
Letters in Mathematical Physics (2023) 113:93

https://doi.org/10.1007/s11005-023-01701-y

Automata and one-dimensional TQFTs with defects

Paul Gustafson1 ·Mee Seong Im2
· Remy Kaldawy3 ·Mikhail Khovanov3 ·

Zachary Lihn3

Received: 17 January 2023 / Revised: 13 June 2023 / Accepted: 20 June 2023 /

Published online: 5 September 2023

© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract

This paper explains how any nondeterministic automaton for a regular language L

gives rise to a one-dimensional oriented topological quantum field theory (TQFT) with

inner endpoints and zero-dimensional defects labeled by letters of the alphabet for L .

The TQFT is defined over the Boolean semiring B. Different automata for a fixed

language L produce TQFTs that differ by their values on decorated circles, while the

values on decorated intervals are described by the language L . The language L and the

TQFT associated with an automaton can be given a path integral interpretation. In this

TQFT, the state space of a one-point 0-manifold is a free module over B with the basis

of states of the automaton. Replacing a free module by a finite projective B-module

P allows to generalize automata and this type of TQFT to a structure where defects

act on open subsets of a finite topological space. Intersection of open subsets induces

a multiplication on P allowing to extend the TQFT to a TQFT for one-dimensional

foams (oriented graphs with defects modulo a suitable equivalence relation). A linear

version of these constructions is also explained, with the Boolean semiring replaced

by a commutative ring.
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1 Introduction

The punchline of this paper is that any nondeterministic finite state automaton (Q)

recognizing a regular language L gives rise to a Boolean one-dimensional topological

quantum field theory (TQFT) F(Q) with defects. The state space F(Q)(+) of a posi-

tively oriented point in this TQFT is the free (semi)module BQ on the set of states Q

of the automaton (Q) over the Boolean semiring B = {0, 1|1 + 1 = 1}. Vice versa, a

TQFT of this form, where state spaces are finite free Boolean modules, describes an

automaton.

TQFT F(Q) is a symmetric monoidal functor from the category Cob�,I of oriented

one-dimensional cobordisms with �-labeled defects and inner endpoints taking values

in the category B−fmod of free B-modules. In category Cob�,I, closed cobordisms

are disjoint unions of intervals and circles with defects. A defect is a point (a zero-

dimensional submanifold) of a one-manifold with a label from � on it.

An interval with defects defines a word ω, given by reading the defects along the

orientation of the interval. In the TQFT F(Q), an interval evaluates to 1 if and only

if ω is in the language L; otherwise, it evaluates to 0. A circle with defects defines a

circular word ω′ which evaluates to 1 if and only if there is a cycle that reads ω′ in the

automaton (Q). Numbers 0 and 1 are viewed as elements of the Boolean semiring B.

In the TQFT F(Q), a defect labeled a on an interval with two boundary points

induces an endomorphism of BQ encoded by the transition function of the automaton,

while sets of initial and accepting states determine the maps of state spaces near the

inner (not boundary) points of the automaton.
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Thus, NFA or nondeterministic finite automaton (Q) for a regular language L

gives rise to a one-dimensional Boolean TQFT with defects, where the language L is

encoded by evaluations of decorated intervals. This is explained in Sect. 3.1, with the

correspondence summarized in Proposition 3.2.

One can fix L and consider various automata (Q) for L . The corresponding TQFTs

F(Q) have the same evaluation on intervals but usually differ in their evaluation of

circles with defects. Each such TQFT defines a circular language, a B-valued function

on the set �∗ of words modulo the rotation equivalence relation. In Sect. 3.2, we show

that, for a fixed L , many circular languages are possible and suggest the open problem

to determine all possible circular languages for automata that describe a fixed regular

language L .

To determine whether a word ω is accepted by an automaton (Q) one can sum (in

the Boolean semiring) over all maps from the graph I (ω) which is a chain with edges

labeled by letters in ω to (Q) taking vertices to vertices and edges to edges. The map

evaluates to 1 ∈ B if the letters of all edges match and the initial and terminal vertices

of I (ω) go to vertices in the corresponding subsets of states of (Q). This expression

is reminiscent of the path integral (sum over all maps) and is explained in Sect. 3.3.

Earlier, in Sect. 2, we discuss the linear version of this construction and classify

TQFT functors from Cob�,I to the category R−mod of modules over a commutative

ring R. Isomorphism classes of these functors are in a bijection with finitely generated

projective R-modules P with a choice of a vector, a covector, and endomorphisms of

P , one for each element of �. Section 2 can be skipped to go directly to Sect. 3 that

relates automata and 1D TQFT over the Boolean semiring.

Section 2 is closely related to [12, 15, 19] that consider field-valued universal

construction for the category Cob�,I. Universal construction gives rise to topological

theories for the category Cob�,I, where one starts with an evaluation of closed mor-

phisms (endomorphisms of the unit object 1 of the category of one-cobordisms, which

is the empty 0-manifold) and builds state spaces for 0-manifolds from the evaluation.

Topological theories are weaker than TQFTs and can be called lax TQFTs. In a TQFT

F, the state space of the disjoint union is isomorphic to the direct product of state

spaces for the individual components:

F(N0 � N1) ∼= F(N0) ⊗ F(N1).

In a topological theory, there are only maps

F(N0) ⊗ F(N1) −→ F(N0 � N1),

injective for a theory defined over a field, which are rarely isomorphisms. Relation

between the present paper and [13] is explained in Sect. 3.4.

A general one-dimensional TQFT with defects, as above, assign a projective, not

necessarily free, B-module to a + point, see Sect. 4.1. In Sect. 4.3, we explain how the

correspondence

automata ⇐⇒ TQFT

extends to this setup. One replaces the free module BQ on the set of states of an

automaton (Q) by a finite projective B-module P . This module is isomorphic to the
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module U(X) of open sets of a finite topological space X , with addition given by

the union of sets. Now, letters a ∈ � act on U(X) by taking open sets to open sets

respecting the union operation, and there are an initial open set and a functional which

is analogous to the set Qt of accepting states. Such a structure may be called quasi-

automaton or T-automaton (“T" for topological space). When topological space X is

discrete, one recovers the familiar notion of nondeterministic automaton.

A B-semimodule of the form U(X) for a finite topological space X is a distributive

lattice, with the join operator U ∨ V := U ∪ V and meet operation U ∧ V := U ∩ V .

Distributivity of the meet operation over the join turns B-module U(X) into a com-

mutative semiring with the multiplication ∧. This allows to extend TQFT associated

with U(X) to a graph TQFT where trivalent merge and split vertices are taken to the

multiplication and its dual comultiplication on U(X), as explained in Sect. 4.2. These

graphs satisfy associativity and coassociativity relations, and the TQFT can be nat-

urally viewed as a TQFT for one-foams. Two-dimensional foams appear throughout

link homology [14, 17, 21–23], and here one seems to encounter their one-dimensional

counterpart. It is then straightforward to add defects to one-foam TQFTs, combining

the two extensions: to quasi-automata and to one-foams.

Remark 3.15 in Sect. 3.3 explains how some of the constructions in the present

paper can be generalized from a free category on one object and a set � of generating

morphisms to an arbitrary small category.

There are many interesting open problems here, including finding higher-

dimensional analogues of the correspondence

Finite-state Automata ⇐⇒ Boolean 1D TQFT with defects.

It might also be interesting to compare the present construction with G. ’t Hooft’s

cellular automata interpretation of quantum mechanics [25], see also a brief discussion

of defect diagrammatics for quantum mechanics in Sect. 2.2.

2 One-dimensional TQFTs with inner endpoints and defects over a
commutative ring

2.1 One-dimensional TQFT and finitely generated projective modules

Let R be a commutative ring. The category R−mod of R-modules is symmetric

monoidal with respect to the tensor product M ⊗R N . A one-dimensional TQFT over

R is a symmetric monoidal functor

F : Cob −→ R−mod (2.1)

from the category Cob of oriented one-dimensional cobordisms to R−mod.

Category Cob has generating objects + and −, which are a positively and a

negatively oriented point, respectively. The cup and cap cobordisms, together with

permutation cobordisms, are generating morphisms, see Fig. 1.

A one-dimensional TQFT F, as above, takes + and − to R-modules M := F(+)

and N := F(−), an arbitrary finite sign sequence to the corresponding tensor products
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Fig. 1 Top left: the cap and cup cobordisms. The cap and cup cobordisms for the opposite orientation are

obtained by composing these two with the permutation cobordisms, see top right for the cup cobordism for

the opposite orientation. Bottom row shows isotopy relations on cup and cap cobordisms

of M’s and N ’s, and suitably oriented cup and cap cobordisms to the maps ∪ and ∩ in

(2.2). Thus, F amounts to choosing two R-modules M ,N together with the cup and

cap maps

∪ : R −→ M ⊗ N , ∩ : N ⊗ M −→ R (2.2)

such that

(idM ⊗ ∩) ◦ (∪ ⊗ idM ) = idM , (∩ ⊗ idN ) ◦ (idN ⊗ ∪) = idN , (2.3)

see Fig. 1 bottom left and right, respectively. The above relations are the isotopy

relations on these maps.

We can write

∪ (1) =

k∑

i=1

mi ⊗ ni , mi ∈ M, ni ∈ N . (2.4)

From the first relation in (2.3),

m =

k∑

i=1

∩(ni ⊗ m) mi , m ∈ M, (2.5)

so that M is generated by m1, . . . , mk . Let p : Rk −→ M be the surjective R-

module map taking standard generators of Rk to m1, . . . , mk . Each ni ∈ N defines an

R-module map

ιi : M −→ R, ιi (m) = ∩(ni ⊗ m),
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and together they give a map

ι = (ι1, . . . , ιk)
T : M −→ Rk .

The composition p ◦ ι = idM , due to the formula (2.5), where T is the transpose of

the k-tuple. Consequently, maps p and ι realize M as a direct summand of the free

module Rk . Consequently, M is a finitely generated projective module, and so is N .

