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MONOIDAL CATEGORIES, REPRESENTATION GAP AND

CRYPTOGRAPHY

MIKHAIL KHOVANOV, MAITHREYA SITARAMAN, AND DANIEL TUBBENHAUER

Abstract. The linear decomposition attack provides a serious obstacle to
direct applications of noncommutative groups and monoids (or semigroups) in
cryptography. To overcome this issue we propose to look at monoids with only
big representations, in the sense made precise in the paper, and undertake a
systematic study of such monoids. One of our main tools is Green’s theory of
cells (Green’s relations).

A large supply of monoids is delivered by monoidal categories. We consider
simple examples of monoidal categories of diagrammatic origin, including the
Temperley–Lieb, the Brauer and partition categories, and discuss lower bounds
for their representations.
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1. Introduction

The main goal of this paper is to start connecting monoidal categories and cryp-
tography.

1A. Protocols and platform groups. Some of the most important cryptographic
protocols in use today are based on commutative groups and deliver a gold stan-
dard for cryptography (modulo the fear of quantum computers). On the other
hand, noncommutative group-based and monoid-based (or semigroup-based, but we
will stay with monoids in this paper) protocols seem to be less understood and in
many cases admit efficient attacks.

Exceptionally successful Diffie–Hellman (DH), Rivest–Shamir–Adleman (RSA)
and elliptic curve cryptography algorithms, see e.g. [Ko98], [Wa08], are based on
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the commutative group (Z/nZ)∗ of invertible residues modulo n and on the group
of points on an elliptic curve E over a finite field Fq, respectively. Here one usually
wants these groups to contain a subgroup of large prime order and small index. For
example, in the classical DH protocol the prime p as well as a generator g ∈ (Z/pZ)∗

of the multiplicative group are public. Then party A chooses privately a ∈ Z and
party B chooses privately b ∈ Z. Party A communicates ga, B sends gb and the
common secret is (gb)a = gab = (ga)b. A third party C has access to n, g, ga and
gb, but finding gab from the known data is difficult as long as p− 1 contains a large
prime among its factors.

There has been many ideas and there is an extensive literature on constructing
cryptographic protocols from noncommutative groups and monoids (monoids gen-
eralize groups and we switch to saying monoids from now on), see e.g. [MSU08],
[MSU11] and references therein. Examples of such are Magyarik–Wagner public
key protocol [WM85], Anshel–Anshel–Goldfeld key exchange [AAG99], Ko–Lee et
al. key exchange protocol [KLC+00] and Shpilrain–Zapata public key protocols
[SZ06].

In the literature the monoid S used in protocols is often called the platform
group/monoid. In [MR15, Section 4] there is a big list of various protocols and
platform monoids, including but not limited to the ones named above. Sometimes
these restrict to groups or matrix groups, sometimes general monoids can be used.
A prototypical example for this paper is the Shpilrain–Ushakov (SU) key exchange
protocol, see e.g. [MSU08, Section 4.2.1], which works as follows. The public data
is a monoid S, and two sets A,B ⊂ S of commuting elements and g ∈ S. Party
A chooses privately a, a′ ∈ A and party B chooses privately b, b′ ∈ A. Party
A communicates aga′, B sends bgb′ and the common secret is abgb′a′ = baga′b′.
Another example that does not use commuting elements is Stickel’s secret key
exchange (St) [St05]. Here g, h ∈ S with gh �= hg are public, party A picks

a, a′ ∈ Z≥0, party B picks a, a′ ∈ Z≥0, A sends gaha′

, B sends gbhb′ , and the

common secret is gagbhb′ha′

= gbgaha′

hb′ . Note that S can be an arbitrary monoid
in these protocols. The complexity of S determines how difficult it is to find the
common secret from the public data.

As shown by Myasnikov and Roman’kov [MR15] and also based on earlier work,
the SU and St protocols and others in this spirit, the ones named two paragraphs
above included, can be successfully attacked if S admits small nontrivial represen-
tations. This is called a linear decomposition attack or linear attack, for short.

One of the consequences of linear attacks is that finite noncommutative groups
may not be suited for cryptographic purposes as they admit nontrivial representa-
tions of moderate size. For a toy example, the symmetric group Sn has n! elements,
but admits a faithful (n−1)-dimensional representation. The dimension of this rep-
resentation is smaller than logarithmic in the size of the group, and the symmetric
group would be a poor choice for various standard noncommutative group protocols.
Likewise, finite simple groups of Lie type often admit representations of (exponen-
tially) small dimension compared to their size. With few exceptions, including
cyclic groups of prime order, which are related to the classical and well-understood
protocols, the same is true for other finite simple groups. That is, these groups
admit nontrivial representations of small dimension relative to their order. Since
any finite group G surjects onto some finite simple group, reducing the problem
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of bounding representations of G from below to that of the simple quotient, linear
attacks rule out many finite noncommutative groups.

Hence, it is not surprising that some platform groups proposed in the literature
are infinite, e.g. Artin–Tits, Thompson or Grigorchuk groups, see [MSU08, Chapter
5].

This paper explores finite monoids (mostly coming from monoidal categories)
instead of infinite groups. The questions we address are:

• What are (numerical) measures to determine whether a monoid can resist
linear attacks?

• How to find a good supply of finite monoids for cryptographic use?

1B. Linear attacks, representation gap and faithfulness. The following ob-
servations regarding monoid-based cryptography are our starting points:

(a) As explained above, monoid-based protocols such as SU or St and many
others often admit efficient attacks based on linear algebra [MR15].

(b) A natural solution to this problem is to restrict to monoids that have non-
trivial representations only starting from a suitably big dimension. We call
the smallest dimension of a nontrivial S-representation the representation
gap of S. Alternatively and weaker, we also ask for the dimension of the
smallest faithful S-representation to be big, and we call this measure the
faithfulness of S. We elaborate on these in Section 2.

Remark 1B.1. Various monoid invariants similar to the representation gap and its
companions have appeared in the literature and we give some references in the
main body of the paper. However, the motivations to study these invariants in the
literature are very different from ours, and it would be very interesting to make a
connection to cryptography starting from these works.

It is thus essential to find monoids that have big representation gaps or with
faithful representations of big dimension only. Suitably defined, a big representation
gap or big faithfulness seems to be necessary, but not sufficient, condition for a
monoid to be potentially useful in cryptography, however. Moreover, one problem
not discussed here is potential information loss: multiplication by an element of a
monoid may not be invertible.

1C. Monoidal categories and monoids. A category delivers a supply of
monoids: any object X of a category S gives rise to the monoid S = EndS(X)
of its endomorphisms. It is further natural to consider monoidal categories, where
objects can be tensored ⊗ subject to suitable axioms, for the following reasons:

(c) It would be preferable to have a family of monoids Sn, say one for each
n ∈ Z≥0. This is where monoidal categories enter. A single object X of a
monoidal category S produces a family of monoids {Sn = EndS(X

⊗n)|n ∈
Z≥0}.

(d) Commuting actions play a key role in cryptography, cf. the SU protocol re-
called above. Such commuting actions exist naturally in the setting of cat-
egories and monoidal categories. For any pair of objects X, Y of a category
S, not necessarily monoidal, there is a commuting action of the monoids
EndS(X)op (the opposite monoid) and EndS(Y ) on the set HomS(X,Y ).
Thus, categories immediately produce a significant amount of commuting
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actions. Furthermore, monoidal categories provide an even richer supply of
such actions: for any two objects X, Y the actions of the monoids EndS(X)
and EndS(Y ) on X⊗Y commute. It is easy to convert these to commuting
actions on sets, for instance, on the set HomS(Z,X ⊗ Y ) for Z ∈ Ob(S).

(e) Monoidal categories are naturally two-dimensional structures. They often
can be described via generating objects, generating morphisms and defining
relations. The latter can be understood as relations on planar diagrams or
networks, see e.g. [Se11], [TV17]. A natural problem is to construct exam-
ples of diagrammatically defined monoidal categories that may be useful for
cryptographic purposes. We start tackling this for planar diagrammatics
in Section 4 and for diagrammatics involving permutation symmetries in
Section 5.

These are our reasons to study (diagram) monoids coming from monoidal cate-
gories and we elaborate on their potential usefulness in cryptography in the main
body of the text.

There are then three additional facts regarding this project that we stress and
that we think makes our discussion interesting:

(f) The current literature on monoidal categories (see for example [EGNO15],
[TV17] and references therein) mostly studies K-linear categories or vari-
ations of such. This means hom-spaces between the objects are K-vector
spaces for some field K. Such categories are not immediately useful from
the cryptographic or any classical computation viewpoint, since it usually
takes a prohibitive amount of data to record an element of the hom-space
between two objects (those hom-spaces tend to have exponentially big di-
mensions). One the other hand, protocols in K-linear categories with homs
between objects having moderate dimensions can be dealt with via linear
decomposition attacks, see [MR15].

It makes sense to develop set-theoretic counterparts of categories that
appear in quantum algebra, quantum topology, mathematical physics, and
TQFTs, and see whether related monoids have big representation gaps.
We provide easy examples of such in the present paper and discuss their
usefulness for cryptography, see parts of Section 4 and Section 5.

(g) It seems hard to build secure cryptographic protocols from noncommutative
finite groups, due to finite simple groups having small representation gaps
relative to their size. For example, among finite simple groups only the
cyclic groups (of prime order) appear to be well-behaved for cryptographical
purposes, cf. Example 2C.3 and Example 2E.13.

One of our points is that representation gaps and faithfulness tend to be
bigger for suitable monoids than for groups when controlling for size. The
abstract theory of monoid representations should be useful for some general
statements in this direction, see Section 3 for some first steps.

(h) Finally, lower bounds on dimensions of representations of monoids or growth
rates of such dimensions are not yet extensively studied in the literature,
even not for group (representation theorists seem to prefer precise numbers).

Part of this project is also to get good bounds and growth rates for simple
and faithful S-representations, for finite monoids S, see Theorem 4E.2 for
an example.
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1D. Cell theory and cryptography. Our main tool to study monoid represen-
tations are Green’s relations a.k.a. Green’s theory of cells. We explain the details
in Section 2.

An example of how cell theory enters the paper is that a monoid S can be
truncated by considering a large cell submonoid S≥J , see Section 2 for definition.
Since simple S-representations are ordered by cells, S≥J will inherit precisely the
simple S-representations for large cells. The monoids of the form S≥J sometimes
have very few small representations. This truncation works actually in two ways,
from above and from below, using Rees factors and cell truncations, and provides
a good way to get rid of unwanted representations, cf. Section 3F.

Moreover, in Section 3 we will discuss so-called H-cells, how they control the
representation theory of the monoids and how large cells resist against linear at-
tacks.

Another way cells help to determine whether a given monoid could resist linear
attacks is that they give rise to what we call the semisimple representation gap,
which measures the normalized size of the cells. This numerical value is not as fine
as the representation gap or the faithfulness, but easier to compute and agrees with
the representation gap in the semisimple situation.

The representation gap, the semisimple representation gap and the faithfulness
seem to be good first tests for determining whether a given monoid resists linear
attacks. Throughout the text we list a few additional properties, partially motivated
by cell theory, that may be useful for cryptographical applications.

1E. Representation gap in some diagrammatic monoids. Let us take the
opportunity to recall some diagrammatic monoids which we will discuss in this
paper. All of these will be very familiar to the reader with background in quantum
algebra, quantum topology and alike, but they also are prominent examples in
monoid theory.

We will be very brief and details and references will follow in the main text.
We also indicate whether these monoids might be useful for cryptography in the
sense of having substantial (semisimple) representation gaps or only big faithful
representations.

Most of the monoids which we will use can be obtained as hom-subsets of the
set-theoretical partition category. We will use matchings from n bottom to n top
points of the following types (all of these are classical example, see e.g. [HR05] or
[HJ20] for summaries):

• The partition monoid Pan of all diagrams of partitions of a 2n-element set.

• The rook-Brauer monoid RoBrn consisting of all diagrams with components
of sizes 1, 2.

• The Brauer monoid Brn consisting of all diagrams with components of size
2.

• The rook monoid Ron consisting of all diagrams with components of sizes
1, 2, and all partitions have at most one component at the bottom and at
most one at the top.

• The symmetric group Sn consisting of all matchings with components of
size 1.
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• Planar versions of these: pPan, pRoBrn =Mon, pBrn = T Ln, pRon and
pSn

∼= S1 (the latter denotes the trivial monoid). The planar rook-Brauer
monoid is also called Motzkin monoid, the planar Brauer monoid is also
known as the Temperley–Lieb monoid, and the planar symmetric group is
trivial.

Remark 1E.1. The above diagram monoids appear in many different fields of math-
ematics. This makes them on the one hand very appealing, but on the other hand
tends to cause confusion from time to time. For example, as we already indicated
above, these diagram monoids have different names that vary with the field, e.g. the
Temperley–Lieb monoid is also known as the Jones monoid or the Kauffman monoid
in monoid theory, but that name appears to be unheard-of in the representation
theoretical literature on the algebra versions of these monoids.

(1E.2) summarizes our list, see also [HJ20, Section 2.3]. In order to make com-
ponents of size one visible we use loose dotted ends. We also indicate whether their
nontrivial representations are reasonably big (the “Big reps” column), meaning af-
ter appropriate cell truncation. Hereby ∗ means that they have such representations
but still come with an aftertaste (such as being semisimple in some cases), c means
conjectural, and EX means excluded from the discussion due to triviality. This is
explained in more details in Conclusion 4F.17 and Conclusion 5F.13.

Symbol Diagrams Big reps Symbol Diagrams Big reps

pPan YES∗ Pan YES∗c

Mon YESc RoBrn YES∗c

T Ln YES Brn YES∗

pRon YES∗ Ron YES∗

pSn EX Sn NO

.(1E.2)

The left half of the table above contains planar monoids, the right half symmetric
monoids.

We discuss all of these monoids and their representation gaps, respectively faith-
fulness, in Section 4 (planar) and Section 5 (symmetric).

1F. Further direction not discussed in this paper. Although truncated ver-
sions of the monoids mentioned in Section 1E have big representation gaps, big
semisimple representation gaps and are of high faithfulness, they might not be
suitable for cryptographic purposes due to their other properties.

We list here several additional examples and ideas which might be interesting
to study from the perspective of cryptography. For all of these making the setup
set-theoretical is the first crucial (and nontrivial) step:

(a) Web categories in the sense of Kuperberg [Ku96]. These monoidal cate-
gories generalize the Temperley–Lieb category from the viewpoint of repre-
sentation theory of Lie groups with Temperley–Lieb being the SL(2) case.
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A naive lower bound for the semisimple representation gap of the associ-
ated endomorphism algebras can be easily obtained. This bound is bigger
than for the Temperley–Lieb monoid itself, so this might be a fruitful di-
rection.

Note that it is not clear how to make the appearing endomorphism alge-
bras set-theoretical. For the Temperley–Lieb category what one effectively
does to make its endomorphism algebras set-theoretical is to look at prod-
ucts of light ladders (in the sense of [El15]). The same might work for other
web categories. Light ladder bases for these web categories were discussed
for example in [AST18], [El15] or [Bo20].

Note that, if one can make these web categories set-theoretical, one would
get new examples for monoid theory as well, which is interesting in its own
right.

(b) Soergel bimodules or categorified quantum groups in various flavors.
Soergel bimodules [So92] form monoidal categories attached to a Coxeter

system. These were diagrammatically reinterpreted in [EK10] and [EW16],
see also [EMTW20] for a summary. For starters, one can look at the di-
hedral case [El16] and see whether its set-theoretic modifications can give
interesting monoids. Looking at the analogs of light ladders, called light
leaves in [Li08], might be crucial. Let us note that some set-theoretical
variations of Soergel diagrammatics exist in the literature, see for example
[CGGS20, Section 4], but their usefulness in cryptography has not been
explored.

Categorified quantum groups originate in [La10], [KL09] and [Ro08], see
also [KL11], [KL10]. These are also diagrammatic in nature and promising
candidates, but may be harder to work with than Soergel bimodules.

As for web categories, set-theoretical versions of these would give novel
examples in monoid theory.

(c) Foams are suitably decorated 2-dimensional CW-complexes, defined ab-
stractly or embedded in R3. They originate and most prominently appear
in the study of link homologies, see for example [Kh04], [EST17], [RW20]
or [ETW18]. Using the universal construction from [BHMV95], they can
be easily modified, see e.g. [EST16] or [KK20].

Similarly as in the previous points, if foams could be made set-theoretical,
that would provide a big supply of potentially interesting monoids.

(d) The representation gap and the faithfulness of S depend on the underlying
field. To get rid of the dependence of the field, it should be useful to consider
integral representation of groups or monoids. This direction is widely open
and not much appears to be known. However, their categorifications, called
2-representations, have been studied a lot in the recent years.

Potential directions are:
(i) 2-representations of tensor and fusion categories, see e.g. [EGNO15,

Section 7] for a book chapter discussing these. Various diagrammatic
fusion categories might be of interest to study here, see [MPS17] for
a compelling list of examples. These diagrammatic fusion categories
also generalize T Ln, so it is expected that the list given in [MPS17]
has suitable big ranks.
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(ii) 2-representations of fiat 2-categories, see e.g. [Ma17] for a slightly out-
dated summary. For example, Soergel bimodules tend to have simple
2-representations of very big rank, see [MMM+19] for a classification.
Other versions of 2-representations of Soergel bimodules might also be
useful, see e.g. [MT19] or [MMMT20].
Another advantage of studying 2-representations of fiat 2-categories
from the viewpoint of cryptography is that cell theory generalizes from
monoids to these 2-categories, see e.g. [MMM+21], which served as a
partial motivation for Section 3.

(e) Another approach is to use semirings for building cryptographic protocols,
as proposed in [GS14], [GS19], [RS21], see also [Du20], which contains a
detailed review of the literature.

A linear attack on a semiring-based protocol would require the semir-
ing to act on a vector space or a module, and it is not even clear how a
semiring can act linearly on anything. There is the notion of a semimod-
ule over a semiring, which is much closer to set theory compared to that
of a module over a ring, and the theory of semimodules over semirings is
computationally difficult, even for semimodules over the Boolean semiring
B = {0, 1|1 + 1 = 1}, see for example [CC19]. A semiring can appear from
a linear structure, as the Grothendieck semiring of an additive category.
However, realizing even the Boolean semiring (or the tropical semiring) in
this way appears rather nontrivial, due to impossibility of an isomorphism
� ⊕ � ∼= � in a monoidal category, cf. [KT19] which discusses ways to
resolve such problems in similar situations.

2. Representation gaps and faithfulness

For background we refer the reader to standard textbooks such as [Be98], re-
spectively [St16], for the basic theory of finite-dimensional representations of finite-
dimensional algebras (such as monoid algebras), respectively, finite monoids.

Notation 2.1. We let S denote a finite monoid. If not stated otherwise, we work
over an arbitrary field K and consider only finite-dimensional (left) S-representation
with ground field K. The adjective small and big used for S-representations will
mean dimension-wise, where dimension is measured with respect to K.

2A. Representation gaps. We start with a subtle difference between groups and
monoids: the latter may have two types of “trivial” representations.

Definition 2A.1. Let G ⊂ S be the subgroup of all invertible elements of S, i.e.
G is the group of units. Then we define trivial representations

�b : S → K, s 	→
{
1 if s ∈ G,
0 else,

�t : S → K, s 	→ 1.

