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Abstract

This paper explains how any nondeterministic automaton for a regular language L
gives rise to a one-dimensional oriented topological quantum field theory (TQFT) with
inner endpoints and zero-dimensional defects labeled by letters of the alphabet for L.
The TQFT is defined over the Boolean semiring B. Different automata for a fixed
language L produce TQFTs that differ by their values on decorated circles, while the
values on decorated intervals are described by the language L. The language L and the
TQFT associated with an automaton can be given a path integral interpretation. In this
TQFT, the state space of a one-point O-manifold is a free module over B with the basis
of states of the automaton. Replacing a free module by a finite projective B-module
P allows to generalize automata and this type of TQFT to a structure where defects
act on open subsets of a finite topological space. Intersection of open subsets induces
a multiplication on P allowing to extend the TQFT to a TQFT for one-dimensional
foams (oriented graphs with defects modulo a suitable equivalence relation). A linear
version of these constructions is also explained, with the Boolean semiring replaced
by a commutative ring.
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1 Introduction

The punchline of this paper is that any nondeterministic finite state automaton (Q)
recognizing a regular language L gives rise to a Boolean one-dimensional topological
quantum field theory (TQFT) F (o) with defects. The state space F(g)(+) of a posi-
tively oriented point in this TQFT is the free (semi)module BQ on the set of states Q
of the automaton (Q) over the Boolean semiring B = {0, 1|1 4+ 1 = 1}. Vice versa, a
TQFT of this form, where state spaces are finite free Boolean modules, describes an
automaton.

TQFT F (@) is a symmetric monoidal functor from the category Cobsy | of oriented
one-dimensional cobordisms with X-labeled defects and inner endpoints taking values
in the category B—fmod of free B-modules. In category Coby |, closed cobordisms
are disjoint unions of intervals and circles with defects. A defect is a point (a zero-
dimensional submanifold) of a one-manifold with a label from X on it.

An interval with defects defines a word w, given by reading the defects along the
orientation of the interval. In the TQFT F((), an interval evaluates to 1 if and only
if w is in the language L; otherwise, it evaluates to 0. A circle with defects defines a
circular word o’ which evaluates to 1 if and only if there is a cycle that reads «’ in the
automaton (Q). Numbers 0 and 1 are viewed as elements of the Boolean semiring B.

In the TQFT F(p), a defect labeled a on an interval with two boundary points
induces an endomorphism of BQ encoded by the transition function of the automaton,
while sets of initial and accepting states determine the maps of state spaces near the
inner (not boundary) points of the automaton.
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Thus, NFA or nondeterministic finite automaton (Q) for a regular language L
gives rise to a one-dimensional Boolean TQFT with defects, where the language L is
encoded by evaluations of decorated intervals. This is explained in Sect. 3.1, with the
correspondence summarized in Proposition 3.2.

One can fix L and consider various automata (Q) for L. The corresponding TQFTs
F(p) have the same evaluation on intervals but usually differ in their evaluation of
circles with defects. Each such TQFT defines a circular language, a B-valued function
on the set X* of words modulo the rotation equivalence relation. In Sect. 3.2, we show
that, for a fixed L, many circular languages are possible and suggest the open problem
to determine all possible circular languages for automata that describe a fixed regular
language L.

To determine whether a word w is accepted by an automaton (Q) one can sum (in
the Boolean semiring) over all maps from the graph 7 (w) which is a chain with edges
labeled by letters in w to (Q) taking vertices to vertices and edges to edges. The map
evaluates to 1 € B if the letters of all edges match and the initial and terminal vertices
of I(w) go to vertices in the corresponding subsets of states of (Q). This expression
is reminiscent of the path integral (sum over all maps) and is explained in Sect.3.3.

Earlier, in Sect.2, we discuss the linear version of this construction and classify
TQFT functors from Cobsy; | to the category R—mod of modules over a commutative
ring R. Isomorphism classes of these functors are in a bijection with finitely generated
projective R-modules P with a choice of a vector, a covector, and endomorphisms of
P, one for each element of . Section2 can be skipped to go directly to Sect.3 that
relates automata and 1D TQFT over the Boolean semiring.

Section 2 is closely related to [12, 15, 19] that consider field-valued universal
construction for the category Coby |. Universal construction gives rise to topological
theories for the category Coby |, where one starts with an evaluation of closed mor-
phisms (endomorphisms of the unit object 1 of the category of one-cobordisms, which
is the empty O-manifold) and builds state spaces for O-manifolds from the evaluation.
Topological theories are weaker than TQFTs and can be called lax TQFTs. In a TQFT
JF, the state space of the disjoint union is isomorphic to the direct product of state
spaces for the individual components:

F(No U Ni) = F(No) ® F(Ny).
In a topological theory, there are only maps
F(No) ® F(N1) —> F(No U Ny),

injective for a theory defined over a field, which are rarely isomorphisms. Relation
between the present paper and [13] is explained in Sect. 3.4.

