless n = 2 and ¢ € {2,3}) with % [T 5(¢" — 1) elements. (Thus,
the number of elements grows exponentially in n.) However, PSL, (F,)
has a small nontrivial simple F,-representation of dimension n? — 1, namely
(Fg ® (]FZ)*)/]Fq.

(c¢) Sporadic simple groups tend to have big representation gaps, see e.g.
[CCNT85]. However, they do not come in Z>o-families and are all only
moderately big. So they are probably not of immediate use for cryptogra-
phy.

Let us discuss the monster group M as an example. Its smallest nontriv-
ial and faithful representation over C has dimension 196883, see [CCN*85]
under the entry M = F} therein (see also [FLM88, Chapter 12| where this
number+1 appears as the graded dimension of the moonshine representa-
tion), and the smallest nontrivial and faithful representation over any field
has dimension 196882, see [LPWW98]. With the minimal representation of
a sufficiently big dimension, there is a potential chance for cryptographic
protocols built from the monster. However, the monster still is sporadic
and does not come in an infinite family. We are not aware of any literature
on the subject.

Thus, one could argue that noncommutative finite groups do not seem to be very
useful for cryptography purposes by the above.

Example 2C.4. Finite groups that often have a big representation gap are p-
groups for a prime p. Under the name minimal character degree, there is a big
literature on the representation gap of these groups, see for example [Hu92| or
[JZMO02], often aiming for an upper bound and not a lower bound as we would need
it. Having a large representation gap might make them useful in cryptography, see
e.g. [Rol8, Section 3].

2D. Field size and representation gap. In our definition of the representation
gap we do not differentiate between a particular field used and our measure of
complexity is the dimension of the smallest nontrivial representation over that field.
More practically, we can keep track of the complexity of working over a specific field.

For the finite field F, a natural measure of complexity is logy(F,) = nlog,(p), the
log of the size of the field or some related complexity that measures the difficulty
of manipulating elements of the field. Given an S-representation M over F,, the
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complexity of M over F, can then be defined as
c(M) = dimg, (M)c(F,), where c¢(F,) = log, |F,|.

Note that ¢(M) is preserved when viewing M as an S-representation over any
subfield of IF,.

Definition 2D.1. Define the finite characteristic representation gap gap (S) of S
as the minimum of ¢(M), over all nontrivial representations M over finite fields.

We can alternatively restrict to S-representations M over finite extensions Q C K
and define

co(M) = dimg (M)[K : Q] = dimg(M).

Again, co(M) does not change if M is viewed as an S-representation over a subfield
L CcK

Definition 2D.2. Define the characteristic zero representation gap gapy(S) of S as
the minimum of ¢y(M), over all nontrivial S-representations over finite extensions

of Q.

The pair (gapo(S ), gap (S )) is a measure of the representation complexity of S
over both Q and finite fields.

Remark 2D.3. Recall from above that the groups C,, have large (exponential) rep-
resentation gap over (. The more refined notion of representation gap, introduced
in this section, might be a better measure of the complexity of S from the linear
attacks viewpoint.

2E. Faithfulness. By a faithful S-representation we mean a representation on
which any two elements of S act differently.

Remark 2E.1. Since there is no K-linear structure involved, this notion of faithful-
ness is slightly different from that of a faithful representation of the monoid algebra
KS.

Besides the notion of the representation gap, we introduce a related (weaker)
notion:

Definition 2E.2. Let faithg(S) be the number
faithg (S) = min{dimg (M )|M is a faithful S-representation}.

We call faithg(S) the faithfulness of (S,K). We also define faith,(S) to be the
minimum of faithg (S) over all fields.

In words, faith(S) is the dimension of the smallest faithful S-representation.

Remark 2E.3 (Main task 2). Similarly as in Remark 2A.11, for cryptographic ap-
plications it should be useful to have a supply of monoids with exponentially big
faithg (S).

Remark 2E.4. For finite groups faith(S) is a well-known invariant studied since
the early days of representation theory. It is sometimes called representation di-
mension, and has attracted recent attention, see [Mo21] and the references therein,
including [CKR11] or [BMKS16]. Various versions of faithfulness have been stud-
ied in monoid theory as well, see for example [MS12b] who call the faithfulness the
effective dimension.
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Remark 2E.5. Faithfulness is only one measure of the complexity of S. As one
example of a small size representation that is not faithful in general but still gives
rise to efficient attacks is the Burau representation of the braid group Br, on n
strands. (The braid group is not a finite monoid, but that does not play a role
for our discussions involving it.) The Burau representation has dimension n, or
n — 1 for the reduced Burau representation, and in the proposed protocols n is
very small. Furthermore, the kernel of the Burau representation is also small, in
an appropriate sense, and the action of an element of Br, on the representation
carries full information about the element for the protocol’s purposes. Many of
these protocols admit efficient attacks, as documented in the literature.

Example 2E.6. The symmetric group S, has its n-dimensional permutation rep-
resentation, which is faithful. Hence, faith.(S,) < n.

In fact, one can do better. If the characteristic of K does not divide n, then
faithg(S,) = n — 1. The corresponding S,-representation is the standard repre-
sentation. Otherwise and if n > 5 one has faithg(S,) = n — 2, and hence, still
assuming n > 5, we have faith,(S,) = n — 2. This is a fact from the early days of
representation theory, see e.g. [MS12b, Section 9.3] for a modern formulation.

Example 2E.7. We have faithc(C; ,) = ¢+1 for the cyclic monoid that we will meet
in Example 3A.15, see e.g. [MS12b, Section 10] where the authors list faithe(S) for
various monoids, including the cyclic ones.

Lemma 2E.8. Assume that S has at least one nontrivial simple representation.
Then we have

gapg(S) < faithg(S) < |S].

Proof. Every S-representation has a Jordan—Holder filtration by simple represen-
tations, which therefore are of smaller (or equal) dimensions. The first claim then
follows from Lemma 2A.14. The second inequality follows since every monoid ad-
mits a faithful representation on itself. O

Remark 2E.9. The assumption in Lemma 2E.8 is necessary for the same reasons
as in Remark 2A.15.

Example 2E.10. Let Br, be the braid group on n strands. We already mentioned
its Burau representation in Remark 2E.5, but this representation is not faithful
in general. However, a faithful Br,-representation over Q(g,t) is the Laurence—-
Krammer—Bigelow representation, see [Bi0l1] and [Kr02], which is of dimension
@. Thus, gapg(e,+) (Brn) < faithg,q) (Br,) < @, which creates obstacles
of applications of Br, to cryptography, see also [MSUO05].

The following is useful in examples:
Lemma 2E.11. Assume that there is an embedding of monoids S < T .
faith(S) < faith(7).

Proof. This follows since a faithful Frepresentation restricts to a faithful S-represent-
ation. ]

We come back to Example 2C.2, but now from the viewpoint of faithfulness.

Proposition 2E.12. Let us consider the setting of Proposition 2C.1.
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(a) We have faithg(C,) = Zle(rfi — %=1 where n has the prime factor
decomposition n = Hle rdi. (In particular, faithg(C,) = n — 1 if n is
prime.)

(b) Let n be prime and char(K) { n. Then faithg(C,) = gapg(Cn) for all the

cases in Proposition 2C.1.
Proof.

Case (a). Recall that Q[C,] = @B,,, Q[X]/(®a), see the proof of Proposition 2C.1.
The simple C,-representations Q[X]/(®4) can be identified with Q(¢4) for (4 a
primitive dth root of unity. It is then easy to see that EB?ZI Q(Cr(iy) for (i) = rdi
is a faithful C,,-representation. The dimensions of the summands are the degrees
of the associated ®4. Hence, these summands are of dimensions rf" — rf"'_l, which
shows faithg(C,) < Zle(rfi — %=1 The decomposition of Q[C,] into Q(C4)
also implies that one cannot find a smaller faithful C,-representation since ®4 with

d = kr(i) and k coprime to r; has bigger degree than ®,;).

Case (b). This follows since C, is a simple group when n is a prime, and because
the representation theory of C,, is semisimple under the assumption char(K) { n. O

The analog of Example 2C.3 is:

Example 2E.13. For finite simple groups faithfulness is not much different from
Example 2C.3. That is, Proposition 2E.12 treats the cyclic groups and:

(a) The alternating group A, has a faithful representation of dimension n,
which is the restriction of the permutation representation of S,, to A,, see
also Lemma 2E.11. Thus, faith.(A,) < n.

(b) The GL,(F,)-representation Fy is faithful, giving an example of a group
acting faithfully on a small representation. To pass to a simple group,
one can take PSL,(F,), which then acts faithfully on Fy @ (Fy)*. Hence,

faithy, (PSCn(FQ)) < n2.

(c) For sporadic groups the same remarks as in Example 2C.3 apply. The
smallest faithful representations for sporadic groups are listed in [Ja05].

Example 2C.3 and this example motivate to study monoids that are not groups.

Example 2E.14. Similarly as in Example 2C.4, p-groups tend to have a large
faithfulness and this is well-studied, see e.g. [Ja70] for some early results and [Mo21]
for a more recent treatment.

2F. Ratios. As argued earlier, for potential cryptographic purposes one wants
to specialize to monoids with the representation gap of size comparable to |S|¢,
for some € > 0, as opposed to monoids where representation gap is exponentially
smaller than the size of S. As a measure of complexity, we can define:

Definition 2F.1. The gap-ratio and the faithful-ratio of S are
S faithg (S
(2F.2) gaprg (S) = gapy (S) faithrg (S) = %ﬁ()

VIS
Remark 2F.3 (Additional task 1). For cryptographic applications it makes sense to
search for naturally occurring families of monoids {S,|n € Z>¢} with
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lim,, o gaprg(Sy,) or lim, . faithrg(S,) that do not approach 0 exponentially
fast.

Note that these are rather crude: They are motivated by the search for fami-
lies of monoids {S,,|n € Z>¢} where representation gap grows exponentially while
computations in the monoid grow polynomial, but oversimplify this problem.

Remark 2F.4. The square root in (2F.2) comes from the observation that over an
algebraically closed field a simple S-representation has dimension at most \/E .
We stress that we have a slightly better bound of 1/|S| — 1 or /|S| — 2 in (2F.2),
but the differences to \/E do not play significant roles so we ignored these bounds
in (2F.2) for the sake of simplicity.

Example 2F.5. For the symmetric group S,, cf. Example 2A.16 and Exam-
ple 2E.6, we have gapr,(S,) = (\/H)‘l and faithr,(S,) = ((n — 3)!(n — 1)n)_17
again indicating that S,, is not very useful for cryptography. The alternating group
as in Example 2C.3 and Example 2E.13 has gapr,(A4,) < v2(n — 1) (\/H)fl and

faithr, (A,) < 2((n — 1)!)_1, which are still tiny.

Example 2F.6. For monoids it is not hard to find examples with faithr,(S) = 1,
see [MS12b, Proposition 28] for an explicit example. Moreover, the main monoids
under study in this paper have also large gapr, (S), see e.g. Theorem 4E.2.

3. CELL THEORY

An important tool to study representations of monoids is Green cells or Green’s
relations. In this section we explain how these help to calculate gap(S) and faith(S),
and also give us another numerical measure which we will call semisimple represen-
tation gap.

Remark 3.1. We will summarize the main constructions using the language of cells
as in [GL96], which is more common in representation theory. The classical descrip-
tion using Green’s relations from monoid theory can be found in many (older and
newer) papers e.g. [Gr51] or [GMS09], and also in books such as [CP61], [CP67] or
[St16]. The cell based discussion is not so easy to find in the literature, see however
[GW15], [TV21] or [Tu22].

3A. The basics. Recall that S denotes a finite monoid. (Cell theory also works for
infinite monoids, but the theory is technically more involved. We will not discuss
it here.)

We define preorders on S, called left, right and two-sided cell order, by

(a <;b) < Je:b=ca,
(a <, b) & Jc:b=ac,
(a < b) © e, d : b= cad.

In words, a is left lower than b if b can be obtained from a by left multiplication,
and similarly for right and two-sided.

Remark 3A.1. As in Remark 2A.3, these orders are in-line with the most common
convention used in the theory of cellular algebras but the opposite of the one usually
used in monoid theory.
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We define equivalence relations, the left, right and two-sided equivalence, by
(a~b) e (a<;band b < a),
(@~ b) < (a<,band b <, a),
(a ~ b) & (a <p- band b <y, ).
The respective equivalence classes are called left, right respectively two-sided cells.
We denote all these by £, R and J and call two-sided cells J-cells. Finally, an

H-cell H=H(L,R)=LNR is an intersection of a left £ and a right cell R.
The picture to keep in mind (stolen from [TV21, Section 2]) is

J. L

(3A.2) Hoy ¢ Hao i Hos Hau J

R Har : Hao Hag i Ha
: ———1— H(L,R) = Has

where we use matrix notation for the twelve H-cells in J. In this notation left cells
are columns, right cells are rows, the J-cell is the whole block and H-cells are the
small blocks.

We will also write <; or >, etc., having the evident meanings. Note that the
three preorders also give rise to preorders on the set of cells, as well as between
elements of S and cells. For example, the notations £ >; a or £ <; £’ make sense.
In particular, for a fixed left cell £ we can define

821[; = {a S 8|(l > [,},
as well as various versions which we will distinguish by the subscript.

Remark 3A.3. The cell orders need not be total orders. In all of our examples the
<jr-order is a total order, but that is a coincidence.

Example 3A.4. If S is a group, then it has only one cell, the whole group, which
is a left, right, J- and H-cell at the same time.