The dual module M∗ = HomR(M, R) is also finitely generated projective, being

a direct summand of (Rk)∗ ∼= Rk . There is a natural evaluation map

∩M : M∗ ⊗R M −→ R, f ⊗ m �→ f (m) ∈ R. (2.6)

It is now natural to compare ∩M to the map ∩ in (2.2).

There is an R-module map ψ : N −→ M∗ since each n ∈ N gives the element

ψ(n) ∈ M∗ satisfying ψ(n)(m) = ∩(n⊗m). Similarly, there is a map ψ ′ : M∗ −→ N

such that

ψ ′(m∗) =

k∑

i=1

m∗(mi )ni .

The composition ψ ′ψ takes n ∈ N to

k∑

i=1

∩(n ⊗ mi )ni = n,

where the equality follows from the second relation in (2.3). Consequently, ψ ′ψ =

idN . The other composition ψψ ′ takes m∗ to

ψψ ′(m∗) =

k∑

i=1

m∗(mi )ψ(ni ),

which on m′ ∈ M evaluates to

k∑

i=1

m∗(mi ) ∩ (ni ⊗ m′) = m∗

(
k∑

i=1

∩(ni ⊗ m′)mi

)
= m∗(m′)

due to (2.5). Thus, ψψ ′ = idM and ψ,ψ ′ are mutually inverse isomorphisms between

N and M∗. Replacing N by M∗ in (2.2) via these isomorphisms produces cup and cap

maps

∪M : R −→ M ⊗ M∗, ∩M : M∗ ⊗ M −→ R, (2.7)
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the coevaluation and evaluation maps, respectively. The map ∩M is given by (2.6),

while we can write the coevaluation map ∪M by fixing a realization of a finitely

generated projective module M as a direct summand of free module Rk via maps

M
ι

−→ Rk p
−→ M, p ι = idM , (2.8)

and denoting the standard basis of Rk by (v1, . . . , vk). The coevaluation map for Rk

is

coevRk : 1 −→

k∑

i=1

vk ⊗ vk,

where (v1, . . . , vk) is the dual basis of (Rk)∗ ∼= Rk . The coevaluation map for M is

given by composing the above map with p and ι∗:

coevM : 1 −→

k∑

i=1

p(vk) ⊗ ι∗(vk), ι∗ : (Rk)∗ −→ M∗. (2.9)

The coevaluation map ∪M given by (2.9) does not depend on the choice of factorization

(2.8) since it is uniquely determined by the map ∩M in (2.6) and the relations

(idM ⊗ ∩M ) ◦ (∪M ⊗ idM ) = idM , (∩M ⊗ idM∗) ◦ (idM∗ ⊗ ∪M ) = idM∗ .

(2.10)

Thus, the coevaluation map is computed by writing M as a direct summand of Rk

for some k and identifying M∗ with the corresponding summand of (Rk)∗ ∼= Rk .

Projection

p ⊗ ι∗ : Rk ⊗ (Rk)∗ −→ M ⊗ M∗

produces the coevaluation map for M from that of Rk . We obtain the following well-

known observation.

Proposition 2.1 Let R be a commutative ring. One-dimensional oriented TQFTs tak-

ing values in R−mod are classified by finitely generated projective R-modules P.

Such a TQFT associates P to a positively oriented point, P∗ to a negatively oriented

point, and evaluation and coevaluation maps ∩P ,∪P in Eqs. (2.6) and (2.9) with

M = P to the cup and cap cobordisms.

A related observation is that the tensor product endofunctor V �−→ M ⊗ V in the

category R−mod has a left adjoint if and only if M is a finitely generated projective

R-module, see the answer by Yuan [5].

More generally, given a symmetric monoidal category C, symmetric monoidal func-

tors F : Cob −→ C correspond to pairs M, N of objects of C such that
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• the endofunctor of C of tensoring with M is left adjoint to that of tensoring with

N ,

• a choice of the adjointness morphisms is made.

This is the one-dimensional case of the Baez–Dolan cobordism hypothesis, see [2, 9].

Such a functor F selects a rigid symmetric monoidal subcategory CF in C, namely

the full monoidal subcategory generated by objects M and N (so that objects of CF

are arbitrary tensor products of M and N ). The category C itself may not be rigid, as

the above example demonstrates. (R−mod, restricted to finitely generated modules,

is rigid if and only if R is semisimple.)

Note that the circle in this theory evaluates to the Hattori–Stallings (HS) rank

rk(P) :=

k∑

i=1

m∗
i (mi ) ∈ R (2.11)

of P where

∪P (1) =

k∑

i=1

mi ⊗ m∗
i ∈ P ⊗ P∗ (2.12)

is the image of 1 under the cup cobordism in Fig. 1, also see Eq. (2.4). When P ∼= Rk is

a free module, its HS rank is k ∈ R. If P = Rn · e, for some idempotent e ∈ Matn(R),

then rk(P) = tr(e).

Remark 2.2 Replace R−mod by the category C
b(R−pmod) of bounded complexes

of projective R-modules up to chain homotopies. Then, any bounded complex

P = (. . . −→ Pi
di

−→ Pi+1 −→ . . .)

such that all terms of P are finitely generated gives rise to a one-dimensional oriented

TQFT with values in C
b(R−pmod), with F(+) = P and F(−) = P∗, the termwise

dual of P with the induced differential. Complex P∗ has the module P∗
i in degree −i

and the differential d∗ with d∗
−i : P∗

i −→ P∗
i−1 being the dual of di−1.

Generalizing to commutative semirings. The arguments leading to Proposition 2.1

do not use subtraction in the commutative ring R and extend immediately to any

commutative semiring R. The latter has addition and multiplication operations and

elements 0, 1, satisfying the usual commutativity, associativity, distributivity axioms,

but does not, in general, have subtraction. It is straightforward to define the category

R−mod of R-modules (also called R-semimodules). We say that an R-module P is

finitely generated projective if it is a retract of a finite rank free module, so that maps

ι, p below exist:

P
ι

−→ Rk p
−→ P, p ι = idP . (2.13)
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Unlike for projective modules over rings, over a semiring a projective module can

rarely be completed to a free module by a direct sum with a projective; that is, given

in (2.13), equation P ⊕ Q ∼= Rn is rarely solvable.

Category R−mod is symmetric monoidal under the standard tensor product oper-

ation. The tensor product ⊗ of R-modules is especially inconvenient to work with

when R is not a ring, and M ⊗ N is easier to understand when one of the modules is

projective. Proposition 2.1 extends to TQFTs over commutative semirings:

Proposition 2.3 Let R be a commutative semiring. Isomorphism classes of one-

dimensional oriented TQFTs taking values in R−mod are in a bijection with

isomorphism classes of finitely generated projective R-modules P. Such a TQFT asso-

ciates P to a positively oriented point, P∗ := HomR(P, R) to a negatively oriented

point, and evaluation and coevaluation maps ∩P ,∪P in Eqs. (2.6) and (2.9) with

M = P to the cup and cap cobordisms.

The notion of the Hattori–Stallings rank rk(P) extends to f.g. projective modules

over a commutative semiring, via (2.11).

2.2 Floating endpoints, defects and networks

Half-intervals and floating endpoints. To slightly enrich the category Cob of one-

cobordisms, one can allow one-manifolds to have some endpoints “inside” the

cobordism rather than on the (outer) boundary. Such inside points may also be called

floating endpoints of a cobordism. This leads to half-intervals, cobordisms between

the empty 0-manifold and a single point with the positive or the negative orientation,

as shown in Fig. 2. Half-intervals appear in [13, 15], and, in a related context, in [18].

Composing two half-intervals results in a floating interval, an oriented interval with

both endpoints inside the cobordism, see Fig. 3. A floating interval is an endomorphism

of the empty 0-manifold ∅0. It is clear how to define the corresponding category of

oriented 1-cobordisms with inner endpoints. We denote this category by CobI. It has

the same objects as Cob. It is rigid symmetric monoidal, just like Cob, and contains

the latter as a subcategory.

A TQFT for the category CobI is a symmetric monoidal functor

F : CobI −→ R−mod. (2.14)

It is determined by the same data as in Proposition 2.1 plus a choice of an element

v0 ∈ P , giving an R-module map R −→ P , and a R-module map ṽ0 : P −→ R.

Fig. 2 Left: four types of half-intervals. Right: composing two half-intervals results in a floating interval,

with both endpoints inner
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Fig. 3 Left: two half-intervals and associated maps. Right: evaluation of an interval

Fig. 4 To a labeled dot on an interval associate an endomorphism of P and the dual endomorphism of P∗

for the oppositely oriented interval

Fig. 5 Map mω is on the left. Evaluation of ω-decorated circle is on the right

Fig. 6 A morphism from oriented 1-manifold (+ − −+) to (+ − −) in category Cob�,I

These maps are associated with the two half-intervals that bound a + boundary point,

see Fig. 3. The maps for the other two half-intervals are obtained by dualizing these

maps.

A floating interval evaluates to ṽ0(v0) ∈ R. A circle evaluates to rk(P), as before,

see (2.11).

Defects. Alternatively, we can extend the category Cob by adding defect points

labeled by elements of a set �, resulting in a category Cob� . To extend a functor

F : Cob −→ R−mod to a functor F : Cob� −→ R−mod (using the same notation

for both functors), we pick an endomorphism ma : P −→ P for each a ∈ �. To a

defect point labeled a on an upward-oriented interval, we associate the map ma and

to a defect point labeled a on a downward-oriented interval associate the dual map

m∗
a : P∗ −→ P∗, see Fig. 4.

Now, an upward-oriented interval decorated by a word ω = a1 · · · an , ai ∈ �, goes

to the map mω = ma1 · · · man : P −→ P under the functor F, see Fig. 5. A circle

decorated by ω evaluates to trP (mω), the trace of operator mω on P .