A general one-dimensional TQFT with defects, as above, assign a projective, not
necessarily free, B-module to a 4 point, see Sect.4.1. In Sect. 4.3, we explain how the
correspondence

automata <= TQFT

extends to this setup. One replaces the free module BQ on the set of states of an
automaton (Q) by a finite projective B-module P. This module is isomorphic to the
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module U(X) of open sets of a finite topological space X, with addition given by
the union of sets. Now, letters a € X act on U(X) by taking open sets to open sets
respecting the union operation, and there are an initial open set and a functional which
is analogous to the set QO of accepting states. Such a structure may be called quasi-
automaton or T-automaton (“T" for topological space). When topological space X is
discrete, one recovers the familiar notion of nondeterministic automaton.

A B-semimodule of the form U/(X) for a finite topological space X is a distributive
lattice, with the join operator U vV V := U U V and meet operation U AV :=UNV.
Distributivity of the meet operation over the join turns B-module /(X) into a com-
mutative semiring with the multiplication A. This allows to extend TQFT associated
with U(X) to a graph TQFT where trivalent merge and split vertices are taken to the
multiplication and its dual comultiplication on U(X), as explained in Sect.4.2. These
graphs satisfy associativity and coassociativity relations, and the TQFT can be nat-
urally viewed as a TQFT for one-foams. Two-dimensional foams appear throughout
link homology [14, 17,21-23], and here one seems to encounter their one-dimensional
counterpart. It is then straightforward to add defects to one-foam TQFTSs, combining
the two extensions: to quasi-automata and to one-foams.

Remark 3.15 in Sect. 3.3 explains how some of the constructions in the present
paper can be generalized from a free category on one object and a set X of generating
morphisms to an arbitrary small category.

There are many interesting open problems here, including finding higher-
dimensional analogues of the correspondence

Finite-state Automata <= Boolean 1D TQFT with defects.

It might also be interesting to compare the present construction with G. ’t Hooft’s
cellular automata interpretation of quantum mechanics [25], see also a brief discussion
of defect diagrammatics for quantum mechanics in Sect.2.2.

2 One-dimensional TQFTs with inner endpoints and defects over a
commutative ring

2.1 One-dimensional TQFT and finitely generated projective modules

Let R be a commutative ring. The category R—mod of R-modules is symmetric
monoidal with respect to the tensor product M Qg N. A one-dimensional TQFT over
R is a symmetric monoidal functor

F:Cob — R—mod 2.1

from the category Cob of oriented one-dimensional cobordisms to R—mod.
Category Cob has generating objects + and —, which are a positively and a
negatively oriented point, respectively. The cup and cap cobordisms, together with
permutation cobordisms, are generating morphisms, see Fig. 1.
A one-dimensional TQFT F, as above, takes 4+ and — to R-modules M := F(+)
and N := F(—), an arbitrary finite sign sequence to the corresponding tensor products
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_________ - +_ - - __ - -
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Fig. 1 Top left: the cap and cup cobordisms. The cap and cup cobordisms for the opposite orientation are
obtained by composing these two with the permutation cobordisms, see top right for the cup cobordism for
the opposite orientation. Bottom row shows isotopy relations on cup and cap cobordisms

of M’s and N’s, and suitably oriented cup and cap cobordisms to the maps U and N in
(2.2). Thus, F amounts to choosing two R-modules M,N together with the cup and
cap maps
U:R—> M®N, N:N®M — R (2.2)
such that
(idy ®N) o (URidy) =idy, (N®idy) o (idy ® U) =idy, (2.3)
see Fig.1 bottom left and right, respectively. The above relations are the isotopy

relations on these maps.
We can write

k
U=y mi®n., mieM, nieN. 2.4)
i=1

From the first relation in (2.3),

k
m = Zﬂ(n,- Qm)m;, meM, (2.5)

i=1
so that M is generated by my, ..., my. Let p : R —> M be the surjective R-
module map taking standard generators of R¥ tom, ..., my. Eachn; € N defines an

R-module map
i:M— R, (m)=nN(n; ®m),
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and together they give a map

L= (L],...,Lk)T:M—> RF.
The composition p o ¢ = idyy, due to the formula (2.5), where T is the transpose of
the k-tuple. Consequently, maps p and ¢ realize M as a direct summand of the free
module R¥. Consequently, M is a finitely generated projective module, and so is N.

The dual module M* = Homg(M, R) is also finitely generated projective, being
a direct summand of (Rk )= R¥. There is a natural evaluation map

Ny : M*Qr M — R, f®m f(m) €R. (2.6)
It is now natural to compare Ny, to the map N in (2.2).
There is an R-module map ¢ : N —> M™* since each n € N gives the element

¥ (n) € M* satisfying ¥ (n) (m) = N(n®m). Similarly, thereisamap vy’ : M* — N
such that

k
¥/ (m*) =" m*(min;.
i=1
The composition 'y takes n € N to
k
Zﬂ(n ® mj)n; =n,
i=1

where the equality follows from the second relation in (2.3). Consequently, ¥y =
idy. The other composition i takes m* to

k
Yy (m*) = m*Fm)y(ny).,
i=1
which on m’ € M evaluates to
k k

S mg) O (i @ m')y = m* (Z e ® m/>mf) = m*(m')

i=1 i=1
due to (2.5). Thus, ¥y’ = idys and ¥, ¥’ are mutually inverse isomorphisms between
N and M*. Replacing N by M* in (2.2) via these isomorphisms produces cup and cap
maps