Remark 3A.5. Example 3A.4 shows why the reader familiar with the theory of
groups might have never heard about cell theory: for groups cell theory is trivial.

We write H(e) if H contains an idempotent e € S. The H-cells of the form H(e)
are called idempotent H-cells, and the J-cells J(e) containing these H(e) C J(e)
are called idempotent J-cells.

Remark 3A.6. In monoid theory idempotent H and J-cells are called regular to
avoid confusion with the property that e.g. 7J = J and because it is equivalent
to each element of the cell being von Neumann regular in the sense of the definition
before Lemma 2B.15. However, for us the existence of an idempotent is crucial, so
we use the above nomenclature.

H-cells are crucial as justified by:
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Proposition 3A.7. For the monoid S we have:

(a) Every H-cell is contained in some J-cell, and every J-cell is a disjoint
union of H-cells.

(b) H(e) is a group with identity e. In this case H(e) = J(e) N (eSe).
Proof. Part (a) is clear, while (b) is classical, see [Gr51, Theorem 7]. O

Notation 3A.8. One case will play a special role, namely the case where H(e) is the
trivial group. In this case we say H(e) is trivial and write H(e) = S;.

We have minimal and maximal J-cells in the <j.-order. In our illustrations the
minimal cell will be at the bottom, so we call it the bottom cell J,, while the
maximal cell will be at the top, so we call it the top cell J;.

Lemma 3A.9. FEvery monoid has a unique bottom and top J-cell which are mini-
mal respectively maximal in the <;.-order. Both are idempotent J-cells.

This is classical, e.g. [CP67, Chapter 6] discusses ordering relations on J-cells,
but we will give a short proof for completeness.

Proof. The bottom J-cell is easy to find: Let G C S be the group of units of S, i.e.
the set of invertible elements of S. Then G forms a left, a right and a J-cell at the
same time, and is the smallest in all cell orders. To see this note that 1 <; a for
all a € S since we can choose ¢ = a. But every invertible element b € S satisfies
1 = b~ 'b, which implies b <; 1, thus b ~; 1. Similarly for ~, and ~;,. The converse
also holds, i.e. every element in a minimal J-cell is invertible, so G is the unique
bottom cell J,. Moreover, the unit is an idempotent in 7.

The top J-cell is not much harder to find: If 7 and J’ are maximal J-cells, then
J = JJ' = J’ by maximality. Existence of a maximal .J-cell follows from the
finiteness of S. Furthermore, the J-cell J; contains an idempotent since J; J; = J;
by maximality. This ensures the existence of an idempotent, see [St16, Proposition
1.23]. 0

Example 3A.10. The transformation monoid T, on the set {1,...,n} is
End({1,...,n}). The cells of T3, whose elements are written in one-line nota-
tion, with (ijk) denoting the map 1 — 4,2 — 5,3 — k, are as follows. Using the
illustration conventions as in (3A.2) we have

(111)
Ji (222) H(e) =S
(333)
(122), (211) | (121), (212)  (221), (112)
T (133), (311) | (313),(131) | (113),(331)  H(e) = S,
(233), (322) | (323),(232) (223),(332)
(1 )

213), (132

23),
), (312), (321) H(e) = S;

Tv (231
That is, a ~; b if and only if a(z) = a(y) < b(x) = b(y) (as functions), and a ~, b
if and only if they have the same image. All idempotent H-cells are symmetric
groups Sy, of varying sizes. Note that not all H-cells contain idempotents: we have
colored/shaded the H-cells containing idempotents.

P

)
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Let |£], |R| and |H| denote the sizes of fixed left, right and H-cells in a J-cell J
of size | J]|.

Lemma 3A.11. Within one J-cell we have |L]| = |L'|, |R| = |R/| and |H| = |H|,
and we have |L| - |R|/|H| = |T|. Moreover, |H| divides both, |L| and |R|.

Proof. The first three equalities follow from [Gr51, Theorem 1], the final two state-
ments can then be shown from the previous three. O

Note that |L|, |R]|,|T|, |H| € Z>¢, and Lemma 3A.11 gives us additionally
ILI/IH], IRI/|H| € Zxo.
These are important measures of the complexity of S.

Example 3A.12. The middle J-cell in Example 3A.10 has |H| = 2, J,, = 18 =
6-6/2=I[L]-[R|/|H] and |L|/|H] = |R|/IH] = 3.

A left ideal I C S is a set such that al C I. Right and two-sided ideals are
defined similarly. Lemma 3A.13 explains the matrix notation:

Lemma 3A.13. For fized left cell L the set S,z is a left ideal in S. Similarly,
S>.r is a right and S>,. 7 1s a two-sided ideal. The same works when replacing >
by >.

Proof. Directly from the definitions: given b € S>,., the element ab is still left
greater than or equal to I € £ since b = ¢l for some c. ]

Let us state how cell theory helps to understand periods of elements, which
in turn are of importance in cryptography. To this end, recall that the index
i(a) € Zso for a € S is the smallest number such that a*(®) = a(®+4 for some
d € Z~gp. The smallest possible d is then in turn called the period of a and we
denote it by p(a).

Theorem 3A.14. There exists an H-cell H(e) such that Cp,) = {a® | s > i(a)} C
H(e) is a subgroup. In particular, p(a) | |H(e)|.

Proof. As a consequence of [Gr51, Theorem 7], the H-cells of the form #(e) are the
maximal subgroups of S, so no other subgroup will be contained in some H(e). O

Example 3A.15. Given i € Z>q, p € Z>; form the finite cyclic monoid C;, =
{a|a’*? = a') of cardinality i + p. The element a has index i(a) = i and period
p(a) = p. Moreover, the monoid C;, is commutative, so left, right and J-cells
coincide. The elements 1, a, ..., a’~! each constitute a single J-cell, in total i — 1
such J-cells. All the remaining elements J; = {a’,a**!,... a'™P~!} constitute one
J-cell (the top cell) which is a cyclic group of order p under multiplication. The
element e = aP? where j is such that i < pj < i+p is the idempotent for J; = H(e)
and the identity of that group. Out of the i+1 cells in C; j, two cells are idempotent:
Jo = {1} and ;.

To be completely explicit, let us consider Cs o, which is the monoid be generated
by one element a of index 3 and period 2. Then Cs5 2 = {1, a, a?, a3, a*} and its cell
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structure is

T @b at H(e)=Cr=Z/2Z
a? a?

Ta a

Tv 1 H(e) = S

Note that S, is commutative, so left, right, J- and H-cells agree.

Remark 3A.16 (Additional task 2). Using the DH protocol with protocol monoid S
other than a group, it would be important to find elements g € S of big period that
has a large prime factor, see e.g. the original DH key exchange [Ko98], [MSUOS,
Section 1.2]. So, by Theorem 3A.14, it would be preferable to have a monoid S with
H-cells whose orders have large prime divisors since the period of a € § divides the
order of the idempotent H-cell of S that contains the top cell of C; ,,.

3B. Classification of simple representations. Recall that we consider S-repre-
sentations defined over K.

Cells can be considered S-representations, called cell representations or
Schiitzenberger representations, up to higher order terms:

Lemma 3B.1. Fach left cell L of S gives rise to a left S-representation Ay = KL
by

al ifal € L,

0 else.

a.lEAL:{

Similarly, right cells give right S-representations g A and J-cells give S-birepresent-

ations (often called S-birepresentations). We have dimg (Az)=|L| and dimg(rA)=

R.

Proof. Directly from the definitions. O
The annihilator Anng(M) = {s € S|s. M = 0} of an S-representation M is a

two-sided ideal of S. An apez of M is a J-cell J such that, firstly, 7NAnng(M) = 0,

and secondly, all J-cells J’' with J' N Anng(M) = 0 satisfy J’ <;. J. In other

words, an apex is the <;.-maximal J-cell not annihilating M. The following justifies
the terminology of the apex of a simple S-representation:

Lemma 3B.2. Every simple S-representation has a unique apexz.
Proof. This is classical, see e.g. [GMS09, Theorem 5]. O

Example 3B.3. The apex of 1, is always J, = G. On the other hand, the apex
of 1; is J; since every s € S acts as 1.

Recall that the nonunital way to induce is Ind(M) = KSe ®gese M for some
idempotent e € S, see e.g. [St16, Section 4.1] (inducing from the submonoid eSe to
S, or rather using their monoid algebras). It follows from [Gr51] that A, is a free
right #(e)-representation, and this action commutes with the left S-action. Thus,
Ay is an S-H(e)-birepresentation. We can then define an induction functor

Ind‘%(e)M = A£ ®’H(e) ]\47

where M is a left M-representation.
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Example 3B.4. Let K[H(e)] denote the regular H(e)-representation, which as a
K-vector space is just KH(e) and the #(e)-action is the multiplication action. We
have Indi(e)K[’H(e)} >~ A, as left S-representations.

Recall also that the head Hd(M) of an S-representation M is the maximal
semisimple quotient of M. It is well-defined, up to isomorphism, for any repre-
sentation over a finite monoid and is isomorphic to the quotient M/ Rad(M). Here
Rad(M) denotes the radical, which is the intersection of all maximal subrepresen-
tations of M.

We get the Clifford—Munn—Ponizovskii theorem or H -reduction:

Proposition 3B.5. For a monoid S:
{simple S-representations of apex J}/ = LN {simple H(e)-representations}/ = |

where H(e) C J is any arbitrarily chosen idempotent H-cell in an idempotent J-cell
J. Moreover, an explicit bijection (from right to left) is given by

K — L = Hd(Ind3, K).

Proof. The above is an easy reformulation of [GMS09, Theorem 7] or [St16, Theo-
rem 5.5]. O

Note that only idempotent J-cells contribute to the classification. We usually
omit to write e.g. “simples up to isomorphism” in the rest of the paper.

Remark 3B.6. The 1:1 correspondence in Proposition 3B.5 always exists regardless
of K. However, the classification still depends on K since the number of simple
H(e)-representation does.

Example 3B.7. Let char(K) be such that char(K) { 3! = 6, e.g. char(K) = 0. The
cell structure from Example 3A.10 shows that T3 has three simple 73-representations
of apex J, two of apex J,, and one of apex J; since the associated H(e) are the
symmetric groups S, So and S; (and the number of simple S,-representations is
given by the number of partitions of n).

For char(K) = 3 one gets only two simple T3-representations of apex [J; since
S3 has only two simple representations in this characteristic; the rest remains the
same as for char(K) = 0. Similarly, for char(K) = 2 both apexes [J, and J,,, have
one fewer associated simple T3-representation than for char(K) = 0, but J; still has
the same count.

We can thus define a partial order, also denoted by <;., on the set of simple
S-representations by saying that one simple is strictly smaller than another if its
apex is strictly smaller. Note that simples of the same apex are incomparable.

Example 3B.8. Note that if H(e) is trivial, then Proposition 3B.5 implies that
one can say that the simples are indexed by the poset of apexes.

Remark 3B.9. When working over C and when all J-cells are idempotent, it is
shown in [Pu98, Theorem 2.1] that <;. makes the representation category of S
into a highest weight category in the sense of [CPS88]. In fact, for the reader
familiar with cellular algebras as in [GL96], [TV21] or [Tu22] we point out that
[Pu98, Theorem 2.1] shows that, if all J-cells are idempotent, then the monoid
algebra CS is a quasi-hereditary sandwich cellular algebra.
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As a historical remark, the fact that the monoid algebra CS of a regular monoid
(a regular monoid satisfies any of the conditions in Lemma 3F.6) in characteristic
zero is a quasi-hereditary sandwich cellular algebra was first proven in [Ni71] in the
early 1970s. Of course the result was phrased in a different language since [Ni71]
appeared before quasi-hereditary or (sandwich) cellular algebras were defined.

3C. Cells and (semisimple) representation gaps. Note that Proposition 3B.5
makes it easy to classify simple S-representations but does not give much informa-
tion about their dimensions.

Theorem 3C.1. The dimension of the simple S-representation Ly associated to
the simple H(e)-representation K via Proposition 3B.5 can be bounded by

Proof. First, recall from Lemma 3A.11 that all left and H-cells within one J-cell
are of the same size, so for the bound we can and will omit writing £(e) and H(e).
Then this follows from the explicit bijection in Proposition 3B.5 and the fact that
Ay is a free H(e)-representation of rank |L|/|H|. O

Note that dimension of Hd(Indi(e)K ) depends on the field, in general, and can
be hard to compute. The quantity |£|/|H| - dimg(K) is often easy to compute in
practice so we define:

Definition 3C.2. We call ssdimg (L) = |L|/|H| dimg(K) the semisimple dimen-
sion of Ly . The minimal m such that there is a nontrivial simple S-representation
with ssdimg(Lg) = m is called the semisimple representation gap ssgapg (S) of S.
We also call ssgaprg(S) = ssgape(S) the semistmple-gap-ratio.
VIS
The square root in the definition of ssgapry(S) is used for the same reasons as
in Remark 2F.4. With the same assumptions as in e.g. Lemma 2A.14 we have:

Theorem 3C.3. Assume that S has at least one nontrivial simple representation.

We have
gapk (S)<min{dimg (L )| LxF1p is a simple S-representation}<ssgapg (S)<|S|.
Proof. Clear by definition and Lemma 2A.14. O

Remark 3C.4 (Additional task 3). As before, it is important for potential crypto-
graphic applications to find monoids with ssgapy (S) exponentially big.

Example 3C.5. In the setting of Example 3A.10 and Example 3B.7 (in particular,
char(K) 1 6) we have the following.