An S-representation M is called trivial if M ∼= �b or M ∼= �t.
The subscripts b and t are short for bottom and top, respectively. The top trivial

representation �t is also what is called the trivial representation � of S, the unit
object of the monoidal category of representations of S with � ⊗M ∼= M for any
S-representation M .
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Remark 2A.2. The notation is justified as follows. The S-representation �b is one
of the simple S-representations associated with the bottom J-cell Jb = G, while
the S-representation �t is associated with the top J-cell Jt, cf. Lemma 3A.9.

Remark 2A.3. With respect to Remark 2A.2 and Section 3, we warn the reader
familiar with monoid theory that the order we use for J-cells (a.k.a. Green’s J-
classes) is opposite of the one often used in monoid theory. Thus, what we call
bottom/top is usually the top/bottom in monoid theory. In contrast, our convention
matches most of the cellular algebra literature.

Lemma 2A.4. Both, �b and �t are simple S-representations of dimension one.
Moreover, �b ∼= �t if and only if S is a group.

Proof. Immediate from the definitions. �

Notation 2A.5. We write �bt short for either �b or �t. In particular, �⊕m
bt means

any of the 2m possible direct sums of �b and �t with m symbols in total.

For cryptographic purposes it should be interesting to collect examples of natu-
rally occurring finite monoids S such that any representation of sufficiently small
dimension relative to |S|, the size of S, is suitably trivial. Note that all elements of
S \G act in the same way on any of the direct sums �⊕m

bt and these representations
cannot distinguish any two elements of S \ G. Thus, suitably trivial could mean
being isomorphic to �⊕m

bt which we take as the definition. To state our definition
let S1 be the trivial monoid with one element, and let S0;1 be the monoid on the
set {a0} ∪ {1} with unit 1 and multiplication a0 · a0 = a0 otherwise.

Definition 2A.6. A pair (S,K) of a monoid, with S �∼= S1 and S �∼= S0;1, and
a field K is called m-trivial if S-representations M with dimK(M) ≤ m satisfy

M ∼= �⊕ dimK(M)
bt . Moreover, by conventions, S1 and S0;1 are (−1)-trivial for all K.

The maximal m such that (S,K) is (m − 1)-trivial is called the representation
gap of (S,K) and is denoted by gapK(S).
Remark 2A.7. The two monoids S1 and S0;1 are the only two monoids for which
every representation is a direct sum of trivial representations. Hence, their repre-
sentation gap would be infinity if we would use the same definition for m-triviality
as for other monoids. Since we define S1 and S0;1 to be (−1)-trivial we have
gapK(S1) = gapK(S0;1) = 0.

Note that the m-triviality is a lower bound on the dimension of the smallest
nontrivial simple S-representation, assuming the absence of extensions between
trivial representations �t and �b, see also Lemma 2A.14 and Lemma 2B.2.

Definition 2A.8. A monoid S is called m-trivial if (S,K) is m-trivial for all K.
The maximal m such that S is (m− 1)-trivial is called the representation gap of

S and is denoted by gap∗(S).
Remark 2A.9. In group theory the representation gap and similar notions are well-
known invariants studied by many people and with a number of applications, see
[BG08] or [Go08] for examples. However, the motivations in those papers are dif-
ferent from the ones in this paper and it would be interesting to make a connection.

Notation 2A.10. Below we will meet several notions similar to gapK(S) and gap∗(S).
For all of them it makes sense to vary the field which we indicated using ∗. Whenever
the difference does not play a role we simply write gap(S).
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Remark 2A.11 (Main task 1). For cryptographic applications it should be useful to
have a supply of monoids {Sn|n ∈ Z≥0} with exponentially big gap(Sn) as n→∞.

Example 2A.12. A pair (S �∼= S1,K) or (S �∼= S0,1,K) is 0-trivial if and only if any
there exists a one-dimensional S-representation which is nontrivial. In particular,
if S has a nontrivial one-dimension representation, then gapK(S) = 1.

Lemma 2A.13. The pair (S,K) is m-trivial if and only if S-representations M
with dimK(M) = m satisfy M ∼= �⊕m

bt .

Proof. By the unique decomposition property of finite-dimensional representations.
�

Lemma 2A.14. Assume that S has at least one nontrivial simple representation.
We have

gapK(S) ≤ min{dimK(LK)|LK is a nontrivial simple S-representation} ≤ |S| − 1.

Moreover, when K is algebraically closed, then |S| − 1 on the right can be replaced

by
√
|S| − 1. In all cases, when S is not a group, then every appearance of |S| − 1

can be replaced by |S| − 2.

Proof. The first inequality follows directly from the definitions. To see the second
inequality observe that simple S-representations appear in the Jordan–Hölder filtra-
tion of KS, the monoid algebra, so their dimensions are bounded by dimK

(
KS

)
=

|S|. Since the trivial representations �bt must appear as composition factors we
actually get |S| − 2 or |S| − 1 as an upper bound, depending on whether �b �∼= �t
or not. When K is algebraically closed we have the inequality

∑
L dimK(L)

2 ≤ |S|
where the sum runs over all simple S-representations. This implies the final claim
after again taking into account that �bt must appear as composition factors. �

Remark 2A.15. Note that we assume that S has at least one nontrivial simple
representation in Lemma 2A.14. This restriction is necessary. For example, let
S0,...,n−1;1 be the monoid on {a0, . . . , an−1} ∪ {1} with unit 1 and multiplication
aiaj = ai otherwise. Then the only simple S0,...,n−1;1-representations are �bt, as
follows directly from Proposition 3B.5. Thus, the middle number in Lemma 2A.14
is ambiguous.

Example 2A.16. Let Sn = Aut({1, . . . , n}) be the symmetric group on {1, . . . , n}.
For char(K) �= 2 there is a 1-dimensional nontrivial simple Sn-representation, called
the sign representation. Hence, gapK(Sn) = 1 unless char(K) = 2, which implies
gap∗(Sn) = 1. Since |Sn| = n!, the ratio between the representation gap and the
size of Sn is thus very small. Even if one would argue that the sign representation
is close to trivial, there is still the standard Sn-representation of dimension n− 1.
So gapK(S) ≤ n− 1 by Lemma 2A.14, which is still small compared to n!.

Example 2A.17. For the monoid in Remark 2A.15 we have gap∗(S0;1) = 0 for
n = 1 and gap∗(S0,...,n−1;1) = 2 otherwise. This is not hard to verify, see also
Example 2B.1.

2B. Extensions and representation gaps. We now discuss extensions. These
results are essentially in the literature, but we decided to keep the proofs for con-
venience of the reader. We elaborate on the literature in Remark 2B.13.

We start with an example showing that there can be arbitrary complicated ex-
tensions, even with only trivial composition factors:
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Example 2B.1. Back to Example 2A.17. One can check that KS0,...,n−1;1 is a
split basic algebra whose quiver Γ is of the form

n = 1: Γ = • •, n = 2: Γ = • → •, n = 3: Γ = •⇒ •,
and so on, i.e. one has two vertices and n− 1 edges for KS0,...,n−1;1.

Let us use the convention on path algebras where paths are composed from right
to left. Then an isomorphism that realizes these descriptions sends a0 to the initial
vertex (on the left-hand side above), 1 − a0 to the terminal vertex and, for n ≥ 2,
ai − a0 to the ith edge, counting e.g. from top to bottom in the illustration, for
i ∈ {1, . . . , n− 1}.

By usual quiver representation theory it follows that KS0,...,n−1;1 is semisimple
for n = 1, has finite representation type for n = 2, tame representation type for
n = 3 and is of wild representation type for n ≥ 4.

However, as we have seen in Example 2A.17, S0,...,n−1;1 has only the trivial simple
representations �bt and is 1-trivial unless n = 1. Thus, in general, S0,...,n−1;1 has
many nontrivial extensions of the form 0 −→ �bt −→ M −→ �bt −→ 0 with only
trivial composition factors for M .

Lemma 2B.2. A pair (S,K) is m-trivial if and only if any nontrivial simple S-
representation has dimension at least m+1 and all extensions 0 −→ �bt −→M −→
�bt −→ 0 for dimK(M) ≤ m split.

Proof. Being m-trivial clearly implies the second statement. The converse follows
by induction on m showing that any S-representation M with dimK(M) ≤ m is a
direct sum of �bt. �

Remark 2B.3. If S = G is a group so that �b ∼= �t, then having no nontrivial
extensions 0 −→ �bt −→ M −→ �bt −→ 0 is equivalent to H1(S,K) ∼= 0, here
S acts on K trivially: s 	→ 1 for all s ∈ S. Moreover, for any monoid S, recall
that H1(S,K) consists of all homomorphisms from S to (K,+). In particular,
H1(S,K) ∼= 0 if and only if the only homomorphism from S to (K,+) is the trivial
one. We will use this below, in particular, maps from S are always to (K,+).

We consider now the four possible cases of extensions of �bt by �bt. Precisely,
let M be an S-representation. Suppose there is a short exact sequence

0 −→ �bt −→M −→ �bt −→ 0, meaning all four possibilities.

Choosing a basis of M compatible with the corresponding filtration, the action of
each a ∈ S in the basis will be given by an upper-triangular matrix, with either
0 or 1 in each diagonal entry (when the corresponding term is either �b or �t,
respectively). The remaining (1, 2)-entry is denoted by f(a), so that the extension
is described by a function f : S → K. The condition (ab)m = a(bm) for m ∈ M
translates into four possible relations on f depending on the types of the trivial
representations involved:

Case (tt). This case is the same as for groups, cf. Remark 2B.3, that is:

Lemma 2B.4. We have H1(S,K) ∼= 0 if and only if S has only the trivial extension
of the form 0 −→ �t −→M −→ �t −→ 0.

Proof. Extensions of the form 0 −→ �t −→ M −→ �t −→ 0, viewed as elements
of Ext1(�t,�t), are classified by functions f : S → K such that f(ab) = f(a)+ f(b)
for a, b ∈ S. Any such extension is trivial if and only if H1(S,K) ∼= 0. �
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Case (bt). Recall that G ⊂ S denotes the group of units of S.
Consider the symmetric and transitive closure of the relation ab ≈r a for a, b ∈

S \ G, and denote the closure by ≈r as well. We call S with a unique equivalence
class in S \ G under ≈r a right-connected monoid.

Remark 2B.5. Note that groups S = G are not right-connected since for groups we
have S \ G = ∅, and the empty set has no equivalence classes under ≈r.

We obtain a sufficient condition for the triviality of extensions:

Lemma 2B.6. If S is right-connected, then S has only the trivial extension of the
form 0 −→ �b −→M −→ �t −→ 0.

Proof. Extensions of the form 0 −→ �b −→ M −→ �t −→ 0, viewed as elements
of Ext1(�t,�b), are classified by functions f : S → K such that

f(ab) =

{
f(a) if a ∈ S \ G,
f(a) + f(b) if a ∈ G,(2B.7)

modulo the one-dimensional subspace of functions that are constant on S \ G and
zero on G. To see this, in a compatible basis {v1, v2} of M the action of a ∈ S \ G
and b ∈ G is given by

a 	→
(
0 f(a)
0 1

)
, b 	→

(
1 f(b)
0 1

)
,

leading to the above equations. Moreover, the basis {v1, v2} can be changed to
{v1, v2 + λv1} while preserving its compatibility with the sequence 0 −→ �b −→
M −→ �t −→ 0, explaining why one needs to mod out by functions that are
constant on S \ G and zero on G.

If f satisfies (2B.7), then the fact that f(ab) = f(a) for a ∈ S \ G and b ∈ S,
together with right-connectedness implies that f is constant on S \G. Fix b ∈ S \G
(the set S \ G is nonempty by right-connectedness). Then, if a ∈ G, we have
ab ∈ S \ G and so f(b) = f(ab) = f(a) + f(b), whence f(a) = 0. Thus, f vanishes
on G. We deduce that Ext1(�t,�b) ∼= 0 by the previous paragraph. �

Case (tb). A monoid S is called left-connected if the opposite monoid Sop is right-
connected.

Lemma 2B.8. If S is left-connected, then S has only the trivial extension of the
form 0 −→ �t −→M −→ �b −→ 0.

Proof. Dual to Lemma 2B.6. �

Case (bb). Finally, we call a monoid S null-connected if any noninvertible element
of S can be written as a product of two noninvertible elements. That is, for a ∈ S\G
we have a = bc for some b, c ∈ S \ G. Note that groups are null-connected.

Lemma 2B.9. If S is null-connected and H1(G,K) ∼= 0, then S has only the trivial
extension of the form 0 −→ �b −→M −→ �b −→ 0.
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Proof. The extensions as in the statement, when viewed as elements of Ext1(�b,�b),
are classified by functions f : S → K such that

f(ab) =

⎧
⎪⎪⎪«
⎪⎪⎪¬

0 if a, b ∈ S \ G,
f(a) + f(b) if a, b ∈ G,
f(a) if a ∈ S \ G, b ∈ G,
f(b) if a ∈ G, b ∈ S \ G.

Similarly as before, one can see this by writing the action on M in a compatible
basis as

a 	→
(
0 f(a)
0 0

)
, b 	→

(
1 f(b)
0 1

)
,

where a ∈ S \G and b ∈ G. The rest of the argument is similar to Lemma 2B.6 and
omitted. �

We say that a monoid S is well-connected if it is either a group or right-connected,
left-connected and null-connected.

Theorem 2B.10. Assume S is well-connected and H1(G,K) ∼= 0. Then:

(a) Any short exact sequence

0 −→ �bt −→M −→ �bt −→ 0

splits.

(b) We have

gapK(S) = min{dimK(L)|L �∼= �bt is a simple S-representation}.(2B.11)

In particular, for groups S = G it suffices to check whether H1(G,K) ∼= 0 to ensure
that (2B.11) holds.

Moreover, if S is semisimple over K, then S is well-connected and H1(G,K) ∼= 0,
so (a) and (b) hold.

Proof. Well-connected and H1(G,K) ∼= 0 imply Claim (a). This claim follows from
Remark 2B.3, and the statements in Lemma 2B.4, Lemma 2B.8, Lemma 2B.6 and
Lemma 2B.9.

Well-connected and H1(G,K) ∼= 0 imply Claim (b). This follows from (a) and
the definitions.

Groups. Since �b ∼= �t, Lemma 2B.4 handles this case. It hence suffices to check
H1(G,K) ∼= 0 for groups.

We now assume that S is semisimple over K.
Left and right-connectivity. Assume that S is not a group. To see that S is

right-connected note that the S-representation �t is projective. Thus, there exists
e ∈ S with e2 = e and �t ∼= KSe. Let a, b ∈ S with a in the support of e and
b ∈ S \ G. Then, since be = e, we get that there exists c ∈ S with a = bc so S is
right-connected. Finally, taking the opposite monoid preserves semisimplicity, so
the same arguments as for right-connectivity imply left-connectivity.

Null-connectivity. Recall that ideals in semisimple algebras are (unital) semisim-
ple algebras. Hence, K(S \ G)/(S \ G)2 is semisimple, so it cannot be nilpotent.
This implies that (S \ G) = (S \ G)2, and thus, S is well-connected.
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The cohomology vanishes. The surjection KS � KG given by a 	→ a for a ∈ G
and a 	→ 0 for a ∈ S \ G implies that G is semisimple over K if S is. Thus, we get
H1(G,K) ∼= 0. �

Remark 2B.12. Note that for upper bounds for gap(S) it suffices to find some
nontrivial simple S-representation, but for lower bounds or the explicit value of
gap(S) we will calculate H1(S,K) and H1(G,K).

Remark 2B.13. The paper [MS12a] computes certain quivers for monoid algebras
with the computation of a generalization of Ext1(�t,�b) being a main point. The
above lemmas are deducible from their computations, more precisely from [MS12a,
Section 7]. In fact, [MS12a, Section 7] work in much greater generality and the
setting with �t and �b is a very special case.

Remark 2B.14. Using ideas in [MS12a], one can get a description of Ext1(�t,�b)
as in the proof of Lemma 2B.6. That is, one can prove that Ext1(�t,�b) ∼=
H̃

0
(∆(Pr),K)G (reduced cohomology) where Pr is the poset of proper principal

right ideals of S and ∆(Pr) is its order complex. There is, of course, the dual
version for Ext1(�b,�t) using proper principal left ideals of S. Let us also mention
that the special case of this result where G is trivial was explicitly proved in [MSS15]
and a different proof was given in [MSS21] for left regular bands.

Similarly, following the ideas in [MS12a], one can show that Ext1(�t,�t) ∼=
H1(G,K)⊕K|G/A\G| where A = (S \ G)/(S \ G)2.

Recall for monoid theory that a ∈ S is called von Neumann regular if it can
be written as a = aba for some b ∈ S, and S is von Neumann regular if all of its
elements are. Examples of von Neumann regular monoids are the diagram monoids
in (1E.2). As a final statement in this section we add:

Lemma 2B.15. If S is von Neumann regular, then S is null-connected.

Proof. Any a ∈ S \ G satisfies a = aba for some b ∈ S. Since ba ∈ S \ G whenever
a ∈ S \ G, null-connectivity follows. �

2C. Examples. The following is well-known. But since it is an important example
for cryptography, see e.g. Example 2C.2, we state and prove it here.

Proposition 2C.1. Let Cn ∼= Z/nZ be the cyclic group of order n > 1.

(a) We have gapQ(Cn) = min{r−1|r prime, r | n}. (In particular, gapQ(Cn) =
n− 1 if n is prime.)

(b) Let Fq denote a finite field with q = pk elements, where p is a prime.
(i) For gcd(n, q − 1) > 1 we have gapFq

(Cn) = 1.

(ii) For gcd(n, q − 1) = 1 and p | n we have gapFq
(Cn) = 2.

(iii) For gcd(n, q − 1) = 1 and p � n we have gapFq
(Cn) = min

{
d ∈

Z≥0| gcd(n, qd − 1) �= 1
}
.

(c) For any field K we have gapK(Cn) = minr(gapK(Cr)), where the minimum
is taken over all prime divisors r of n.
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Proof.

Case (a). First we have H1(Cn,Q) ∼= 0, so by Theorem 2B.10 it suffices to look at
the dimensions of simple Cn-representations.

To this end, recall that representations of Cn are semisimple over Q. The poly-
nomial Xn − 1 has no repeated roots over Q and factors as Xn − 1 =

∏
d|n Φd

for Φd the dth cyclotomic polynomial. The Chinese reminder theorem then gives
Q[Cn] ∼=

⊕
d|n Q[X]/(Φd), and we see that there are simple Cn-representations

for each Φd which are of the respective degrees degΦd = ϕ(d). This implies
gapQ(Cn) = min{ϕ(d)|d divides n}. However, since a | b implies ϕ(a) | ϕ(b) we
get the claimed formula from this expression.

Case (b). There is a nontrivial one-dimensional Cn-representation over Fq exactly
when gcd(n, q − 1) > 1, implying (i). In case (ii), there exists a nontrivial homo-
morphism Cn → Fq, where the latter is considered an abelian group under addition,
giving a nontrivial selfextension of the trivial representation of Cn.

In the remaining case (iii), when gcd(n, q−1) = 1 and p � n, the trivial represen-
tation has no selfextensions and it is the unique (up to isomorphism) representation
of dimension one over Fp. The representation gap gapFp

(Cn) is then the dimension
d ≥ 2 of the smallest nontrivial simple representation. Such a representation cor-
responds to a nontrivial homomorphism Cn → GL(d,Fq). Since gcd(n, q − 1) = 1
this homomorphism does not take Cn to multiples of the identity matrix. So d is
the smallest number such that gcd

(
n, |GL(d,Fq)|

)
�= 1. The order of GL(d,Fq),

up to factors of q − 1, which are coprime to n, is (qd − 1)(qd − q) . . . (qd − qd−1).
We see that the smallest d with gcd

(
n, |GL(d,Fq)|

)
�= 1 is the smallest d such that

gcd(n, qd − 1) �= 1.