Uy:R— M QM* Ny : M*® M — R, 2.7)
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the coevaluation and evaluation maps, respectively. The map Ny, is given by (2.6),
while we can write the coevaluation map Uy, by fixing a realization of a finitely
generated projective module M as a direct summand of free module R* via maps

M - RF 2 M, pL=idy, (2.8)

and denoting the standard basis of R¥ by (vy, ..., v). The coevaluation map for R¥
is

k
coevpr i 1 —> ka ® v,

i=1

where (v!, ..., v¥) is the dual basis of (R¥)* = RK. The coevaluation map for M is
given by composing the above map with p and ¢*:

k
coevy : 1 —> Zp(vk) ®FWhH, i (RH* — M. (2.9)
i=1

The coevaluation map Uy, given by (2.9) does not depend on the choice of factorization
(2.8) since it is uniquely determined by the map Ny, in (2.6) and the relations

(idy @ Ny) o (Uy ®idy) =idy, (Ny ® idyx) o (idyx @ Uy) = idy=.
(2.10)

Thus, the coevaluation map is computed by writing M as a direct summand of R¥
for some k and identifying M* with the corresponding summand of (R¥)* = Rk,
Projection

PR RFQ (RHY — M@ M*

produces the coevaluation map for M from that of R*. We obtain the following well-
known observation.

Proposition 2.1 Let R be a commutative ring. One-dimensional oriented TQFTs tak-
ing values in R—mod are classified by finitely generated projective R-modules P.
Such a TQFT associates P to a positively oriented point, P* to a negatively oriented
point, and evaluation and coevaluation maps Np,Up in Egs. (2.6) and (2.9) with
M = P to the cup and cap cobordisms.

A related observation is that the tensor product endofunctor V +—— M & V in the
category R—mod has a left adjoint if and only if M is a finitely generated projective
R-module, see the answer by Yuan [5].

More generally, given a symmetric monoidal category C, symmetric monoidal func-
tors F : Cob — C correspond to pairs M, N of objects of C such that
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o the endofunctor of C of tensoring with M is left adjoint to that of tensoring with
N7
e a choice of the adjointness morphisms is made.

This is the one-dimensional case of the Baez—Dolan cobordism hypothesis, see [2, 9].
Such a functor F selects a rigid symmetric monoidal subcategory Cr in C, namely
the full monoidal subcategory generated by objects M and N (so that objects of Cr
are arbitrary tensor products of M and N). The category C itself may not be rigid, as
the above example demonstrates. (R—mod, restricted to finitely generated modules,
is rigid if and only if R is semisimple.)

Note that the circle in this theory evaluates to the Hattori—Stallings (HS) rank

k
rk(P):= Zm?‘(mi) €R (2.11)

i=1
of P where

k
Up (1)=Zmi®m76P®P* (2.12)

i=1

is the image of 1 under the cup cobordism in Fig. 1, also see Eq. (2.4). When P = RFis
a free module, its HS rank is k € R.If P = R" - ¢, for some idempotent e € Mat, (R),
then rk(P) = tr(e).

Remark 2.2 Replace R—mod by the category C”(R—pmod) of bounded complexes
of projective R-modules up to chain homotopies. Then, any bounded complex

d;
P=(..— P — Py —..)

such that all terms of P are finitely generated gives rise to a one-dimensional oriented
TQFT with values in Cb(R—pmod), with F(+) = P and F(—) = P*, the termwise
dual of P with the induced differential. Complex P* has the module P;* in degree —i
and the differential 4* with d*, : P* —> P} | being the dual of d; .

Generalizing to commutative semirings. The arguments leading to Proposition 2.1
do not use subtraction in the commutative ring R and extend immediately to any
commutative semiring R. The latter has addition and multiplication operations and
elements 0, 1, satisfying the usual commutativity, associativity, distributivity axioms,
but does not, in general, have subtraction. It is straightforward to define the category
R—mod of R-modules (also called R-semimodules). We say that an R-module P is
finitely generated projective if it is a retract of a finite rank free module, so that maps
t, p below exist:

P RF 2 p, piL=idp. (2.13)
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Unlike for projective modules over rings, over a semiring a projective module can
rarely be completed to a free module by a direct sum with a projective; that is, given
in (2.13), equation P @ Q = R" is rarely solvable.

Category R—mod is symmetric monoidal under the standard tensor product oper-
ation. The tensor product ® of R-modules is especially inconvenient to work with
when R is not aring, and M ® N is easier to understand when one of the modules is
projective. Proposition 2.1 extends to TQFTs over commutative semirings:

Proposition 2.3 Let R be a commutative semiring. Isomorphism classes of one-
dimensional oriented TQFTs taking values in R—mod are in a bijection with
isomorphism classes of finitely generated projective R-modules P. Such a TQFT asso-
ciates P to a positively oriented point, P* := Homg (P, R) to a negatively oriented
point, and evaluation and coevaluation maps Np,Up in Egs. (2.6) and (2.9) with
M = P to the cup and cap cobordisms.

The notion of the Hattori—Stallings rank rk(P) extends to f.g. projective modules
over a commutative semiring, via (2.11).