The three simple 73-representations of apex J, are the simple S3-representations
inflated to T3, so they are of dimensions 1, 2 and 1 (one of these is 1;). These are
also their semisimple dimensions.

The simple Ssz-representation of apex J; can be identified with 14, so is of di-
mension one, which is also its semisimple dimension.

The two simple Sz-representations of apex J,,, are induced from the respective
Sy-representations, and are of semisimple dimension 3. One can check that they
are of dimension 3 respectively 2.

In general, for the representation theory of 7, see [Pu98, Section 4] or [St16,
Section 5.3].
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The name semisimple representation gap is justified by the following.

Proposition 3C.6. The following are equivalent.
(a) The monoid S is semisimple over K.

(b) All J-cells are idempotent, all H(e) are semisimple over K and dimg (L) =
ssdimg (Lg) for all simple S-representations L.

Proof. This follows from [St16, Theorem 5.19] and the paragraph below that theo-
rem. (]

3D. Cells and Gram matrices. Recall the following construction of Gram ma-
trices, also called sandwich matrices in monoid theory, see e.g. [CP61, Section 5.2]
or [St16, Section 5.4]. Fix an idempotent H-cell H(e) = LNR in some idempotent
J-cell J. Then L is a free right H(e)-set and R is a free left H(e)-set, so we can
let {l1,...,lg} and {r1,...,r} complete sets of representatives for £/H(e) respec-
tively for H(e)\R. Here R is the number of right cells and L is the number of left
cells in J.

The Gram matriz P7 = (PZJJ)” is the matrix with values in K#(e) defined by

J ’I"ilj if ’I"ilj S H(E),
w0 else.

Note that PY depends on choices, but one can show that its important properties
do not depend on these choices, see the references above.

Gram matrices are in particularly useful for H(e) = &; and L = R as justified by
part (a) of the following (which the reader familiar with [GL96] might recognize):

Proposition 3D.1. Fiz an idempotent J-cell J. All cells in the statement are
within J .

(a) Assume H(e) C J satisfies H(e) = Sy. Assume further that P7 is square
and symmetric. Let Ly denote the associated simple S-representation, see
Proposition 3B.5. Then:

dimg (L 7) = rank(P7).

(b) More generally, let K be a simple H(e)-representation and let Ly be the
associated simple S-representation. Let P[‘g denote the matrix one gets by
applying K to each entry of PY. Then:

dimg(Lx) = rank(P}).

Proof. (a) Let Rad s denote the radical of the symmetric bilinear form associated
to PY. We claim that Rads is an S-submodule of the corresponding cell repre-
sentation Az. To see this note that r;l; ¢ H(e) can only occur if they end up in
J>,.7, and multiplying by elements from S preserves this property.

We further claim that any element in A, \ Rady generates Az. This can be
proven as in [ET21, Lemma 3.4].

It follows that Az/Rads is a simple S-representation since any proper sub-
module of it must be contained in Radys. Since the apex of Az/Rady is J, by
construction, it follows that Az/Rads = L 7. The proof completes.

(b) Adjusting the arguments in (a), see e.g. [St16, Corollary 5.30] for details. O
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Theorem 3D.2. Let R C S be a submonoid. Under the assumptions in Proposi-
tion 3D.1, if J restricts to an idempotent J-cell of R, then

dimg (L%) > dimg (L%),
for the associated simple R and S-representations.

Proof. Note that under the assumptions we have that the Gram matrix for R is a
submatrix of P7. The rank of a matrix is always greater than or equal to the rank
of a submatrix, so the statement follows by Proposition 3D.1. (Il

We stress that it is not generally true that J restricts to a(n idempotent) J-cell
of R, so the assumption in Theorem 3D.2 is necessary.

3E. Cells, Burnside-Brauer—Steinberg and faithfulness. Let cly () denote
the number of conjugacy classes of the group H(e). Let {e1,...,e.} be a choice of
one idempotent per idempotent J-cell, and define

Cl(S) = Cl?—((el) + -4 Cl’H(er)-
Lemma 3E.1. The number cl(S)€ Z>q is independent of the choice of {e1,... e }.
Proof. This is a consequence of [St16, Section 7.1]. O

Hence, cl(S) is a constant depending on S only. One can use cl(S) for the
Burnside—Brauer theorem (characteristic zero) and the Steinberg theorem (arbitrary
characteristic):

Proposition 3E.2. If F is a faithful S-representation, then every simple S-repre-
sentation appears as a composition factor of F®* for some 0 < k < cl(S) — 1.
Moreover, if F is a faithful S-representation whose composition factors are one-
dimensional, then the composition factors of F€* are also one-dimensional.

Proof. For characteristic zero see [St14] or [St16, Section 7.4] and the observation
that the r in that theorem satisfies r < ¢l(S) by the discussion in [St16, Section
7.1]. For the characteristic free version see [St16, Corollary 10.7], using the same
observation. g

Example 3E.3. The bound given in Proposition 3E.2 is often not optimal but
cannot be improved uniformly. For example, for C,, we have cl(C,) = n. Assume
n is prime. Over C the nth primitive root of unity exp(%) gives rise to a 1-
dimensional faithful C,-representation, and only the (n — 1)th power of it will
contain the simple C,-representation associated to exp(%).

The Burnside-Brauer—Steinberg theorem Proposition 3E.2 gives a bound for the

dimension of faithful S-representations:

Theorem 3E.4. Let char(K) = 0, and let L. be a simple S-representation
of the biggest dimension. If F is a faithful S-representation, then dimg(F) >
-/ dimg (Lynaq ). Hence,

faithK(S) > Cl(s)i\l/ dimK(Lmax).

Proof. This follows from Proposition 3E.2. |

Note that one can use Theorem 3E.4 often in combination with Lemma 2E.11.
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Remark 3E.5 (Additional task 4). Thus, by Theorem 3E.4 it is preferable for cryp-
tographical applications to find a monoid § with ¢(S) being small.

Example 3E.6. Applying Theorem 3E.4 for 75 gives v/3 as a lower bound, which
rounds to 2. The smallest faithful 73-representation is K{1,2,3} (with the defining
action), so of dimension three.

With respect to extensions as discussed in Section 2A we get:

Proposition 3E.7. There is a faithful S-representation containing only L1y as
composition factors if and only if S has at most two idempotent J-cells and all
idempotent H-cells are trivial, i.e. H(e) 2 S;.

Proof. =. If F is a faithful S-representation only containing 1,; as composition
factors, then Proposition 3E.2 implies that there can be no simple S-representations
except 1. Thus, the result follows by Proposition 3B.5.

<. In this case Proposition 3B.5 implies that 1,; are the only simple S-
representations. O

Example 3E.8. Let char(K) = 0. When S is a group Proposition 3E.7 implies
that only the trivial group has faithful representations entirely made of trivial rep-
resentations. (Note that this is clear because of a different reason: the assumption
is char(K) = 0 so the representation theory of groups is semisimple.)

Example 3E.9. It follows from the discussion in (4B.2) that the Temperley—Lieb
monoid on three strands 7 L3 is an example of a nontrivial monoid that has a
faithful representation entirely made of 1,;. This works in arbitrary characteristic.

3F. Cell submonoids and subquotients. Recall that simple S-representations
arrange themselves according to the cells, see Proposition 3B.5. Let us in this
motivational paragraph for simplicity assume that H(e) = S; for all idempotent
H-cells and that all J-cells are idempotent. Then the dimensions of the simple
S-representations very often have the following form, which is roughly as expected
from combinatorial numbers:

y-axis: dim y-axis: dim
~ T£24/Q A pR024/K
500000 . 25-10°} .
cells increase + cells increase <
400000 - 2.0-10%f
300000 , 15-10°) ,
E . 6 [ .
200000 x-axis: 1.0-10 X-axiIs:
through through
100000 |/ # > 500000 - # N &
strands/2 strands
! ! ! ‘ N3 ! !
2 4 6 8 10 12 5 10 15 20

1,534888, 208011, 445741, 389367,
TL dim: < ) ,

126292, 85216, 31878, 6876, 1726, 252, 22, 1
1,24, 276, 2024, 10626, 42504, 134596, 346104, 735471,
pRo dim: 1307504, 1961256, 2496144, 2704156, 2496144, 1961256,
1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1

These illustrations show the dimensions of the simple T Lo4-representation (left)
over Q (or any field of characteristic zero) and the simple pRogs-representations
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for general K, respectively. See Section 4 for details. (Note the two trivial 7 Log-
respectively pRogy-representations of dimension one for the bottom and top cells.)
Thus, it seems preferable to cut off the representations for small cells, and get rid
of the fluctuations for very big cells.

The key to do the first is cell submonoids as follows.

Definition 3F.1. For a J-cell 7 with 1 ¢ J define the J-submonoid
S>g =8>,7 U1}

In words, we artificially adjoint a unit 1 (strictly speaking we should write 1)
to the two-sided ideal S>,, 7 from Lemma 3A.13.

Lemma 3F.2. For any J-cell J with 1 ¢ J, S>7 is a submonoid of S.
Proof. By Lemma 3A.13. |

Remark 3F.3. There are minor, but not essential, differences between representa-
tions of monoids and semigroups. Adjoining a unit is for convenience only so that
we do not need to leave the world of monoids.

Annihilating the bigger cells can be done using the Rees factor S/I of a monoid
S by a two-sided ideal I. The construction works as follows. As a set S/ =
(§\ I) U {0}, where one artificially adjoints an element 0. The multiplication is
set=stif s,t,st € S\ I, and s et =0 otherwise.

Lemma 3F.4. For any two-sided ideal, the Rees factor S/I is a well-defined
monoid.

Proof. An easy exercise, see also [St16, Exercise 1.6]. O
We can thus define cell subquotients:

Definition 3F.5. For two J-cells J <;,. K with 1 ¢ J define the J-K-subquotient
as the Rees factor

S =8>7/8>k.
Here we additionally allow the following extremal cases:
S =8og. Sk =8/Sox, SIS =S.
We also call all of the above cell subquotients for short.

By Lemma 3F.2 and Lemma 3F.4, S§ is a subquotient of §. Unless we are in
one of the extreme cases, % has 7, = {1} and J; = {0}. Both are left, right, J-
and H-cells at the same time.

Lemma 3F.6. The following conditions are equivalent:
(a) For all left cells L:

Ya,b € L dc € J D L such that a = cb.
(b) For all right cells R:

Va,b € R dc € J D R such that a = be.
(c) For all J-cells T :

Va,be J dc,d € J such that a = cbd.
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(d) All J-cells are idempotent.
(e) For all a € S we have a € aSa.

Proof. Well-known, see e.g. [RS09, Theorem A.3.7]. O

We say S is regular (this is also sometimes called von Neumann regular) if any
of the equivalent conditions in Lemma 3F.6 hold.

The regularity condition ensures that the cells are not affected when taking cell
subquotients.

Lemma 3F.7. Let S be regular. In the nonextremal cases the J-cells of S§ are
given by

{Tp} U{MIM is a J-cell of S with T <; M <4 K} U{T:}.

Similarly for left, and right cells, assuming the respective reqularity condition, and
H-cells.
An analog statement holds in the extremal cases.

Proof. By the regularity assumption, the remaining elements of S§ arrange them-
selves into cells precisely as in S. |

We require that S is regular for the remainder of this section.

Assume that we are in the nonextremal cases. Then S§ has trivial represen-
tations 1, and 1; associated to the apexes J, and [J;, and these are the only
S§—representations of these apexes. The other simple S§-representations and
their dimensions are given by the following statement. Note hereby that any S7-
representation with apex M can be inflated to an S-representation by letting all
elements in S.,, 7 act by zero.

Proposition 3F.8. Assume that we are in the nonextremal cases. Let M ¢
{Tp, Tt} be an apex of S§ which is also an apex of S. Then we have:

{simple S% -representations of apex M}/

~ L {simple S-representations of apex M}/ =2 .
Moreover, an explicit bijection (from left to right) is given by inflating simple S§—
representations to simple S-representations. The dimensions of the simples are

preserved under this bijection.
An analog statement holds in the extremal cases.

Proof. The first part follows from Proposition 3B.5. For the final part note that
inflation clearly does not change property of being simple nor the dimension. [

Theorem 3F.9. For any two J-cells J <;- K we have

gapk (SLI;) > gapk(S).
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Proof. By Proposition 3F.8. ]

Remark 3F.10 (Additional task 5). By Theorem 3F.9, a strategy is to find a monoid
S with big representations for a slice of the cells. Then taking an appropriate cell
subquotient the resulting monoid will have a suitable representation gap.

We will see examples of the task in Remark 3F.10 in the next two sections.

4. PLANAR MONOIDS

We work over an arbitrary field K.

4A. Temperley—Lieb categories and monoids. We now recall the Temperley—
Lieb category TL””((S). This category is a K-linear monoidal category which de-
pends on a parameter § € K. There are many references (the Temperley-Lieb
calculus has been rediscovered many times, and there are too many papers to be
cited here) for TL'™(8) where more details can be found, see for example [KL94].
The endomorphism spaces in the Temperley—Lieb category form K-algebras, called
Temperley—Lieb algebras. By appropriate reformulation we obtain set-theoretical
versions of both of these.

Remark 4A.1. Tt may be convenient to represent § = —q — g~ where ¢ is either

in K or its quadratic extension. For our main application we need é = 1, so ¢ in
this case is a primitive third root of unity. This is for example important when one
wants to connect TL“"((?) to the category of tilting representations for quantum
SLo, see e.g. [TW21, Proposition 2.28] or [STWZ21, Proposition 2.20] for a precise
statement. This perspective is sometimes useful, see for example [An19], [Sp20]
or [TW22] for nontrivial results about the set-theoretical Temperley—Lieb algebras
using tilting representations.