Case (c). This follows from (a) and (b). �

Example 2C.2. The groups Cn lie at the heart of many standard cryptographic
protocols, see e.g. [Ko98, Section 1.4]. By Proposition 2C.1 these groups have a
quite big representation gap over Q. However, the situation varies depending on
the ground field, and over C the representation gap is small. In particular, for
cryptographical purposes the point is that protocols are broken as soon as Cn is
identified explicitly. For n + 1 = p with p a large prime the classical protocols
“disguise” Cn since finding a generator of (Z/pZ)∗, meaning finding an explicit
isomorphism of groups (Z/pZ)∗ ∼= Cn, is difficult.

Let n be a prime number. Over a characteristic zero field K that contains a prim-
itive root of unity ξ of order r, all simple Cn-representations are one-dimensional,
and gapK(Cn) = 1. Instead, as argued in the proof of Proposition 2C.1, over
the prime field Q there are two simple Cn-representations: the trivial � and an
(n− 1)-dimensional representation M , the complement of the trivial in the regular
representation. The representation M over a larger field that contains ξ splits into
the direct sum of one-dimensional Cn-representations, which are Galois conjugates
of each other.

Thus, for n prime Proposition 2C.1 and Example 2C.2 imply that Cn has a
substantial representation gap n− 1 over Q, close to its cardinality n = |Cn|.
Example 2C.3. Proposition 2C.1 discusses the cyclic groups Cn. These are simple
if n is a prime and the only commutative groups among the finite simple groups.

Let us briefly discuss other finite simple groups:
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(a) The alternating groups An ⊂ Sn of size n!
2 behave similarly to the sym-

metric groups, cf. Example 2A.16. They are a bit better in the sense that
they do not have a sign representation. However, over Q the standard rep-
resentation of Sn restricts to a simple An-representation. Over other fields
this representation might not be simple. But if it is not, then it contains
an even smaller nontrivial simple in its Jordan–Hölder filtration. Hence,
gap∗(An) ≤ n− 1.

(b) The biggest part of the periodic table of simple groups is the finite groups
of Lie type. (We consider the family of finite groups of Lie type in a very
vague sense. In fact, the symmetric groups are secretly also part of this
family, using the analogy that Sn � GLn(F1).) Most of these should have
small representation gap over the defining field. To see this consider the
group PSLn(Fq) for q = pk and p a prime. This is a finite simple group

(unless n = 2 and q ∈ {2, 3}) with qn(n−1)/2

gcd(n,q−1)

∏n
i=2(q

i− 1) elements. (Thus,

the number of elements grows exponentially in n.) However, PSLn(Fq)
has a small nontrivial simple Fq-representation of dimension n2−1, namely(
Fn
q ⊗ (Fn

q )
∗)/Fq.

(c) Sporadic simple groups tend to have big representation gaps, see e.g.
[CCN+85]. However, they do not come in Z≥0-families and are all only
moderately big. So they are probably not of immediate use for cryptogra-
phy.

Let us discuss the monster group M as an example. Its smallest nontriv-
ial and faithful representation over C has dimension 196883, see [CCN+85]
under the entry M = F1 therein (see also [FLM88, Chapter 12] where this
number+1 appears as the graded dimension of the moonshine representa-
tion), and the smallest nontrivial and faithful representation over any field
has dimension 196882, see [LPWW98]. With the minimal representation of
a sufficiently big dimension, there is a potential chance for cryptographic
protocols built from the monster. However, the monster still is sporadic
and does not come in an infinite family. We are not aware of any literature
on the subject.

Thus, one could argue that noncommutative finite groups do not seem to be very
useful for cryptography purposes by the above.

Example 2C.4. Finite groups that often have a big representation gap are p-
groups for a prime p. Under the name minimal character degree, there is a big
literature on the representation gap of these groups, see for example [Hu92] or
[JZM02], often aiming for an upper bound and not a lower bound as we would need
it. Having a large representation gap might make them useful in cryptography, see
e.g. [Ro18, Section 3].

2D. Field size and representation gap. In our definition of the representation
gap we do not differentiate between a particular field used and our measure of
complexity is the dimension of the smallest nontrivial representation over that field.
More practically, we can keep track of the complexity of working over a specific field.

For the finite field Fq a natural measure of complexity is log2(Fq) = n log2(p), the
log of the size of the field or some related complexity that measures the difficulty
of manipulating elements of the field. Given an S-representation M over Fq, the
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complexity of M over Fq can then be defined as

c(M) = dimFq
(M)c(Fq), where c(Fq) = log2 |Fq|.

Note that c(M) is preserved when viewing M as an S-representation over any
subfield of Fq.

Definition 2D.1. Define the finite characteristic representation gap gapf (S) of S
as the minimum of c(M), over all nontrivial representations M over finite fields.

We can alternatively restrict to S-representationsM over finite extensionsQ ⊂ K
and define

c0(M) = dimK(M)[K : Q] = dimQ(M).

Again, c0(M) does not change if M is viewed as an S-representation over a subfield
L ⊂ K.

Definition 2D.2. Define the characteristic zero representation gap gap0(S) of S as
the minimum of c0(M), over all nontrivial S-representations over finite extensions
of Q.

The pair
(
gap0(S), gapf (S)

)
is a measure of the representation complexity of S

over both Q and finite fields.

Remark 2D.3. Recall from above that the groups Cn have large (exponential) rep-
resentation gap over Q. The more refined notion of representation gap, introduced
in this section, might be a better measure of the complexity of S from the linear
attacks viewpoint.

2E. Faithfulness. By a faithful S-representation we mean a representation on
which any two elements of S act differently.

Remark 2E.1. Since there is no K-linear structure involved, this notion of faithful-
ness is slightly different from that of a faithful representation of the monoid algebra
KS.

Besides the notion of the representation gap, we introduce a related (weaker)
notion:

Definition 2E.2. Let faithK(S) be the number

faithK(S) = min{dimK(M)|M is a faithful S-representation}.
We call faithK(S) the faithfulness of (S,K). We also define faith∗(S) to be the
minimum of faithK(S) over all fields.

In words, faith(S) is the dimension of the smallest faithful S-representation.
Remark 2E.3 (Main task 2). Similarly as in Remark 2A.11, for cryptographic ap-
plications it should be useful to have a supply of monoids with exponentially big
faithK(S).
Remark 2E.4. For finite groups faith(S) is a well-known invariant studied since
the early days of representation theory. It is sometimes called representation di-
mension, and has attracted recent attention, see [Mo21] and the references therein,
including [CKR11] or [BMKS16]. Various versions of faithfulness have been stud-
ied in monoid theory as well, see for example [MS12b] who call the faithfulness the
effective dimension.
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Remark 2E.5. Faithfulness is only one measure of the complexity of S. As one
example of a small size representation that is not faithful in general but still gives
rise to efficient attacks is the Burau representation of the braid group Brn on n
strands. (The braid group is not a finite monoid, but that does not play a role
for our discussions involving it.) The Burau representation has dimension n, or
n − 1 for the reduced Burau representation, and in the proposed protocols n is
very small. Furthermore, the kernel of the Burau representation is also small, in
an appropriate sense, and the action of an element of Brn on the representation
carries full information about the element for the protocol’s purposes. Many of
these protocols admit efficient attacks, as documented in the literature.

Example 2E.6. The symmetric group Sn has its n-dimensional permutation rep-
resentation, which is faithful. Hence, faith∗(Sn) ≤ n.

In fact, one can do better. If the characteristic of K does not divide n, then
faithK(Sn) = n − 1. The corresponding Sn-representation is the standard repre-
sentation. Otherwise and if n ≥ 5 one has faithK(Sn) = n − 2, and hence, still
assuming n ≥ 5, we have faith∗(Sn) = n− 2. This is a fact from the early days of
representation theory, see e.g. [MS12b, Section 9.3] for a modern formulation.

Example 2E.7. We have faithC(Ci,p) = i+1 for the cyclic monoid that we will meet
in Example 3A.15, see e.g. [MS12b, Section 10] where the authors list faithC(S) for
various monoids, including the cyclic ones.

Lemma 2E.8. Assume that S has at least one nontrivial simple representation.
Then we have

gapK(S) ≤ faithK(S) ≤ |S|.
Proof. Every S-representation has a Jordan–Hölder filtration by simple represen-
tations, which therefore are of smaller (or equal) dimensions. The first claim then
follows from Lemma 2A.14. The second inequality follows since every monoid ad-
mits a faithful representation on itself. �

Remark 2E.9. The assumption in Lemma 2E.8 is necessary for the same reasons
as in Remark 2A.15.

Example 2E.10. Let Brn be the braid group on n strands. We already mentioned
its Burau representation in Remark 2E.5, but this representation is not faithful
in general. However, a faithful Brn-representation over Q(q, t) is the Laurence–
Krammer–Bigelow representation, see [Bi01] and [Kr02], which is of dimension
n(n−1)

2 . Thus, gapQ(q,t)(Brn) ≤ faithQ(q,t)(Brn) ≤ n(n−1)
2 , which creates obstacles

of applications of Brn to cryptography, see also [MSU05].

The following is useful in examples:

Lemma 2E.11. Assume that there is an embedding of monoids S ↪→ T .

faith(S) ≤ faith(T ).

Proof. This follows since a faithful T-representation restricts to a faithful S-represent-
ation. �

We come back to Example 2C.2, but now from the viewpoint of faithfulness.

Proposition 2E.12. Let us consider the setting of Proposition 2C.1.
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(a) We have faithQ(Cn) =
∑k

i=1(r
di

i − rdi−1
i ), where n has the prime factor

decomposition n =
∏k

i=1 r
di
i . (In particular, faithQ(Cn) = n − 1 if n is

prime.)

(b) Let n be prime and char(K) � n. Then faithK(Cn) = gapK(Cn) for all the
cases in Proposition 2C.1.

Proof.

Case (a). Recall that Q[Cn] ∼=
⊕

d|n Q[X]/(Φd), see the proof of Proposition 2C.1.

The simple Cn-representations Q[X]/(Φd) can be identified with Q(ζd) for ζd a

primitive dth root of unity. It is then easy to see that
⊕k

i=1 Q(ζr(i)) for r(i) = rdi
i

is a faithful Cn-representation. The dimensions of the summands are the degrees
of the associated Φd. Hence, these summands are of dimensions rdi

i − rdi−1
i , which

shows faithQ(Cn) ≤
∑k

i=1(r
di
i − rdi−1

i ). The decomposition of Q[Cn] into Q(ζd)
also implies that one cannot find a smaller faithful Cn-representation since Φd with
d = kr(i) and k coprime to ri has bigger degree than Φr(i).

Case (b). This follows since Cn is a simple group when n is a prime, and because
the representation theory of Cn is semisimple under the assumption char(K) � n. �

The analog of Example 2C.3 is:

Example 2E.13. For finite simple groups faithfulness is not much different from
Example 2C.3. That is, Proposition 2E.12 treats the cyclic groups and:

(a) The alternating group An has a faithful representation of dimension n,
which is the restriction of the permutation representation of Sn to An, see
also Lemma 2E.11. Thus, faith∗(An) ≤ n.

(b) The GLn(Fq)-representation Fn
q is faithful, giving an example of a group

acting faithfully on a small representation. To pass to a simple group,
one can take PSLn(Fq), which then acts faithfully on Fn

q ⊗ (Fn
q )

∗. Hence,

faithFq

(
PSLn(Fq)

)
≤ n2.

(c) For sporadic groups the same remarks as in Example 2C.3 apply. The
smallest faithful representations for sporadic groups are listed in [Ja05].

Example 2C.3 and this example motivate to study monoids that are not groups.

Example 2E.14. Similarly as in Example 2C.4, p-groups tend to have a large
faithfulness and this is well-studied, see e.g. [Ja70] for some early results and [Mo21]
for a more recent treatment.

2F. Ratios. As argued earlier, for potential cryptographic purposes one wants
to specialize to monoids with the representation gap of size comparable to |S|ε,
for some ε > 0, as opposed to monoids where representation gap is exponentially
smaller than the size of S. As a measure of complexity, we can define:

Definition 2F.1. The gap-ratio and the faithful-ratio of S are

gaprK(S) =
gapK(S)√

|S|
, faithrK(S) =

faithK(S)
|S| .(2F.2)

Remark 2F.3 (Additional task 1). For cryptographic applications it makes sense to
search for naturally occurring families of monoids {Sn|n ∈ Z≥0} with
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limn→∞ gaprK(Sn) or limn→∞ faithrK(Sn) that do not approach 0 exponentially
fast.

Note that these are rather crude: They are motivated by the search for fami-
lies of monoids {Sn|n ∈ Z≥0} where representation gap grows exponentially while
computations in the monoid grow polynomial, but oversimplify this problem.

Remark 2F.4. The square root in (2F.2) comes from the observation that over an

algebraically closed field a simple S-representation has dimension at most
√
|S|.

We stress that we have a slightly better bound of
√
|S| − 1 or

√
|S| − 2 in (2F.2),

but the differences to
√
|S| do not play significant roles so we ignored these bounds

in (2F.2) for the sake of simplicity.

Example 2F.5. For the symmetric group Sn, cf. Example 2A.16 and Exam-

ple 2E.6, we have gapr∗(Sn) =
(√

n!
)−1

and faithr∗(Sn) =
(
(n − 3)!(n − 1)n

)−1
,

again indicating that Sn is not very useful for cryptography. The alternating group

as in Example 2C.3 and Example 2E.13 has gapr∗(An) ≤
√
2(n − 1)

(√
n!
)−1

and

faithr∗(An) ≤ 2
(
(n− 1)!

)−1
, which are still tiny.

Example 2F.6. For monoids it is not hard to find examples with faithr∗(S) = 1,
see [MS12b, Proposition 28] for an explicit example. Moreover, the main monoids
under study in this paper have also large gapr∗(S), see e.g. Theorem 4E.2.

3. Cell theory

An important tool to study representations of monoids is Green cells or Green’s
relations. In this section we explain how these help to calculate gap(S) and faith(S),
and also give us another numerical measure which we will call semisimple represen-
tation gap.

Remark 3.1. We will summarize the main constructions using the language of cells
as in [GL96], which is more common in representation theory. The classical descrip-
tion using Green’s relations from monoid theory can be found in many (older and
newer) papers e.g. [Gr51] or [GMS09], and also in books such as [CP61], [CP67] or
[St16]. The cell based discussion is not so easy to find in the literature, see however
[GW15], [TV21] or [Tu22].

3A. The basics. Recall that S denotes a finite monoid. (Cell theory also works for
infinite monoids, but the theory is technically more involved. We will not discuss
it here.)

We define preorders on S, called left, right and two-sided cell order, by

(a ≤l b)⇔ ∃c : b = ca,

(a ≤r b)⇔ ∃c : b = ac,

(a ≤lr b)⇔ ∃c, d : b = cad.

In words, a is left lower than b if b can be obtained from a by left multiplication,
and similarly for right and two-sided.

Remark 3A.1. As in Remark 2A.3, these orders are in-line with the most common
convention used in the theory of cellular algebras but the opposite of the one usually
used in monoid theory.
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We define equivalence relations, the left, right and two-sided equivalence, by

(a ∼l b)⇔ (a ≤l b and b ≤l a),

(a ∼r b)⇔ (a ≤r b and b ≤r a),

(a ∼lr b)⇔ (a ≤lr b and b ≤lr a).

The respective equivalence classes are called left, right respectively two-sided cells.
We denote all these by L, R and J and call two-sided cells J-cells. Finally, an
H-cell H = H(L,R) = L ∩R is an intersection of a left L and a right cell R.

The picture to keep in mind (stolen from [TV21, Section 2]) is

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34R

LJ

H(L,R) = H33

,(3A.2)

where we use matrix notation for the twelve H-cells in J . In this notation left cells
are columns, right cells are rows, the J-cell is the whole block and H-cells are the
small blocks.

We will also write <l or ≥r etc., having the evident meanings. Note that the
three preorders also give rise to preorders on the set of cells, as well as between
elements of S and cells. For example, the notations L ≥l a or L ≤l L′ make sense.
In particular, for a fixed left cell L we can define

S≥lL = {a ∈ S|a ≥l L},
as well as various versions which we will distinguish by the subscript.

Remark 3A.3. The cell orders need not be total orders. In all of our examples the
≤lr-order is a total order, but that is a coincidence.

Example 3A.4. If S is a group, then it has only one cell, the whole group, which
is a left, right, J- and H-cell at the same time.

Remark 3A.5. Example 3A.4 shows why the reader familiar with the theory of
groups might have never heard about cell theory: for groups cell theory is trivial.

We write H(e) if H contains an idempotent e ∈ S. The H-cells of the form H(e)
are called idempotent H-cells, and the J-cells J (e) containing these H(e) ⊂ J (e)
are called idempotent J-cells.

Remark 3A.6. In monoid theory idempotent H and J-cells are called regular to
avoid confusion with the property that e.g. JJ = J and because it is equivalent
to each element of the cell being von Neumann regular in the sense of the definition
before Lemma 2B.15. However, for us the existence of an idempotent is crucial, so
we use the above nomenclature.

H-cells are crucial as justified by:
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Proposition 3A.7. For the monoid S we have:

(a) Every H-cell is contained in some J-cell, and every J-cell is a disjoint
union of H-cells.

(b) H(e) is a group with identity e. In this case H(e) = J (e) ∩ (eSe).
Proof. Part (a) is clear, while (b) is classical, see [Gr51, Theorem 7]. �

Notation 3A.8. One case will play a special role, namely the case where H(e) is the
trivial group. In this case we say H(e) is trivial and write H(e) ∼= S1.

We have minimal and maximal J-cells in the ≤lr-order. In our illustrations the
minimal cell will be at the bottom, so we call it the bottom cell Jb, while the
maximal cell will be at the top, so we call it the top cell Jt.

Lemma 3A.9. Every monoid has a unique bottom and top J-cell which are mini-
mal respectively maximal in the ≤lr-order. Both are idempotent J-cells.

This is classical, e.g. [CP67, Chapter 6] discusses ordering relations on J-cells,
but we will give a short proof for completeness.

Proof. The bottom J-cell is easy to find: Let G ⊂ S be the group of units of S, i.e.
the set of invertible elements of S. Then G forms a left, a right and a J-cell at the
same time, and is the smallest in all cell orders. To see this note that 1 ≤l a for
all a ∈ S since we can choose c = a. But every invertible element b ∈ S satisfies
1 = b−1b, which implies b ≤l 1, thus b ∼l 1. Similarly for ∼r and ∼lr. The converse
also holds, i.e. every element in a minimal J-cell is invertible, so G is the unique
bottom cell Jb. Moreover, the unit is an idempotent in Jb.