2.2 Floating endpoints, defects and networks

Half-intervals and floating endpoints. To slightly enrich the category Cob of one-
cobordisms, one can allow one-manifolds to have some endpoints “inside” the
cobordism rather than on the (outer) boundary. Such inside points may also be called
floating endpoints of a cobordism. This leads to half-intervals, cobordisms between
the empty 0-manifold and a single point with the positive or the negative orientation,
as shown in Fig. 2. Half-intervals appear in [13, 15], and, in a related context, in [18].

Composing two half-intervals results in a floating interval, an oriented interval with
both endpoints inside the cobordism, see Fig. 3. A floating interval is an endomorphism
of the empty O-manifold @y. It is clear how to define the corresponding category of
oriented 1-cobordisms with inner endpoints. We denote this category by Coby. It has
the same objects as Cob. It is rigid symmetric monoidal, just like Cob, and contains
the latter as a subcategory.

A TQFT for the category Cob is a symmetric monoidal functor

F: Cob, — R—mod. (2.14)

It is determined by the same data as in Proposition 2.1 plus a choice of an element
vo € P, giving an R-module map R —> P, and a R-module map 7y : P —> R.

Fig. 2 Left: four types of half-intervals. Right: composing two half-intervals results in a floating interval,
with both endpoints inner

@ Springer



93 Page100f38 P. Gustafson et al.

P s --= R 3 ()
TTRT T
== R>31 - P s

Fig.3 Left: two half-intervals and associated maps. Right: evaluation of an interval

-3 P -1- P*
a Tma a Tm;
1= P -¥- P

Fig.4 To a labeled dot on an interval associate an endomorphism of P and the dual endomorphism of P*
for the oppositely oriented interval

+ +
.
ay a2a1
w = 04.2 My = Mg, Mg, = ) = trP(mw)
an Qn
¥ ¥

Fig.5 Map my, is on the left. Evaluation of w-decorated circle is on the right

+ - -

I

Fig.6 A morphism from oriented 1-manifold (+ — —+) to (+ — —) in category Coby;

These maps are associated with the two half-intervals that bound a 4+ boundary point,
see Fig.3. The maps for the other two half-intervals are obtained by dualizing these
maps.

A floating interval evaluates to U (vg) € R. A circle evaluates to rk(P), as before,
see (2.11).

Defects. Alternatively, we can extend the category Cob by adding defect points
labeled by elements of a set X, resulting in a category Coby. To extend a functor
F : Cob — R—mod to a functor F : Coby —> R—mod (using the same notation
for both functors), we pick an endomorphism m, : P — P foreacha € ¥.To a
defect point labeled a on an upward-oriented interval, we associate the map m, and
to a defect point labeled a on a downward-oriented interval associate the dual map
m} . P* — P*, see Fig.4.

Now, an upward-oriented interval decorated by a word w = aj - - - a, a; € X, goes
to the map m,, = my, --- mg, : P —> P under the functor F, see Fig.5. A circle
decorated by w evaluates to trp (m,,), the trace of operator m,, on P.

Finally, it is easy to combine defects with endpoints. This leads to the category
Coby of oriented one-cobordisms with X-defects and inner endpoints. Note that

@ Springer



Automata and one-dimensional TQFTs with defects Page 110f38 93

—e— = (o—eo = T(mow) To(muwvo) idg,

Fig.7 Evaluation of a floating w-decorated interval (both endpoints are inner)

defects are placed away from the endpoints. Figure 6 shows an example of a morphism
in this category.

There is a commutative square of faithful inclusions of categories, where the inclu-
sions are identities on objects. In all four categories, the objects are sign sequences.

CObE —_—> COsz

T T (2.15)

Cob —— Cob

The functor
F:Cobyg,| — R—mod (2.16)

takes half-intervals to maps given by an element vy € P and a module map vy € P*
(same as for the functor in (2.14)) and an upward-oriented interval decorated by a to
mg, as in Fig.4. A floating interval with a word w on it evaluates to Uy (mvp), see
Fig.7.

Remark2.4 If R = Kk is a field, the above choices are further simplified. That is,
P =V = R" is a finite-dimensional K-vector space, vy € V is a vector and vp € V*
is a covector. Maps m, : V. — V are linear operators on V. The rank rk(V) = n € k.

Commutative semirings. One can replace the commutative ring R by a commu-
tative semiring R and work with the category R—mod of (semi)modules over R.
Propositions 2.1 and 2.3 can then be extended as follows.

Proposition 2.5 Let R be a commutative semiring. One-dimensional oriented TQFTs
with inner points and X -defects taking values in R—mod, that is, symmetric monoidal
functors

F: Coby | — R—mod,

are classified by finitely generated projective R-modules P equipped with a vector
vo € P, a covector vy : P —> R, and endomorphisms m, € Endg(P),a € X.
Functor F associates P to a positively oriented point, P* to a negatively oriented
point, evaluation and coevaluation maps Np, Up in Egs. (2.6) and (2.9) with M = P
to the cup and cap cobordisms, map R —> P, 1 — vg and covector vy to half-interval
cobordisms and the map m to a dot labeled a on the upward-oriented interval.
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ay
""""""""" gl gn
ay a ... Qp as
—e—eo—o—
go G e On 92

Fig.9 Left: Interval diagram for a decorated one-dimensional TQFT with defects and time-like parameters
added. Right: A circle diagram with these decorations

Symmetric monoidal functors from the other two categories Coby, Coby in (2.15)
to R—mod are classified similarly.