The Temperley-Lieb category TL""(5) has objects n € Zsg. The morphisms
from m to n are K-linear combinations of isotopy classes of diagrams of matchings
of m + n points in the strip R x [0, 1], with m points at the bottom and n points
at the top line of the strip. These morphisms are known as crossingless matchings.
The relations on them are such that two diagrams represent the same morphism if
and only if they represent the same crossingless matching.

Composition o of crossingless matchings is given by wvertical gluing (and rescal-
ing), using the convention to glue a: m — n on top of b: kK — m, which is denoted
using the operator notation a o b. This will give another crossingless matching,
but with potentially internal circles. To get rid of this ambiguity, we remove such
internal circles, say we have k of these, and the resulting crossingless matching is
multiplied by §*.

The monoidal structure ® is given by m ® n = m + n on objects and horizontal
juxtaposition on morphisms, extended bilinearly to K-linear combinations.

Notation 4A.2. The following pictures summarize the main points from above, and
also fix the reading conventions that we will use for diagrammatics throughout.
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Let C) denote the set of crossingless matching with m bottom and n top bound-
ary points. Let Ca(k) = kil( ) be the kth Catalan number. Note that Lemma
4A.3 is independent of K and § € K.

Lemma 4A.3. The set C}, is a K-linear basis of Homryyuins)(m,n). Hence, the
dimension of this space is either zero if m # n mod 2, and otherwise given by
dimg (Homepyin 5y (m,n)) = Ca(™F2).

Proof. This is well-known, see e.g. [RT'W32] for the version with § = —2. O

Lemma 4A.4. The category TL""(5) has an antiinvolution _*, i.e. is a x-monoid,
giwven by reflecting diagrams in a horizontal axis.

Proof. Easy and omitted. |
The picture to keep in mind is

(uu ) Hu
~ ~ | '

Remark 4A.5. Tt is easy to see (and we will use this silently) that _* works for
all the diagrammatic categories, algebras and monoids we use in this and the next
section. We call _* the diagrammatic antiinvolution.

The Temperley Lieb algebra on n-strands is then 7L£L"(8) = Endrpyiin(g)(n).
This is the algebra of crossingless matchings with n strands and only vertical com-
position.

Remark 4A.6. The algebra T£"(5) was introduced in the context of Schur-Weyl
duality, see [RTW32]. Sometimes it is useful to use this perspective as e.g. the refer-
ence [Anl19] does (using the connection to tilting representations, cf. Remark 4A.1)
which we will use below.

Now comes the main definition of this section.

Definition 4A.7. The set-theoretic Temperley—Lieb category TL is defined in al-
most the same way as TL'"™(§) above with two crucial differences:

(a) The hom-spaces are Homry,(m,n) = C, and
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(b) the vertical composition o is still given by vertical gluing, but all internal
circles are just removed from the diagram, that is, without any factor.

The Temperley—Lieb monoid on n-strands is defined by TL,, = Endry,(n).

Remark 4A.8. The Temperley—Lieb monoid appears in many works, way too many
to be cited here, see however e.g. [HRO05], [HJ20] or [Si20]. In most papers coming
from representation theory, quantum algebra and quantum topology it is however
studied as an algebra. Note hereby that Definition 4A.7 is not quite the same as
TL'™(1) where the circle evaluates to 1. The difference is that TL"" (1) is K-linear,
but TL is not K-linear. But the monoid algebra K[7T L,,] is isomorphic to 7£4"(1).
Let us stress that the Temperley—Lieb monoid is also called the Jones monoid in
monoid theory, or sometimes even the Kauffman monoid, see e.g. [LFG06].

The monoid 7L, has Ca(n) elements. By [KL94, Section 2.2] (or [Ea21] for a
new proof of the presentation), the monoid 7L,, can be abstractly defined by the
generators {uq,...,u,—1} and the defining relations

(4A9) ’LLZ2 = Uiy U1 Uy = Uy Uil = U Uy, |’L — ]‘ > 1.

Denote by idy, the identity on k € Z>o. The following determines the cell struc-
ture:

Lemma 4A.10. For a € Homry(m,n) there is a unique factorization of the form
a =~voidgof for minimal k, and 8 € Homy,(m, k) and v € Homry, (k,n).

Proof. The following picture

/ N4 N\ N\
(4A.11) a= =
M
—_———
vy ida B

generalizes without much work. O

We call k the number of through strands of «, also known as the width. Neces-
sarily k has the same parity as m and n and k£ < m,n. The diagram a has mT_k
caps and ”T_k cups. The diagrams 5 and v have no cups, respectively no caps, but
the same number of caps, respectively cups, as a. We call 5 as in Lemma 4A.10
the bottom half and ~ the top half of a.

Denote by B!, € Homrr(m,n) the set of diagrams without caps. An example
for m = 2 and n = 6 is given by v in (4A.11). In other words, BY, consists of m
through strands and #5™ cups. Necessarily m < n and m +n is even. In the above
factorization, in general, v, 5* € B}},. We may also write this factorization of a as

a=aas, a1, a2 € Bl

4B. Cells of the Temperley—Lieb monoid. We now discuss the cell structure

of TL,.

Remark 4B.1. The cell structure of the Temperley—Lieb monoid 7 L,, is very nice
and easy to compute. It is well-known, see e.g. [GL96, Example 1.4], and was redis-
covered in many papers, see e.g. [RSA14], or [KS21] or [Sp20], although not always
in the language of cells. The cell structure has also been rediscovered in monoid
theory, see e.g. [LFGO06]. In any case, the description of the cells is prototypical for
diagram monoids and algebras so we decided to repeat it here in that language.
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The main pictures to keep in mind (which we will explain momentarily) are:

/ N\
Ji f\_JH/O Hie) = S
~ | X ,
Ts | | | Hie) = S
—/ u‘u -/
(4B.2) Jo Qe | <> H(e) = S
N N - —
= 1=K | ==K
o o< LI R IE=R #eo=s
A I IR
T |11 H(e) = S,

These are the cells of TL3 and T L4, which should be read as in (3A.2). We have
also colored/shaded the idempotent H-cells. Note that Jj is the set of crossingless

matchings with k& through strands, and k£ and n have the same parity. These

diagrams have c(k) = ”gk caps respectively cups.

Proposition 4B.3. We have the following.

(a) The left and right cells of TL, are given by crossingless matchings where
one fizes the bottom respectively top half of the diagram. The <;- and the
<,-order increases as the number of through strands decreases. Within Jy,
we have

_ _ n—2c(k)+1 n
£ = R] = 22zt ().
(b) The J-cells T of TL, are given by crossingless matchings with a fized

number of through strands k. The <;.-order is a total order and increases
as the number of through strands decreases. For any L C [J we have

Tl = L]

(¢c) Each J-cell of TL, is idempotent, and H(e) = Sy for all idempotent H -
cells. We have

H| = 1.

Proof. (a) + (b). For (a) and (b) we recall that the K-linear version of this propo-
sition can be found in e.g. [GL96, Example 1.4] or [RSA14, Section 2]. (Note that
[RSA14, Section 2| gives |L]| = |R| = (C(’;)) - (C(Ig_l), which we rewrite into the
claimed expression via algebra autopilot.) The arguments given in these papers do
not depend on K nor on the parameter é and go through in the set-theoretical case
without change as well. In monoid theory this appears again in many works, e.g.
in [LFGO6].

(c) Observing that every crossingless matching that is symmetric under horizon-
tal mirroring is an idempotent, this is then immediate from (a) and (b). O
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Proposition 4B.4. The set of apexes for simple T L, -representations can be in-
dexed 1:1 by the poset A = ({n,n—2,...},>) (ending on either 0 or 1, depending
on the parity of n), and there is precisely one simple T L, -representation of a fixed
apex up to =.

Proof. By Proposition 4B.3, this is a direct application of Proposition 3B.5. (]

By Proposition 4B.4 there is a poset A indexing the J-cells and the simple T L,,-
representations. We can thus enumerate the J-cells by J for k € A. We do the
same for the simple T £,,-representations and we write Ly, for these. (Here we mean
any choice of representatives of the isomorphism classes. Similarly below, and we
stop stressing this.)

Lemma 4B.5. Within one J-cell, all left cell representations Ay and all right cell
representations g A are isomorphic. We write Ay respectively A for those in Jy.

We have A= A as K-vector spaces and dimg (Ay) =dimg (rA) = %(C&)) .

Proof. The diagrammatic antiinvolution _* is compatible with the cell structure
and shows Ay = A. The dimension formula then follows from Proposition 4B.3

and Lemma 3B.1. O
Proposition 4B.6. The semisimple dimensions are ssdimg (L) = % (C&)).
Proof. The equation follows immediately from Propositions 4B.3 and 4B.4. ]

The numbers dimg (L) are as follows. These were computed in many papers,
e.g. in [Anl19] and [Sp20] which compute them for general K and ¢ € K. (Strictly
speaking [An19] needs § = —q — ¢~ ! because Andersen uses the connection to
tilting representations as recalled in Remark 4A.1.) To state them we need some
preliminary definitions.

Remark 4B.7. The definitions below are fairly standard for Temperley—Lieb calculi
over arbitrary fields, see e.g. [Sp20], [Sp21] or [STWZ21]. The reader only interested
in char(K) = 0 (which is char(K) = oo below) can ignore all definitions involving
p-adic combinatorics. We elaborate on the char(K) = 0 case in Example 4B.9.

Let char(K) = p, allowing p = oo which is the case char(K) = 0. Let v, denote
the p-adic valuation. Let vz ,(z) = 0if 2 # 0 mod 3, and v3 () = v,(§) otherwise.
Let further = [...,x1, zo] denote the (3,p)-adic expansion of x given by

[...,z1,20] = Z?)pi_lxi +xo=2, xi50€{0,....,p—1},29€{0,1,2}.
i=1

The numbers x; are the digits of =, and most of these x; are zero. Let now = < y if
[...,21,x0] is digit-wise smaller than or equal to [..., 31, yo]. We also write z <’ y
if z <y, v3p(x) = v3,(y) and the v ,(x)th digit of = and y agree. Finally, set

1 ifn=kmod?2, vs,(k) =uvs,(2tE), k< 2tk
(4B.8) enk = —1 ifn=kmod?2, vs,(k) <vs,(2), k<2t —1,
0 else.
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Example 4B.9. For char(K) = 0 the above simplifies quite a bit. First, the only
two relevant numbers z1 € Z>g,x0 € {0,1,2} are given by x = 3z1 + x¢, S0 o is
the reminder of z upon division by 3. Equation (4B.8) simplifies to the following
matrix whose entries are ey, j:

€15,11

Here we have illustrated the case n = 16. The pattern is that every third row has
only one nonzero entry. Otherwise, the pattern (—1,0,1) respectively (1,0, —1) is
shifted along rows with a distance of three zeros.

We have the following alternating sum of dimg(Az) = % (c&)). (Recall
that ¢(k) denotes the number of caps respectively cups for diagrams in the J-cell
Ji-) That a dimension formula is of this form is expected from the cell structure,

and the precise coefficients e,, j, are the main point:

=0 n—c(k)+1 \c(k)

Proposition 4B.10. We have dimg(Ly) = Zi(k) €n—2r41,k+1 (L(k)“( " ))
In particular, for k € {0,1,n} we have dimg(Ly) = 1.

Proof. For the TemperleyLieb algebra 7 £L™(1) these dimensions were computed
in [Sp20, Corollary 9.3]. These computations use the K-linear cell structure of
TLU™(1) given by it being a cellular algebra. These turn out to be the same
calculations as for the cell structure of the Temperley—Lieb monoid T £,, discussed
in Theorem 3C.1 and the results in [Sp20, Corollary 9.3] work thus for 7 £,, without
change. |

Example 4B.11. It is easy to feed the above into a machine. Below we list the
first few dimensions of the simple 7 L,-representations Ly for char(K) = 0 (first
table), and char(K) = 2 (second table). Here 0 < n < 16 is indexing the rows and
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0 < k <16 the columns.

n\kfjo 1§ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 ! Order of cells char(K) =0
1 1 —

2 1 1

3 1 1

4 |1 3 1

5 1 4 1

6 1 9 4 1

7 1 13 6 1

8 1 28 13 7 1 —— dimg(Lg) for TLg

9 1 41 27 7 1

10 |1 90 41 34 9 1

11 1 131 110 34 10 1 dimg (L11) for TLis
12 |1 297 131 144 54 10 1

13 1 428 429 144 64 12 1

14 |1 1001 428 573 273 64 13 1

15 1 1429 1638 573 337 90 13 1

16 |1 3432 1429 2211 1260 337 103 15 1
n\kjo 1§ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 ! Order of cells char(K) =2
1 1 —

2 1 1

3 1 1

4 |1 3 1

5 1 4 1

6 1 9 4 1

7 1 13 6 1

8 1 27 13 7 1 —— dimg(Lg) for TLg

9 1 40 27 7 1

10 |1 81 40 34 9 1

11 1 121 110 34 10 1 dimg (L11) for TLis
12 |1 243 121 144 54 10 1

13 1 364 429 144 64 12 1

14 |1 729 364 573 272 64 13 1

15 1 1093 1638 573 336 90 13 1

16 |1 2187 1093 2211 1245 336 103 15 1

These tables also appear in [An19]. Note that the representations Ly for even n
and Lq for odd n, separated by a dotted line, are always of dimension one. This is
a special coincidence of the involved combinatorics and was observed from a very
different direction in [STWZ21, Proposition 4.5].