The top J-cell is not much harder to find: If J and J ′ are maximal J-cells, then
J = JJ ′ = J ′ by maximality. Existence of a maximal J-cell follows from the
finiteness of S. Furthermore, the J-cell Jt contains an idempotent since JtJt = Jt

by maximality. This ensures the existence of an idempotent, see [St16, Proposition
1.23]. �

Example 3A.10. The transformation monoid Tn on the set {1, . . . , n} is
End({1, . . . , n}). The cells of T3, whose elements are written in one-line nota-
tion, with (ijk) denoting the map 1 	→ i, 2 	→ j, 3 	→ k, are as follows. Using the
illustration conventions as in (3A.2) we have

(111)
(222)
(333)

(122), (211) (121), (212) (221), (112)
(133), (311) (313), (131) (113), (331)
(233), (322) (323), (232) (223), (332)

(123), (213), (132)
(231), (312), (321)

Jt

Jm

Jb

H(e) ∼= S1

H(e) ∼= S2

H(e) ∼= S3

.

That is, a ∼l b if and only if a(x) = a(y) ⇔ b(x) = b(y) (as functions), and a ∼r b
if and only if they have the same image. All idempotent H-cells are symmetric
groups Sk of varying sizes. Note that not all H-cells contain idempotents: we have
colored/shaded the H-cells containing idempotents.
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Let |L|, |R| and |H| denote the sizes of fixed left, right and H-cells in a J-cell J
of size |J |.

Lemma 3A.11. Within one J-cell we have |L| = |L′|, |R| = |R′| and |H| = |H′|,
and we have |L| · |R|/|H| = |J |. Moreover, |H| divides both, |L| and |R|.

Proof. The first three equalities follow from [Gr51, Theorem 1], the final two state-
ments can then be shown from the previous three. �

Note that |L|, |R|, |J |, |H| ∈ Z≥0, and Lemma 3A.11 gives us additionally

|L|/|H|, |R|/|H| ∈ Z≥0.

These are important measures of the complexity of S.

Example 3A.12. The middle J-cell in Example 3A.10 has |H| = 2, Jm = 18 =
6 · 6/2 = |L| · |R|/|H| and |L|/|H| = |R|/|H| = 3.

A left ideal I ⊂ S is a set such that aI ⊂ I. Right and two-sided ideals are
defined similarly. Lemma 3A.13 explains the matrix notation:

Lemma 3A.13. For fixed left cell L the set S≥lL is a left ideal in S. Similarly,
S≥rR is a right and S≥lrJ is a two-sided ideal. The same works when replacing ≥
by >.

Proof. Directly from the definitions: given b ∈ S≥lL, the element ab is still left
greater than or equal to l ∈ L since b = cl for some c. �

Let us state how cell theory helps to understand periods of elements, which
in turn are of importance in cryptography. To this end, recall that the index
i(a) ∈ Z≥0 for a ∈ S is the smallest number such that ai(a) = ai(a)+d for some
d ∈ Z>0. The smallest possible d is then in turn called the period of a and we
denote it by p(a).

Theorem 3A.14. There exists an H-cell H(e) such that Cp(a) ∼= {as | s ≥ i(a)} ⊂
H(e) is a subgroup. In particular, p(a) | |H(e)|.

Proof. As a consequence of [Gr51, Theorem 7], the H-cells of the form H(e) are the
maximal subgroups of S, so no other subgroup will be contained in some H(e). �

Example 3A.15. Given i ∈ Z≥0, p ∈ Z≥1 form the finite cyclic monoid Ci,p =
〈a|ai+p = ai〉 of cardinality i + p. The element a has index i(a) = i and period
p(a) = p. Moreover, the monoid Ci,p is commutative, so left, right and J-cells
coincide. The elements 1, a, . . . , ai−1 each constitute a single J-cell, in total i− 1
such J-cells. All the remaining elements Jt = {ai, ai+1, . . . , ai+p−1} constitute one
J-cell (the top cell) which is a cyclic group of order p under multiplication. The
element e = apj where j is such that i ≤ pj < i+p is the idempotent for Jt = H(e)
and the identity of that group. Out of the i+1 cells in Ci,p two cells are idempotent:
Jb = {1} and Jt.

To be completely explicit, let us consider C3,2, which is the monoid be generated
by one element a of index 3 and period 2. Then C3,2 = {1, a, a2, a3, a4} and its cell
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structure is

a3, a4

a2

a

1

Jt

Ja2

Ja

Jb

H(e) ∼= C2 ∼= Z/2Z

H(e) ∼= S1

.

Note that Sa is commutative, so left, right, J- and H-cells agree.

Remark 3A.16 (Additional task 2). Using the DH protocol with protocol monoid S
other than a group, it would be important to find elements g ∈ S of big period that
has a large prime factor, see e.g. the original DH key exchange [Ko98], [MSU08,
Section 1.2]. So, by Theorem 3A.14, it would be preferable to have a monoid S with
H-cells whose orders have large prime divisors since the period of a ∈ S divides the
order of the idempotent H-cell of S that contains the top cell of Ci,p.
3B. Classification of simple representations. Recall that we consider S-repre-
sentations defined over K.

Cells can be considered S-representations, called cell representations or
Schützenberger representations, up to higher order terms:

Lemma 3B.1. Each left cell L of S gives rise to a left S-representation ∆L = KL
by

a � l ∈ ∆L =

{
al if al ∈ L,
0 else.

Similarly, right cells give right S-representations R∆ and J-cells give S-birepresent-
ations (often called S-birepresentations). We have dimK(∆L)= |L| and dimK(R∆)=
|R|.
Proof. Directly from the definitions. �

The annihilator AnnS(M) = {s ∈ S|s � M = 0} of an S-representation M is a
two-sided ideal of S. An apex ofM is a J-cell J such that, firstly, J∩AnnS(M) = ∅,
and secondly, all J-cells J ′ with J ′ ∩ AnnS(M) = ∅ satisfy J ′ ≤lr J . In other
words, an apex is the ≤lr-maximal J-cell not annihilatingM . The following justifies
the terminology of the apex of a simple S-representation:
Lemma 3B.2. Every simple S-representation has a unique apex.

Proof. This is classical, see e.g. [GMS09, Theorem 5]. �

Example 3B.3. The apex of �b is always Jb = G. On the other hand, the apex
of �t is Jt since every s ∈ S acts as 1.

Recall that the nonunital way to induce is Ind(M) = KSe ⊗KeSe M for some
idempotent e ∈ S, see e.g. [St16, Section 4.1] (inducing from the submonoid eSe to
S, or rather using their monoid algebras). It follows from [Gr51] that ∆L is a free
right H(e)-representation, and this action commutes with the left S-action. Thus,
∆L is an S-H(e)-birepresentation. We can then define an induction functor

IndSH(e)M = ∆L ⊗H(e) M,

where M is a left M -representation.
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Example 3B.4. Let K[H(e)] denote the regular H(e)-representation, which as a
K-vector space is just KH(e) and the H(e)-action is the multiplication action. We

have IndSH(e)K[H(e)] ∼= ∆L as left S-representations.

Recall also that the head Hd(M) of an S-representation M is the maximal
semisimple quotient of M . It is well-defined, up to isomorphism, for any repre-
sentation over a finite monoid and is isomorphic to the quotient M/Rad(M). Here
Rad(M) denotes the radical, which is the intersection of all maximal subrepresen-
tations of M .

We get the Clifford–Munn–Ponizovskĭı theorem or H-reduction:

Proposition 3B.5. For a monoid S:

{simple S-representations of apex J }/ ∼= 1:1←→ {simple H(e)-representations}/ ∼= ,

where H(e) ⊂ J is any arbitrarily chosen idempotent H-cell in an idempotent J-cell
J . Moreover, an explicit bijection (from right to left) is given by

K 	→ LK
∼= Hd(IndSH(e)K).

Proof. The above is an easy reformulation of [GMS09, Theorem 7] or [St16, Theo-
rem 5.5]. �

Note that only idempotent J-cells contribute to the classification. We usually
omit to write e.g. “simples up to isomorphism” in the rest of the paper.

Remark 3B.6. The 1:1 correspondence in Proposition 3B.5 always exists regardless
of K. However, the classification still depends on K since the number of simple
H(e)-representation does.

Example 3B.7. Let char(K) be such that char(K) � 3! = 6, e.g. char(K) = 0. The
cell structure from Example 3A.10 shows that T3 has three simple T3-representations
of apex Jb, two of apex Jm and one of apex Jt since the associated H(e) are the
symmetric groups S3, S2 and S1 (and the number of simple Sn-representations is
given by the number of partitions of n).

For char(K) = 3 one gets only two simple T3-representations of apex Jb since
S3 has only two simple representations in this characteristic; the rest remains the
same as for char(K) = 0. Similarly, for char(K) = 2 both apexes Jb and Jm have
one fewer associated simple T3-representation than for char(K) = 0, but Jt still has
the same count.

We can thus define a partial order, also denoted by ≤lr, on the set of simple
S-representations by saying that one simple is strictly smaller than another if its
apex is strictly smaller. Note that simples of the same apex are incomparable.

Example 3B.8. Note that if H(e) is trivial, then Proposition 3B.5 implies that
one can say that the simples are indexed by the poset of apexes.

Remark 3B.9. When working over C and when all J-cells are idempotent, it is
shown in [Pu98, Theorem 2.1] that ≤lr makes the representation category of S
into a highest weight category in the sense of [CPS88]. In fact, for the reader
familiar with cellular algebras as in [GL96], [TV21] or [Tu22] we point out that
[Pu98, Theorem 2.1] shows that, if all J-cells are idempotent, then the monoid
algebra CS is a quasi-hereditary sandwich cellular algebra.
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As a historical remark, the fact that the monoid algebra CS of a regular monoid
(a regular monoid satisfies any of the conditions in Lemma 3F.6) in characteristic
zero is a quasi-hereditary sandwich cellular algebra was first proven in [Ni71] in the
early 1970s. Of course the result was phrased in a different language since [Ni71]
appeared before quasi-hereditary or (sandwich) cellular algebras were defined.

3C. Cells and (semisimple) representation gaps. Note that Proposition 3B.5
makes it easy to classify simple S-representations but does not give much informa-
tion about their dimensions.

Theorem 3C.1. The dimension of the simple S-representation LK associated to
the simple H(e)-representation K via Proposition 3B.5 can be bounded by

dimK(LK) ≤ |L|/|H| · dimK(K).

Proof. First, recall from Lemma 3A.11 that all left and H-cells within one J-cell
are of the same size, so for the bound we can and will omit writing L(e) and H(e).
Then this follows from the explicit bijection in Proposition 3B.5 and the fact that
∆L is a free H(e)-representation of rank |L|/|H|. �

Note that dimension of Hd(IndSH(e)K) depends on the field, in general, and can

be hard to compute. The quantity |L|/|H| · dimK(K) is often easy to compute in
practice so we define:

Definition 3C.2. We call ssdimK(LK) = |L|/|H|·dimK(K) the semisimple dimen-
sion of LK . The minimal m such that there is a nontrivial simple S-representation
with ssdimK(LK) = m is called the semisimple representation gap ssgapK(S) of S.

We also call ssgaprK(S) = ssgap
K
(S)√

|S|
the semisimple-gap-ratio.

The square root in the definition of ssgaprK(S) is used for the same reasons as
in Remark 2F.4. With the same assumptions as in e.g. Lemma 2A.14 we have:

Theorem 3C.3. Assume that S has at least one nontrivial simple representation.
We have

gapK(S)≤min{dimK(LK)|LK �∼=�bt is a simple S-representation}≤ssgapK(S)≤|S|.
Proof. Clear by definition and Lemma 2A.14. �

Remark 3C.4 (Additional task 3). As before, it is important for potential crypto-
graphic applications to find monoids with ssgapK(S) exponentially big.

Example 3C.5. In the setting of Example 3A.10 and Example 3B.7 (in particular,
char(K) � 6) we have the following.

The three simple T3-representations of apex Jb are the simple S3-representations
inflated to T3, so they are of dimensions 1, 2 and 1 (one of these is �b). These are
also their semisimple dimensions.

The simple S3-representation of apex Jt can be identified with �t, so is of di-
mension one, which is also its semisimple dimension.

The two simple S3-representations of apex Jm are induced from the respective
S2-representations, and are of semisimple dimension 3. One can check that they
are of dimension 3 respectively 2.

In general, for the representation theory of Tn see [Pu98, Section 4] or [St16,
Section 5.3].
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The name semisimple representation gap is justified by the following.

Proposition 3C.6. The following are equivalent.

(a) The monoid S is semisimple over K.

(b) All J-cells are idempotent, all H(e) are semisimple over K and dimK(LK) =
ssdimK(LK) for all simple S-representations LK .

Proof. This follows from [St16, Theorem 5.19] and the paragraph below that theo-
rem. �

3D. Cells and Gram matrices. Recall the following construction of Gram ma-
trices, also called sandwich matrices in monoid theory, see e.g. [CP61, Section 5.2]
or [St16, Section 5.4]. Fix an idempotent H-cell H(e) = L∩R in some idempotent
J-cell J . Then L is a free right H(e)-set and R is a free left H(e)-set, so we can
let {l1, . . . , lR} and {r1, . . . , rL} complete sets of representatives for L/H(e) respec-
tively for H(e)\R. Here R is the number of right cells and L is the number of left
cells in J .

The Gram matrix PJ = (PJ
i,j)i,j is the matrix with values in KH(e) defined by

PJ
i,j =

{
rilj if rilj ∈ H(e),

0 else.

Note that PJ depends on choices, but one can show that its important properties
do not depend on these choices, see the references above.

Gram matrices are in particularly useful for H(e) ∼= S1 and L = R as justified by
part (a) of the following (which the reader familiar with [GL96] might recognize):

Proposition 3D.1. Fix an idempotent J-cell J . All cells in the statement are
within J .

(a) Assume H(e) ⊂ J satisfies H(e) ∼= S1. Assume further that PJ is square
and symmetric. Let LJ denote the associated simple S-representation, see
Proposition 3B.5. Then:

dimK(LJ ) = rank(PJ ).

(b) More generally, let K be a simple H(e)-representation and let LK be the
associated simple S-representation. Let PJ

K denote the matrix one gets by
applying K to each entry of PJ . Then:

dimK(LK) = rank(PJ
K ).

Proof. (a) Let RadJ denote the radical of the symmetric bilinear form associated
to PJ . We claim that RadJ is an S-submodule of the corresponding cell repre-
sentation ∆L. To see this note that rilj /∈ H(e) can only occur if they end up in
J>lrJ , and multiplying by elements from S preserves this property.

We further claim that any element in ∆L \ RadJ generates ∆L. This can be
proven as in [ET21, Lemma 3.4].

It follows that ∆L/RadJ is a simple S-representation since any proper sub-
module of it must be contained in RadJ . Since the apex of ∆L/RadJ is J , by
construction, it follows that ∆L/RadJ ∼= LJ . The proof completes.

(b) Adjusting the arguments in (a), see e.g. [St16, Corollary 5.30] for details. �
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Theorem 3D.2. Let R ⊂ S be a submonoid. Under the assumptions in Proposi-
tion 3D.1, if J restricts to an idempotent J-cell of R, then

dimK(L
S
J ) ≥ dimK(L

R
J ),

for the associated simple R and S-representations.
Proof. Note that under the assumptions we have that the Gram matrix for R is a
submatrix of PJ . The rank of a matrix is always greater than or equal to the rank
of a submatrix, so the statement follows by Proposition 3D.1. �

We stress that it is not generally true that J restricts to a(n idempotent) J-cell
of R, so the assumption in Theorem 3D.2 is necessary.

3E. Cells, Burnside–Brauer–Steinberg and faithfulness. Let clH(e) denote
the number of conjugacy classes of the group H(e). Let {e1, . . . , er} be a choice of
one idempotent per idempotent J-cell, and define

cl(S) = clH(e1) + · · ·+ clH(er).

Lemma 3E.1. The number cl(S)∈ Z≥0 is independent of the choice of {e1, . . . , er}.
Proof. This is a consequence of [St16, Section 7.1]. �

Hence, cl(S) is a constant depending on S only. One can use cl(S) for the
Burnside–Brauer theorem (characteristic zero) and the Steinberg theorem (arbitrary
characteristic):

Proposition 3E.2. If F is a faithful S-representation, then every simple S-repre-
sentation appears as a composition factor of F⊗k for some 0 ≤ k ≤ cl(S) − 1.
Moreover, if F is a faithful S-representation whose composition factors are one-
dimensional, then the composition factors of F⊗k are also one-dimensional.

Proof. For characteristic zero see [St14] or [St16, Section 7.4] and the observation
that the r in that theorem satisfies r ≤ cl(S) by the discussion in [St16, Section
7.1]. For the characteristic free version see [St16, Corollary 10.7], using the same
observation. �

Example 3E.3. The bound given in Proposition 3E.2 is often not optimal but
cannot be improved uniformly. For example, for Cn we have cl(Cn) = n. Assume
n is prime. Over C the nth primitive root of unity exp( 2πin ) gives rise to a 1-
dimensional faithful Cn-representation, and only the (n − 1)th power of it will

contain the simple Cn-representation associated to exp( 2πi(n−1)
n ).

The Burnside–Brauer–Steinberg theorem Proposition 3E.2 gives a bound for the
dimension of faithful S-representations:
Theorem 3E.4. Let char(K) = 0, and let Lmax be a simple S-representation
of the biggest dimension. If F is a faithful S-representation, then dimK(F ) ≥
cl(S)−1

√
dimK(Lmax). Hence,

faithK(S) ≥ cl(S)−1
√
dimK(Lmax).

Proof. This follows from Proposition 3E.2. �

Note that one can use Theorem 3E.4 often in combination with Lemma 2E.11.
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Remark 3E.5 (Additional task 4). Thus, by Theorem 3E.4 it is preferable for cryp-
tographical applications to find a monoid S with c(S) being small.

Example 3E.6. Applying Theorem 3E.4 for T3 gives 6
√
3 as a lower bound, which

rounds to 2. The smallest faithful T3-representation is K{1, 2, 3} (with the defining
action), so of dimension three.

With respect to extensions as discussed in Section 2A we get:

Proposition 3E.7. There is a faithful S-representation containing only �bt as
composition factors if and only if S has at most two idempotent J-cells and all
idempotent H-cells are trivial, i.e. H(e) ∼= S1.

Proof. ⇒. If F is a faithful S-representation only containing �bt as composition
factors, then Proposition 3E.2 implies that there can be no simple S-representations
except �bt. Thus, the result follows by Proposition 3B.5.

⇐. In this case Proposition 3B.5 implies that �bt are the only simple S-
representations. �

Example 3E.8. Let char(K) = 0. When S is a group Proposition 3E.7 implies
that only the trivial group has faithful representations entirely made of trivial rep-
resentations. (Note that this is clear because of a different reason: the assumption
is char(K) = 0 so the representation theory of groups is semisimple.)

Example 3E.9. It follows from the discussion in (4B.2) that the Temperley–Lieb
monoid on three strands T L3 is an example of a nontrivial monoid that has a
faithful representation entirely made of �bt. This works in arbitrary characteristic.

3F. Cell submonoids and subquotients. Recall that simple S-representations
arrange themselves according to the cells, see Proposition 3B.5. Let us in this
motivational paragraph for simplicity assume that H(e) ∼= S1 for all idempotent
H-cells and that all J-cells are idempotent. Then the dimensions of the simple
S-representations very often have the following form, which is roughly as expected
from combinatorial numbers:

2 4 6 8 10 12

100000

200000

300000

400000

500000

T L24/Q

cells increase ←

y-axis: dim

x-axis:
# through
strands/2

,

5 10 15 20

500000

1.0 · 10
6

1.5 · 10
6

2.0 · 10
6

2.5 · 10
6

pRo24/K

cells increase ←

y-axis: dim

x-axis:
# through
strands

,

TL dim:

(
1, 534888, 208011, 445741, 389367,

126292, 85216, 31878, 6876, 1726, 252, 22, 1

)
,

pRo dim:

»
¼½

1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471,

1307504, 1961256, 2496144, 2704156, 2496144, 1961256,

1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1

¾
¿À .