Quantum mechanics and one-dimensional TQFTs with defects. Quantum mechan-
ics can be interpreted as a one-dimensional Quantum Field Theory, see, e.g., [3, 9, 24],
[11, Chapter 10]. Part of the structure of quantum mechanics is a separable Hilbert
space H, the ground state Q2 € H, a collection of self-adjoint operators {O} and the
Hamiltonian, which is a self-adjoint operator H : H — H giving rise to unitary
evolution operators U; = exp(—it’H/h). Operators {O} and ‘H are the observables of
the system.

Information about the system is encoded in (vacuum) expectation values

(2,U,0,Uy, ,--- U, O1U,2), (2.17)
see Fig. 8 (also see [9, Figure 6]), where the state €2 evolves for times #g, #1, . . ., ¢, and
in between acted upon by operators Oy, ..., O,. At the end, the inner product with

is computed.

For a finite-dimensional Hilbert space, this setup is very close to the one discussed
above, see Fig.7 in particular. A parameter analogous to time can be added there by
picking a commutative group or monoid G with a homomorphism ¢ : G — GL(P)
into the group of automorphisms of P. Elements g of G now play the role of time
¢t € R, and the analogue of time evolution in Fig. 8 is shown in Fig. 9 on the left, with
gi€G.

The diagram in Fig. 9 (left) evaluates to

50(¢(80)ma1¢(gl)ma2 . 'man¢(gn)U0)-

Elements of G can be inserted into a circle with defects as well, decorating inter-
vals between defects also. The circle then evaluates to the trace of the operator
¢(gn)ma1¢(gl) ce ¢(gn—l)ma,1 on P, see Fig.9 (right).

The bigger category where intervals between defects are labeled by elements of G
can be denoted Coby, | G, and the above choices give a functor from this category to
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Ps Ps P P P} ‘l’P
1 1 Y
P P, PP P P

Fig. 10 From left to right: a trivalent vertex for an intertwiner P| @ P» —> P3, a valency two vertex is
an intertwiner between two modules, a vector v; in P and a covector v i P —> R, a closed network of
intertwiners

R—mod. Category Coby; | is a subcategory of Cobyx | ¢, with morphisms obtained by
specializing to decorations g; = 1 for all intervals.

Remark 2.6 For a commutative ring or semiring R, one-dimensional defect TQFTs
associated with projective R-modules P with additional data as above can be unified
into an oriented graph TQFT, see Fig. 10. Vertices of a graph can be decorated by
intertwiners between tensor products of projective modules, one for each edge of the
graph. Edges of a graph will carry defects, as above. For a given finitely generated
projective module P, one can allow more than one type of endpoints by picking a set
of elements {v;}, v; € P, instead of vy and labeling the “in” endpoints of P-intervals
by i, and likewise for the “out” endpoints of P-intervals. In particular, vertices of
valency 2 then correspond to intertwiners between projective modules, and defects of
the original form correspond to endomorphisms of projective modules.

3 Finite-state automata and one-dimensional TQFTs over the
Boolean semiring

3.1 A one-dimensional TQFT from a nondeterministic finite automaton

Regular languages and automata. Given a finite set X of letters, by a language or
interval language we mean a subset L. C X* of the free monoid on X. A language
is called regular if it is accepted by a finite-state automaton, equivalently, if it can be
described by a regular expression [7, 8, 16].

Suppose L; C X* is a regular language and (Q, 8, Qin, Qt) is a nondeterministic
finite automaton (NFA) accepting L|. Here, Q is a finite set of states, § : Q0 x ¥ —>
P (Q) is the transition function (£ (Q) is the powerset of Q), and Qin, Ot C Q
are the subsets of initial, respectively, accepting, states. We denote (Q, 8, Qin, Ot) by
(Q), for short. It can be thought of as a decorated oriented graph, denoted I'(p) or
['(Q), with the set of vertices Q, a directed edge from each state g to each ¢’ € 8(g, a)
marked by @ € X, and subsets Qin, O of distinguished vertices.

A word w € L if and only if there is a path in I'(Q) from some initial to some
accepting state where consequent letters ay, ..., a, in the pathread w = aj - - - a,.

B-modules. Let B = {0, 1|1 4+ 1 = 1} be the Boolean semiring on two elements.

A B-module M is an abelian idempotent monoid: x + x = x for any x € M,
and the unit element is denoted 0, 0 + x = x. Such M comes with a partial order
x < yif and only if x + y = y making M into a sup-semilattice with 0, where
X V'y := x + y. Morphisms in the category B—mod of B-modules take O to 0
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and respect addition. Finite free B-module is isomorphic to B”, the column module
with elements (xp, ..., x,)7, x; € B, with termwise addition and multiplication by
elements of B. Morphisms B” — B”" are classified by n x m Boolean matrices, with
the usual addition and product rules.

For further information and references on Boolean (semi)modules, we refer to [13,
Section 3].