Recall that ¢(k) denotes the number of caps respectively cups in Ji. The follow-
ing lower bound for the dimensions (k ¢ {0,1} is covered in Proposition 4B.10):

Proposition 4B.12. Let char(K) = 0. For k ¢ {0,1} we have

. 1 "
dimg (Lg) > (n—c(k)+ 1)(n—c(k) + 2) <c(k)>'

Proof. See [Sp20, Propositions 9.4 and 9.5]. O

Example 4B.13. The dimensions of the simple 7 Lo4-representations over Q and
their lower bounds are given by the tuples
dim: (1,534888,208011, 445741, 389367, 126292, 85216, 31878, 6876, 1726, 252,22, 1),
lower bound: (14858, 11886, 8171, 4807, 2403, 1012, 354, 101, 23, 4,0.5,0.04, 5k ).
Here Ly correspond to the leftmost entry and then & increases in steps of two from
left to right. Note that the lower bound does not work for k = 0.
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4C. Truncating the Temperley—Lieb monoid. Recall that we need a regularity
condition to ensure that taking cell subquotients works as expected, cf. Lemma 3F.6.
We first establish:

Lemma 4C.1. The monoid T L,, is reqular.

Proof. We check that TL,, satisfies condition (a) in Lemma 3F.6. Take a and b
with & through strands, both in the same left cell within ;. Thus, a and b have
the same bottom half 8, = 8, but the top halves ~, # 5 can be different. We can
now use ¢ = vy, o (75)* which implies that a = ¢b, as required. The picture is:

which is a calculation in J> as in (4B.2).

Alternatively, from Lemma 3F.6 we get that this lemma follows from Neumann
regularity in monoid theory, and of course this is well-known for the Temperley—Lieb
monoid, see e.g. [LFGOG]. O

Motivated by Example 4C.3 we define:
Definition 4C.2. Define the kth truncated Temperley—Lieb monoid by
TLER = (TLy)s 7,
This is the cell submonoid, see Section 3F. In words, Tﬁgk consist of all cross-
ingless matchings with fewer than %k through strands, together with an identity

element. Recall that, by Proposition 3F.8 and the discussion in Section 4A, we
know the simple Tﬁgk—representations and their dimensions.

Example 4C.3. Let us come back to (3F). Looking at the graphs of the dimensions
and the semisimple dimensions of the simple T Lo4-representations

(4C.4)
y-axis: dim y-axis: ssdim
.~ 24 ~ 24
5000001 k~2v24 ) / 600000] k=224 ) /
cells increase < cells increase
400000 500000
300000" ’ 400000
300000
2000001 X-axis: 200000/ X-axis:
100000 # through # through
strands/2 100000 strands/2
‘ ‘ ‘ ‘ L ‘ ‘ ! ‘ L
2 4 6 8 10 12 2 4 6 8 10 12

dim: (1,534888,208011, 445741, 389367126292, 85216, 31878, 6876, 1726, 252, 22, 1),
ssdim: (208012, 534888, 653752, 572033, 389367|211508, 92092, 31878, 8602, 1748, 252, 23, 1),

it seems preferable to cut these graphs roughly at k ~ 21/24 or at even lower values,
as illustrated above. The submonoid 7 L5 for this specific value of k now does
not have too small representations anymore and is still rich enough as a monoid.
Note that the one-dimensional simple 7 L5} -representation for Jp is 15, so we do
not need to get rid of it.

Our main statement about the Temperley—Lieb case is a bound for the represen-
tation gap of Tﬁ%k , but before we can prove it we need to discuss extensions.



368 M. KHOVANOV, M. SITARAMAN, AND D. TUBBENHAUER

4D. Trivial extensions in Temperley—Lieb monoids. Our next goal is to show
that 7L, and T,C,%k have no extensions between 1; (under some minor restrictions
onn and k). Let X be either TL,, or Tﬁgk, and recall the notions of left-connected,
right-connected, null-connected and well-connected from Section 2A.

Lemma 4D.1. The monoid X is null-connected.

Proof. Note first that for each of these monoids the group G of invertible elements is
trivial. For a € X\ G the decomposition a = yoid,, o 8 = a;a} from Lemma 4A.10
then implies that these monoids are null-connected since a5 = ajasas and a = aaza’
is then a product of @ and ajas € X'\ G. 0

Before we can prove the main statement of this section we need some terminology.

Remark 4D.2. The reader might recognize the definitions below from the theory of
Temperley—Lieb cells (or the many other occasions where this theory has appeared
in disguise). That is no coincidence as the notions of being left or right-connected
are closely related to left and right cells.

Recall that a diagram a € Bj, consists of m through strands and #*5™ cups. The
through strands connect top and bottom endpoints in a, while cups connects top
endpoints in pairs.

For the following notion we naively compose diagrams, meaning that we do
not remove internal circles. We say that a,b € B} are in a wvertical position if
the diagram b*a is isotopic to id,,, the identity diagram on m strands. Elements
a,b € B}, are said to be in a weakly vertical position if b*a is isotopic to id,, together
with potential internal circles.

Example 4D.3. Consider a,b € BS given by

A A RIS Va RVt

Then a and b are in vertical position, as illustrated above. But neither a and a nor
b and b are. The latter are only in weakly vertical position.

Denote by Vert!' C B?, x B the set of pairs of diagrams in a vertical position,
and write (a,b) € Vert,'. This relation on diagrams is symmetric.

Denote by WVert,,, C B x B the set of pairs of diagrams in weakly vertical
position, and write (a,b) € WVert,,,. Note that (a,a) € WVert,, for any a € BY,.
Again, this relation on diagrams is symmetric.

If (ag, b1) € WVert,, then aia3b1by = a1 (abbi)bs = a1b3. That is, inserting ajby
in the middle of a1b5 does not change the latter.

Definition 4D.4. Let I'?, denote the unoriented graph with vertex set B and
edges between a and b for all (a,b) € Vert,,,.

Note that I'}y, is nonempty if and only if n > m and n + m is even.
Lemma 4D.5. The graph I'}, is connected if m > 0.
Proof.

Case (m = 1). In this case the lemma can be proved by induction on n, by showing
that any diagram a € B} is connected by a path in I'T to the diagram

AR
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with the through strand on the far left and "T_l unnested cups.

General case. Consider a diagram a € B},. Each through strand c of @ may be
surrounded by a cluster of cups on either side. The first case allows to bring each
such cluster together with ¢ to a standard form as above (through strands followed
by a sequence of unnested cups) via paths in suitable graphs I'¥, utilizing only one
through strand c¢. Doing this transformation with each through strand in a and
moving all through strands all the way to the left transforms a to a standard form
of m parallel vertical strands on the left followed by unnested 5™ cups. This
shows that 1"}’ is connected. O

A cup is called outer if it is not separated from the bottom of the diagram by
any cup. A pair (a,b) € B, x B is called a flip pair if b is obtained from a by
converting an outer cup c into a pair of through strands while simultaneously closing
up a pair p of adjacent through strands in a into a cup. Note that ¢ must not be
located between the two strands in p, and that the flip pair relation is symmetric.

Example 4D.6.
(a) In the element of B1°

1 2 U 5 6 7 8\-/9 10

| = | | |
the cups (2,5) and (8,9) are outer. The cups (2,5) and (3,4) are nested,
with (2,5) an outer nested cup.

(b) The following is a flip pair:

| N | S ]

We have indicated where we apply operations on the left-hand diagram.

The reader might want to think of a flip pair as two diagrams related by opposite
saddles moves.

Definition 4D.7. Let A7, denote the unoriented graph with vertex set B}, and
edges between a and b for all flipped pairs (a, b).

Note that the graph A7 is not connected for even n > 4, since a diagram with
one through strand on the far left and one on the far right is not in any flip pair.

Lemma 4D.8. The graph A% is connected.

Proof. We view the empty graph (with no vertices) as connected, which is the case
when n is even. For odd n = 3 4 2k the proof is by induction on k.

Case (k =1). In this case the graph has the form
e N R I

)

thus is connected.

Case (k > 1). Represent a € Bi™2* as a composition a = ¢b of a diagram ¢ € Bi’igz

with a single cup and b € Bé"’%, e.g. :

-/

e ol
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By induction on k, the diagram b is connected in the graph Agkﬂ to the diagram
br_1, called standard, of three through strands on the far left and by k— 1 unnested
cups on the right. For example

ai
(4D.9) b:| -/ | -/ |<£>bk71:| | | -

=] | ]
Consequently, in A§k+3 the diagrams a and cbg_; are connected. If the extra cup
in cbg_1 coming from c is not nested inside the rightmost cup of bx_1, as shown in
(4D.10), then cbi_1 can be represented as a diagram in ngﬂ union a cup on the
far right, cbr—1 = d ® U, with d in very specific form, see (4D.9). By induction,
d is connected to the standard diagram by_; in Ang. The union of the latter
with a cup on the far right gives the standard diagram in A§k+3
is connected to the standard diagram by € A§k+3.

, implying that a

(4D.10) Cbkfl:llluw&)lululu

The remaining case is when the cup from c is nested inside the rightmost cup
of bg_1, see (4D.10). Then a series of transformations along paths in the graph
A§k+3, possible by induction, show that a is in the same connected component as
the diagram by, concluding the induction step. O

Lemma 4D.11. The graph A}, is connected for any m > 3.

Proof. The proof is by induction on m. Case m = 3 has already been established.
Denote by b, ., the diagram with m through strands on the far left followed by *5™
unnested cups to the right. If the leftmost strand of a is a through strand, then the
diagram a can be written as a union @ = |®a’ of a through strand and a diagram o’
in Bg;ll. By induction, o’ is connected to the standard diagram b,,—1 ,,—1 implying
that a is connected to by, p,.

If the leftmost strand of a is a cup, consider the three leftmost through strands
of a and form the subdiagram a; that consists of these strands and all cups to the
left and in between of these through strands. We can write a = a1 ® ag, with as
the complement as of a; in a. By Lemma 4D.8, a; is connected to some diagram
b, with r through strands to the left. Hence, a = a1 ® as is connected to b, ® as.
In the latter diagram the leftmost strand is through, and the previous case allows
to use the induction step. |

Recall the relation ~; given by the closure of the relation ba =; a, where a,b €
S\G.
Lemma 4D.12.
(a) Suppose (a,b) € B, is a flip pair, and m < k. Then aa™ = bb* in Tﬁgk.
Moreover, for a,b € B},, m <k we have aa* ~; bb* in Tﬁf’“.

(b) For a,b,c € B} we have ac* ~; bc* in L%k, for k> 3.

Proof. (a) Suppose the flip is described via an outer cup ¢ and a pair p of adjacent
through strands in a, as in the definition of a flip. Let d € B}},_, is obtained
from a by closing up the pair p into a strand. It is straightforward to check that
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dd*aa* = dd* = dd*bb*, which implies that aa™ =; bb*. The second claim follows
then from the first.

(b) Since A} is connected, we can choose a path a = a1, as, ..., a, = bin it,
with each (a;,a;41) an edge. Then a; 10; = idg, and a;y1c = @410, 10:C Ry a;c,
and ac = agc ~; a,.c = be. O

We are ready to prove that the Temperley—Lieb monoids are left-connected.

Lemma 4D.13. We have the following.
(a) The monoid T L, is left-connected if n > 5.
(b) The monoid TL=* is left-connected if n > 5 and k > 3.

Proof. Recall the generator-relation presentation from (4A.9).

(a) It is easy to see that T L3 has two equivalence classes {uy, ugu; } and {ug, ujus}
under /2, which are the top left cells in (4B.2). The monoid 7 L4 also has two ~;
equivalence classes, represented by u; and wus. In general, since the u; generate
TL,, any ~; equivalence class is represented by some w;. For n > 4, each u; is in
the same equivalence class as either uy or u,_;. For instance, if ¢ > 2, u; and u,
commute and u; =5 u1u; = u;uq ~p up. Finally, g & Up_1%1 = U1Up_1 ] Up_1.

(b) We need to show that there is a unique equivalence class under ~; in TL£=%\
{1}. First, any element u in the latter set is equivalent under ~; to an element of
width k. To see this, write a minimal length presentation v = w; w;,_, ...u;, of u as
a product of generators. The element u has width m < k. Pick the smallest p such
that the suffix v = wu;,u;,_, ... u;, of the presentation has width & (this is possible
since multiplication of an element by a generator u; either preserves the width or
reduces it by one). Then u = v'v where v’ is the product of the remaining terms.
Note that v = vv*v and u = v'v = (v'vv*)v. Widths w(v'vv*) < k, w(v) = k, so
that both of these elements are in 7L\ {1}, and u = v'vv*v ~; v. We see that
u is equivalent to an element of width k.

Consequently, it is enough to show that a ~; b for any two a,b of width k.
Factorize a = aia3,b = bib5 with ay,a2,b1,b2 € BE. From Lemma 4D.13 we have
airas ~; agas and b1by =~ baby. From the same lemma, agaj =~; babs, so that
a =~ b. O

Note that the statement of part (b) of Lemma 4D.13 essentially contains part
(a) by taking k = n. We have included both parts for clarity.

Lemma 4D.14. The monoid T L, is well-connected if n > 5, and the monoid
Tﬁ%k is well-connected if n > 5 and k > 3.