Finally, it is easy to combine defects with endpoints. This leads to the category

Cob�,I of oriented one-cobordisms with �-defects and inner endpoints. Note that
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Fig. 7 Evaluation of a floating ω-decorated interval (both endpoints are inner)

defects are placed away from the endpoints. Figure 6 shows an example of a morphism

in this category.

There is a commutative square of faithful inclusions of categories, where the inclu-

sions are identities on objects. In all four categories, the objects are sign sequences.

Cob� −−−−→ Cob�,I�⏐⏐
�⏐⏐

Cob −−−−→ CobI

(2.15)

The functor

F : Cob�,I −→ R−mod (2.16)

takes half-intervals to maps given by an element v0 ∈ P and a module map ṽ0 ∈ P∗

(same as for the functor in (2.14)) and an upward-oriented interval decorated by a to

ma , as in Fig. 4. A floating interval with a word ω on it evaluates to ṽ0(mωv0), see

Fig. 7.

Remark 2.4 If R = k is a field, the above choices are further simplified. That is,

P = V ∼= Rn is a finite-dimensional k-vector space, v0 ∈ V is a vector and ṽ0 ∈ V ∗

is a covector. Maps ma : V −→ V are linear operators on V . The rank rk(V ) = n ∈ k.

Commutative semirings. One can replace the commutative ring R by a commu-

tative semiring R and work with the category R−mod of (semi)modules over R.

Propositions 2.1 and 2.3 can then be extended as follows.

Proposition 2.5 Let R be a commutative semiring. One-dimensional oriented TQFTs

with inner points and �-defects taking values in R−mod, that is, symmetric monoidal

functors

F : Cob�,I −→ R−mod,

are classified by finitely generated projective R-modules P equipped with a vector

v0 ∈ P, a covector ṽ0 : P −→ R, and endomorphisms ma ∈ EndR(P), a ∈ �.

Functor F associates P to a positively oriented point, P∗ to a negatively oriented

point, evaluation and coevaluation maps ∩P ,∪P in Eqs. (2.6) and (2.9) with M = P

to the cup and cap cobordisms, map R −→ P, 1 �→ v0 and covector ṽ0 to half-interval

cobordisms and the map ma to a dot labeled a on the upward-oriented interval.
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Fig. 8 Vacuum expectation values in quantum mechanics, see [9, Figure 6]

Fig. 9 Left: Interval diagram for a decorated one-dimensional TQFT with defects and time-like parameters

added. Right: A circle diagram with these decorations

Symmetric monoidal functors from the other two categories Cob�,CobI in (2.15)

to R−mod are classified similarly.

Quantum mechanics and one-dimensional TQFTs with defects. Quantum mechan-

ics can be interpreted as a one-dimensional Quantum Field Theory, see, e.g., [3, 9, 24],

[11, Chapter 10]. Part of the structure of quantum mechanics is a separable Hilbert

space H, the ground state � ∈ H, a collection of self-adjoint operators {O} and the

Hamiltonian, which is a self-adjoint operator H : H −→ H giving rise to unitary

evolution operators Ut = exp(−i tH/�). Operators {O} and H are the observables of

the system.

Information about the system is encoded in (vacuum) expectation values

〈�, Utn OnUtn−1 · · · Ut1O1Ut0�〉, (2.17)

see Fig. 8 (also see [9, Figure 6]), where the state � evolves for times t0, t1, . . . , tn and

in between acted upon by operators O1, . . . ,On . At the end, the inner product with �

is computed.

For a finite-dimensional Hilbert space, this setup is very close to the one discussed

above, see Fig. 7 in particular. A parameter analogous to time can be added there by

picking a commutative group or monoid G with a homomorphism φ : G −→ GL(P)

into the group of automorphisms of P . Elements g of G now play the role of time

t ∈ R, and the analogue of time evolution in Fig. 8 is shown in Fig. 9 on the left, with

gi ∈ G.

The diagram in Fig. 9 (left) evaluates to

ṽ0(φ(g0)ma1φ(g1)ma2 · · · man φ(gn)v0).

Elements of G can be inserted into a circle with defects as well, decorating inter-

vals between defects also. The circle then evaluates to the trace of the operator

φ(gn)ma1φ(g1) · · · φ(gn−1)man on P , see Fig. 9 (right).

The bigger category where intervals between defects are labeled by elements of G

can be denoted Cob�,I,G , and the above choices give a functor from this category to
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Fig. 10 From left to right: a trivalent vertex for an intertwiner P1 ⊗ P2 −→ P3, a valency two vertex is

an intertwiner between two modules, a vector vi in P and a covector v j : P −→ R, a closed network of

intertwiners

R−mod. Category Cob�,I is a subcategory of Cob�,I,G , with morphisms obtained by

specializing to decorations gi = 1 for all intervals.

Remark 2.6 For a commutative ring or semiring R, one-dimensional defect TQFTs

associated with projective R-modules P with additional data as above can be unified

into an oriented graph TQFT, see Fig. 10. Vertices of a graph can be decorated by

intertwiners between tensor products of projective modules, one for each edge of the

graph. Edges of a graph will carry defects, as above. For a given finitely generated

projective module P , one can allow more than one type of endpoints by picking a set

of elements {vi }, vi ∈ P , instead of v0 and labeling the “in” endpoints of P-intervals

by i , and likewise for the “out” endpoints of P-intervals. In particular, vertices of

valency 2 then correspond to intertwiners between projective modules, and defects of

the original form correspond to endomorphisms of projective modules.

3 Finite-state automata and one-dimensional TQFTs over the
Boolean semiring

3.1 A one-dimensional TQFT from a nondeterministic finite automaton

Regular languages and automata. Given a finite set � of letters, by a language or

interval language we mean a subset L ⊂ �∗ of the free monoid on �. A language

is called regular if it is accepted by a finite-state automaton, equivalently, if it can be

described by a regular expression [7, 8, 16].

Suppose L I ⊂ �∗ is a regular language and (Q, δ, Q in, Qt) is a nondeterministic

finite automaton (NFA) accepting L I. Here, Q is a finite set of states, δ : Q × � −→

P(Q) is the transition function (P(Q) is the powerset of Q), and Q in, Qt ⊂ Q

are the subsets of initial, respectively, accepting, states. We denote (Q, δ, Q in, Qt) by

(Q), for short. It can be thought of as a decorated oriented graph, denoted 	(Q) or

	(Q), with the set of vertices Q, a directed edge from each state q to each q ′ ∈ δ(q, a)

marked by a ∈ �, and subsets Q in, Qt of distinguished vertices.

A word ω ∈ L I if and only if there is a path in 	(Q) from some initial to some

accepting state where consequent letters a1, . . . , an in the path read ω = a1 · · · an .

B-modules. Let B = {0, 1|1 + 1 = 1} be the Boolean semiring on two elements.

A B-module M is an abelian idempotent monoid: x + x = x for any x ∈ M ,

and the unit element is denoted 0, 0 + x = x . Such M comes with a partial order

x f y if and only if x + y = y making M into a sup-semilattice with 0, where

x ∨ y := x + y. Morphisms in the category B−mod of B-modules take 0 to 0
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and respect addition. Finite free B-module is isomorphic to B
n , the column module

with elements (x1, . . . , xn)T , xi ∈ B, with termwise addition and multiplication by

elements of B. Morphisms B
m −→ B

n are classified by n ×m Boolean matrices, with

the usual addition and product rules.

For further information and references on Boolean (semi)modules, we refer to [13,

Section 3].

Boolean linear algebra from an automaton. To automaton (Q) associate the free

B-module BQ with the basis Q and consider the dual free module (BQ)∗ ∼= BQ∗,

where set Q∗ consists of elements q∗, q ∈ Q. The bilinear pairing between these two

free B-modules is given by q∗(q ′) = δq,q ′ .

Transition function δ describes a right action of the free monoid �∗ on BQ, with

q a =
∑

q ′∈δ(q,a)

q ′. (3.1)

The set Q in of initial states gives the initial vector
∑

q∈Qin
q, also denoted Q in.

The set Qt of accepting states describes a B-linear map

Q∗
t : BQ −→ B, Q∗

t (q) =

{
1 if q ∈ Qt,

0 otherwise.
(3.2)

Any word ω ∈ �∗ can be applied letter by letter to the initial state Q in ∈ BQ and

then evaluated via Q∗
t , resulting in a map

αI,(Q) : �∗ −→ B, ω �−→ Q∗
t (Q inω), ω ∈ �∗.

A word ω ∈ L I if and only if αI,(Q)(ω) := Q∗
t (Q inω) = 1, which is a way to

rephrase that automaton (Q) describes the regular language L I:

L I = α−1
I,(Q)

(1) ⊂ �∗.

We may also write αI in place of αI,(Q), for short, if the automaton (Q) is fixed.

The action of �∗ on BQ can be described via Boolean Q × Q matrices, that is,

matrices with coefficients in B with rows and columns enumerated by states q ∈ Q

of (Q). A matrix M ∈ MatQ(B) acts by right multiplication on B-valued row vectors,

which constitute a free B-module isomorphic to BQ. To a ∈ � associate the matrix

Ma with the coefficient Ma,q,q ′ = 1 if and only if q ′ ∈ δ(q, a).

The vector Q in corresponds to a Boolean row matrix with 1 in positions q ∈ Q in

and the covector Q∗
t to a column matrix with 1 in positions q ∈ Qt.

A one-dimensional TQFT F(Q). We build a one-dimensional TQFT F(Q) with

defects and inner endpoints associated with (Q) by assigning BQ to a positively

oriented point + and the dual module BQ∗ to a negatively oriented point −. We call

these B-modules the state spaces of + and −, respectively, and write

F(Q)(+) := BQ, F(Q)(−) := BQ∗. (3.3)
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Fig. 11 Action of �∗ on BQ and BQ∗, with word ω = a1 · · · an

Fig. 12 Coevaluation and evaluation morphisms associated with cup and cap cobordisms

Remark 3.1 Our sign convention is opposite to that of [13] but matches the notations

in Sect. 2.1. We use the right action of �∗ on BQ above for a better match with the

automata theory literature, although switching to the left action would be a better

match with the literature from the mathematics side.