Boolean linear algebra from an automaton. To automaton (Q) associate the free
B-module BQ with the basis Q and consider the dual free module (BQ)* = BQ*,
where set Q* consists of elements g*, ¢ € Q. The bilinear pairing between these two
free B-modules is given by ¢*(¢") = 84,4/

Transition function § describes a right action of the free monoid £* on BQ, with

ga= Z q. (3.1)

q'€d(q,a)

The set Qj, of initial states gives the initial vector gc0n 9> also denoted Qjn.
The set Q¢ of accepting states describes a B-linear map

1 if g € O,
Qi :BQ — B, 0i(q) = 1< (3.2)
0 otherwise.

Any word w € X* can be applied letter by letter to the initial state Qj, € BQ and
then evaluated via Qf, resulting in a map

a0 X — B, wr— 0{(Qihw), weX*

A word w € L if and only if o (gy(w) := QFf(Qinw) = 1, which is a way to
rephrase that automaton (Q) describes the regular language L;:

L =al () c o

1
1L,(Q)
We may also write o in place of o (), for short, if the automaton (Q) is fixed.

The action of ¥* on BQ can be described via Boolean Q x Q matrices, that is,
matrices with coefficients in B with rows and columns enumerated by states g € Q
of (Q). A matrix M € Matg (B) acts by right multiplication on B-valued row vectors,
which constitute a free B-module isomorphic to BQ. To a € X associate the matrix
M, with the coefficient M, , ,» = 1 if and only if ¢" € §(q, a).

The vector Qj, corresponds to a Boolean row matrix with 1 in positions ¢ € Qin
and the covector Qf to a column matrix with 1 in positions g € Qx.

A one-dimensional TQFT F(g). We build a one-dimensional TQFT F(¢) with
defects and inner endpoints associated with (Q) by assigning BQ to a positively
oriented point + and the dual module BQ* to a negatively oriented point —. We call
these B-modules the state spaces of + and —, respectively, and write

Fo)(+):=BQ, Fo)(—) :=BQ™" (3.3)
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-3 BQ > qa B BQ > qw =qaiaz--ay -9-  BQ*> ag*
Qp
a Mg w = |: My, a m)
ay
e BQ> ¢q Ty BQ 5 q -y BQ*> ¢

Fig. 11 Action of Z* on BQ and BQ*, with word w = aj - - - a,

-@- BReBR*  --------- B
Tcoev [‘\ Tev
--------- B -¥-----Lo BQTeBQ

Fig. 12 Coevaluation and evaluation morphisms associated with cup and cap cobordisms

Remark 3.1 Our sign convention is opposite to that of [13] but matches the notations
in Sect.2.1. We use the right action of ¥* on BQ above for a better match with the
automata theory literature, although switching to the left action would be a better
match with the literature from the mathematics side.

We may write F instead of F () if an automaton (Q) is fixed. Our TQFT will be a
symmetric monoidal functor

Fo) : Cobg | — B—mod 3.4)

from the category of oriented one-dimensional cobordisms with defects and inner
endpoints to the category of B-modules. In fact, objects in the image of F(p) will be
finite free B-modules.

To a sign sequence ¢ = (&1, ..., &), & € {4+, —}, we assign the state space

FoyE):i= Foy(e) ® - ® Foy (&), (3.5)

which is a tensor product of free B-modules BQ and BQ*. In particular, F()(¢) is a
free B-module of rank |Q|¥.

To a point labeled a € X on an upward-oriented vertical line, the functor F(p)
assigns the operator m, : BQ — BQ of multiplication by a (right action in (3.1)),
see Fig.11 on the left. A sequence of points labeled ay, ..., a, on a upward line
describes a word w = aj - - - a, which, upon applying F (), acts by the composition
m,, of these operators, m(q) = gw = qaj - - - a, see Fig. 11 in the middle.

To a point labeled a on a downward-oriented vertical line, we assign the dual
operator m} : BO* — BQ™. Writing m, via the Boolean square matrix M, in the
unique basis Q of BQ, the dual operator m; is given by the transposed matrix MZ in
the dual basis O* of BQ*.
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R

+ — —

Fig. 13 Left: maps assigned to the half-intervals with a 4+ boundary points. Right: defining maps for
half-intervals with a — boundary point

To a cup, respectively, a cap, cobordism, see Fig. 12, the functor F(¢) associates
the coevaluation map, respectively, the evaluation map

coev : B — BQ ® BQ*, 1 — Zq@q*, (3.6)
q€Q
ev:BO*®@BQO — B, 41 ® g2 —> 841,45 (3.7)

These maps are compatible with maps m, and m induced by a dot labeled a (see
Fig. 14 bottom row), and they satisfy the isotopy relations in Fig. 14 in top right, middle
and bottom rows.

A half-interval is a connected component of a one-cobordism which has one (outer)
boundary and one inner endpoint, see Sect.2.2.

To a half-interval ending in + at the top boundary, we assign Qj, € BQ, thinking
of it as describing a map B — B Q which takes 1 to Qj,. To a half-interval ending
in + at the bottom, we assign B-linear map Qf in (3.2). Figure 13 on the left explains
these assignments. The other two half-intervals (those with a — boundary endpoint) are
given by composing the intervals with a + endpoint with a cup or a cap, respectively,
see Fig. 13 on the right. The map for the half-interval terminating with — at the top,
respectively, at the bottom, is the dual Q¢ : B —> BQ™* of the trace map, Q(1) =
> qe0, 4> respectively, the dual 07, : BOQ* —> B of the unit map.