Proof. This is just the combination of the previous lemmas. Note hereby that
the diagrammatic antiinvolution _* implies that the monoids 7£,, and TL=" are
left-connected if and only if they are right-connected. O

Let X be either TL,, or Tﬁ%k for k> 3.
Lemma 4D.15. We have H (X, K) 2 0 for all n € Zx.
Proof.
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Case (X = TL,). A homomorphism f: 7L, — K takes each idempotent e € TL,,
to 0. From the classical generators-relation presentation of TL,, see (4A.9), it
is clear that every nonidentity element is a product of idempotents, so we get
HY(TL,,K) 0.

Case (X = TL="). We now need a different argument. Suppose give a homomor-
phism f: 7L, — K. Consider all diagrams of width k£ in X. They have the form
ab*, a,b € B}. Necessarily f(aa*) = 0. If (b,c) is an edge in I'} and d € B}, then
ab*cd* = ad* and there is a relation

flad™) = f(ab®) + f(cd).

Choosing a path from a to d in I'} allows to write f(ad*) as a sum over f(bc*)
where (b, c) is an edge in I'}. The relation be*bb* = bb* implies

J(b0%) = f(be®) + f(bb7),
so that f(bc*) = 0 for an edge (b,c). Consequently, f(ad*) = 0 for a,d as above,
and f(z) = 0 for any x of width k in X. The elements y of X' of smaller width

are products of elements of width k, showing that f(y) = 0 as well. Thus, f is
identically 0 on X.

General approach. If S is any finite monoid with trivial H-cells, then H' (X, K) =
0, and even Hl(X ,A) = 0 for any abelian group A. To see this note that Theo-
rem 3A.14 and H(e) = S; imply that IM € Zsq with 2 = M+ for all z € S.
Therefore each element has trivial image under any f: S — Asince A isa group. [

Proposition 4D.16. Let M be an X-representation. Assume that n > 5 and in
the truncated case k > 3. Then any short exact sequence

00— 1y —M— 1y —0
splits.

Proof. Note that the group of units G of X is trivial, so we get H'(G,K) 2 0.
Combine this with Lemma 4D.14 and Theorem 2B.10. O

4E. Representation gap and faithfulness of the Temperley—Lieb monoid.
We are ready to state and prove the main statements about the Temperley—Lieb
monoid.

Let X be either TL,, or T,Cgk for k£ > 3.

Theorem 4E.1. Let n > 5, and let m(l) be the dimension of the simple X-
representation L; as in Proposition 4B.10. Then:

gapg (T L) = min {m(1)[l ¢ {0,1,n}},
gapg (TL:") = min {m()|l ¢ {0, 1,k + 1,k +2,...,n}}.
Proof. By Theorem 2B.10 and Proposition 4D.16. ]

Recall that k& denotes the number of through strands, and crossingless matchings

with k£ through strands have "T_k caps and cups. In particular, 'TE?L]“ for 0 <k <

24/n has crossingless matchings with at most 24/n through strands and at least
# (this number is bigger than /n for n > 16) caps and cups. Also recall the
Bachmann—Landau notation f € ©(g), meaning that f is bounded both above and
below by g asymptotically.
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Theorem 4E.2. Let n > 5 and fir 0 < k < 2y/n. Let char(K) = 0, and let L be
an arbitrary field. We have the following lower bounds:

gapK(Tﬁ k> (n+2\/_+2)(n+2\/ﬁ+4) <% B \/ﬁ) c @(2’%*5/2)’

w2 2( ) <o),

6 n
. <k n, —
faithg (T L£>") > n—|—4<— B 1) €0(2"n 3/2)7

where in the final bound n’ =n, if n is even, and n’ =n — 1, if n is odd.

Proof. Representation gap. We will make use of Proposition 4D.16. By Theo-
rem 2B.10, this statement ensures that we only need to compute dimension bounds
for simple Tﬁgk-representations. The first bound then follows from Proposi-
tion 4B.12. The formula (nfc(k)Jrl)l(nfc(k)JrQ) (. (k)) has its minimum for k& = [2/n].

Plotting this k into the formula and a bit of algebra autopilot gives the claimed lower
bound. The asymptotic formula then follows by using that i

4 .
ntoynt2)(nteyntd)
in @(#), and using Stirling’s approximation for n! to get that the binomial is in

o(2"n~1/?).

Semisimple representation gap. The second bound can be seen as follows. We
need to minimize the formula in Proposition 4B.6 for 0 < k < 2y/n. Observe

that the function %(c&)) in k£ has precisely one peak between £ = 0 and

k = |24/n], and is monotone increasing respectively decreasing otherwise. So we
only need to compare the two values for £ = 0,1 and k = [2y/n], and it is then
easy to see that the k = 0,1 value is smaller. Since ¢(0) = 252 and ¢(1) = [ 2], the
result follows. The asymptotic formula follows also from Stirling’s approximation
for nl.

Faithfulness. For the final bound we use Lemma 2E.11. This lemma says that it
suffices to find a lower bound for TL£=2: If n is even, then TLS? < TLEF. If n is
odd, then we can still use TL£=? after adding another strand. Note that a faithful
Tﬁ§2-representation cannot be a nontrivial extension of 1;; by Proposition 4D.16
and also not a direct sum of 1;;. Hence, any faithful Tﬁﬁz—representation must
contain Lo. The combinatorics from Example 4B.9 implies that dimg(Ls) =
ssdimg (Ls), so the claimed formula follows from Proposition 4B.6. The asymp-
totic formula can be verified in the same way as for (a) and (b).

Let us note that alternatively to direct computations for the asymptotic formulas,
the reader can also input the above bounds into a computer algebra system such as
Mathematica and ask the computer to algebraically manipulate the symbols. [
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Example 4E.3. The lower bounds in Theorem 4E.2 are far from being optimal.
But they still grow very fast. Here are their plots:

y-axis: lower bound gap
A TL,/Q

60000 .
7 1ncreases —

50000
40000 -
30000 -
20000 -

10000

5 10 15

y-axis: lower bound ssgap

B TL,/K
4-10°- n increases —
3-10°
b
2-10°
1-10°F )
X-axis: n
‘ N ‘
5 10 15 20 25 30

y-axis: lower bound faith
6107 TL,/Q

n increases —

5 10 15

In these plots n increases from 0 to 30 when going left to right.

Note that the bound 0 < k < 24/n in Theorem 4E.2 means that the monoid
Tﬁgk has few through strands. This has the advantage that the dimensions of
simple Tﬁgk—representations peak, but it also means that the information loss
during multiplication is big. Alternatively one might want to keep k close to n, so
we also state:
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Theorem 4E.4. Let n > 8 and fix 2¢/n < k <n — /n. Let char(K) = 0, and let
L be an arbitrary field. We have the following lower bounds:

1
gapy (TL5") > e 1) (f> € O(nY"/1n=9/4(2¢)V/2),

<k n_\/_+1 n n/4, —3/4 n/2

foithi(7254) > 0 4(_”_ ) €0,

where in the final bound n' = n, if n is even, and n’ =n — 1, if n is odd.

Proof. Similar to the proof of Theorem 4E.2 and omitted. (The assumption n > 8
ensures that k > 3, so we can use Lemma 4D.14.) O

Example 4E.5. The various ratios from Section 2F are easy to compute using
Proposition 4B.3, which gives |TL5| = > teask [, and either of the theorems
above. Explicitly, for n = 16, k = 2v/16 = 8 and using K = Q, which is the
setting from Theorem 4E.2, we get gaprQ(Tﬁlgﬁg) > 1.686 - 1073, For comparison,
the symmetric group S has gaprg(Sie) ~ 2.186 - 1077,

4F. Other planar monoids. Let us now discuss cells, simples and bounds for
the other planar monoids from (1E.2) in ascending order (of complexity). The
constructions and statements are very similar to the Temperley—Lieb case, so we
will be brief. The reader can find more details about the basics about the diagram
monoids, and also references, in e.g. [HJ20].

Remark 4F.1. As we will see, the common theoretical feature of planar monoids
is that their H-cells are all of size one. As for the Temperley—Lieb monoid, the
diagrammatically firm readers can deduce the cell structure of the planar diagram
monoids in this section themselves. There are also many references in the literature
and the cells of these diagram monoids have been rediscovered many times. For
example, [DEG17] computes the cells of pRo,, and [BH14] computes the cells of
Mo,,.

We leave the case of the planar symmetric group to the reader and start with
the planar rook monoid pRo,. This monoid was rediscovered several times, see e.g.
[KS15], and the reader might know it under a different name. The construction of
pRo, is almost the same as for 7 L,,, but instead of caps and cups we have end and
start dots, and all internal components are removed whenever they appear during
composition. The monoid pRo,, has (25) elements and a typical cell is of the form

t s
N % ’ He) =S
:\‘ ’\' . | * 9
This illustrates [J; of pRos, which has one through strand.
The monoid containing both 7L, and pRo, as submonoids is the Motzkin
monoid Mo,,. The definition of this monoid works mutatis mutandis as for 7L,

and pRo,, now with caps and cups as well as start and end dots, and all internal
components are removed whenever they appear during composition. The Motzkin

(4F.2) 7

° ;0000
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monoid has ZZZO k+r1 @2) (zkk) elements. The J-cells J; are still given by through
strands k, and a prototypical example is

/ . -

R — -

rx | X 9\ v

(
(

1

) LK)
o ¢ ¢ ¢ o o o o o o ~
Ji ﬁl ﬁoolo * s o HEES
3 ¢ ¢ 6 ¢ bblbb ¢
/) A e e * * LK}
6 o o

|99

L
./
[ 2
L J
[ 2
L N

AL

This illustrates J; and Mos.

Finally, the planar partition monoid pPa, has all of the above mentioned planar
monoids as submonoids, as it allows now arbitrary partitions, and has Ca(2n)
elements. (Recall that Ca(k) was the kth Catalan number.) As before, internal
components are removed and cells look very familiar to the cells of the other planar
monoids. For example 77 for pPas is:

ENEAES
T [ |,(-\
< =

In the following we will focus on pRo, and Mo, as justified by our discussion
of the Temperley—Lieb monoid and:

H(e) = Sl

Lemma 4F.3. There is an isomorphism of monoids pPa,, =T Loy,
Proof. See [HRO5, (1.5)]. O

Not surprisingly, the analogs of Proposition 4B.3 and Proposition 4F.5 read
almost the same. Below, if not stated otherwise, let X be either pRo,, or Mo,,.
Proposition 4F.4. We have the following.

(a) The left and right cells of X are given by the respective type of diagrams
where one fizes the bottom respectively top half of the diagram. The <;- and
the <,-order increases as the number of through strands decreases. Within
Jr we have

n
pRo,: €)= R = ().
N k+1 ( n ><k+2t>
Ckrt+1\k+2t)\ ¢
(b) The J-cells Ty, of X are given by the respective type of diagrams with a fized

number of through strands k. The <;.-order is a total order and increases
as the number of through strands decreases. For any L C Jy we have

X: | Tl = L2

(¢) Each J-cell of X is idempotent, and H(e) = 1 for all idempotent H-cells.
We have

Moy |L] =|R| =

X:|H| =1
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Proof. Omitted. See also [HJ20, Section 3.3]. Note that the reference gives the
dimensions of the simple pRo,- and Mo, -representations in the semisimple case,
which are thus the sizes of the corresponding cells, see Proposition 3C.6. (Il

Proposition 4F.5. The set of apexes for simple X -representations can be indexed
1:1 by the poset A = ({n,n —1,...},>), and there is precisely one simple X-
representation of a fized apex up to =

Proof. Clear by Proposition 4F 4. O

We can number the simple X-representations by Ly for k € A.

Proposition 4F.6. The semisimple dimensions for pRo,, and Mo, are ssdimg (L)

= (1) and ssdimg(Ly) = 37 7255 (1) ("), respectively.

Proof. Directly from Proposition 4F.4 and Proposition 4F.5. (]

The semisimple dimensions of pRo,, are given in (4C.4). (Note that (4C.4)
shows the dimensions of the simple pRo,-representations, but we will see in Propo-
sition 4F.7 that dimg(Ly) = ssdimg (L) holds for pRo,.) The semisimple dimen-
sions of Mo,, behave similarly as the semisimple dimensions of 7L,,, cf. (4C.4):

y-axis: ssdim

!
k%2\/ﬂ M024/K

8-10°

cells increase <

6-10°
4-10° ’
X-axis:
2:-10° # through
strands
: C~ il
5 10 15 20

3192727797, 5850674704, 7583013474, 8234447672, 7895719634,
6839057544, 5412710842, 3938013264, 2641866894, 1636117512,
935163394, 492652824, 238637282, 105922544, 42884259, 15742672,
5199909, 1530144, 395922, 88504, 16674, 2552, 299, 24, 1

The dimensions of simple pRo,-representations are easy to obtain:

Proposition 4F.7. We have dimg (L) = ssdimg (L) = (Z) for pRo,,, and pRo,
is semisimple.

ssdim:

Proof. We only need to prove that pRo, is semisimple, which implies the other
results by Proposition 3C.6 and Proposition 4F.6.

To show semisimplicity we use [St16, Theorem 5.21] which says that a finite
monoid is semisimple if and only if all J-cells are idempotent, all idempotent H-
cells are semisimple and the Gram matrices P(e), see Section 3D, for all idempotent
H-cell H(e) are invertible.