These illustrations show the dimensions of the simple T L24-representation (left)
over Q (or any field of characteristic zero) and the simple pRo24-representations
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for general K, respectively. See Section 4 for details. (Note the two trivial T L24-
respectively pRo24-representations of dimension one for the bottom and top cells.)
Thus, it seems preferable to cut off the representations for small cells, and get rid
of the fluctuations for very big cells.

The key to do the first is cell submonoids as follows.

Definition 3F.1. For a J-cell J with 1 /∈ J define the J -submonoid

S≥J = S≥lrJ ∪ {1}.
In words, we artificially adjoint a unit 1 (strictly speaking we should write 1′)

to the two-sided ideal S≥lrJ from Lemma 3A.13.

Lemma 3F.2. For any J-cell J with 1 /∈ J , S≥J is a submonoid of S.
Proof. By Lemma 3A.13. �

Remark 3F.3. There are minor, but not essential, differences between representa-
tions of monoids and semigroups. Adjoining a unit is for convenience only so that
we do not need to leave the world of monoids.

Annihilating the bigger cells can be done using the Rees factor S/I of a monoid
S by a two-sided ideal I. The construction works as follows. As a set S/I =
(S \ I) ∪ {0}, where one artificially adjoints an element 0. The multiplication is
s • t = st if s, t, st ∈ S \ I, and s • t = 0 otherwise.

Lemma 3F.4. For any two-sided ideal, the Rees factor S/I is a well-defined
monoid.

Proof. An easy exercise, see also [St16, Exercise 1.6]. �

We can thus define cell subquotients :

Definition 3F.5. For two J-cells J ≤lr K with 1 /∈ J define the J -K-subquotient
as the Rees factor

SK
J = S≥J /S≥K.

Here we additionally allow the following extremal cases:

Snone
J = S≥J , SK

none = S/S≥K, Snone
none = S.

We also call all of the above cell subquotients for short.

By Lemma 3F.2 and Lemma 3F.4, SK
J is a subquotient of S. Unless we are in

one of the extreme cases, SK
J has Jb = {1} and Jt = {0}. Both are left, right, J-

and H-cells at the same time.

Lemma 3F.6. The following conditions are equivalent:

(a) For all left cells L:
∀a, b ∈ L ∃c ∈ J ⊃ L such that a = cb.

(b) For all right cells R:

∀a, b ∈ R ∃c ∈ J ⊃ R such that a = bc.

(c) For all J-cells J :

∀a, b ∈ J ∃c, d ∈ J such that a = cbd.
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(d) All J-cells are idempotent.

(e) For all a ∈ S we have a ∈ aSa.

Proof. Well-known, see e.g. [RS09, Theorem A.3.7]. �

We say S is regular (this is also sometimes called von Neumann regular) if any
of the equivalent conditions in Lemma 3F.6 hold.

The regularity condition ensures that the cells are not affected when taking cell
subquotients.

Lemma 3F.7. Let S be regular. In the nonextremal cases the J-cells of SK
J are

given by

{Jb} ∪ {M|M is a J-cell of S with J ≤lr M <lr K} ∪ {Jt}.

Similarly for left, and right cells, assuming the respective regularity condition, and
H-cells.

An analog statement holds in the extremal cases.

Proof. By the regularity assumption, the remaining elements of SK
J arrange them-

selves into cells precisely as in S. �

We require that S is regular for the remainder of this section.
Assume that we are in the nonextremal cases. Then SK

J has trivial represen-
tations �b and �t associated to the apexes Jb and Jt, and these are the only
SK
J -representations of these apexes. The other simple SK

J -representations and
their dimensions are given by the following statement. Note hereby that any SJ -
representation with apex M can be inflated to an S-representation by letting all
elements in S<lrJ act by zero.

Proposition 3F.8. Assume that we are in the nonextremal cases. Let M /∈
{Jb,Jt} be an apex of SK

J which is also an apex of S. Then we have:

{simple SK
J -representations of apex M}/

∼= 1:1←→ {simple S-representations of apex M}/ ∼= .

Moreover, an explicit bijection (from left to right) is given by inflating simple SK
J -

representations to simple S-representations. The dimensions of the simples are
preserved under this bijection.

An analog statement holds in the extremal cases.

Proof. The first part follows from Proposition 3B.5. For the final part note that
inflation clearly does not change property of being simple nor the dimension. �

Theorem 3F.9. For any two J-cells J ≤lr K we have

gapK(SK
J ) ≥ gapK(S).
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Proof. By Proposition 3F.8. �

Remark 3F.10 (Additional task 5). By Theorem 3F.9, a strategy is to find a monoid
S with big representations for a slice of the cells. Then taking an appropriate cell
subquotient the resulting monoid will have a suitable representation gap.

We will see examples of the task in Remark 3F.10 in the next two sections.

4. Planar monoids

We work over an arbitrary field K.

4A. Temperley–Lieb categories and monoids. We now recall the Temperley–
Lieb category TLlin(δ). This category is a K-linear monoidal category which de-
pends on a parameter δ ∈ K. There are many references (the Temperley–Lieb
calculus has been rediscovered many times, and there are too many papers to be
cited here) for TLlin(δ) where more details can be found, see for example [KL94].
The endomorphism spaces in the Temperley–Lieb category form K-algebras, called
Temperley–Lieb algebras. By appropriate reformulation we obtain set-theoretical
versions of both of these.

Remark 4A.1. It may be convenient to represent δ = −q − q−1 where q is either
in K or its quadratic extension. For our main application we need δ = 1, so q in
this case is a primitive third root of unity. This is for example important when one
wants to connect TLlin(δ) to the category of tilting representations for quantum
SL2, see e.g. [TW21, Proposition 2.28] or [STWZ21, Proposition 2.20] for a precise
statement. This perspective is sometimes useful, see for example [An19], [Sp20]
or [TW22] for nontrivial results about the set-theoretical Temperley–Lieb algebras
using tilting representations.

The Temperley–Lieb category TLlin(δ) has objects n ∈ Z≥0. The morphisms
from m to n are K-linear combinations of isotopy classes of diagrams of matchings
of m + n points in the strip R × [0, 1], with m points at the bottom and n points
at the top line of the strip. These morphisms are known as crossingless matchings.
The relations on them are such that two diagrams represent the same morphism if
and only if they represent the same crossingless matching.

Composition ◦ of crossingless matchings is given by vertical gluing (and rescal-
ing), using the convention to glue a : m→ n on top of b : k → m, which is denoted
using the operator notation a ◦ b. This will give another crossingless matching,
but with potentially internal circles. To get rid of this ambiguity, we remove such
internal circles, say we have k of these, and the resulting crossingless matching is
multiplied by δk.

The monoidal structure ⊗ is given by m⊗ n = m+ n on objects and horizontal
juxtaposition on morphisms, extended bilinearly to K-linear combinations.

Notation 4A.2. The following pictures summarize the main points from above, and
also fix the reading conventions that we will use for diagrammatics throughout.
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◦ = = δ · ,

◦ = = δ2 · ,

⊗ = .

Let Cn
m denote the set of crossingless matching with m bottom and n top bound-

ary points. Let Ca(k) = 1
k+1

(
2k
k

)
be the kth Catalan number. Note that Lemma

4A.3 is independent of K and δ ∈ K.

Lemma 4A.3. The set Cn
m is a K-linear basis of HomTLlin(δ)(m,n). Hence, the

dimension of this space is either zero if m �≡ n mod 2, and otherwise given by
dimK

(
HomTLlin(δ)(m,n)

)
= Ca(m+n

2 ).

Proof. This is well-known, see e.g. [RTW32] for the version with δ = −2. �

Lemma 4A.4. The category TLlin(δ) has an antiinvolution −∗, i.e. is a ∗-monoid,
given by reflecting diagrams in a horizontal axis.

Proof. Easy and omitted. �

The picture to keep in mind is
( )∗

= .

Remark 4A.5. It is easy to see (and we will use this silently) that −∗ works for
all the diagrammatic categories, algebras and monoids we use in this and the next
section. We call −∗ the diagrammatic antiinvolution.

The Temperley–Lieb algebra on n-strands is then T Llin
n (δ) = EndTLlin(δ)(n).

This is the algebra of crossingless matchings with n strands and only vertical com-
position.

Remark 4A.6. The algebra T Llin
n (δ) was introduced in the context of Schur–Weyl

duality, see [RTW32]. Sometimes it is useful to use this perspective as e.g. the refer-
ence [An19] does (using the connection to tilting representations, cf. Remark 4A.1)
which we will use below.

Now comes the main definition of this section.

Definition 4A.7. The set-theoretic Temperley–Lieb category TL is defined in al-
most the same way as TLlin(δ) above with two crucial differences:

(a) The hom-spaces are HomTL(m,n) = Cn
m, and,
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(b) the vertical composition ◦ is still given by vertical gluing, but all internal
circles are just removed from the diagram, that is, without any factor.

The Temperley–Lieb monoid on n-strands is defined by T Ln = EndTL(n).

Remark 4A.8. The Temperley–Lieb monoid appears in many works, way too many
to be cited here, see however e.g. [HR05], [HJ20] or [Si20]. In most papers coming
from representation theory, quantum algebra and quantum topology it is however
studied as an algebra. Note hereby that Definition 4A.7 is not quite the same as
TLlin(1) where the circle evaluates to 1. The difference is that TLlin(1) is K-linear,

but TL is not K-linear. But the monoid algebra K[T Ln] is isomorphic to T Llin
n (1).

Let us stress that the Temperley–Lieb monoid is also called the Jones monoid in
monoid theory, or sometimes even the Kauffman monoid, see e.g. [LFG06].

The monoid T Ln has Ca(n) elements. By [KL94, Section 2.2] (or [Ea21] for a
new proof of the presentation), the monoid T Ln can be abstractly defined by the
generators {u1, . . . , un−1} and the defining relations

u2
i = ui, uiui±1ui = ui, uiuj = ujui, |i− j| > 1.(4A.9)

Denote by idk the identity on k ∈ Z≥0. The following determines the cell struc-
ture:

Lemma 4A.10. For a ∈ HomTL(m,n) there is a unique factorization of the form
a = γ ◦ idk ◦ β for minimal k, and β ∈ HomTL(m, k) and γ ∈ HomTL(k, n).

Proof. The following picture

a = =

︸ ︷︷ ︸
γ

◦
︸︷︷︸
id2

◦
︸ ︷︷ ︸

β

(4A.11)

generalizes without much work. �

We call k the number of through strands of α, also known as the width. Neces-
sarily k has the same parity as m and n and k ≤ m,n. The diagram a has m−k

2

caps and n−k
2 cups. The diagrams β and γ have no cups, respectively no caps, but

the same number of caps, respectively cups, as α. We call β as in Lemma 4A.10
the bottom half and γ the top half of a.

Denote by Bn
m ⊂ HomTL(m,n) the set of diagrams without caps. An example

for m = 2 and n = 6 is given by γ in (4A.11). In other words, Bn
m consists of m

through strands and n−m
2 cups. Necessarily m ≤ n and m+n is even. In the above

factorization, in general, γ, β∗ ∈ Bn
m. We may also write this factorization of a as

a = a1a
∗
2, a1, a2 ∈ Bn

m.

4B. Cells of the Temperley–Lieb monoid. We now discuss the cell structure
of T Ln.

Remark 4B.1. The cell structure of the Temperley–Lieb monoid T Ln is very nice
and easy to compute. It is well-known, see e.g. [GL96, Example 1.4], and was redis-
covered in many papers, see e.g. [RSA14], or [KS21] or [Sp20], although not always
in the language of cells. The cell structure has also been rediscovered in monoid
theory, see e.g. [LFG06]. In any case, the description of the cells is prototypical for
diagram monoids and algebras so we decided to repeat it here in that language.
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The main pictures to keep in mind (which we will explain momentarily) are:

J1

J3

H(e) ∼= S1

H(e) ∼= S1

,

J0

J2

J4

H(e) ∼= S1

H(e) ∼= S1

H(e) ∼= S1

.

(4B.2)

These are the cells of T L3 and T L4, which should be read as in (3A.2). We have
also colored/shaded the idempotent H-cells. Note that Jk is the set of crossingless
matchings with k through strands, and k and n have the same parity. These
diagrams have c(k) = n−k

2 caps respectively cups.

Proposition 4B.3. We have the following.

(a) The left and right cells of T Ln are given by crossingless matchings where
one fixes the bottom respectively top half of the diagram. The ≤l- and the
≤r-order increases as the number of through strands decreases. Within Jk

we have

|L| = |R| = n−2c(k)+1
n−c(k)+1

(
n

c(k)

)
.

(b) The J-cells Jk of T Ln are given by crossingless matchings with a fixed
number of through strands k. The ≤lr-order is a total order and increases
as the number of through strands decreases. For any L ⊂ Jk we have

|Jk| = |L|2.
(c) Each J-cell of T Ln is idempotent, and H(e) ∼= S1 for all idempotent H-

cells. We have

|H| = 1.

Proof. (a) + (b). For (a) and (b) we recall that the K-linear version of this propo-
sition can be found in e.g. [GL96, Example 1.4] or [RSA14, Section 2]. (Note that
[RSA14, Section 2] gives |L| = |R| =

(
n

c(k)

)
−
(

n
c(k)−1

)
, which we rewrite into the

claimed expression via algebra autopilot.) The arguments given in these papers do
not depend on K nor on the parameter δ and go through in the set-theoretical case
without change as well. In monoid theory this appears again in many works, e.g.
in [LFG06].

(c) Observing that every crossingless matching that is symmetric under horizon-
tal mirroring is an idempotent, this is then immediate from (a) and (b). �
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Proposition 4B.4. The set of apexes for simple T Ln-representations can be in-
dexed 1:1 by the poset Λ = ({n, n− 2, . . . }, >) (ending on either 0 or 1, depending
on the parity of n), and there is precisely one simple T Ln-representation of a fixed
apex up to ∼=.

Proof. By Proposition 4B.3, this is a direct application of Proposition 3B.5. �

By Proposition 4B.4 there is a poset Λ indexing the J-cells and the simple T Ln-
representations. We can thus enumerate the J-cells by Jk for k ∈ Λ. We do the
same for the simple T Ln-representations and we write Lk for these. (Here we mean
any choice of representatives of the isomorphism classes. Similarly below, and we
stop stressing this.)

Lemma 4B.5. Within one J-cell, all left cell representations ∆L and all right cell
representations R∆ are isomorphic. We write ∆k respectively k∆ for those in Jk.

We have ∆k
∼=k∆ as K-vector spaces and dimK(∆k)=dimK(k∆)= n−2c(k)+1

n−c(k)+1

(
n

c(k)

)
.

Proof. The diagrammatic antiinvolution −∗ is compatible with the cell structure
and shows ∆k

∼= k∆. The dimension formula then follows from Proposition 4B.3
and Lemma 3B.1. �

Proposition 4B.6. The semisimple dimensions are ssdimK(Lk) =
n−2c(k)+1
n−c(k)+1

(
n

c(k)

)
.

Proof. The equation follows immediately from Propositions 4B.3 and 4B.4. �

The numbers dimK(Lk) are as follows. These were computed in many papers,
e.g. in [An19] and [Sp20] which compute them for general K and δ ∈ K. (Strictly
speaking [An19] needs δ = −q − q−1 because Andersen uses the connection to
tilting representations as recalled in Remark 4A.1.) To state them we need some
preliminary definitions.

Remark 4B.7. The definitions below are fairly standard for Temperley–Lieb calculi
over arbitrary fields, see e.g. [Sp20], [Sp21] or [STWZ21]. The reader only interested
in char(K) = 0 (which is char(K) = ∞ below) can ignore all definitions involving
p-adic combinatorics. We elaborate on the char(K) = 0 case in Example 4B.9.

Let char(K) = p, allowing p = ∞ which is the case char(K) = 0. Let νp denote
the p-adic valuation. Let ν3,p(x) = 0 if x �≡ 0 mod 3, and ν3,p(x) = νp(

x
3 ) otherwise.

Let further x = [. . . , x1, x0] denote the (3, p)-adic expansion of x given by

[. . . , x1, x0] =

∞∑

i=1

3pi−1xi + x0 = x, xi>0 ∈ {0, . . . , p− 1}, x0 ∈ {0, 1, 2}.

The numbers xj are the digits of x, and most of these xj are zero. Let now x � y if
[. . . , x1, x0] is digit-wise smaller than or equal to [. . . , y1, y0]. We also write x �′ y
if x � y, ν3,p(x) = ν3,p(y) and the ν3,p(x)th digit of x and y agree. Finally, set

en,k =

⎧
⎪«
⎪¬

1 if n ≡ k mod 2, ν3,p(k) = ν3,p(
n+k
2 ), k �′ n+k

2 ,

−1 if n ≡ k mod 2, ν3,p(k) < ν3,p(
n+k
2 ), k �

n+k
2 − 1,

0 else.

(4B.8)



MONOIDAL CATEGORIES ... AND CRYPTOGRAPHY 365

Example 4B.9. For char(K) = 0 the above simplifies quite a bit. First, the only
two relevant numbers x1 ∈ Z≥0, x0 ∈ {0, 1, 2} are given by x = 3x1 + x0, so x0 is
the reminder of x upon division by 3. Equation (4B.8) simplifies to the following
matrix whose entries are en,k:

n\ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1

1 1

2 -1 1

3 1

4 1

5 -1 1

6 1 -1 1

7 1

8 -1 1 -1 1

9 1 -1 1

10 1

11 -1 1 -1 1

12 1 -1 1 -1 1

13 1

14 -1 1 -1 1 -1 1

15 1 -1 1 -1 1

16 1

e8,8

e15,11

.

Here we have illustrated the case n = 16. The pattern is that every third row has
only one nonzero entry. Otherwise, the pattern (−1, 0, 1) respectively (1, 0,−1) is
shifted along rows with a distance of three zeros.

We have the following alternating sum of dimK(∆L) =
n−2c(k)+1
n−c(k)+1

(
n

c(k)

)
. (Recall

that c(k) denotes the number of caps respectively cups for diagrams in the J-cell
Jk.) That a dimension formula is of this form is expected from the cell structure,
and the precise coefficients en,k are the main point:

Proposition 4B.10. We have dimK(Lk) =
∑c(k)

r=0 en−2r+1,k+1

(
n−2c(k)+1
n−c(k)+1

(
n

c(k)

))
.

In particular, for k ∈ {0, 1, n} we have dimK(Lk) = 1.