We may write F instead of F(Q) if an automaton (Q) is fixed. Our TQFT will be a

symmetric monoidal functor

F(Q) : Cob�,I −→ B−mod (3.4)

from the category of oriented one-dimensional cobordisms with defects and inner

endpoints to the category of B-modules. In fact, objects in the image of F(Q) will be

finite free B-modules.

To a sign sequence ε = (ε1, . . . , εk), εi ∈ {+,−}, we assign the state space

F(Q)(ε) := F(Q)(ε1) ⊗ · · · ⊗ F(Q)(εk), (3.5)

which is a tensor product of free B-modules BQ and BQ∗. In particular, F(Q)(ε) is a

free B-module of rank |Q|k .

To a point labeled a ∈ � on an upward-oriented vertical line, the functor F(Q)

assigns the operator ma : BQ −→ BQ of multiplication by a (right action in (3.1)),

see Fig. 11 on the left. A sequence of points labeled a1, . . . , an on a upward line

describes a word ω = a1 · · · an which, upon applying F(Q), acts by the composition

mω of these operators, mω(q) = qω = qa1 · · · an , see Fig. 11 in the middle.

To a point labeled a on a downward-oriented vertical line, we assign the dual

operator m∗
a : BQ∗ −→ BQ∗. Writing ma via the Boolean square matrix Ma in the

unique basis Q of BQ, the dual operator m∗
a is given by the transposed matrix MT

a in

the dual basis Q∗ of BQ∗.
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Fig. 13 Left: maps assigned to the half-intervals with a + boundary points. Right: defining maps for

half-intervals with a − boundary point

To a cup, respectively, a cap, cobordism, see Fig. 12, the functor F(Q) associates

the coevaluation map, respectively, the evaluation map

coev : B −→ BQ ⊗ BQ∗, 1 �−→
∑

q∈Q

q ⊗ q∗, (3.6)

ev : BQ∗ ⊗ BQ −→ B, q∗
1 ⊗ q2 �−→ δq1,q2 , (3.7)

These maps are compatible with maps ma and m∗
a induced by a dot labeled a (see

Fig. 14 bottom row), and they satisfy the isotopy relations in Fig. 14 in top right, middle

and bottom rows.

A half-interval is a connected component of a one-cobordism which has one (outer)

boundary and one inner endpoint, see Sect. 2.2.

To a half-interval ending in + at the top boundary, we assign Q in ∈ BQ, thinking

of it as describing a map B −→ BQ which takes 1 to Q in. To a half-interval ending

in + at the bottom, we assign B-linear map Q∗
t in (3.2). Figure 13 on the left explains

these assignments. The other two half-intervals (those with a − boundary endpoint) are

given by composing the intervals with a + endpoint with a cup or a cap, respectively,

see Fig. 13 on the right. The map for the half-interval terminating with − at the top,

respectively, at the bottom, is the dual Qt : B −→ BQ∗ of the trace map, Qt(1) =∑
q∈Qt

q, respectively, the dual Q∗
in : BQ∗ −→ B of the unit map.

The functor F(Q) takes the transposition cobordism given by a crossing with various

orientations to the transposition isomorphism V ⊗W −→ W⊗V of the tensor products

of B-modules V , W ∈ {BQ, BQ∗}. The following proposition is straightforward to

check.

Proposition 3.2 (1) A nondeterministic automaton (Q) gives rise to a symmetric

monoidal functor

F(Q) : Cob�,I −→ B−fmod

from Cob�,I to the category of free B-modules.

(2) Isomorphism classes of such functors are in a bijection with isomorphism classes

of nondeterministic automata.

We call automata (Q1) and (Q2) over the same set of letters � isomorphic if there

is a bijection between their states that converts the transition function, initial and

accepting states for one automaton into the transition function, initial and accepting

states for the other automaton. Such a bijection Q1
∼= Q2 induces an isomorphism of
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state spaces BQ1
∼= BQ2 and an isomorphism of their duals BQ∗

1
∼= BQ∗

2. Action of

a ∈ � intertwines these isomorphisms, making the diagrams below commute

BQ1

∼=
−−−−→ BQ2

ma

�⏐⏐ ma

�⏐⏐

BQ1

∼=
−−−−→ BQ2

BQ∗
1

∼=
−−−−→ BQ∗

2

m∗
a

�⏐⏐ m∗
a

�⏐⏐

BQ∗
1

∼=
−−−−→ BQ∗

2

(3.8)

The isomorphisms intertwine cup and cap duality maps in the two theories as well as

the maps for the initial and accepting states, resulting in an isomorphism of the two

TQFTs. Vice versa, a TQFT F as above assigns a free finitely generated B-module

F(+) to a positive oriented point +. Free module F(+) ∼= B
n has a unique basis

Q ⊂ F(+), up to permutation of its terms. Writing down the action of a ∈ � in this

basis gives the transition function of a nondeterministic automaton with Q as the set

of states, and half-interval cobordisms in Fig. 13 define subsets of Q of initial and

accepting states.

In (3.3), one can replace B−fmod by the smaller full subcategory of finite free

B-modules. Functor F(Q) intertwines monoidal structures on the two categories due

to (3.5) and intertwines rigid and symmetric structures of the two categories as well.

�

Evaluation of intervals. One can now arbitrary compose these generating cobor-

disms. By a closed cobordism, we mean a cobordism from the empty sequence ∅0

to itself. Such a cobordism is a disjoint union of oriented intervals and circles with

defects (Fig. 14).

An interval with defects is determined by the word ω read along it in the orientation

direction and evaluates to αI(Q inω) ∈ B, see Fig. 15. The evaluation is 1 if ω ∈ L I

and 0 otherwise. Isotopy relations in Fig. 14 ensure that the evaluation of the interval

does not depend on its presentation as a monoidal concatenation of basis morphisms.

An interval without defects evaluates to αI(Q in) = αI,(Q)(∅) ∈ B, where ∅ ∈ �∗

is the empty word. We will write

αI,(Q)(ω) := αI(Q inω), αI,(Q) : �∗ −→ B (3.9)

for the interval evaluation of words ω ∈ �∗. Evaluation αI,(Q)(ω) = 1 if and only if

ω is in the language L I accepted by the automaton (Q).

Our notations contain several versions of the empty set:

• ∅ ∈ �∗ is the empty word and the identity of the monoid �∗.

• ∅0 is the empty 0-manifold and the unit (identity) object 1 of various monoidal

categories of 1-cobordisms.

• ∅1 is the empty 1-manifold, which is the identity morphism of the identity object

1 of the category of 1-cobordisms.

Circular and strongly circular languages. Denote by α◦,(Q)(ω) the evaluation of

an oriented circle with the circular word ω written on it.
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Fig. 14 Top left: the cap and cup cobordisms with the opposite orientations. The cap and cup cobordisms for

the opposite orientation are obtained by composing the original cup and cap in Fig. 12 with the transposition

cobordisms, see top right for the cup cobordism for the opposite orientation. Middle row shows isotopy

relations on cup and cap cobordisms and the bottom row–compatibility with the dot maps (isotopies of dots

across local maxima and minima)

Fig. 15 Left: a decorated interval and its evaluation. Right: an interval with no defects

Fig. 16 Evaluation of an ω-decorated circle, ω = a1 · · · an

We view a circular word as an equivalence class of words in �∗ modulo the equiv-

alence relation ω1ω2 ∼ ω2ω1 for ω1, ω2 ∈ �∗ and denote the equivalence classes

by �◦ := �∗/ ∼. Evaluation α◦,(Q)(ω) does not depend on the presentation of a

ω-decorated circle as a concatenation of basis morphisms, for letters in ω. The corre-

sponding evaluation map

α◦,(Q) : �◦ −→ B

goes from the set of circular words to B.

Put a circle with a defect circular word ω = a1 · · · an in a standard position as

shown in Fig. 16.
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The evaluation of ω is then

α◦,(Q)(ω) = ev ◦ (mω ⊗ id+) ◦ coev =
∑

q∈Q

q∗(qω). (3.10)

A word ω evaluates to 1 via α◦,(Q) if and only if for some state q ∈ Q there is a path

ω in the decorated graph (Q) that starts and ends at q. Evaluation α◦,(Q) defines a

circular language L◦,(Q) ⊂ �◦.

We say that a language L ′ ⊂ �∗ is

• circular if ω1ω2 ∈ L ′ if and only if ω2ω1 ∈ L ′ for any ω1ω2 ∈ �∗,

• strongly circular if it is circular and ω ∈ L ′ implies that ωn ∈ L ′ for all n g 0,

• cyclic if it is circular and ω ∈ L ′ ⇔ ωn ∈ L ′ for any n g 2, see [4, 6],

• a trace or loop language if it consists of words that are loops in some automaton

(Q).

Setting n = 0 above, we see that a strongly circular language is either the empty

language ∅L or it contains the empty word, since ∅ = ω0 for any ω ∈ �∗. The

language {an} is an example of a circular but not a strongly circular language. The

notion of a cyclic language is similar but different from that of a strongly circular

language. A trace language is strongly circular, see below.

Likewise, an evaluation α : �∗ −→ B is called

• circular if α(ω1ω2) = α(ω2ω1), for all ω1ω2 ∈ �∗,

• strongly circular if it is circular and α(ωn) = α(ω) for any word ω ∈ �∗ and

n g 0.

Proposition 3.3 For any automaton (Q), the trace language L◦,(Q) is a strongly cir-

cular regular language. It depends only on the transition function in (Q) and not on

the sets of initial and accepting states Q in, Qt.

Proof It is immediate that circular evaluation α◦,Q and the associated circular language

L◦,Q are described by a finite system via (3.10) and are a regular circular language. In

more details, the language L◦,(Q) picks out circular words for which there is a cycle

in (Q). For each state q ∈ Q, we can form the automaton (Q)q with the states and

transition function given by (Q) and q being the only initial and accepting state. Then,

L◦,(Q) is the language of the automaton �q∈Q(Q)q , the disjoint union of automata

(Q)q over all states q in Q.