By Proposition 4F.4 we only need to compute the Gram matrices. Since H(e) =
&1, the reader familiar with the theory of cellular algebras will recognize the follow-
ing calculation. The Gram matrix for any of the planar monoids discussed in this
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paper can be computed using analogs of Lemma 4A.10. Precisely, for each J-cell
there are bottom diagrams (1, ..., f; and top diagrams 71, ..., 7 indexing the
rows and columns of the J-cell in question. The Gram matrix is then

1 if By =1,
Ple)iy = {0 else]

where 1 is the element of H(e) = S;. For example, the Gram matrix of J; of pRog,
see (4F.2), takes the form

B/v e @ 1 e 1 o/l o @

IR ERIIEE 100

s e 32l lslry {010

restrlrlsse vt
)

This is the identity matrix. In fact, P(e) is always a permutation matrix: any end
dot needs to hit a start dot in order for $;v; to keep the same number of through
strands, and there is precisely one j; for a fixed -y; for this to happen. The proof
completes.

Alternatively, using an argument from monoid theory, pRRo,, is an inverse monoid,
namely a submonoid of the symmetric inverse monoid that we will meet in Sec-
tion 5F. Moreover, by Proposition 4F.4 we have |H| = 1. Thus, [St16, Corollary
9.4] implies that pRo,, is semisimple. |

The behavior of the dimensions of the simple pRo,-representations is sketched
n (3F). Sadly, we do not know the dimensions of the simple Mo, -representations,
but we have the following.

Proposition 4F.8. Let LITE" denote the lth simple T L, -representation, cf. Sec-
tion 4B. We have dimg(Ly) > dimK(LkTﬁ"), if n — k is even, and dimg(Ly) >
dimK(LkTL”’l), if n — k is odd, both for Mo,,.

Proof. Note that 7 L,, embeds into Mo,, by sending every element to the element
with the same description in Mo, e.g. :

(4F.9) TL 33 |= X | e Mos.

Thus, 7L, is a submonoid of Mo,, and Theorem 3D.2 applies whenever n — k is
even since in this case J, restricts to an idempotent J-cell of TL,,.

For the odd case we can use the same argument and the embedding of semigroups
given by adding a pair of an end and a start dot to the right, e.g.

T£39x H% :e/\/lo4.

Theorem 3D.2 can be easily extended to cover this case as well. ]
Lemma 4F.10. The monoid X is regular.

Proof. Using Lemma 3F.6 the claim is easy to verify: for pRo,, and Mo,, symmetric
diagrams with & end and start dots give an idempotent in J;. See also [DEG17,
Section 2] for a proof using regularity. O

This suggests again that we use truncations. Note that pRos*<! below is con-
structed using an honest Rees factor, cf. Definition 3F.5, while Mo<* is a sub-
monoid of Mo,,.
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Definition 4F.11. Define the k-l truncated planar rook monoid for k <[ and the
kth truncated Motzkin monoid by

pRO;" <! = (pPRop)> 7, /(> Ti),  Moz" = (Moy)> .
Let X be either pRo,, or pRo=F-<!,

n
Proposition 4F.12. Let M be an X-representation. Then any short exact se-
quence

00—y — M — 1y — 0
splits.
Proof. The monoid pRo,, is semisimple, see Proposition 4F.7, so Theorem 2B.10

applies. The case of pRo=* <! follows verbatim as the monoid is also semisimple
by the analog of Proposition 4F.7. ]

Remark 4F.13. To prove Proposition 4F.12 for the Motzkin monoid and its trun-
cation it suffices to show that they are left-connected: that they are right-connected
follows by applying the diagrammatic antiinvolution _*, that they are null-connected
follows from the fact that their J-cells are idempotent, the group of units G is trivial
which implies H*(G,K) = 0, and H'(Mo,,K) = 0 as well as its counterpart for
Mo=F follow from the same arguments as in the proof of Lemma 4D.15.

The following statement is only about pRo,, since we do not know the dimen-
sions of the simple Mo, -representations.

Theorem 4F.14. We have

gapx (PRon) =1, gapg(pRo;™<') = min { (Z) ) <l N 1) } :

Proof. By Theorem 2B.10, Proposition 4F.12 and Proposition 4F.7. |

Theorem 4F.15. Let k be arbitrary and | = |2v/n]. We have the following lower
bounds:

<l,<n—l

n
gapg (pRo= ) = ssgapg (pRo=H<""1) > ( ),
K( K( LQ\/HJ

faithg (pRo=H<""1) > Y <LZJ),
2

ssgapy (MosF) > ssgapy (TL3")),  faithg (Mox*) > faithy (TLSF)).

Because of Proposition 4F.8, we also think that gapg(Mo=F) > gapy (TL=F)).
We cannot prove this since we would need the analog of Proposition 4F.12 for the
Motzkin monoid.

Proof. Planar rook. We start with pRo,. The first inequality is immediate from
Proposition 4F.7 and the behavior of binomial coefficients. For the second claim we
apply Theorem 3E.4. Note that Tﬁgm_l has 4|y/n] 4+ 1 cells, but we can restrict
to the submonoid with only 2|y/n| + 1 as in the proof of Theorem 4E.2.

Motzkin. The first claim follows also from Theorem 4E.2 by identifying the
smallest cell of Temperley-Lieb as a subcell of the smallest cell of Mox*. The final
inequality follows then from Proposition 4F.8, Theorem 3E.4 and Theorem 4E.2.
(Note that using n— 1 is for convenience so that state a closed formula independent
of even and odd issues.) O
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Example 4F.16. As before for the Temperley—Lieb monoid, the various ratios are
<6,<10

easy to get from the above. For example, gapy(pRots ) =~ 0.34.

Conclusion 4F.17. From the viewpoint of linear attacks using small representations,
all of the planar monoids pRo,,, T L,, Mo, and pPa,, or actually their truncations,
have only big nontrivial representations. However, 7 L,, is our main example: pRo,,
appears to be a bit too simple as a monoid to be of use and is semisimple, and pPa,,
is just T Lo,. The discussion about Mo, is unfinished and deserves more study.

5. SYMMETRIC MONOIDS

We still have a fixed field K.

5A. Brauer categories and monoids. We will now recall the definitions of the
Brauer category Br'™™(8), the Brauer algebra Brt™(§) and explain how to construct
set-based versions of these. Brauer categories and algebras are classical topics
in representation theory, see e.g. [Br37] for the original reference. Moreover, the
discussion is quite similar to the one in Section 4, so we will be brief.

The crucial difference between Br'™(§) and TL""(§) is that the former is addi-
tionally a symmetric category. The morphisms are then called perfect matchings.
Prototypical examples of these perfect matchings are crossingless matchings but

also e.g.:
A

The relations on these diagrams are built such that they are the same if and only
if they represent the same perfect matching. Otherwise the definition of Br!™™(¢)
is the same as for TL"™(§).

Perfect matchings can be numbered by b(k) = (2k — 1)!! (the double factorial).
Letting P} denote the set of perfect matching with m bottom and n top boundary
points, we have the following analog of Lemma 4A.3:

Lemma 5A.1. The set P}, is a K-linear basis of Homgyuin(s)(m,n). Hence, the
dimension of this space is either zero if m #% mmod 2, or otherwise given by

dimg Homg,in (5)(m, n) = b(Z42).

Proof. Well-known, see e.g. [GL96, Lemma 4.4]. O

The Brauer algebra on n-strands is then Brli"(§) = Endg,in 5)(n).

n

Remark 5A.2. Similar as TL!™(8), the algebra Brt™(§) originates in Schur-Weyl-
Brauer duality [Br37]. See e.g. [AST17, Section 3.4] for a summary of these duali-
ties.

The definition of the set theoretical version of these works verbatim as in Def-
inition 4A.7. We then get the set-theoretic Brauer category Br and the Brauer
monoid on n-strands is defined by Br, = Endg,(n). This monoid has (2n — 1)!!
elements.

Lemma 5A.3. Sending the K-linear basis from Lemma 4A.3 to crossingless match-
ing in P} from Lemma 5A.1 defines an embedding of monoids TL,, — Bry,.

Proof. Clear by the respective lemmas. O
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Note that the symmetric group S, on n-strands is isomorphic to the group of
units G of Br,. An isomorphism is given by the map

Sp = By, (iyi+1) = X,

where the crossing crosses the ith and the (i + 1)th strand when read from left to
right. We will use this to identify S,, with the respective subgroup of Br,, and with
the corresponding set of morphisms in Br.

The analog of Lemma 4A.10 now is:

Lemma 5A.4. For a € Homgp,(m,n) there is unique factorization of the form
a =yooof for minimal k, and B € Homp,(m, k), ox, € S,, and v € Homp,(k,n).

Proof. Very similar to the proof of Lemma 4A.10. The picture now is

-/ |/ J

e ~
_ %

N\
|/ 7
M
which one easily generalizes to prove the lemma. Note that one can always push
crossing in the middle unless they have to cross a cap or cup. O

We apply the same terminology as for Br, regarding through strands, bottom
half and top half. As before for TL,,, this notion will give us the cell structure of
Br,.

5B. Cells of the Brauer monoid. The cell structure of the Brauer monoid is as
follows.

Remark 5B.1. As for all the other monoids we have seen, the computation of the
cells of Br, is easy and a pleasant exercise. And, as before, there are plenty of
references on the cell structure, see [Brb5] for an early reference, [FG95] for a
reference from quantum algebra and [KMMO06] for a reference from monoid theory.

The picture for the cell structure of Br,, is now:

= | A A
i AR [R N s
~X IR A/
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1
&

These are the cells of Brs. Here is another example, where H(e)
~ T2
“
VS
m

\

TIHIAR

D(OC

>

NP Sy

|

DR
FRHEETIARN
1S5 SRR ECAN

KAALAZS ke
HEHE

YDk

This illustrated the cell J5 in Bry.
Formally and with contrast to Proposition 4B.3, we have now nontrivial H-cells:

Proposition 5B.2. We have the following.

(a) The left and right cells of Br,, are given by perfect matchings where one fizes
the bottom respectively top half of the diagram. The <;- and the <,-order
increases as the number of through strands decreases. Within Ji we have

L] =|R| = k'(Z) (n—k—1).

Here (n — k — 1)l denotes the double factorial.

(b) The J-cells Ji of Bry, are given by perfect matchings with a fixred number
of through strands k. The <;.-order is a total order and increases as the
number of through strands decreases. For any L C [J we have

Tl = 1L

(¢) Each J-cell of Bry, is idempotent, and H(e) = Sy for all idempotent H-cells
in Ji. Within J; have

H] = kL.

Proof. All of these are known statements. However, the cells of Br, do not corre-
spond to the cells coming from the cellular structure of Brli"(§), but rather from

the sandwich cellular structure, cf. [FG95] or [TV21, Section 2D]. O

Let Ls, /= denote the set of simple S,-representations. For char(K) = 0 it
is well-known that Lgs, /2 can be identified with partitions of n. For char(K) > 0
there is a slightly more involved statement of the same kind, see e.g. [Ma99, Section
3.4] for an even more general statement.
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Proposition 5B.3. The set of apexes for simple Br,,-representations can be indexed
1:1 by the poset A = ({n,n —2,...},>), and

{simple Br,-representations of apex k}/ = AN Ls, /*.

Proof. As before by using Proposition 3B.5 and the cell structure in Proposi-
tion 5B.2. ]

By Proposition 5B.3, we use the same number scheme and poset as for the
Temperley—Lieb monoid but also keeping track of Li € Lg, /=

Lemma 5B.4. Within one J-cell all left cell representations Ay and all right cell
representations g A are isomorphic. We write Ay respectively A for those in Jy.

We have Ay = A as K-vector spaces and dimg (Ag) = dimg (xA) = (})(n—k—
I

Proof. Using Proposition 5B.2, the proof is similar to the Temperley—Lieb case. [

Proposition 5B.5. Let K be a simple Si-representation, and let Ly denote its
associated simple Br,-representation of apexr [Ji. The semisimple dimensions are

ssdimg (Lg ) > (3)(n— k — 1)1,

Proof. As for the Temperley—Lieb case with the extra observation that a smallest
semisimple dimension is associated to the trivial Si-representation. (Il

Example 5B.6. The lower bound for the semisimple dimensions of Brgs can be
illustrated by

y-axis: ssdim

7-102 Bray /K
, k ~ 2v/24 . 24/
6-10"2 cells increase <
5-102
4-102
L )
3-10'2
2.102 X-axis:
f # through
1-10% strands/2
’ 2 4 6 8 10 12

1 N 11.5,12.5792, 12.8424, 12.6663, 12.1734, 11.4233,
0g1(ssdim): ( 10.4489,9.26797, 7.88775, 6.30512, 4.50349, 2.44091, 0) '

For readability, we took the base 10 log of the actual numbers. This picture again
motivates truncation, and we will do this in Section 5C.

Let us discuss the dimensions of simple Br,-representations. To the best of our
knowledge, the dimensions of simple Br,-representations are not known. The best
we get is:

Proposition 5B.7. Let LZT" denote the kth simple T L,,-representation, cf. Sec-
tion 4B. Let K be a simple Sg-representation and let Li denote its associated
simple Br,-representation of apex Ji,. We have dimg(Lk) > dimK(LZ—‘C").
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Proof. The Temperley—Lieb monoid T L,, embeds into Br,, by the evident map that
diagrammatically is as the one in (4F.9). See also Lemma 5A.3. The proof is thus
essentially the same as for Mo, see Proposition 4F.8. The difference is that we
cannot use Theorem 3D.2 directly, but we instead need to argue slightly differently:
First, we use the Brauer algebra Brl"(1) for circle parameter 1. The monoid
algebra of Br,, is Brl"(1), hence, finding dimension bounds for Br, or Brln(1) is
the same problem. Working with Br

n
lin(1) has the advantage that we can use the
cellular structure to split the J-cells J; further until H-cells are of size one, see
[GL96, Section 4]. This can be achieved by using e.g. the Kazhdan—Lusztig bases of
the S;. The sign representation of Sy in its cell structure corresponds to the bottom
cell where there are only through strands. This cell for Brl®*(1) has then TL£L"(1)

inside and the pairing argument applies. All other simple Br'i"(1)-representations

associated to Jj have bigger dimensions, so the proof completes. O

5C. Truncating the Brauer monoid. We continue with truncation, which is
almost identical as for the Temperley—Lieb monoid in Section 4C.