The functor F () takes the transposition cobordism given by a crossing with various
orientations to the transposition isomorphism VW — W®V of the tensor products
of B-modules V, W € {BQ, BQ*}. The following proposition is straightforward to
check.

Proposition 3.2 (1) A nondeterministic automaton (Q) gives rise to a symmetric
monoidal functor

f(Q) . CObEJ — B—fmod

from Cobsx | to the category of free B-modules.
(2) Isomorphism classes of such functors are in a bijection with isomorphism classes
of nondeterministic automata.

We call automata (Q1) and (Q2) over the same set of letters ¥ isomorphic if there
is a bijection between their states that converts the transition function, initial and
accepting states for one automaton into the transition function, initial and accepting
states for the other automaton. Such a bijection Q1 = Q- induces an isomorphism of
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state spaces BQ1 = BQ> and an isomorphism of their duals BQ} = BQ3. Action of
a € X intertwines these isomorphisms, making the diagrams below commute

BQ, —— B, BQ} —— BQ;

ma] I ni]| (3.8)
BQ1 —— BQ, BO7 — BQ3

The isomorphisms intertwine cup and cap duality maps in the two theories as well as
the maps for the initial and accepting states, resulting in an isomorphism of the two
TQFTs. Vice versa, a TQFT F as above assigns a free finitely generated B-module
F(+) to a positive oriented point +. Free module F(+) = B” has a unique basis
Q C F(4), up to permutation of its terms. Writing down the action of a € ¥ in this
basis gives the transition function of a nondeterministic automaton with Q as the set
of states, and half-interval cobordisms in Fig. 13 define subsets of Q of initial and
accepting states.

In (3.3), one can replace B—fmod by the smaller full subcategory of finite free
B-modules. Functor F () intertwines monoidal structures on the two categories due
to (3.5) and intertwines rigid and symmetric structures of the two categories as well.

|

Evaluation of intervals. One can now arbitrary compose these generating cobor-
disms. By a closed cobordism, we mean a cobordism from the empty sequence
to itself. Such a cobordism is a disjoint union of oriented intervals and circles with
defects (Fig. 14).

An interval with defects is determined by the word w read along it in the orientation
direction and evaluates to o|(Qinw) € B, see Fig. 15. The evaluation is 1 if w € L,
and 0 otherwise. Isotopy relations in Fig. 14 ensure that the evaluation of the interval
does not depend on its presentation as a monoidal concatenation of basis morphisms.

An interval without defects evaluates to «(Qin) = a1,(0)(?) € B, where ¥ € T*
is the empty word. We will write

a1, (g) (@) = o (Qinw), Q) - > — B 3.9)

for the interval evaluation of words w € X*. Evaluation o (g)(w) = 1 if and only if
o is in the language L, accepted by the automaton (Q).
Our notations contain several versions of the empty set:

e ) € ¥* is the empty word and the identity of the monoid X*.

e (Jp is the empty O-manifold and the unit (identity) object 1 of various monoidal
categories of 1-cobordisms.

e (J; is the empty 1-manifold, which is the identity morphism of the identity object
1 of the category of 1-cobordisms.

Circular and strongly circular languages. Denote by o, (o)(w) the evaluation of
an oriented circle with the circular word w written on it.

@ Springer



93 Page 180f38 P. Gustafson et al.

Fig. 14 Top left: the cap and cup cobordisms with the opposite orientations. The cap and cup cobordisms for
the opposite orientation are obtained by composing the original cup and cap in Fig. 12 with the transposition
cobordisms, see top right for the cup cobordism for the opposite orientation. Middle row shows isotopy
relations on cup and cap cobordisms and the bottom row—compatibility with the dot maps (isotopies of dots
across local maxima and minima)

W =ai - ap

o—o——0 = o(Qinw) = o (W) —— = o(Qin)
ap a2 -+ Qp

Fig. 15 Left: a decorated interval and its evaluation. Right: an interval with no defects

Qn, ev
ay -
= g, = 24" (qw)
as aj_ _ q€Q
a coev

Fig. 16 Evaluation of an w-decorated circle, o = ay ---an

We view a circular word as an equivalence class of words in X* modulo the equiv-
alence relation wywy ~ wrw; for w1, wy € E* and denote the equivalence classes
by X° := ¥*/ ~. Evaluation o, (p)(w) does not depend on the presentation of a
w-decorated circle as a concatenation of basis morphisms, for letters in w. The corre-
sponding evaluation map

o () - ¥ — B

goes from the set of circular words to B.
Put a circle with a defect circular word w = aj - --a, in a standard position as
shown in Fig. 16.
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The evaluation of w is then

o0 (@) = evo (m, ®idy)ocoev = > g*(qw). (3.10)
q€0

A word w evaluates to 1 via a, (o) if and only if for some state g € Q there is a path
w in the decorated graph (Q) that starts and ends at g. Evaluation «, (o) defines a
circular language L, (g) C X°.

We say that a language L' C * is

circular if wjwy € L' if and only if wpw| € L’ for any wjwy € X¥,

strongly circular if it is circular and @ € L’ implies that " € L' foralln > 0,
cyclic if it is circular and w € L’ & " € L' for any n > 2, see [4, 6],

a trace or loop language if it consists of words that are loops in some automaton

(D).