The empty word is in L◦,(Q) since

α◦,(Q)(∅) =
∑

q∈Q

q∗(q) =
∑

q∈Q

1 = 1 ∈ B.

A word ω ∈ L◦,(Q) if and only if q∗(qω) = 1 for some state q, which means that

there is a path ω from q to itself. (In general, there may be several paths ω starting at

q; the circular evaluation of ω is 1 if and only if there is a path that comes back to q.)

The n-th power of this path will go from q to q as well, so that ωn ∈ L◦,(Q) for any

n g 0, and the language L◦,(Q) is strongly circular. ��
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Fig. 17 Left: an endpoint decorated by q. Middle: decomposition of the identity endomorphism of +. Right:

action of a on an endpoint labeled q

We see that an automaton (Q) defines a pair of evaluations

α(Q) := (αI,(Q), α◦,(Q)), (3.11)

the second of which is strongly circular. We may call these the interval and the circular

or the trace evaluations of (Q), respectively. These evaluations give rise to a pair of

regular languages

L(Q) := (L I,(Q), L◦,(Q)), (3.12)

with L◦,(Q) strongly circular. We can call these languages the interval and the trace

languages of (Q), respectively. The language L◦,(Q) may also be called the loop

language or the circular language of the automaton (Q).

Note that for the empty automaton (∅) with no states both languages L I,(∅) and

L◦,(∅) are empty (contain no words), justifying our inclusion of the empty language

into the set of strongly circular languages. For any nonempty automaton (Q), its

trace language L◦,(Q) contains the empty word ∅0, while its (interval) language L I,(Q)

contains the empty word if and only if Q in ∩ Qt is nonempty.

Decomposition of the identity. Any TQFT allows for a so-called decomposition of

the identity. In the TQFT for the automaton (Q), one can introduce endpoints labeled

by q and q∗, over all states q ∈ Q, depending on the orientation of the interval near

the endpoint, see Fig. 17. One can then decompose an arc as the sum over pairs of

half-intervals labeled q and q∗, over all q ∈ Q, see Fig. 17 on the right. Another skein

relation is shown in that figure as well.

3.2 Trace languages of automata with a given interval language

Let us fix a regular language L and consider an automaton (Q) with the language or

interval language L:

L = L I,(Q).

To (Q), there is also associated a strongly circular language L◦,(Q), the trace language

of (Q). We explain here that there is a large variety of possible trace languages for

automata with the fixed interval language L .
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Fig. 18 Two-state automaton (Q′) with Q′′ = {q0} ⊂ Q′ = {q0, q1} and language L ′′ in (3.13) of circular

words that pass through q0

Pick an automaton (Q′) with no initial or accepting states, so that L I,(Q′) = ∅ is the

empty language. The trace language L◦,(Q′) is a regular strongly circular language.

The disjoint union automaton (Q) � (Q′) has the same interval language as (Q), but

its trace language is the sum

L◦,(Q)�(Q′) = L◦,(Q) + L◦,(Q′)

of the trace languages for the two automata. Here, we view languages as elements of

P(�∗), the powerset of the set of words �∗, which is naturally a B-module under the

union of sets. Thus, the sum of languages is defined as the union of languages.

We see that the trace language L◦,(Q) can be beefed up by adding to it the trace

language of any nondeterministic finite automaton:

Proposition 3.4 Given a regular language L, if some automaton for L has the trace

language L◦, then all languages of the form

L◦ + L ′,

where L ′ is the trace language of some automaton, are the trace languages of automata

with the interval language L.

Note that the sum of two trace languages (respectively, of two strongly circular

languages) is a trace language (respectively, a strongly circular language).

Let (Q′) be an automaton as above, with no initial or accepting states, and Q′′ ⊂ Q′

a subset of the states of Q′. Define the language L ′′ to consist of words ω such that

there is a circular path ω in (Q′) that passes through a vertex of Q′′. The language L ′′

is strongly circular. Figure 18 shows an example, with a 2-state automaton (Q′).

Take Q′′ = {q0} ⊂ Q′ = {q0, q1} in that example. The language

L ′′ = (ba∗b)∗ + (a∗ + b2)∗b2(a∗ + b2)∗ (3.13)

of circular paths that pass through q0 is strongly circular.

Language L ′′ is not the trace language of any automaton. Indeed, suppose it is the

trace language of an automaton (Q1). Notice that words in L ′′ contain subwords an

for all n. This implies that there exist m g 1 and a state q ∈ Q1 with a circular path

am from q to q. Then, the trace language of (Q1) contains am . This is a contradiction

with (3.13) or with Fig. 18, since any nonempty word in L ′′ contains the letter b.

Corollary 3.5 Not every strongly circular language is the trace language of an automa-

ton.
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Fig. 19 An automaton (Q) for the language (a2)∗ and its covering automaton (Q3). The two automata

share the interval language but have different trace languages

It is a natural question whether any strongly circular language is the language L ′′

associated with an automaton (Q′) and a subset Q′′ ⊂ Q′ of its states. Language L ′′

consists of words realizable as circular paths in (Q′) that go through a state in Q′′.

Proposition 3.6 Any regular strongly circular one-letter language is the trace lan-

guage of some automaton.

Proof Let L ⊂ a∗ be a regular strongly circular one-letter language. Then, L is

eventually periodic [20], so that for some N and k g 1 we have am ∈ L ↔ am+k ∈

L, m g N . Let j1, . . . , jr be exponents of words in L that are less than N . Since L is

strongly circular, with any word it contains all its powers. This implies that k = mn

for some n, m such that L ∩ aN a∗ = aN (an)∗.

We can now realize L as the trace language of the automaton (Q) which is the

disjoint union of oriented loop automata of lengths j1, . . . , jr and a flower automaton

which is the one-vertex union of oriented loops of lengths N , N +n, . . . , N +(m−1)n.

��

Remark 3.7 Let us also refer the reader to the related notion of a strongly cyclic lan-

guage in [1, 6].

Coverings of automata. An automaton (Q) can be viewed as a decorated oriented

graph, possibly with loops and multiple edges. Viewing the underlying graph as a

topological space Y = Y(Q), pick a finite locally trivial covering p : Z −→ Y (in

particular, p is surjective). Topological space Z can be viewed as a graph. We lift all

decorations from Y to Z to turn it into an automaton. Namely, let Q′ := p−1(Q)

be the set of vertices of Z . Define sets of initial and accepting vertices of (Q′) by

Q′
in := p−1(Q in), Q′

t := p−1(Qt), i.e., sets of initial and accepting vertices of (Q′)

are the inverse image under p of sets of initial and accepting vertices of (Q). Edges

of Z are oriented to match orientation with edges of Y , so that p applied to any edge

preserves its orientation. Labels on edges of Z must match those of Y under the map

p as well.

Two examples of automata and their covering automata are shown in Figs. 19 and 20.

In both examples, graphs Y underlying automata (Q) are connected and coverings have

degree three.

Proposition 3.8 An automaton (Q) and its covering automaton (Q′) have the same

interval language, while the trace language of (Q′) is a subset of the trace language
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Fig. 20 An automaton (Q) for the language L I = (ab∗a)∗ab∗ with the trace language L◦ = (a2b∗)∗ and

its covering automaton (Q′) with the same interval language L I but a different trace language

of (Q):

L I,(Q′) = L I,(Q), L I,(Q′) ⊂ L I,(Q).

Proof Note that any accepting path in (Q′) with a word ω projects to an accepting

path in (Q) carrying the same word, and any lifting of a path with a word ω in (Q)

gives a path in (Q′) with the same word, implying the equality of interval languages.

A circular path in (Q′) projects to a circular path in (Q), preserving the word, while

a circular path in (Q) does not always lift to a circular path in (Q′). ��

Example 3.9 Graph Y underlying the automaton (Q) in Fig. 19 is a cycle, and its

connected coverings are parameterized by the degree n of the covering. Denote by

(Qn) the corresponding automaton. Then, (Q1) = (Q) and (Q3) is also shown in

Fig. 19. The interval and circular languages for (Q) and (Qn) are

L I,(Q) = L I,(Qn) = (a2)∗, L◦,(Q) = (a2)∗, L◦,(Qn) = (a2n)∗.

In particular, as n becomes large, the only short length word in the circular language

for (Qn) is the empty word ∅.

Given an automaton (Q) with the interval language L , assume that (Q) has at least

one oriented cycle, so that L◦,(Q) contains a nonempty word. Arrange states of (Q)

around a circle and draw arrows q
a

−→ q ′, a ∈ � so that they all go clockwise around

the circle, at most one full rotation each. In particular, an arrow q
a

−→ q from a state

to itself will make a full rotation around the circle. An example of such arrangement

for the automaton (Q) in Fig. 20 is shown in Fig. 21.

Now, for each n g 1 we can form the “cyclic” cover (Qn) of (Q) by taking the cyclic

n-cover of the circle and extending to a cover of the automaton (Q). The resulting

automaton (Qn) has as n times as many states and edges as (Q), with (Q1) = (Q).

An example is shown in Fig. 21 on the right. The following observation holds.

Proposition 3.10 Automata (Qn) all have the same interval language L. The trace

language L◦,(Qn) for the automaton (Qn) does not contain any words of length less

than n other than the empty word ∅. The trace language L◦,(Qn) is infinite for each

n g 1.
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Fig. 21 Left: automaton (Q) with states arranged along a circle and edges going clockwise around the

circle. Right: a 4-fold cyclic cover automaton (Q4) of that arrangement

Fig. 22 A weak covering, with three states mapping to q1 and two states mapping to q2

From automata (Qn), we obtain a family of TQFTs with defects with the same

interval evaluation αI but circular evaluations given by languages L◦,(Qn) that shrink

as n increases, in the sense that L◦,(Qnm ) ⊂ L◦,(Qn) and L◦,(Qn) does not contain words

of length strictly between 0 and n.