Proof. For the Temperley–Lieb algebra T Llin
n (1) these dimensions were computed

in [Sp20, Corollary 9.3]. These computations use the K-linear cell structure of

T Llin
n (1) given by it being a cellular algebra. These turn out to be the same

calculations as for the cell structure of the Temperley–Lieb monoid T Ln discussed
in Theorem 3C.1 and the results in [Sp20, Corollary 9.3] work thus for T Ln without
change. �

Example 4B.11. It is easy to feed the above into a machine. Below we list the
first few dimensions of the simple T Ln-representations Lk for char(K) = 0 (first
table), and char(K) = 2 (second table). Here 0 ≤ n ≤ 16 is indexing the rows and
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0 ≤ k ≤ 16 the columns.

n\ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1

1 1

2 1 1

3 1 1

4 1 3 1

5 1 4 1

6 1 9 4 1

7 1 13 6 1

8 1 28 13 7 1

9 1 41 27 7 1

10 1 90 41 34 9 1

11 1 131 110 34 10 1

12 1 297 131 144 54 10 1

13 1 428 429 144 64 12 1

14 1 1001 428 573 273 64 13 1

15 1 1429 1638 573 337 90 13 1

16 1 3432 1429 2211 1260 337 103 15 1

char(K) = 0

dimK(L8) for T L8

dimK(L11) for T L15

Order of cells

.

n\ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1

1 1

2 1 1

3 1 1

4 1 3 1

5 1 4 1

6 1 9 4 1

7 1 13 6 1

8 1 27 13 7 1

9 1 40 27 7 1

10 1 81 40 34 9 1

11 1 121 110 34 10 1

12 1 243 121 144 54 10 1

13 1 364 429 144 64 12 1

14 1 729 364 573 272 64 13 1

15 1 1093 1638 573 336 90 13 1

16 1 2187 1093 2211 1245 336 103 15 1

char(K) = 2

dimK(L8) for T L8

dimK(L11) for T L15

Order of cells

.

These tables also appear in [An19]. Note that the representations L0 for even n
and L1 for odd n, separated by a dotted line, are always of dimension one. This is
a special coincidence of the involved combinatorics and was observed from a very
different direction in [STWZ21, Proposition 4.5].

Recall that c(k) denotes the number of caps respectively cups in Jk. The follow-
ing lower bound for the dimensions (k /∈ {0, 1} is covered in Proposition 4B.10):

Proposition 4B.12. Let char(K) = 0. For k /∈ {0, 1} we have

dimK(Lk) ≥
1

(n− c(k) + 1)(n− c(k) + 2)

(
n

c(k)

)
.

Proof. See [Sp20, Propositions 9.4 and 9.5]. �

Example 4B.13. The dimensions of the simple T L24-representations over Q and
their lower bounds are given by the tuples

dim: (1, 534888, 208011, 445741, 389367, 126292, 85216, 31878, 6876, 1726, 252, 22, 1),

lower bound:
(
14858, 11886, 8171, 4807, 2403, 1012, 354, 101, 23, 4, 0.5, 0.04, 1

650

)
.

Here L0 correspond to the leftmost entry and then k increases in steps of two from
left to right. Note that the lower bound does not work for k = 0.
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4C. Truncating the Temperley–Lieb monoid. Recall that we need a regularity
condition to ensure that taking cell subquotients works as expected, cf. Lemma 3F.6.
We first establish:

Lemma 4C.1. The monoid T Ln is regular.

Proof. We check that T Ln satisfies condition (a) in Lemma 3F.6. Take a and b
with k through strands, both in the same left cell within Jk. Thus, a and b have
the same bottom half βa = βb but the top halves γa �= γb can be different. We can
now use c = γa ◦ (γb)∗ which implies that a = cb, as required. The picture is:

= ,

which is a calculation in J2 as in (4B.2).
Alternatively, from Lemma 3F.6 we get that this lemma follows from Neumann

regularity in monoid theory, and of course this is well-known for the Temperley–Lieb
monoid, see e.g. [LFG06]. �

Motivated by Example 4C.3 we define:

Definition 4C.2. Define the kth truncated Temperley–Lieb monoid by

T L≤k
n = (T Ln)≥Jk

.

This is the cell submonoid, see Section 3F. In words, T L≤k
n consist of all cross-

ingless matchings with fewer than k through strands, together with an identity
element. Recall that, by Proposition 3F.8 and the discussion in Section 4A, we
know the simple T L≤k

n -representations and their dimensions.

Example 4C.3. Let us come back to (3F). Looking at the graphs of the dimensions
and the semisimple dimensions of the simple T L24-representations

2 4 6 8 10 12

100000

200000

300000

400000

500000

T L24/Q

cells increase ←

y-axis: dim

x-axis:
# through
strands/2

k ≈ 2
√
24

,

2 4 6 8 10 12

100000

200000

300000

400000

500000

600000

T L24/K

cells increase ←

y-axis: ssdim

x-axis:
# through
strands/2

k ≈ 2
√
24

dim: (1, 534888, 208011, 445741, 389367|126292, 85216, 31878, 6876, 1726, 252, 22, 1),
ssdim: (208012, 534888, 653752, 572033, 389367|211508, 92092, 31878, 8602, 1748, 252, 23, 1),

(4C.4)

it seems preferable to cut these graphs roughly at k ≈ 2
√
24 or at even lower values,

as illustrated above. The submonoid T L≤k
24 for this specific value of k now does

not have too small representations anymore and is still rich enough as a monoid.

Note that the one-dimensional simple T L≤k
24 -representation for J0 is �b, so we do

not need to get rid of it.

Our main statement about the Temperley–Lieb case is a bound for the represen-
tation gap of T L≤k

n , but before we can prove it we need to discuss extensions.
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4D. Trivial extensions in Temperley–Lieb monoids. Our next goal is to show
that T Ln and T L≤k

n have no extensions between �bt (under some minor restrictions

on n and k). Let X be either T Ln or T L≤k
n , and recall the notions of left-connected,

right-connected, null-connected and well-connected from Section 2A.

Lemma 4D.1. The monoid X is null-connected.

Proof. Note first that for each of these monoids the group G of invertible elements is
trivial. For a ∈ X \G the decomposition a = γ ◦ idm ◦β = a1a

∗
2 from Lemma 4A.10

then implies that these monoids are null-connected since a∗2 = a∗2a2a
∗
2 and a = aa2a

∗
2

is then a product of a and a∗2a2 ∈ X \ G. �

Before we can prove the main statement of this section we need some terminology.

Remark 4D.2. The reader might recognize the definitions below from the theory of
Temperley–Lieb cells (or the many other occasions where this theory has appeared
in disguise). That is no coincidence as the notions of being left or right-connected
are closely related to left and right cells.

Recall that a diagram a ∈ Bn
m consists of m through strands and n−m

2 cups. The
through strands connect top and bottom endpoints in a, while cups connects top
endpoints in pairs.

For the following notion we naively compose diagrams, meaning that we do
not remove internal circles. We say that a, b ∈ Bn

m are in a vertical position if
the diagram b∗a is isotopic to idm, the identity diagram on m strands. Elements
a, b ∈ Bn

m are said to be in a weakly vertical position if b∗a is isotopic to idm together
with potential internal circles.

Example 4D.3. Consider a, b ∈ B6
2 given by

a = , b = , b∗a = .

Then a and b are in vertical position, as illustrated above. But neither a and a nor
b and b are. The latter are only in weakly vertical position.

Denote by Vertmn ⊂ Bn
m ×Bn

m the set of pairs of diagrams in a vertical position,
and write (a, b) ∈ Vertmn . This relation on diagrams is symmetric.

Denote by WVertnm ⊂ Bn
m × Bn

m the set of pairs of diagrams in weakly vertical
position, and write (a, b) ∈ WVertnm. Note that (a, a) ∈ WVertnm for any a ∈ Bn

m.
Again, this relation on diagrams is symmetric.

If (a2, b1) ∈WVertnm, then a1a
∗
2b1b

∗
2 = a1(a

∗
2b1)b

∗
2 = a1b

∗
2. That is, inserting a∗2b1

in the middle of a1b
∗
2 does not change the latter.

Definition 4D.4. Let Γn
m denote the unoriented graph with vertex set Bn

m and
edges between a and b for all (a, b) ∈ Vertnm.

Note that Γn
m is nonempty if and only if n ≥ m and n+m is even.

Lemma 4D.5. The graph Γn
m is connected if m > 0.

Proof.

Case (m = 1). In this case the lemma can be proved by induction on n, by showing
that any diagram a ∈ Bn

1 is connected by a path in Γn
1 to the diagram

. . .
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with the through strand on the far left and n−1
2 unnested cups.

General case. Consider a diagram a ∈ Bn
m. Each through strand c of a may be

surrounded by a cluster of cups on either side. The first case allows to bring each
such cluster together with c to a standard form as above (through strands followed
by a sequence of unnested cups) via paths in suitable graphs Γk

1 , utilizing only one
through strand c. Doing this transformation with each through strand in a and
moving all through strands all the way to the left transforms a to a standard form
of m parallel vertical strands on the left followed by unnested n−m

2 cups. This
shows that Γn

m is connected. �

A cup is called outer if it is not separated from the bottom of the diagram by
any cup. A pair (a, b) ∈ Bn

m × Bn
m is called a flip pair if b is obtained from a by

converting an outer cup c into a pair of through strands while simultaneously closing
up a pair p of adjacent through strands in a into a cup. Note that c must not be
located between the two strands in p, and that the flip pair relation is symmetric.

Example 4D.6.

(a) In the element of B10
3

1 2 53 4 6 7 8 9 10
,

the cups (2, 5) and (8, 9) are outer. The cups (2, 5) and (3, 4) are nested,
with (2, 5) an outer nested cup.

(b) The following is a flip pair:

flip pair←−−−→ .

We have indicated where we apply operations on the left-hand diagram.

The reader might want to think of a flip pair as two diagrams related by opposite
saddles moves.

Definition 4D.7. Let ∆n
m denote the unoriented graph with vertex set Bn

m and
edges between a and b for all flipped pairs (a, b).

Note that the graph ∆n
2 is not connected for even n ≥ 4, since a diagram with

one through strand on the far left and one on the far right is not in any flip pair.

Lemma 4D.8. The graph ∆n
3 is connected.

Proof. We view the empty graph (with no vertices) as connected, which is the case
when n is even. For odd n = 3 + 2k the proof is by induction on k.

Case (k = 1). In this case the graph has the form

flip←→ flip←→ flip←→ ,

thus is connected.

Case (k > 1). Represent a ∈ B3+2k
3 as a composition a = cb of a diagram c ∈ B3+2k

1+2k

with a single cup and b ∈ B1+2k
3 , e.g. :

a = =
c

b
.
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By induction on k, the diagram b is connected in the graph ∆2k+1
3 to the diagram

bk−1, called standard, of three through strands on the far left and by k−1 unnested
cups on the right. For example

(4D.9) b =
flip←→ bk−1 =

⇒ cbk−1 = .

Consequently, in ∆2k+3
3 the diagrams a and cbk−1 are connected. If the extra cup

in cbk−1 coming from c is not nested inside the rightmost cup of bk−1, as shown in
(4D.10), then cbk−1 can be represented as a diagram in B2k+1

3 union a cup on the
far right, cbk−1 = d ⊗ ∪, with d in very specific form, see (4D.9). By induction,

d is connected to the standard diagram bk−1 in ∆2k+1
3 . The union of the latter

with a cup on the far right gives the standard diagram in ∆2k+3
3 , implying that a

is connected to the standard diagram bk ∈ ∆2k+3
3 .

cbk−1 =
flip←→

flip←→ flip←→ .
(4D.10)

The remaining case is when the cup from c is nested inside the rightmost cup
of bk−1, see (4D.10). Then a series of transformations along paths in the graph

∆2k+3
3 , possible by induction, show that a is in the same connected component as

the diagram bk, concluding the induction step. �

Lemma 4D.11. The graph ∆n
m is connected for any m ≥ 3.

Proof. The proof is by induction on m. Case m = 3 has already been established.
Denote by bn,m the diagram withm through strands on the far left followed by n−m

2
unnested cups to the right. If the leftmost strand of a is a through strand, then the
diagram a can be written as a union a = |⊗a′ of a through strand and a diagram a′

in Bn−1
m−1. By induction, a′ is connected to the standard diagram bn−1,m−1 implying

that a is connected to bn,m.
If the leftmost strand of a is a cup, consider the three leftmost through strands

of a and form the subdiagram a1 that consists of these strands and all cups to the
left and in between of these through strands. We can write a = a1 ⊗ a2, with a2
the complement a2 of a1 in a. By Lemma 4D.8, a1 is connected to some diagram
br with r through strands to the left. Hence, a = a1 ⊗ a2 is connected to br ⊗ a2.
In the latter diagram the leftmost strand is through, and the previous case allows
to use the induction step. �

Recall the relation ≈l given by the closure of the relation ba ≈l a, where a, b ∈
S \ G.
Lemma 4D.12.

(a) Suppose (a, b) ∈ Bn
m is a flip pair, and m ≤ k. Then aa∗ ≈l bb

∗ in T L≤k
n .

Moreover, for a, b ∈ Bn
m, m ≤ k we have aa∗ ≈l bb

∗ in T L≤k
n .

(b) For a, b, c ∈ Bn
k we have ac∗ ≈l bc

∗ in T L≤k
n , for k ≥ 3.

Proof. (a) Suppose the flip is described via an outer cup c and a pair p of adjacent
through strands in a, as in the definition of a flip. Let d ∈ Bn

m−2 is obtained
from a by closing up the pair p into a strand. It is straightforward to check that
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dd∗aa∗ = dd∗ = dd∗bb∗, which implies that aa∗ ≈l bb
∗. The second claim follows

then from the first.

(b) Since ∆n
k is connected, we can choose a path a = a1, a2, . . . , ar = b in it,

with each (ai, ai+1) an edge. Then a∗i+1ai = idk, and ai+1c = ai+1a
∗
i+1aic ≈l aic,

and ac = a0c ≈l arc = bc. �

We are ready to prove that the Temperley–Lieb monoids are left-connected.

Lemma 4D.13. We have the following.

(a) The monoid T Ln is left-connected if n ≥ 5.

(b) The monoid T L≤k
n is left-connected if n ≥ 5 and k ≥ 3.

Proof. Recall the generator-relation presentation from (4A.9).

(a) It is easy to see that T L3 has two equivalence classes {u1, u2u1} and {u2, u1u2}
under ≈l, which are the top left cells in (4B.2). The monoid T L4 also has two ≈l

equivalence classes, represented by u1 and u2. In general, since the ui generate
T Ln, any ≈l equivalence class is represented by some ui. For n > 4, each ui is in
the same equivalence class as either u1 or un−1. For instance, if i > 2, ui and u1

commute and ui ≈l u1ui = uiu1 ≈l u1. Finally, u1 ≈l un−1u1 = u1un−1 ≈l un−1.

(b) We need to show that there is a unique equivalence class under ≈l in T L≤k
n \

{1}. First, any element u in the latter set is equivalent under ≈l to an element of
width k. To see this, write a minimal length presentation u = uiruir−1

. . . ui1 of u as
a product of generators. The element u has width m ≤ k. Pick the smallest p such
that the suffix v = uipuip−1

. . . ui1 of the presentation has width k (this is possible
since multiplication of an element by a generator ui either preserves the width or
reduces it by one). Then u = v′v where v′ is the product of the remaining terms.
Note that v = vv∗v and u = v′v = (v′vv∗)v. Widths ω(v′vv∗) ≤ k, ω(v) = k, so

that both of these elements are in T L≤k
n \ {1}, and u = v′vv∗v ≈l v. We see that

u is equivalent to an element of width k.

Consequently, it is enough to show that a ≈l b for any two a, b of width k.
Factorize a = a1a

∗
2, b = b1b

∗
2 with a1, a2, b1, b2 ∈ Bn

k . From Lemma 4D.13 we have
a1a

∗
2 ≈l a2a

∗
2 and b1b

∗
2 ≈l b2b

∗
2. From the same lemma, a2a

∗
2 ≈l b2b

∗
2, so that

a ≈l b. �

Note that the statement of part (b) of Lemma 4D.13 essentially contains part
(a) by taking k = n. We have included both parts for clarity.

Lemma 4D.14. The monoid T Ln is well-connected if n ≥ 5, and the monoid
T L≤k

n is well-connected if n ≥ 5 and k ≥ 3.

Proof. This is just the combination of the previous lemmas. Note hereby that
the diagrammatic antiinvolution −∗ implies that the monoids T Ln and T L≤k

n are
left-connected if and only if they are right-connected. �

Let X be either T Ln or T L≤k
n for k ≥ 3.

Lemma 4D.15. We have H1(X ,K) ∼= 0 for all n ∈ Z≥0.

Proof.
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Case (X = T Ln). A homomorphism f : T Ln → K takes each idempotent e ∈ T Ln

to 0. From the classical generators-relation presentation of T Ln, see (4A.9), it
is clear that every nonidentity element is a product of idempotents, so we get
H1(T Ln,K) ∼= 0.

Case (X = T L≤k
n ). We now need a different argument. Suppose give a homomor-

phism f : T Ln → K. Consider all diagrams of width k in X . They have the form
ab∗, a, b ∈ Bn

k . Necessarily f(aa∗) = 0. If (b, c) is an edge in Γn
k and d ∈ Bn

k , then
ab∗cd∗ = ad∗ and there is a relation

f(ad∗) = f(ab∗) + f(cd∗).

Choosing a path from a to d in Γn
k allows to write f(ad∗) as a sum over f(bc∗)

where (b, c) is an edge in Γn
k . The relation bc∗bb∗ = bb∗ implies

f(bb∗) = f(bc∗) + f(bb∗),

so that f(bc∗) = 0 for an edge (b, c). Consequently, f(ad∗) = 0 for a, d as above,
and f(x) = 0 for any x of width k in X . The elements y of X of smaller width
are products of elements of width k, showing that f(y) = 0 as well. Thus, f is
identically 0 on X .

General approach. If S is any finite monoid with trivialH-cells, then H1(X ,K) ∼=
0, and even H1(X , A) ∼= 0 for any abelian group A. To see this note that Theo-
rem 3A.14 and H(e) ∼= S1 imply that ∃M ∈ Z≥0 with xM = xM+1 for all x ∈ S.
Therefore each element has trivial image under any f : S → A sinceA is a group. �

Proposition 4D.16. Let M be an X -representation. Assume that n ≥ 5 and in
the truncated case k ≥ 3. Then any short exact sequence

0 −→ �bt −→M −→ �bt −→ 0

splits.

Proof. Note that the group of units G of X is trivial, so we get H1(G,K) ∼= 0.
Combine this with Lemma 4D.14 and Theorem 2B.10. �

4E. Representation gap and faithfulness of the Temperley–Lieb monoid.
We are ready to state and prove the main statements about the Temperley–Lieb
monoid.

Let X be either T Ln or T L≤k
n for k ≥ 3.

Theorem 4E.1. Let n ≥ 5, and let m(l) be the dimension of the simple X -
representation Ll as in Proposition 4B.10. Then:

gapK(T Ln) = min
{
m(l)|l /∈ {0, 1, n}

}
,

gapK(T L≤k
n ) = min

{
m(l)|l /∈ {0, 1, k + 1, k + 2, . . . , n}

}
.

Proof. By Theorem 2B.10 and Proposition 4D.16. �

Recall that k denotes the number of through strands, and crossingless matchings
with k through strands have n−k

2 caps and cups. In particular, T L≤k
n for 0 ≤ k ≤

2
√
n has crossingless matchings with at most 2

√
n through strands and at least

n−2
√
n

2 (this number is bigger than
√
n for n > 16) caps and cups. Also recall the

Bachmann–Landau notation f ∈ Θ(g), meaning that f is bounded both above and
below by g asymptotically.
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Theorem 4E.2. Let n ≥ 5 and fix 0 ≤ k ≤ 2
√
n. Let char(K) = 0, and let L be

an arbitrary field. We have the following lower bounds:

gapK(T L≤k
n ) ≥ 4

(n+ 2
√
n+ 2)(n+ 2

√
n+ 4)

(
n

n
2 −

√
n

)
∈ Θ

(
2nn−5/2

)
,

ssgapL(T L≤k
n ) ≥ 2

2n

(
n

�n2 �

)
∈ Θ

(
2nn−3/2

)
,

faithK(T L≤k
n ) ≥ 6

n+ 4

(
n

n′

2 − 1

)
∈ Θ

(
2nn−3/2

)
,

where in the final bound n′ = n, if n is even, and n′ = n− 1, if n is odd.