Lemma 5C.1. The monoid Br,, is reqular.

Proof. The same arguments as in Lemma 5C.1 work. In particular, we can use
Lemma 3F.6 and the well-known fact, that is also easy to prove by hand, that Br,
has idempotent J-cells, see for example [KMMO06, Section 3]. O

Definition 5C.2. Define the kth truncated Brauer monoid by
Brt = (Brn)s g,

Again, let us stress that diagrams in Br=* have at most k through strands. We
are almost ready to state our main results, but before we need to discuss extensions.

5D. Trivial extensions in Brauer monoids. The following is the same as for

TL,.

Lemma 5D.1. The monoid Br,, is well-connected if n > 5, and the monoid Brs*
is well-connected if n > 5 and k < 3.

Proof. This follows from Lemma 5A.4 and the respective statement about the
Temperley-Lieb monoid in Lemma 4D.14. To see this note that the left-connected
condition ba ~; a implies that within on =&; equivalence class we can focus on the
part where o, = 1 since for a = 7 o g3 o 8 we can choose b = 7y o 0;1 o B* and get
yoidgof = yoopof. The same works for right-connected and null-connected. [

We now restrict to a field K with char(K) # 2.
Lemma 5D.2. Let char(K) # 2. We have H'(S,,,K) = 0 for all n € Z>y.

Proof. The cases n = 0,1 are clear, so let n > 2. Recall from Remark 2B.3 that
Hl(Sn, K) 2 0 is trivial if and only if the only homomorphism S,, — K is trivial.
To see that this is the case, note that any such homomorphism must send the
transposition (4,74 1) of S, = Aut({1,...,n}) to k € K with 2k = 0, which implies
k = 0. The claim follows since S,, is generated by transpositions. O

Let X be either Br,, or Br%k for k > 3.
Lemma 5D.3. Let char(K) # 2. We have H' (X, K) = 0 for all n € Zx.
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Proof. We will use Lemma 5D.2.

Case (X = Bry,). Similar to the proof of Lemma 4D.15 with the difference that
elements in J), are not generated by idempotents, but rather by idempotents and
symmetric group generators. Idempotents are sent to zero, as for the Temperley—
Lieb monoid, and the symmetric group generators are also sent to zero. These
taken together show the claim.

Case (X = Brs*). The argument is also similar to the proof of Lemma 4D.15. In
this case diagrams of width k are of the form aopb* where o) € S,,. Keeping this
in mind as well as Hl(Sk, K) 22 0, the argument given in the proof of Lemma 4D.15
works mutatis mutandis. O

Remark 5D.4. Lemma 5D.3 actually works in arbitrary characteristic. To elabo-
rate, in [EG17] the authors show that every proper ideal of Br, is generated as a
semigroup by idempotents. Now, in general, if S is a monoid containing an ideal I
generated by idempotents as a semigroup, then, for any homomorphism f: S — K,
we have 0 = f(I) = f(SI) = f(S) + f(I) = f(S). This argument really just needs
Hom(I,K) 2 0, which is a consequence of I being generated by idempotents as a
semigroup, and we get the desired Hl(Brn,K) >~ () as a special case. The same
arguments work for the truncated version.

Proposition 5D.5. Let char(K) # 2. Let M be an X-representation. Then any
short exact sequence

00— 1y —M— 1y —0
splits.

Proof. The proposition follows as for the Temperley—Lieb monoid by the above
lemmas. The only difference to Proposition 4D.16 is that the group of units is
g = S, but that is taken care of in Lemma 5D.2. O

5E. Representation gap and faithfulness of the Brauer monoid. The analog
of Section 4E is the weaker statement:

Theorem 5E.1. Let char(K) # 2. We have the following lower bounds:
gapy (Bri*) > gapy (TLZ"),

ssgapy (T L= always,
ssgapy (BrH) > gapg ( ) y
(n— e O(n™2e"?) ifn>>0,0<k<2n,

faithg (Br=*) > faithg (TLSF).

Note that the lower bound (n — 1)!! is bigger than the one using 7L, from
Theorem 4E.2.

Proof. Since TL, embeds into Br, (see the proof of Proposition 5B.7 or
Lemma 5A.3), Proposition 5D.5 and using the arguments from the proof of Propo-
sition 5B.7, most of this theorem follows from the ones for 7L, or Tﬁfk . The
exception is the lower bound given by (n — 1)!l. To see that this lower bound holds
under the given assumptions, we observe that (Z) (n — k — 1)!! has its minimum at
either k = 0 or k = |24/n]. Evaluating at these values for n >> 0 (as there are some
fluctuations for small n) shows that the lower bound is achieved at k = 0. (]
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5F. Other symmetric monoids. We now discuss the remaining symmetric
monoids from (1E.2) in ascending order (of complexity). We will be brief since
almost everything follows mutatis mutandis as before. The basics can be found e.g.
in [HJ20].

Remark 5F.1. Symmetric monoids have the symmetric groups as H-cells, as we
will explain below. As for the planar monoids, the cell structure of the symmetric
diagram monoids below is easy to get. See for example [St16, Chapter 9] for many
references in the rook monoid case, [HJ20] for the rook-Brauer monoid, and [HR05]
for the partition monoid.

The symmetric group was discussed in Example 2A.16, so let us start with the
rook monoid Ro,. The rook monoid is the nonplanar version of pRo, and has

>ro k!(2)2 elements. Its J-cells are again given by through strands. A typical

cell is J5 for Ros:
NI LI
2 X X
NS
KK X,
RS NS
AN IX e
The rook-Brauer monoid RoBr,, is a symmetric version of the Motzkin monoid.

The rook-Brauer monoid has Yp_o k(27 (1) ("5,7) (2t — 1)!!)2 elements. The
J-cells are, as usual, indexed by through strands. They get huge very fast, so let
us just illustrate a typing idempotent (and symmetric) H-cell:

Bt s R
| = SR o SR s
[

e e e —GDe

The partition monoid Pa,, contains all the other planar and symmetric monoids
as submonoid. It has Be(2n) elements, where Be denotes the Bell number. The
J-cells are still given by through strands. As for RoBr,, the sizes of the cells are
very large, so we only illustrate an idempotent (and symmetric) H-cell:

L N

T2

ol|e

Part of J3

ol|le o||l®

Part of J» He) =S,

==X

Below, if not stated otherwise, let X be Ro,,, RoBr, or Pa,,.

Proposition 5F.2. We have the following.

(a) The left and right cells of X are given by the respective type of diagrams
where one fizes the bottom respectively top half of the diagram. The <;- and
the <,-order increases as the number of through strands decreases. Within
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Jr we have
Ron: |£] = [R| = kv(">
k
L) = :lnnn_kz—l”
RoBr,: |£] = [R| k.Z(k o )@=,

t=0

n n t
Pa,: |L] =|R| = k!Z{t} (k)
t=0

Here {7} } denotes the Stirling number of the second kind.

(b) The J-cells Ty, of X are given by the respective type of diagrams with a fized
number of through strands k. The <j.-order is a total order and increases
as the number of through strands decreases. For any L C [J we have

X | Tl = 1L

(c) Each J-cell of X is idempotent, and H(e) = Sk for all idempotent H-cells
m Ji. Within J;, have

X |H| =kl
Proof. Easy and omitted, see also [HJ20, Section 3.3]. O

Proposition 5F.3. The set of apexes for simple X -representations can be indexed
1:1 by the poset A= ({n,n—1,...},>), and

{simple X-representations of apex k}/ = LN Ls,/ = .

Proof. By Proposition 5F.2. |

Proposition 5F.4. Let K be a simple Si-representation, and let Ly denote its
associated simple X -representation of aper Ji. The semisimple dimensions are

ssdimg (L) > (}), ssdimg(Lgx) > Y1 (}) (”;tk) (2t — DI respectively
ssdimg (Lx) > > o {7} (1)-

Proof. This follows verbatim as Proposition 5B.5. ]
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Example 5F.5. As before, let us illustrate the lower bound for the semisimple
dimensions:

y-axis: ssdim

2_5.1014 < ka9 ,—24 ROBI‘Q4/K

; cells increase <+
2.0-10"-
1.5-10"

)

1.0-10"} axcis

[ x-axis:
5010 # through

\g strands
B ‘ 1l
5 10 15 20

y-axis: ssdim

o
2@ P3424/K

1-10% :
r cells increase <+
8-10"
6-10"° ,
19 .
4-107- x-axis:
[ through
2-10" - # &
t ¥ strands
‘ ‘ s
0 15 20

13.2428, 13.8931, 14.2325, 14.3852, 14.4022, 14.3105,
14.1279, 13.8651, 13.5313, 13.1314, 12.671, 12.152,

11.5786, 10.9499, 10.2701, 9.53474, 8.74966, 7.90469, |’

7.00985, 6.0434, 5.02637, 3.90827, 2.74194, 1.38021, 0

17.6493, 18.6225, 19.2572, 19.6761, 19.9277, 20.0373,
20.0198, 19.8843, 19.6367, 19.2804, 18.8176, 18.2495,
17.5764,16.7982, 15.9143, 14.9234, 13.8234, 12.6115, |’
11.2832, 9.83189, 8.24761, 6.51485, 4.60773, 2.47712, 0

where we again took the base 10 log. We have not illustrated the situation for
Ro,, as it is the same as for pRo, with semisimple dimensions given by binomial
coefficients, cf. (3F).

RoBr log; (ssdim):

Pa log;(ssdim):

Let Y denote pRo,, Mo, or pPa, associated to their respective X.
Lemma 5F.6. The monoid X contains Y as a submonoid, by the analog of (4F.9).
Proof. Clear, see also Lemma 5A.3. O

Proposition 5F.7. Let Lg denote the kth simple Y-representation. Let K denote
a simple Sk-representation and let Ly denote its associated simple X -representation
of aper Ji. We have dimg (L%) > dimg (LY).
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Proof. This follows again by observing that the planar versions embed into their
nonplanar counterparts, see Lemma 5F.6. ([l

Proposition 5F.8. Let char(K) t n!, including char(K) = 0. We have dimg (L) =
ssdimg (Lg) = (Z) for Roy,, and Ro,, is semisimple.

Proof. The argument is the same as in Proposition 4F.7 with the additional caveat
of the symmetric groups Sy for 0 < k < n appearing as idempotent H-cells which
forces the condition char(K) t n!. O

Lemma 5F.9. The monoid X is reqular.

Proof. This follows as before from Lemma 3F.6 and a construction of an idempotent
for each J-cell. The latter is easy and omitted, but also well-known, see e.g. the
references in Remark 5F.1. (]

Definition 5F.10. Define the k-l truncated rook monoid for k < [ and the kth
truncated rook-Brauer monoid respectively k truncated partition monoid by

Ro%k’d = (Ron)>a./(> Tn), RoBr%k = (RoBry)> 7, Pafbk = (Pan)>7-

Let X be either of the above monoids or their truncations. For Theorem 5F.11,
note that the kth truncated planar partition monoid pPas® can be defined in the
evident way.

Theorem 5F.11. Let char(K) t n!, including char(K) = 0, and let L be an arbitrary
field. We have the following lower bounds:

gapy (Ro; <) > gapy (PRoz*<"),
ssgapy (Ro="<!) = ssgapy (pRo=™<!),  faithy, (Ro=F<!) > faithy (pRo=F<),
ssgapy, (Mo=F) always,
Sro()t=1DI ifn>0,0<k<2yn,
faithy, (RoBr=F) > faithy, (Mo="),

ssgapy (RoBr=F) > {

ssgapy (pPasF)  always,
Dieoit} ifn>0,0<k<2yn,
faithy (Pask) > faithy, (pPa=").

ssgap]L(’PaEk) > {

Note that the above lower bounds in the cases n > 0,0 < k < 2y/n are bigger
than the ones coming from the embeddings. We also expect that

gapy (RoBrs*) > gapy (Mo3*),  gapg(Pas") > gapy (pPas”),

but we were not able to prove this since there might be extensions.

Proof. All lower bounds except the first follow directly by using the embedding in
Lemma 5F.6. The first uses additionally Proposition 5F.8 which also holds for the
truncation.

The equality ssgapg (Ros"®<!) = ssgapy (pRos*<!) is clear by Proposition 5F.2.
For the semisimple gaps of RoBr, and Pas* one can use the same arguments as
in Theorem 5E.1. ]
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Remark 5F.12. The exact value for faithy, (Ros*<!) can be computed using [MS12b,
Theorems 15 and 17]. The methods from that paper together with [EMRT17]
may also be used to compute the faithfulness of other diagram monoids and their
truncations.

Conclusion 5F.13. As with the planar monoids, all of the symmetric monoids Ro,,,
Br,,, RoBr,, and Pa,, appear to have big nontrivial representations. However, it is
not clear why they should be preferable over their planar counterparts since they
are, roughly speaking, their planar version inflated by the symmetric group Si. In
fact most of our arguments above use the planar versions to derive bounds.
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