Remark 3.11 A sample of coverings of the figure eight graph, in relation to subgroups

of the free group F2, can be found in A. Hatcher’s textbook [10, Section 1.3].

Weak coverings. The covering automata construction can be generalized as follows.

A weak covering p : (Q′) −→ (Q) of automata is a surjective map of underlying

graphs p : Y(Q′) −→ Y(Q) such that

• p−1(Q in) = Q′
in, p−1(Qt) = Q′

t, that is, p preserves properties of a state to be

initial and accepting,

• The label a ∈ � of each edge of (Q′) is preserved by p,

• For each arrow γ : q1
a

−→ q2 in (Q), a ∈ �, and any q ′
1 ∈ p−1(q1), there exists

an arrow γ ′ : q ′
1

a
−→ q ′

2 which lifts γ , that is q ′
2 ∈ p−1(q2) or, equivalently,

p(γ ′) = γ .

See Fig. 22 for an example of a weak covering.

Proposition 3.12 Given a weak covering p : (Q′) −→ (Q) of automata, the two

automata share the interval language, while the trace language of (Q′) is a subset of
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that of (Q):

L I,(Q′) = L I,(Q), L I,(Q′) ⊂ L I,(Q).

The above constructions show that there is a lot of variety in possible trace languages

L◦ of automata (Q) with a fixed interval language L . Taking coverings and weak

coverings of (Q) shrinks the trace language, while taking the disjoint union of (Q)

and an automaton (Q′) with the empty interval language, see Proposition 3.4, enlarges

the trace language.

Question 3.13 Given a regular language L, is there an efficient classification of

strongly circular languages L◦ that are trace languages of automata with the interval

language L?

A similar question may be posted with “T-automata” replacing “automata” above,

see Sect. 4.3 for T-automata.

Trimming an automaton. For an automaton (Q), denote by Q′′ ⊂ Q the subset

such that q ∈ Q′′ if and only if q is either a state in a path from some initial state (state

in Q in) to an accepting state or q is a state in some oriented loop in the graph (Q).

Denote by Q′ ⊂ Q the set of states reachable from states in Q′′. The B-submodule

BQ′ of BQ is closed under the action of � and we turn Q′ into the automaton (Q′)

using that action of �, with the set of initial states—the intersection Q′ ∩ Q in and the

set of accepting state—the intersection Q′ ∩ Qt.

B-submodule B(Q′\ Q′′) is stable under �. The quotient of BQ′ by this submodule

produces a free B-module BQ′′. Form the automaton (Q′′) on the set of states Q′′,

with the induced �-action, initial states Q′′ ∩ Q∈ and terminal states Q′′ ∩ Qt.

Thus, from the automaton (Q) we first pass to the B[�∗]-submodule BQ′ and the

associated automaton (Q′), then to the quotient B[�∗]-module BQ′′ of BQ′ and the

associated automaton (Q′′). The following observation is clear.

Proposition 3.14 Automata (Q), (Q′), and (Q′′) share the same pair of interval and

circular languages (L I,(Q), L◦,(Q)).

The proposition says that the three TQFTs associated with the three automata

evaluate the same on all closed morphisms in Cob�,I. (By a closed morphism in a

monoidal category, we mean an endomorphism of the identity object 1.)

Passage from (Q) to (Q′′) and from BQ to its subquotient B[�∗]-module BQ′′ is

analogous to passing from an automaton to the associated trim automaton.

3.3 Path integral interpretation of automata

Consider a regular language L and an automaton (Q) that describes it. In the graph

of the automaton oriented edges are labeled by letters (elements of �), while in the

category Cob�,I it is vertices (defects) inside a cobordism that are labeled by elements

of �.

Let us now pass to the Poincaré dual decomposition of our cobordisms. Suppose

given a morphism u ∈ Cob�,I from a sign sequence ε to ε′, thus a cobordism decorated
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Fig. 23 A morphism in Cob�,I and its Poincaré dual presentation

Fig. 24 An unlabeled arc is composed with two labeled arcs, and then, one of the two vertices of the

unlabeled arc can be erased. One may obtain similar diagrams for the opposite orientation

as earlier. Consider the Poincaré dual of the decomposition of u into defects and

intervals between defects. Now, each such interval becomes a vertex and a defect

becomes an interval, see Fig. 23 for an example. The orientation of intervals and

circles is preserved.

Let us understand this transformation, for a particular morphisms on the left of

Fig. 23. A vertical interval (a morphism from + to +) has defects a, b. It turns into an

interval with three vertices (two at the endpoints) and two edges, labeled a and b. An

arc at the top, which is a morphism from ∅0 to −+ with a defect c, becomes an arc

with two vertices and an interval labeled c. In particular, all boundary points become

vertices and each edge inside the cobordism between two defects becomes a vertex as

well.

A half-interval with no defects on it (there are two such on the left of Fig. 23)

becomes a single boundary vertex which carries a sign (+ or −). A half-interval with

one or more defects on it becomes an interval with two or more vertices and labels of

defects becoming labels of edges. (The example in the figure is for one defect b on a

half-interval.) A floating interval with k > 0 defects becomes an interval with k + 1

vertices. A floating interval with no defects turns into a floating point.

An arc or a circle with no defects remains as they are. This creates a minor

inconvenience—one should think of such an arc as unlabeled, but when composed

with a labeled interval, the label of the latter can be extended to the arc, see Fig. 7.

Remark 3.15 A related construction starts with a category C� with a single object W

with generating morphisms a : W −→ W for each a ∈ �, with no relations on

these morphisms, so that EndC�
(W ) ∼= �∗. One then passes to the rigid monoidal

completion C̃� , a category with objects—sequences of signed objects of C� and

morphisms—oriented one-manifolds decorated by morphisms in C� . In this category,

endomorphisms of the unit object 1 (the empty sequence) are finite unions of loops in

C� , that is, pairs (Y , γ ), where Y ∈ Ob(C�) and γ is an endomorphism of Y , modulo

the equivalence relation: For any morphisms γ1 : Y1 −→ Y2, γ2 : Y2 −→ Y1, the

pairs (Y1, γ2γ1) and (Y2, γ1γ2) are equivalent.
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Fig. 25 Decorated graph I (ω) associated with a word ω = a1 · · · an

An unlabeled arc in this category, see Fig. 24, can be thought of as an arc labeled

by the identity morphism of the object assigned to its boundary points. Any identity

morphism in C̃� will be given by a union of such unlabeled arcs, going vertically

(rather than sideways, as in Fig. 24). Such a rigid symmetric monoidal completion

category C̃ can be defined for any small category C.

The Poincaré dual setup matches the graph description of finite state automata, for

now an oriented interval between two vertices in a floating component of a cobordism

is labeled by an element of �, similar to labeling of oriented intervals in the graph of

the automaton by letters in �.

A word ω ∈ �∗ defines an oriented floating interval I (ω), see Fig. 25 on the left,

the Poincaré dual of the one in Fig. 7.

Word ω is in the language L if and only if there exists a map ψ : I (ω) −→ (Q)

from the graph of the interval to the graph of the automaton that

• Takes vertices to vertices and edges to edges, preserving orientation of edges,

• Labels of edges are preserved as well,

• Takes the initial vertex of the interval to one of the initial vertices of (Q),

• Takes the terminal vertex of the interval to one of the accepting vertices of (Q).

More generally, we can consider all maps τ ∈ Hom(I (ω), (Q)) of oriented graphs

that satisfy the first condition and evaluate τ to 1 ∈ B if it additionally satisfies the

next three conditions and to 0 otherwise. Denote the evaluation by 〈τ 〉. Recall the

evaluation αI that evaluates words in L to 1 and not in L to 0. Note that a sum of

elements of B is 1 if at least one of the terms is 1; otherwise, it is 0.

We have

α(ω) =
∑

τ∈Map(I (ω),(Q))

〈τ 〉 . (3.14)

In other words, α can be written as the sum of evaluations, over all maps from the

oriented chain graph I (ω) to the graph of (Q).

One can loosely interpret this expression as a path integral interpretation of the

evaluation α, determining whether a word ω is in the language L . We sum over all

maps from a graph which is a chain to (Q) and assign 1 to the map if the labels of

all edges match, and boundary vertices are mapped to Q in and Qt, respectively, see

Fig. 26. This evaluation 〈τ 〉 can be written as the product of local evaluations, one for

each edge of the graph I (ω), and for each of the two boundary vertices of I (ω).

A degenerate interval I (∅0), for the empty word ∅0, is a single vertex in the Poincaré

dual presentation. We sum over all maps to (Q); in this case, over all states of Q, and

evaluate a map to 1 if the state if both an initial and an accepting state of (Q). The

empty word is in L if such a state exists.

This interpretation extends to circular words. Recall that automaton (Q) determines

a circular language L◦ = L◦,(Q) and the corresponding circular evaluation α◦, where

123



93 Page 28 of 38 P. Gustafson et al.

Fig. 26 A map of graph I (ω) to (Q) that evaluates to 1, for word length |ω| = 5. The leftmost vertex of

I (ω) maps to one of the initial states of (Q) and the rightmost vertex maps to an accepting state (state in

Qt )

Fig. 27 Map of a circle graph to (Q) that evaluates to 1, word length |ω| = 6

a circular word ω ∈ L◦ if there exists an ω-path in (Q), and then α◦(ω) = 1. Denote

by S(ω) the graph which is an oriented circle with word ω written along the edges.

We have

α◦(ω) =
∑

τ∈Map(S(ω),(Q))

〈τ 〉 . (3.15)

Here, we are looking at all maps τ of the circle graph to the graph of (Q) and evaluate

a map to 1 if and only if the labels of all edges match, see Fig. 27.

Thus, we can think of both languages L I,(Q) and L◦,(Q) associated with an automa-

ton (Q) as computed via Boolean-valued path integrals or sums. To determine if ω is

in L I,(Q) we sum over maps of the interval graph I (ω) to the graph of (Q). Whether

ω is in L◦,(Q) is determined by the sum over all maps of the circle graph S(ω) to the

graph of (Q).