Proof. Representation gap. We will make use of Proposition 4D.16. By Theo-
rem 2B.10, this statement ensures that we only need to compute dimension bounds
for simple T L≤k

n -representations. The first bound then follows from Proposi-
tion 4B.12. The formula 1

(n−c(k)+1)(n−c(k)+2)

(
n

c(k)

)
has its minimum for k = �2√n�.

Plotting this k into the formula and a bit of algebra autopilot gives the claimed lower
bound. The asymptotic formula then follows by using that 4

(n+2
√
n+2)(n+2

√
n+4)

is

in Θ( 1
n2 ), and using Stirling’s approximation for n! to get that the binomial is in

Θ(2nn−1/2).

Semisimple representation gap. The second bound can be seen as follows. We
need to minimize the formula in Proposition 4B.6 for 0 ≤ k ≤ 2

√
n. Observe

that the function n−2c(k)+1
n−c(k)+1

(
n

c(k)

)
in k has precisely one peak between k = 0 and

k = �2√n�, and is monotone increasing respectively decreasing otherwise. So we
only need to compare the two values for k = 0, 1 and k = �2√n�, and it is then
easy to see that the k = 0, 1 value is smaller. Since c(0) = n−0

2 and c(1) = �n2 �, the
result follows. The asymptotic formula follows also from Stirling’s approximation
for n!.

Faithfulness. For the final bound we use Lemma 2E.11. This lemma says that it
suffices to find a lower bound for T L≤2

n : If n is even, then T L≤2
n ↪→ T L≤k

n . If n is

odd, then we can still use T L≤2
n after adding another strand. Note that a faithful

T L≤2
n -representation cannot be a nontrivial extension of �bt by Proposition 4D.16

and also not a direct sum of �bt. Hence, any faithful T L≤2
n -representation must

contain L2. The combinatorics from Example 4B.9 implies that dimK(L2) =
ssdimK(L2), so the claimed formula follows from Proposition 4B.6. The asymp-
totic formula can be verified in the same way as for (a) and (b).

Let us note that alternatively to direct computations for the asymptotic formulas,
the reader can also input the above bounds into a computer algebra system such as
Mathematica and ask the computer to algebraically manipulate the symbols. �
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Example 4E.3. The lower bounds in Theorem 4E.2 are far from being optimal.
But they still grow very fast. Here are their plots:

T Ln/Q

n increases →

y-axis: lower bound gap

x-axis: n

,

T Ln/K

n increases →

y-axis: lower bound ssgap

x-axis: n

,

T Ln/Q

n increases →

y-axis: lower bound faith

x-axis: n

.

In these plots n increases from 0 to 30 when going left to right.

Note that the bound 0 ≤ k ≤ 2
√
n in Theorem 4E.2 means that the monoid

T L≤k
n has few through strands. This has the advantage that the dimensions of

simple T L≤k
n -representations peak, but it also means that the information loss

during multiplication is big. Alternatively one might want to keep k close to n, so
we also state:
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Theorem 4E.4. Let n ≥ 8 and fix 2
√
n ≤ k ≤ n −√

n. Let char(K) = 0, and let
L be an arbitrary field. We have the following lower bounds:

gapK(T L≤k
n ) ≥ 1

(n−
√
n
2 + 1)(n−

√
n
2 + 2)

(
n√
n
2

)
∈ Θ

(
n
√
n/4n−9/4(2e)

√
n/2

)
,

ssgapL(T L≤k
n ) ≥ n−√

n+ 1

n−√
n/2 + 1

(
n√
n
2

)
∈ Θ

(
n
√
n/4n−3/4(2e)

√
n/2

)
,

faithK(T L≤k
n ) ≥ 6

n+ 4

(
n

n′

2 − 1

)
∈ Θ

(
2nn−3/2

)
,

where in the final bound n′ = n, if n is even, and n′ = n− 1, if n is odd.

Proof. Similar to the proof of Theorem 4E.2 and omitted. (The assumption n ≥ 8
ensures that k ≥ 3, so we can use Lemma 4D.14.) �

Example 4E.5. The various ratios from Section 2F are easy to compute using
Proposition 4B.3, which gives |T L≤8

16 | =
∑

l∈Λ,l≥k |Jl|, and either of the theorems

above. Explicitly, for n = 16, k = 2
√
16 = 8 and using K = Q, which is the

setting from Theorem 4E.2, we get gaprQ(T L≤8
16 ) ≥ 1.686 · 10−3. For comparison,

the symmetric group S16 has gaprQ(S16) ≈ 2.186 · 10−7.

4F. Other planar monoids. Let us now discuss cells, simples and bounds for
the other planar monoids from (1E.2) in ascending order (of complexity). The
constructions and statements are very similar to the Temperley–Lieb case, so we
will be brief. The reader can find more details about the basics about the diagram
monoids, and also references, in e.g. [HJ20].

Remark 4F.1. As we will see, the common theoretical feature of planar monoids
is that their H-cells are all of size one. As for the Temperley–Lieb monoid, the
diagrammatically firm readers can deduce the cell structure of the planar diagram
monoids in this section themselves. There are also many references in the literature
and the cells of these diagram monoids have been rediscovered many times. For
example, [DEG17] computes the cells of pRon, and [BH14] computes the cells of
Mon.

We leave the case of the planar symmetric group to the reader and start with
the planar rook monoid pRon. This monoid was rediscovered several times, see e.g.
[KS15], and the reader might know it under a different name. The construction of
pRon is almost the same as for T Ln, but instead of caps and cups we have end and
start dots, and all internal components are removed whenever they appear during
composition. The monoid pRon has

(
2n
n

)
elements and a typical cell is of the form

J1 H(e) ∼= S1 .(4F.2)

This illustrates J1 of pRo3, which has one through strand.
The monoid containing both T Ln and pRon as submonoids is the Motzkin

monoid Mon. The definition of this monoid works mutatis mutandis as for T Ln

and pRon, now with caps and cups as well as start and end dots, and all internal
components are removed whenever they appear during composition. The Motzkin



376 M. KHOVANOV, M. SITARAMAN, AND D. TUBBENHAUER

monoid has
∑n

k=0
1

k+1

(
2n
2k

)(
2k
k

)
elements. The J-cells Ji are still given by through

strands k, and a prototypical example is

J1 H(e) ∼= S1
.

This illustrates J1 and Mo3.
Finally, the planar partition monoid pPan has all of the above mentioned planar

monoids as submonoids, as it allows now arbitrary partitions, and has Ca(2n)
elements. (Recall that Ca(k) was the kth Catalan number.) As before, internal
components are removed and cells look very familiar to the cells of the other planar
monoids. For example J1 for pPa2 is:

J1 H(e) ∼= S1
.

In the following we will focus on pRon and Mon as justified by our discussion
of the Temperley–Lieb monoid and:

Lemma 4F.3. There is an isomorphism of monoids pPan ∼= T L2n.

Proof. See [HR05, (1.5)]. �

Not surprisingly, the analogs of Proposition 4B.3 and Proposition 4F.5 read
almost the same. Below, if not stated otherwise, let X be either pRon or Mon.

Proposition 4F.4. We have the following.

(a) The left and right cells of X are given by the respective type of diagrams
where one fixes the bottom respectively top half of the diagram. The ≤l- and
the ≤r-order increases as the number of through strands decreases. Within
Jk we have

pRon : |L| = |R| =
(
n

k

)
,

Mon : |L| = |R| =
n∑

t=0

k + 1

k + t+ 1

(
n

k + 2t

)(
k + 2t

t

)
.

(b) The J-cells Jk of X are given by the respective type of diagrams with a fixed
number of through strands k. The ≤lr-order is a total order and increases
as the number of through strands decreases. For any L ⊂ Jk we have

X : |Jk| = |L|2.
(c) Each J-cell of X is idempotent, and H(e) ∼= 1 for all idempotent H-cells.

We have

X : |H| = 1.
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Proof. Omitted. See also [HJ20, Section 3.3]. Note that the reference gives the
dimensions of the simple pRon- and Mon-representations in the semisimple case,
which are thus the sizes of the corresponding cells, see Proposition 3C.6. �

Proposition 4F.5. The set of apexes for simple X -representations can be indexed
1:1 by the poset Λ = ({n, n − 1, . . . }, >), and there is precisely one simple X -
representation of a fixed apex up to ∼=.

Proof. Clear by Proposition 4F.4. �

We can number the simple X -representations by Lk for k ∈ Λ.

Proposition 4F.6. The semisimple dimensions for pRon andMon are ssdimK(Lk)

=
(
n
k

)
and ssdimK(Lk) =

∑n
t=0

k+1
k+t+1

(
n

k+2t

)(
k+2t

t

)
, respectively.

Proof. Directly from Proposition 4F.4 and Proposition 4F.5. �

The semisimple dimensions of pRon are given in (4C.4). (Note that (4C.4)
shows the dimensions of the simple pRon-representations, but we will see in Propo-
sition 4F.7 that dimK(Lk) = ssdimK(Lk) holds for pRon.) The semisimple dimen-
sions of Mon behave similarly as the semisimple dimensions of T Ln, cf. (4C.4):

Mo24/K

cells increase ←

y-axis: ssdim

x-axis:
# through
strands

k ≈ 2
√
24

,

ssdim:

»
¼¼¼½

3192727797, 5850674704, 7583013474, 8234447672, 7895719634,

6839057544, 5412710842, 3938013264, 2641866894, 1636117512,

935163394, 492652824, 238637282, 105922544, 42884259, 15742672,

5199909, 1530144, 395922, 88504, 16674, 2552, 299, 24, 1

¾
¿¿¿À .

The dimensions of simple pRon-representations are easy to obtain:

Proposition 4F.7. We have dimK(Lk) = ssdimK(Lk) =
(
n
k

)
for pRon, and pRon

is semisimple.

Proof. We only need to prove that pRon is semisimple, which implies the other
results by Proposition 3C.6 and Proposition 4F.6.

To show semisimplicity we use [St16, Theorem 5.21] which says that a finite
monoid is semisimple if and only if all J-cells are idempotent, all idempotent H-
cells are semisimple and the Gram matrices P (e), see Section 3D, for all idempotent
H-cell H(e) are invertible.

By Proposition 4F.4 we only need to compute the Gram matrices. Since H(e) ∼=
S1, the reader familiar with the theory of cellular algebras will recognize the follow-
ing calculation. The Gram matrix for any of the planar monoids discussed in this
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paper can be computed using analogs of Lemma 4A.10. Precisely, for each J-cell
there are bottom diagrams β1, . . . , βL and top diagrams γ1, . . . , γL indexing the
rows and columns of the J-cell in question. The Gram matrix is then

P (e)ij =

{
1 if βjγi = 1,

0 else,

where 1 is the element of H(e) ∼= S1. For example, the Gram matrix of J1 of pRo3,
see (4F.2), takes the form

β/γ

�

»
½
1 0 0
0 1 0
0 0 1

¾
À.

This is the identity matrix. In fact, P (e) is always a permutation matrix: any end
dot needs to hit a start dot in order for βjγi to keep the same number of through
strands, and there is precisely one βj for a fixed γi for this to happen. The proof
completes.

Alternatively, using an argument from monoid theory, pRon is an inverse monoid,
namely a submonoid of the symmetric inverse monoid that we will meet in Sec-
tion 5F. Moreover, by Proposition 4F.4 we have |H| = 1. Thus, [St16, Corollary
9.4] implies that pRon is semisimple. �

The behavior of the dimensions of the simple pRon-representations is sketched
in (3F). Sadly, we do not know the dimensions of the simple Mon-representations,
but we have the following.

Proposition 4F.8. Let LT Ln

l denote the lth simple T Ln-representation, cf. Sec-

tion 4B. We have dimK(Lk) ≥ dimK(L
T Ln

k ), if n − k is even, and dimK(Lk) ≥
dimK(L

T Ln−1

k ), if n− k is odd, both for Mon.

Proof. Note that T Ln embeds into Mon by sending every element to the element
with the same description in Mon, e.g. :

T L3  	→ ∈Mo3.(4F.9)

Thus, T Ln is a submonoid of Mon and Theorem 3D.2 applies whenever n − k is
even since in this case Jk restricts to an idempotent J-cell of T Ln.

For the odd case we can use the same argument and the embedding of semigroups
given by adding a pair of an end and a start dot to the right, e.g.

T L3  	→ ∈Mo4.

Theorem 3D.2 can be easily extended to cover this case as well. �

Lemma 4F.10. The monoid X is regular.

Proof. Using Lemma 3F.6 the claim is easy to verify: for pRon andMon symmetric
diagrams with k end and start dots give an idempotent in Jk. See also [DEG17,
Section 2] for a proof using regularity. �

This suggests again that we use truncations. Note that pRo≤k,<l
n below is con-

structed using an honest Rees factor, cf. Definition 3F.5, while Mo≤k
n is a sub-

monoid of Mon.
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Definition 4F.11. Define the k-l truncated planar rook monoid for k ≤ l and the
kth truncated Motzkin monoid by

pRo≤k,<l
n = (pRon)≥Jk

/(> Jl), Mo≤k
n = (Mon)≥Jk

.

Let X be either pRon or pRo≤k,<l
n .

Proposition 4F.12. Let M be an X -representation. Then any short exact se-
quence

0 −→ �bt −→M −→ �bt −→ 0

splits.

Proof. The monoid pRon is semisimple, see Proposition 4F.7, so Theorem 2B.10
applies. The case of pRo≤k,<l

n follows verbatim as the monoid is also semisimple
by the analog of Proposition 4F.7. �

Remark 4F.13. To prove Proposition 4F.12 for the Motzkin monoid and its trun-
cation it suffices to show that they are left-connected: that they are right-connected
follows by applying the diagrammatic antiinvolution −∗, that they are null-connected
follows from the fact that their J-cells are idempotent, the group of units G is trivial
which implies H1(G,K) ∼= 0, and H1(Mon,K) ∼= 0 as well as its counterpart for
Mo≤k

n follow from the same arguments as in the proof of Lemma 4D.15.

The following statement is only about pRon, since we do not know the dimen-
sions of the simple Mon-representations.

Theorem 4F.14. We have

gapK(pRon) = n, gapK(pRo≤k,<l
n ) = min

{(
n

k

)
,

(
n

l − 1

)}
.

Proof. By Theorem 2B.10, Proposition 4F.12 and Proposition 4F.7. �

Theorem 4F.15. Let k be arbitrary and l = �2√n�. We have the following lower
bounds:

gapK(pRo≤l,<n−l
n ) = ssgapK(pRo≤l,<n−l

n ) ≥
(

n

�2√n�

)
,

faithK(pRo≤l,<n−l
n ) ≥ 2�√n�+1

√(
n

�n2 �

)
,

ssgapK(Mo≤k
n ) ≥ ssgapL(T L≤k

n−1), faithK(Mo≤k
n ) ≥ faithK(T L≤k

n−1).

Because of Proposition 4F.8, we also think that gapK(Mo≤k
n ) ≥ gapK(T L≤k

n−1).
We cannot prove this since we would need the analog of Proposition 4F.12 for the
Motzkin monoid.

Proof. Planar rook. We start with pRon. The first inequality is immediate from
Proposition 4F.7 and the behavior of binomial coefficients. For the second claim we
apply Theorem 3E.4. Note that T L≤l,n−l

n has 4�√n�+ 1 cells, but we can restrict
to the submonoid with only 2�√n�+ 1 as in the proof of Theorem 4E.2.

Motzkin. The first claim follows also from Theorem 4E.2 by identifying the
smallest cell of Temperley–Lieb as a subcell of the smallest cell of Mo≤k

n . The final
inequality follows then from Proposition 4F.8, Theorem 3E.4 and Theorem 4E.2.
(Note that using n−1 is for convenience so that state a closed formula independent
of even and odd issues.) �
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Example 4F.16. As before for the Temperley–Lieb monoid, the various ratios are

easy to get from the above. For example, gapK(pRo≤6,<10
16 ) ≈ 0.34.

Conclusion 4F.17. From the viewpoint of linear attacks using small representations,
all of the planar monoids pRon, T Ln,Mon and pPan, or actually their truncations,
have only big nontrivial representations. However, T Ln is our main example: pRon
appears to be a bit too simple as a monoid to be of use and is semisimple, and pPan
is just T L2n. The discussion about Mon is unfinished and deserves more study.

5. Symmetric monoids

We still have a fixed field K.

5A. Brauer categories and monoids. We will now recall the definitions of the
Brauer category Brlin(δ), the Brauer algebra Brlinn (δ) and explain how to construct
set-based versions of these. Brauer categories and algebras are classical topics
in representation theory, see e.g. [Br37] for the original reference. Moreover, the
discussion is quite similar to the one in Section 4, so we will be brief.

The crucial difference between Brlin(δ) and TLlin(δ) is that the former is addi-
tionally a symmetric category. The morphisms are then called perfect matchings.
Prototypical examples of these perfect matchings are crossingless matchings but
also e.g.:

, .

The relations on these diagrams are built such that they are the same if and only
if they represent the same perfect matching. Otherwise the definition of Brlin(δ)

is the same as for TLlin(δ).
Perfect matchings can be numbered by b(k) = (2k − 1)!! (the double factorial).

Letting Pn
m denote the set of perfect matching with m bottom and n top boundary

points, we have the following analog of Lemma 4A.3:

Lemma 5A.1. The set Pn
m is a K-linear basis of HomBrlin(δ)(m,n). Hence, the

dimension of this space is either zero if m �≡ n mod 2, or otherwise given by
dimK HomBrlin(δ)(m,n) = b(m+n

2 ).

Proof. Well-known, see e.g. [GL96, Lemma 4.4]. �

The Brauer algebra on n-strands is then Brlinn (δ) = EndBrlin(δ)(n).

Remark 5A.2. Similar as T Llin
n (δ), the algebra Brlinn (δ) originates in Schur–Weyl–

Brauer duality [Br37]. See e.g. [AST17, Section 3.4] for a summary of these duali-
ties.

The definition of the set theoretical version of these works verbatim as in Def-
inition 4A.7. We then get the set-theoretic Brauer category Br and the Brauer
monoid on n-strands is defined by Brn = EndBr(n). This monoid has (2n − 1)!!
elements.

Lemma 5A.3. Sending the K-linear basis from Lemma 4A.3 to crossingless match-
ing in Pn

m from Lemma 5A.1 defines an embedding of monoids T Ln ↪→ Brn.
Proof. Clear by the respective lemmas. �
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Note that the symmetric group Sn on n-strands is isomorphic to the group of
units G of Brn. An isomorphism is given by the map

Sn ↪→ Brn, (i, i+ 1) 	→ ,

where the crossing crosses the ith and the (i+ 1)th strand when read from left to
right. We will use this to identify Sn with the respective subgroup of Brn and with
the corresponding set of morphisms in Br.

The analog of Lemma 4A.10 now is:

Lemma 5A.4. For a ∈ HomBr(m,n) there is unique factorization of the form
a = γ ◦σk ◦β for minimal k, and β ∈ HomBr(m, k), σk ∈ Sn and γ ∈ HomBr(k, n).