3.4 Relation to topological theories

The earlier paper [13] obtained a relation between Boolean topological theories and

automata. There one starts with a regular language L I and a circular language L◦

and builds state spaces A(ε) for oriented 0-manifolds given by sign sequences ε. The

state spaces A(ε) are finite B-modules, but they are not necessarily free or projective

modules. The resulting theory is not a TQFT, in general: maps

A(ε) ⊗ A(ε′) −→ A(ε � ε′)

are not isomorphisms, in general, unlike in the construction of the present paper.

In the present paper, one starts with an automaton and defines a Boolean one-

dimensional TQFT, with the state space BQ for the + point. In particular, the state

spaces are free B-modules (see Sect. 4.3 for a generalization to projective B-modules
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where one replaces the discrete topological space of states of (Q) by a finite topological

space X ). If the automaton (Q) describes the language L I, the state space A(+) can

be obtained as the subquotient B-module of BQ. Thus, in [13] one starts with a pair of

languages (L I, L◦), while in the present paper both languages L, L◦ are determined

by the automaton (Q). If one picks the pair (L I, L◦) associated with the automaton

(Q), the state space A(ε) for a sign sequence ε in [13] is a subquotient of the free

B-module F(Q)(ε). This can be phrased more naturally, as the topological theory given

by (L I, L◦) being a subquotient theory of F(Q).

In particular, an automaton gives rise to a Boolean one-dimensional oriented TQFT

(with inner endpoints and defects), while a pair of regular languages (L I, L◦), with

the second language circular, gives rise, in general, only to a one-dimensional oriented

topological theory (also with inner endpoints and defects).

Boolean TQFTs can only produce strongly circular trace languages L◦, see earlier

and Proposition 4.7 in Sect. 4.3, where the construction is extended to T-automata and

giving projective rather than free Boolean state spaces. In topological theories, one can

use more general languages (circular rather than only strongly circular), still resulting

in theories with finite state spaces but failing the TQFT axiom, see also the table in

Sect. 4.4.

4 Extending TQFTs to 1-foams

4.1 Boolean 1DTQFTs and finite topological spaces

Finite projective B-modules and finite topological spaces. Assume M is a finite B-

module. Then, M has a lattice structure, with

x ∧ y :=
∑

cfx,cfy

c, 1 :=
∑

c∈M

c;

that is, x ∧ y is the largest element less than or equal to both x and y. Denote by M∧

the set M viewed as a lattice with join ∨ and meet ∧ as above.

Proposition 4.1 The following conditions on a finite B-module M are equivalent.

(1) M∧ is a distributive lattice.

(2) M is a retract of a free B-module B
n for some n.

(3) M is projective in the category of finite B-modules, i.e., it has the lifting property

for surjective semimodule homomorphisms.

(4) M is isomorphic to the lattice of open sets U(X) of a finite topological space X.

M is a retract of a free B-module if there are module maps M
ι

−→ B
n p

−→ M such

that p ◦ ι = idM .

We refer to [13, Section 3.2] for a discussion of this proposition and more references

on B-modules. The tensor product M ⊗ N of two B-modules has good behavior when

one of M, N is a projective B-module.
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Let X be a finite topological space. The set U(X) of open subsets of X is naturally a

finite distributive lattice, with join and meet operations U∨V = U∪V , U∧V = U∩V ,

the empty set ∅ as the minimal element 0 and X as the largest element 1. Viewing

U(X) as a finite B-module, the addition is U + V := U ∪ V .

Let M be a finite projective B-module. The proposition says, in particular, that

M ∼= U(X), for some finite topological space X .

For x ∈ X , denote by Ux the smallest open set that contains x . If Ux = Uy for some

x, y ∈ X , one of x, y can be removed from X without changing the lattice U(X), so

we can assume Ux �= Uy for x �= y in X . Let us call an X with this property a minimal

topological space and consider from now on only minimal X .

A nonzero element u of a B-module M is called irreducible if u = u1 + u2 implies

that u1 = u or u2 = u. Denote by irr(M) the set of irreducible elements of M .

The set irr(U(X)) consists of elements Ux , x ∈ X ,

irr(U(X)) = {Ux |x ∈ X}. (4.1)

In particular, irreducibles in U(X) are in a bijection with points of X . Inclusion and

projection maps

U(X)
ι

−→ BX
p

−→ U(X) (4.2)

are given by

ι(U ) =
∑

x∈U

x, p(x) = Ux , (4.3)

and p ι = idU(X).

Duality. We continue to assume that X is a minimal topological space, so that

irreducibles in U(X) are in a bijection with points of X . Denote by X∗ the dual

topological space of X . It has the same underlying set of points and a set V is open

in X∗ if and only if it is closed in X . Thus, open sets of X∗ are complements of open

sets of X . Irreducible elements irr(U(X)∗) are in a bijection with elements of X and

consist of minimal closed subsets Vx of X that contain x , one for each x ∈ X .

There are evaluation and coevaluation maps

coevX : B −→ U(X) ⊗ U(X∗), 1 �−→
∑

x∈X

Ux ⊗ Vx , (4.4)

evX : U(X∗) ⊗ U(X) −→ B, V ⊗ U �−→ δU∩V , (4.5)

Here, δW = 1 if set W is nonempty and δ∅ = 0. It is straightforward to check that

these maps satisfy the deformation relations in Fig. 1 bottom row, see also (2.10),

where M should be replaced by U(X) and M∗ by U(X∗). Consequently, U(X∗) is

naturally isomorphic to the dual semimodule of U(X):

U(X∗) ∼= U(X)∗. (4.6)
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Fig. 28 Inner endpoints with in and out orientations labeled by points x, y ∈ X . In endpoint labeled x

denotes the element Ux of U(X), while an out endpoint labeled y denotes the functional on U(X) given by

intersecting an open set in X with the closed set Vx . A floating interval with x, y endpoint labels evaluates

to 1 if and only if Ux and Vy have a nonempty intersection. (Notation δW denotes 1 if the set W is nonempty

and 0 if W = ∅.)

Corollary 4.2 A finite projective B-module M defines a symmetric monoidal functor

FM : Cob −→ B−mod (4.7)

taking objects + and − to M and M∗, respectively, and cup and cap to coevX and

evX under a fixed isomorphism M ∼= U(X) for a finite topological space X.

Of course, X is determined by M up to an isomorphism. For any sign sequence ε the

B-module F(ε) is projective, isomorphic to the tensor product of projective modules

M and M∗. A circle evaluates to 1 ∈ B under this functor, for any nonzero M . For an

additional discussion of duality, we refer to [13, Section 3.2].

Adding endpoints. Given X as above, we can enhance category Cob to a category

denoted CobX
I by allowing inner endpoints labeled by elements of X , see Fig. 28. A

floating interval then carries two labels from X , one for each endpoint.

Functor FU(X) extends to a functor

FU(X) : CobX
I −→ B−mod (4.8)

(keeping the same notation for the functor) that takes a half-interval with an endpoint

labeled x to Ux ∈ U(X) and, for the opposite orientation, taking U to δU ,Vx , see

Fig. 28. A floating interval with in, respectively, out endpoint labeled x, respectively,

y, evaluates to δVx ,Uy , that is, to 1 if and only if the smallest open set that contains y

intersects nontrivially the smallest closed set that contains x .

It makes sense to simplify the notation and denote the functor FU(X) by FX , for

short.

4.2 Extending to one-foams

Multiplication on U(X) and foams. Intersection of sets gives rise to a B-module map

U(X) ⊗ U(X)
m

−→ U(X), U · V := U ∩ V . (4.9)

This map is well defined due to distributivity of the intersection over union, U ·

(V1 + V2) = U · V1 + U · V2. It makes U(X) into an associative commutative unital
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Fig. 29 Multiplication, comultiplication, unit and counit diagrams for U(X)

semialgebra over B. The unit element 1 of U(X) is given by the biggest open set X ,

since X · U = U for U ∈ U(X).

Consider the multiplication on the dual topological space U(X∗) ⊗ U(X∗) −→

U(X∗). Dualizing this multiplication via HomB−mod(∗, B) and isomorphism (4.6)

gives a commutative coassociative comultiplication

U(X)
�

−→ U(X) ⊗ U(X) (4.10)

with the counit map

ε : U(X) −→ B, ε(U ) = 1 if and only if U �= ∅. (4.11)

The formula for comultiplication is:

�(Ux ) := Ux ⊗ Ux , x ∈ X , �(U ) :=
∑

x |Ux ⊂U

�(Ux ) =
∑

x |Ux ⊂U

Ux ⊗ Ux ,

(4.12)

where, for instance, the first sum is over x such that Ux ⊂ U . Irreducible elements

Ux of U(X) are sent by � to their tensor squares, and then, the map is extended to

all open sets U by summing over applications of this map to all irreducibles in U . To

check that � is indeed dual to multiplication m in U(X∗), pick open sets U1, U2 and

a closed set V in X . Then, the pairing (4.5) computes

(V , U1 · U2) = δV ∩U1∩U2 =
∑

x |Vx ⊂V

δVx ,U1δVx ,U2 = (�(V ), U1 ⊗ U2). (4.13)

where Vx is the smallest closed set in X that contains x . We see that the multiplication

(4.9) on U(X) is dual to the comultiplication on U(X∗) with respect to the pairing

(4.5).

We can now extend our graphical calculus by adding oriented 3-valent vertices of

two kinds, see Fig. 29, to denote multiplication and comultiplication on U(X), and

inner endpoints to denote the unit element X ∈ U(X) and the trace ε, which dualizes

to the unit element in U(X∗).
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Fig. 30 The duality relation between multiplication and comultiplication for U(X) and U(X∗)

Fig. 31 Associativity, commutativity and the unit relations in U(X)

Fig. 32 Coassociativity, cocommutativity and the counit relations in U(X)

Fig. 33 Split–merge composition is the identity

A three-valent vertex either has two edges oriented in and one edge oriented out

or two edges oriented out and one edge oriented in, describing multiplication, respec-

tively, comultiplication on U(X), see Fig. 29.

Orientation reversal corresponds to switching between X and X∗, and the relevant

duality relations (relating multiplication m X in U(X) with comultiplication �X∗ in

U(X∗), and likewise for �X and m X∗ ) are shown in Fig. 30.

Associative commutative unital B-algebra relations on U(X) are shown in Fig. 31.

The same relations with all orientations reversed hold as well, see Fig. 32, where

these relations are also rotated. These correspond to the coassociative cocommutative

counital B-coalgebra structure on U(X) or, equivalently, to the algebra structure on

the dual module U(X∗). Additionally, the relation in Fig. 33 holds.
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Fig. 34 A closed one-foam C (an endomorphism of the identity object 1 of FCob) in standard position

Remark 4.3 In general, m and � do not satisfy the bialgebra axiom: � is not a homo-

morphism of semirings, � ◦ m �= (m ⊗ m) ◦ P23 ◦ (� ⊗ �). However,

� ◦ m(U ⊗ V ) f (m ⊗ m) ◦ P23 ◦ (� ⊗ �)(U ⊗ V ), ∀ U , V ∈ U(X),

where u f v means that u +v = v, for elements u, v of a semilattice M . This relation,

then, holds for the operators � ◦ m and (� ⊗ �)(U ⊗ V ), and we can write

� ◦ m + (m ⊗ m) ◦ P23 ◦ (� ⊗ �) = (m ⊗ m) ◦ P23 ◦ (� ⊗ �).

We did not look for general inequalities of this form and feel that they likely hold for

random reasons and will not naturally generalize from the Boolean to more general

commutative semirings.

Motivated by these relations, one can introduce rigid symmetric monoidal cate-

gory FCob with sign sequences as objects. It contains Cob as a subcategory and has

additional trivalent vertex and inner endpoint generators as in Fig. 29. Relations in

Figs. 30, 31, and 32 hold, as well as the standard relations from the symmetric struc-

ture on trivalent and univalent graphs, such as sliding a disjoint line over a vertex. One

may or may not impose Fig. 33 relation.

Any finite topological space X defines a symmetric monoidal functor

FX : FCob −→ B−mod.

This functor is given on objects by

FX (+) = U(X), FX = U(X∗),

and on generating morphisms by the formulas in Fig. 29 (also formulas (4.9) and

(4.12)) and the cup and cap formulas (4.4) and (4.5).

It is natural to view morphisms in FCob as describing one-foams with boundary.

Two-foams appear when constructing link homology theories [15, 21–23].

Proposition 4.4 Any closed diagram C ∈ EndFCob(1) evaluates to 1, i.e., FX (C) = 1.
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Proof Any closed connected diagram C can be simplified not to have inner endpoints

(as on the right of Fig. 29), by canceling them against an adjacent trivalent vertex.

After this simplification, C is either an interval (and evaluates to 1) or it can be put

in the form as shown in Fig. 34, with all cups at the bottom, all caps at the top and

merge and split trivalent vertices in the middle. To evaluate this diagram, one uses

multiplication and comultiplication in U(X) given by (4.9) and (4.12) as well as the

evaluation and coevaluation maps in equations (4.5) and (4.4).

Each cup in the diagram, the diagram can be evaluated from the bottom up, with

each cup contributing the sum
∑

x Ux ⊗ Vx , see (4.4), where, recall, Ux , respectively,

Vx , is the smallest open, respectively, closed, set that contains x . Let us fix y ∈ X and

restrict to one term in the sum over all cups which is Uy ⊗ Vy for each cup. Evaluating

the diagram for this single term, minimal open and closed sets Uy, Vy propagate via

multiplication and comultiplication to the tensor product of Uy and Vy at the “caps”

dashed line. Coupling them in pairs via caps results in 1, since (Uy, Vy) = 1.

For each y ∈ X , we obtain a term in the sum which is 1. In B, any sum with at least

one term 1 equals 1. ��

Remark 4.5 Replacing B by a field k and avoiding the relation in Fig. 33, the k-linear

analogue of the structure above should be a commutative associative unital finite-

dimensional k-algebra A. Such an algebra defines a symmetric monoidal functor FA

from the cobordism category FCob to k−vect taking 0-manifold (+) to A, (−) to

A∗, duality morphisms to the usual duality maps between A and A∗, trivalent vertices

to the multiplication map on A and the dual comultiplication map coming from the

isomorphism A ∼= A∗. Univalent vertex is given by the inclusion of the unit element

into A and, for the opposite orientation, by the dual map A∗ −→ k.

4.3 Automata on finite topological spaces (T-automata)

Recall that a one-dimensional Boolean TQFT F : Cob −→ B−mod associates a finite

projective B-module P = F(+) to the plus point and the dual module P∗ ∼= F(−) to

the minus point. A finite projective B-module P is isomorphic to the module of open

sets U(X) of a finite topological space X , with P∗ ∼= U(X∗) and duality morphisms in

the TQFT coming from the standard duality maps coev and ev for U(X) and U(X∗),

respectively.

Let us see how such a theory extends to a functor F : Cob�,I −→ B−mod,

allowing cobordisms with inner endpoints and �-defects. A map B −→ U(X) takes

1 ∈ B to an open set X in ⊂ X . A map U(X) −→ B is determined by picking a closed

set Xt in X (equivalently, an open set Xt in X∗) and taking open U ⊂ X to δXt∩U , see

the notation in Fig. 28 caption. That is, U goes to 0 if and only if it is disjoint from Xt.

Each a ∈ � determines an endomorphism ma ∈ End(U(X)) which sends open sets

to open set and respects the union:

ma : U(X) −→ U(X), ma(U1 ∪ U2) = ma(U1) ∪ ma(U2), ma(∅) = ∅.

An endomorphism T of U(X) can be described by its action on minimal open sets

Ux , x ∈ X . Reducing topological space X , if necessary, we can assume that Ux �= Uy ,
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for x �= y ∈ X . Then T (Ux ) is an open set in X , for each x ∈ X , and T (Uy) ⊂ T (Ux )

whenever y ∈ Ux , so that Uy ⊂ Ux , so that T preserves the inclusions of minimal open

sets. Vice versa, an assignment x �−→ T (Ux ) ∈ U(X) subject to the above condition

describes an endomorphism T of U(X).

The trace of T is given by (see also (4.4), (4.5))

tr(T ) = evX∗ ◦ (T ⊗ idX∗) ◦ coevX

=
∑

x∈X

δT (Ux )∩Vx
=

∑

x∈X

δ(Ux ⊂ T (Ux )) =
∑

x∈X

δ(x ∈ T (Ux )). (4.14)

Here, δ(A) = 1 if and only if the statement A is true and δW = 1 if and only if the

set W is nonempty; otherwise, the value of δ is 0 ∈ B. Thus, the trace is 1 if and only

if for some x ∈ X the image T (Ux ) has a nonempty intersection with Vx , the smallest

closed subset of X that contains x . This condition is equivalent to Ux ⊂ T (Ux ) for

some x and to x ∈ T (Ux ) for some x .

Corollary 4.6 If tr(T ) = 1, for an endomorphism T of a finite projective B-module P,

then tr(T n) = 1 for any n ∈ Z+.

Since tr(T ) = 1 is equivalent to Ux ⊂ T (Ux ) for some x ∈ X , iterating the inclusion

implies the corollary. �

By a T-automaton or a quasi-automaton, we may call the data as above:

(X) := (X , X in, Xt, {ma}a∈�).

It consists of a finite topological space X , an initial open set X in, an accepting closed

set Xt, and endomorphisms ma of U(X), for a ∈ �. A T-automaton is equivalent to a

one-dimensional oriented B-valued TQFT with inner endpoints and �-defects.

The interval language L I,(X) of a T-automaton (X) consists of words ω ∈ �∗ such

that the intersection Xt ∩ mω(X in) �= ∅. Here, mω = ma1 · · · man for ω = a1 · · · an .

The trace language L◦,(X) of (X) consists of words ω such that for some x ∈ X the

set mω(Ux ) contains x , see (4.14).

Proposition 4.7 The interval trace languages (L I,(X), L◦,(X)) of a T-automaton (X)

are regular, and the trace language L◦,(X) is strongly circular.

The second statement follows from Corollary 4.6. �

An automaton (Q) is a special case of a T-automaton. Nondeterministic finite-

state automata are precisely T-automata for discrete topological spaces X . To match

the definitions, more than one initial state in a nondeterministic finite automaton is

allowed.

CategoriesCob�,I and FCob can be combined into a category FCob�,I of one-foams

with defects, where now edges of a one-foam carry dots (defects) labeled by elements

of �. One also needs to allow two types of inner endpoints, for the unit element

X ∈ U(X) and its dual and for the initial (and accepting) T-automata sets. Projective
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Fig. 35 TQFTs associated with automata and T-automata (present paper) versus topological theories asso-

ciated with pairs (L I, L◦) of a regular language and a regular circular language [13]

B-module U(X) comes with a commutative associative multiplication U ·V := U ∩V ,

giving rise to a monoidal functor

F(X) : FCob�,I −→ B−mod.

We leave the details to an interested reader.

4.4 Summary table

Table in Fig. 35 summarizes similarities and differences between TQFTs con-

structed in the present paper and associated with automata and T-automata and

topological theories associated with a pair of regular language (with a circular sec-

ond language) in [13]. Topological theory associated with (L I, L◦) is not a TQFT,

in general, and some pairs (L I, L◦) cannot be realized via any TQFT (for instance if

∅ /∈ L◦ and language L I is nonempty). More generally, (L I, L◦) is not realizable in

any TQFT if L◦ is not strongly circular. For all three columns, the state space F(+) is

a finite B-module; it is additionally free or projective for the first or second column,

respectively.
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