Proof. Very similar to the proof of Lemma 4A.10. The picture now is

a =

= ◦ ◦ ,

which one easily generalizes to prove the lemma. Note that one can always push
crossing in the middle unless they have to cross a cap or cup. �

We apply the same terminology as for Brn regarding through strands, bottom
half and top half. As before for T Ln, this notion will give us the cell structure of
Brn.

5B. Cells of the Brauer monoid. The cell structure of the Brauer monoid is as
follows.

Remark 5B.1. As for all the other monoids we have seen, the computation of the
cells of Brn is easy and a pleasant exercise. And, as before, there are plenty of
references on the cell structure, see [Br55] for an early reference, [FG95] for a
reference from quantum algebra and [KMM06] for a reference from monoid theory.

The picture for the cell structure of Brn is now:

, ,

, ,

J1

J3

H(e) ∼= S1

H(e) ∼= S3

.
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These are the cells of Br3. Here is another example, where H(e) ∼= S2:

J2 H(e) ∼= S2
.

This illustrated the cell J2 in Br4.
Formally and with contrast to Proposition 4B.3, we have now nontrivial H-cells:

Proposition 5B.2. We have the following.

(a) The left and right cells of Brn are given by perfect matchings where one fixes
the bottom respectively top half of the diagram. The ≤l- and the ≤r-order
increases as the number of through strands decreases. Within Jk we have

|L| = |R| = k!

(
n

k

)
(n− k − 1)!!.

Here (n− k − 1)!! denotes the double factorial.

(b) The J-cells Jk of Brn are given by perfect matchings with a fixed number
of through strands k. The ≤lr-order is a total order and increases as the
number of through strands decreases. For any L ⊂ Jk we have

|Jk| = 1
k! |L|2.

(c) Each J-cell of Brn is idempotent, and H(e) ∼= Sk for all idempotent H-cells
in Jk. Within Jk have

|H| = k!.

Proof. All of these are known statements. However, the cells of Brn do not corre-
spond to the cells coming from the cellular structure of Brlinn (δ), but rather from
the sandwich cellular structure, cf. [FG95] or [TV21, Section 2D]. �

Let LSn
/∼= denote the set of simple Sn-representations. For char(K) = 0 it

is well-known that LSn
/∼= can be identified with partitions of n. For char(K) > 0

there is a slightly more involved statement of the same kind, see e.g. [Ma99, Section
3.4] for an even more general statement.
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Proposition 5B.3. The set of apexes for simple Brn-representations can be indexed
1:1 by the poset Λ = ({n, n− 2, . . . }, >), and

{simple Brn-representations of apex k}/ ∼= 1:1←→ LSk
/∼= .

Proof. As before by using Proposition 3B.5 and the cell structure in Proposi-
tion 5B.2. �

By Proposition 5B.3, we use the same number scheme and poset as for the
Temperley–Lieb monoid but also keeping track of LK ∈ LSk

/∼=.

Lemma 5B.4. Within one J-cell all left cell representations ∆L and all right cell
representations R∆ are isomorphic. We write ∆k respectively k∆ for those in Jk.

We have ∆k
∼= k∆ as K-vector spaces and dimK(∆k) = dimK(k∆) =

(
n
k

)
(n−k−

1)!!.

Proof. Using Proposition 5B.2, the proof is similar to the Temperley–Lieb case. �

Proposition 5B.5. Let K be a simple Sk-representation, and let LK denote its
associated simple Brn-representation of apex Jk. The semisimple dimensions are
ssdimK(LK) ≥

(
n
k

)
(n− k − 1)!!.

Proof. As for the Temperley–Lieb case with the extra observation that a smallest
semisimple dimension is associated to the trivial Sk-representation. �

Example 5B.6. The lower bound for the semisimple dimensions of Br24 can be
illustrated by

Br24/K
cells increase ←

y-axis: ssdim

x-axis:
# through
strands/2

k ≈ 2
√
24

,

log10(ssdim):

(
11.5, 12.5792, 12.8424, 12.6663, 12.1734, 11.4233,

10.4489, 9.26797, 7.88775, 6.30512, 4.50349, 2.44091, 0

)
.

For readability, we took the base 10 log of the actual numbers. This picture again
motivates truncation, and we will do this in Section 5C.

Let us discuss the dimensions of simple Brn-representations. To the best of our
knowledge, the dimensions of simple Brn-representations are not known. The best
we get is:

Proposition 5B.7. Let LT Ln

k denote the kth simple T Ln-representation, cf. Sec-
tion 4B. Let K be a simple Sk-representation and let LK denote its associated
simple Brn-representation of apex Jk. We have dimK(LK) ≥ dimK(L

T Ln

k ).
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Proof. The Temperley–Lieb monoid T Ln embeds into Brn by the evident map that
diagrammatically is as the one in (4F.9). See also Lemma 5A.3. The proof is thus
essentially the same as for Mon, see Proposition 4F.8. The difference is that we
cannot use Theorem 3D.2 directly, but we instead need to argue slightly differently:
First, we use the Brauer algebra Brlinn (1) for circle parameter 1. The monoid
algebra of Brn is Brlinn (1), hence, finding dimension bounds for Brn or Brlinn (1) is
the same problem. Working with Brlinn (1) has the advantage that we can use the
cellular structure to split the J-cells Jk further until H-cells are of size one, see
[GL96, Section 4]. This can be achieved by using e.g. the Kazhdan–Lusztig bases of
the Sk. The sign representation of Sk in its cell structure corresponds to the bottom
cell where there are only through strands. This cell for Brlinn (1) has then T Llin

n (1)
inside and the pairing argument applies. All other simple Brlinn (1)-representations
associated to Jk have bigger dimensions, so the proof completes. �

5C. Truncating the Brauer monoid. We continue with truncation, which is
almost identical as for the Temperley–Lieb monoid in Section 4C.

Lemma 5C.1. The monoid Brn is regular.

Proof. The same arguments as in Lemma 5C.1 work. In particular, we can use
Lemma 3F.6 and the well-known fact, that is also easy to prove by hand, that Brn
has idempotent J-cells, see for example [KMM06, Section 3]. �

Definition 5C.2. Define the kth truncated Brauer monoid by

Br≤k
n = (Brn)≥Jk

.

Again, let us stress that diagrams in Br≤k
n have at most k through strands. We

are almost ready to state our main results, but before we need to discuss extensions.

5D. Trivial extensions in Brauer monoids. The following is the same as for
T Ln.

Lemma 5D.1. The monoid Brn is well-connected if n ≥ 5, and the monoid Br≤k
n

is well-connected if n ≥ 5 and k ≤ 3.

Proof. This follows from Lemma 5A.4 and the respective statement about the
Temperley–Lieb monoid in Lemma 4D.14. To see this note that the left-connected
condition ba ≈l a implies that within on ≈l equivalence class we can focus on the
part where σk = 1 since for a = γ ◦ σk ◦ β we can choose b = γ ◦ σ−1

k ◦ β∗ and get
γ ◦ idk ◦β ≈l γ ◦σk ◦β. The same works for right-connected and null-connected. �

We now restrict to a field K with char(K) �= 2.

Lemma 5D.2. Let char(K) �= 2. We have H1(Sn,K) ∼= 0 for all n ∈ Z≥0.

Proof. The cases n = 0, 1 are clear, so let n ≥ 2. Recall from Remark 2B.3 that
H1(Sn,K) ∼= 0 is trivial if and only if the only homomorphism Sn → K is trivial.
To see that this is the case, note that any such homomorphism must send the
transposition (i, i+1) of Sn = Aut({1, . . . , n}) to k ∈ K with 2k = 0, which implies
k = 0. The claim follows since Sn is generated by transpositions. �

Let X be either Brn or Br≤k
n for k ≥ 3.

Lemma 5D.3. Let char(K) �= 2. We have H1(X ,K) ∼= 0 for all n ∈ Z≥0.
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Proof. We will use Lemma 5D.2.

Case (X = Brn). Similar to the proof of Lemma 4D.15 with the difference that
elements in Jb are not generated by idempotents, but rather by idempotents and
symmetric group generators. Idempotents are sent to zero, as for the Temperley–
Lieb monoid, and the symmetric group generators are also sent to zero. These
taken together show the claim.

Case (X = Br≤k
n ). The argument is also similar to the proof of Lemma 4D.15. In

this case diagrams of width k are of the form aσkb
∗ where σk ∈ Sn. Keeping this

in mind as well as H1(Sk,K) ∼= 0, the argument given in the proof of Lemma 4D.15
works mutatis mutandis. �

Remark 5D.4. Lemma 5D.3 actually works in arbitrary characteristic. To elabo-
rate, in [EG17] the authors show that every proper ideal of Brn is generated as a
semigroup by idempotents. Now, in general, if S is a monoid containing an ideal I
generated by idempotents as a semigroup, then, for any homomorphism f : S → K,
we have 0 = f(I) = f(SI) = f(S) + f(I) = f(S). This argument really just needs
Hom(I,K) ∼= 0, which is a consequence of I being generated by idempotents as a
semigroup, and we get the desired H1(Brn,K) ∼= 0 as a special case. The same
arguments work for the truncated version.

Proposition 5D.5. Let char(K) �= 2. Let M be an X -representation. Then any
short exact sequence

0 −→ �bt −→M −→ �bt −→ 0

splits.

Proof. The proposition follows as for the Temperley–Lieb monoid by the above
lemmas. The only difference to Proposition 4D.16 is that the group of units is
G ∼= Sn, but that is taken care of in Lemma 5D.2. �

5E. Representation gap and faithfulness of the Brauer monoid. The analog
of Section 4E is the weaker statement:

Theorem 5E.1. Let char(K) �= 2. We have the following lower bounds:

gapK(Br≤k
n ) ≥ gapK(T L≤k

n ),

ssgapK(Br≤k
n ) ≥

{
ssgapK(T L≤k

n ) always,

(n− 1)!! ∈ Θ(nn/2en/2) if n! 0, 0 ≤ k ≤ 2
√
n,

faithK(Br≤k
n ) ≥ faithK(T L≤k

n ).

Note that the lower bound (n − 1)!! is bigger than the one using T Ln from
Theorem 4E.2.

Proof. Since T Ln embeds into Brn (see the proof of Proposition 5B.7 or
Lemma 5A.3), Proposition 5D.5 and using the arguments from the proof of Propo-

sition 5B.7, most of this theorem follows from the ones for T Ln or T L≤k
n . The

exception is the lower bound given by (n− 1)!!. To see that this lower bound holds
under the given assumptions, we observe that

(
n
k

)
(n− k − 1)!! has its minimum at

either k = 0 or k = �2√n�. Evaluating at these values for n! 0 (as there are some
fluctuations for small n) shows that the lower bound is achieved at k = 0. �
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5F. Other symmetric monoids. We now discuss the remaining symmetric
monoids from (1E.2) in ascending order (of complexity). We will be brief since
almost everything follows mutatis mutandis as before. The basics can be found e.g.
in [HJ20].

Remark 5F.1. Symmetric monoids have the symmetric groups as H-cells, as we
will explain below. As for the planar monoids, the cell structure of the symmetric
diagram monoids below is easy to get. See for example [St16, Chapter 9] for many
references in the rook monoid case, [HJ20] for the rook-Brauer monoid, and [HR05]
for the partition monoid.

The symmetric group was discussed in Example 2A.16, so let us start with the
rook monoid Ron. The rook monoid is the nonplanar version of pRon and has∑n

k=0 k!
(
n
k

)2
elements. Its J-cells are again given by through strands. A typical

cell is J2 for Ro3:

J2 H(e) ∼= S2
.

The rook-Brauer monoid RoBrn is a symmetric version of the Motzkin monoid.

The rook-Brauer monoid has
∑n

k=0 k!
(∑n

t=0

(
n
k

)(
n−k
2t

)
(2t − 1)!!

)2
elements. The

J-cells are, as usual, indexed by through strands. They get huge very fast, so let
us just illustrate a typing idempotent (and symmetric) H-cell:

,

,

,

Part of J3 H(e) ∼= S3
.

The partition monoid Pan contains all the other planar and symmetric monoids
as submonoid. It has Be(2n) elements, where Be denotes the Bell number. The
J-cells are still given by through strands. As for RoBrn, the sizes of the cells are
very large, so we only illustrate an idempotent (and symmetric) H-cell:

Part of J2 H(e) ∼= S2
.

Below, if not stated otherwise, let X be Ron, RoBrn or Pan.

Proposition 5F.2. We have the following.

(a) The left and right cells of X are given by the respective type of diagrams
where one fixes the bottom respectively top half of the diagram. The ≤l- and
the ≤r-order increases as the number of through strands decreases. Within
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Jk we have

Ron : |L| = |R| = k!

(
n

k

)
,

RoBrn : |L| = |R| = k!

n∑

t=0

(
n

k

)(
n− k

2t

)
(2t− 1)!!,

Pan : |L| = |R| = k!
n∑

t=0

{
n
t

}(
t

k

)
.

Here { n
t } denotes the Stirling number of the second kind.

(b) The J-cells Jk of X are given by the respective type of diagrams with a fixed
number of through strands k. The ≤lr-order is a total order and increases
as the number of through strands decreases. For any L ⊂ Jk we have

X : |Jk| = 1
k! |L|2.

(c) Each J-cell of X is idempotent, and H(e) ∼= Sk for all idempotent H-cells
in Jk. Within Jk have

X : |H| = k!.

Proof. Easy and omitted, see also [HJ20, Section 3.3]. �

Proposition 5F.3. The set of apexes for simple X -representations can be indexed
1:1 by the poset Λ = ({n, n− 1, . . . }, >), and

{simple X -representations of apex k}/ ∼= 1:1←→ LSk
/ ∼= .

Proof. By Proposition 5F.2. �

Proposition 5F.4. Let K be a simple Sk-representation, and let LK denote its
associated simple X -representation of apex Jk. The semisimple dimensions are
ssdimK(LK) ≥

(
n
k

)
, ssdimK(LK) ≥ ∑n

t=0

(
n
k

)(
n−k
2t

)
(2t − 1)!! respectively

ssdimK(LK) ≥∑n
t=0 { n

t }
(
t
k

)
.

Proof. This follows verbatim as Proposition 5B.5. �
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Example 5F.5. As before, let us illustrate the lower bound for the semisimple
dimensions:

RoBr24/K
cells increase ←

y-axis: ssdim

x-axis:
# through
strands

k ≈ 2
√
24

,

Pa24/K
cells increase ←

y-axis: ssdim

x-axis:
# through
strands

k ≈ 2
√
24

,

RoBr log10(ssdim):

»
¼¼¼½

13.2428, 13.8931, 14.2325, 14.3852, 14.4022, 14.3105,

14.1279, 13.8651, 13.5313, 13.1314, 12.671, 12.152,

11.5786, 10.9499, 10.2701, 9.53474, 8.74966, 7.90469,

7.00985, 6.0434, 5.02637, 3.90827, 2.74194, 1.38021, 0

¾
¿¿¿À ,

Pa log10(ssdim):

»
¼¼¼½

17.6493, 18.6225, 19.2572, 19.6761, 19.9277, 20.0373,

20.0198, 19.8843, 19.6367, 19.2804, 18.8176, 18.2495,

17.5764, 16.7982, 15.9143, 14.9234, 13.8234, 12.6115,

11.2832, 9.83189, 8.24761, 6.51485, 4.60773, 2.47712, 0

¾
¿¿¿À ,

where we again took the base 10 log. We have not illustrated the situation for
Ron as it is the same as for pRon with semisimple dimensions given by binomial
coefficients, cf. (3F).

Let Y denote pRon, Mon or pPan associated to their respective X .

Lemma 5F.6. The monoid X contains Y as a submonoid, by the analog of (4F.9).

Proof. Clear, see also Lemma 5A.3. �

Proposition 5F.7. Let LY
k denote the kth simple Y-representation. Let K denote

a simple Sk-representation and let LK denote its associated simple X -representation
of apex Jk. We have dimK(L

X
K) ≥ dimK(L

Y
k ).
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Proof. This follows again by observing that the planar versions embed into their
nonplanar counterparts, see Lemma 5F.6. �

Proposition 5F.8. Let char(K) � n!, including char(K) = 0. We have dimK(Lk) =
ssdimK(Lk) =

(
n
k

)
for Ron, and Ron is semisimple.

Proof. The argument is the same as in Proposition 4F.7 with the additional caveat
of the symmetric groups Sk for 0 ≤ k ≤ n appearing as idempotent H-cells which
forces the condition char(K) � n!. �

Lemma 5F.9. The monoid X is regular.

Proof. This follows as before from Lemma 3F.6 and a construction of an idempotent
for each J-cell. The latter is easy and omitted, but also well-known, see e.g. the
references in Remark 5F.1. �

Definition 5F.10. Define the k-l truncated rook monoid for k ≤ l and the kth
truncated rook-Brauer monoid respectively k truncated partition monoid by

Ro≤k,<l
n = (Ron)≥Jk

/(> Jl), RoBr≤k
n = (RoBrn)≥Jk

, Pa≤k
n = (Pan)≥Jk

.

Let X be either of the above monoids or their truncations. For Theorem 5F.11,
note that the kth truncated planar partition monoid pPa≤k

n can be defined in the
evident way.

Theorem 5F.11. Let char(K) � n!, including char(K) = 0, and let L be an arbitrary
field. We have the following lower bounds:

gapK(Ro≤k,<l
n ) ≥ gapK(pRo≤k,<l

n ),

ssgapL(Ro≤k,<l
n ) = ssgapL(pRo≤k,<l

n ), faithL(Ro≤k,<l
n ) ≥ faithL(pRo≤k,<l

n ),

ssgapL(RoBr≤k
n ) ≥

{
ssgapL(Mo≤k

n ) always,
∑n

t=0

(
n
2t

)
(2t− 1)!! if n! 0, 0 ≤ k ≤ 2

√
n,

,

faithL(RoBr≤k
n ) ≥ faithL(Mo≤k

n ),

ssgapL(Pa≤k
n ) ≥

{
ssgapL(pPa≤k

n ) always,
∑n

t=0 { n
t } if n! 0, 0 ≤ k ≤ 2

√
n,

,

faithL(Pa≤k
n ) ≥ faithL(pPa≤k

n ).

Note that the above lower bounds in the cases n ! 0, 0 ≤ k ≤ 2
√
n are bigger

than the ones coming from the embeddings. We also expect that

gapK(RoBr≤k
n ) ≥ gapK(Mo≤k

n ), gapK(Pa≤k
n ) ≥ gapK(pPa≤k

n ),

but we were not able to prove this since there might be extensions.

Proof. All lower bounds except the first follow directly by using the embedding in
Lemma 5F.6. The first uses additionally Proposition 5F.8 which also holds for the
truncation.

The equality ssgapK(Ro≤k,<l
n ) = ssgapK(pRo≤k,<l

n ) is clear by Proposition 5F.2.
For the semisimple gaps of RoBrn and Pa≤k

n one can use the same arguments as
in Theorem 5E.1. �
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Remark 5F.12. The exact value for faithL(Ro≤k,<l
n ) can be computed using [MS12b,

Theorems 15 and 17]. The methods from that paper together with [EMRT17]
may also be used to compute the faithfulness of other diagram monoids and their
truncations.

Conclusion 5F.13. As with the planar monoids, all of the symmetric monoids Ron,
Brn, RoBrn and Pan appear to have big nontrivial representations. However, it is
not clear why they should be preferable over their planar counterparts since they
are, roughly speaking, their planar version inflated by the symmetric group Sk. In
fact most of our arguments above use the planar versions to derive bounds.
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