Setting n = (0 above, we see that a strongly circular language is either the empty
language ¥ or it contains the empty word, since #§ = «° for any @ € *. The
language {a"} is an example of a circular but not a strongly circular language. The
notion of a cyclic language is similar but different from that of a strongly circular
language. A trace language is strongly circular, see below.

Likewise, an evaluation « : £¥* — B is called

e circular if a(wjwy) = a(wywy), for all wjwr € X,
e strongly circular if it is circular and a(0") = a(w) for any word w € ¥* and
n=>0.

Proposition 3.3 For any automaton (Q), the trace language L, (g is a strongly cir-
cular regular language. It depends only on the transition function in (Q) and not on
the sets of initial and accepting states Qin, Q.

Proof Itisimmediate that circular evaluation o, ¢ and the associated circular language
L., o are described by a finite system via (3.10) and are a regular circular language. In
more details, the language L, (o) picks out circular words for which there is a cycle
in (Q). For each state ¢ € O, we can form the automaton (Q), with the states and
transition function given by (Q) and ¢ being the only initial and accepting state. Then,
Lo, (p) is the language of the automaton U,ep(Q)y, the disjoint union of automata
(Q)q over all states g in Q.
The empty word is in L, (p) since

%@ = Y a"@ = ) 1 =1eB.
qeQ qeQ

A word w € L, (g if and only if g*(qw) = 1 for some state ¢, which means that
there is a path w from ¢ to itself. (In general, there may be several paths w starting at
q; the circular evaluation of w is 1 if and only if there is a path that comes back to g.)

The n-th power of this path will go from g to g as well, so that " € L, (¢) for any
n > 0, and the language L, (¢, is strongly circular. O
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I* 5 Tq Ea 5 T

qeQ Tq* ged(qa) 4
. . - . .

+

Fig.17 Left: an endpoint decorated by g. Middle: decomposition of the identity endomorphism of +. Right:
action of a on an endpoint labeled ¢

We see that an automaton (Q) defines a pair of evaluations

a(g) = (@1,(0)s Xo,(0))> (3.11)

the second of which is strongly circular. We may call these the interval and the circular
or the trace evaluations of (Q), respectively. These evaluations give rise to a pair of
regular languages

L) := (L1,(0): Lo,(0))- (3.12)

with L, () strongly circular. We can call these languages the interval and the trace
languages of (Q), respectively. The language L. (o) may also be called the loop
language or the circular language of the automaton (Q).

Note that for the empty automaton () with no states both languages L, ) and
L., (g are empty (contain no words), justifying our inclusion of the empty language
into the set of strongly circular languages. For any nonempty automaton (Q), its
trace language L, (g) contains the empty word ¥y, while its (interval) language L, (g,
contains the empty word if and only if Qj, N Q¢ is nonempty.

Decomposition of the identity. Any TQFT allows for a so-called decomposition of
the identity. In the TQFT for the automaton (Q), one can introduce endpoints labeled
by ¢ and g*, over all states ¢ € Q, depending on the orientation of the interval near
the endpoint, see Fig. 17. One can then decompose an arc as the sum over pairs of
half-intervals labeled g and ¢*, over all ¢ € Q, see Fig. 17 on the right. Another skein
relation is shown in that figure as well.

3.2 Trace languages of automata with a given interval language

Let us fix a regular language L and consider an automaton (Q) with the language or
interval language L:

L=1L(-

To (Q), there is also associated a strongly circular language L, (o), the trace language
of (Q). We explain here that there is a large variety of possible trace languages for
automata with the fixed interval language L.
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0

N, Q" = {q0}

b

Fig. 18 Two-state automaton (Q") with 0" = {go} C O’ = {q0. g1} and language L"” in (3.13) of circular
words that pass through gg

b
Cf_\ Q' = {q0,q1}
a [e) ® ]
q1

Pick an automaton (Q") with no initial or accepting states, so that L; (o) = @ is the
empty language. The trace language L, (¢ is a regular strongly circular language.
The disjoint union automaton (Q) U (Q’) has the same interval language as (Q), but
its trace language is the sum

Lo, o)u@)) = Lo,0) + Lo,0)

of the trace languages for the two automata. Here, we view languages as elements of
P(Z*), the powerset of the set of words X*, which is naturally a B-module under the
union of sets. Thus, the sum of languages is defined as the union of languages.

We see that the trace language L, (g) can be beefed up by adding to it the trace
language of any nondeterministic finite automaton:

Proposition 3.4 Given a regular language L, if some automaton for L has the trace
language L., then all languages of the form

Lo+ L,

where L' is the trace language of some automaton, are the trace languages of automata
with the interval language L.

Note that the sum of two trace languages (respectively, of two strongly circular
languages) is a trace language (respectively, a strongly circular language).

Let (Q’) be an automaton as above, with no initial or accepting states, and Q" C Q’
a subset of the states of Q'. Define the language L” to consist of words  such that
there is a circular path w in (Q’) that passes through a vertex of Q”. The language L”
is strongly circular. Figure 18 shows an example, with a 2-state automaton (Q”).

Take Q" = {qo} C Q' = {qo, q1} in that example. The language
L" = (ba*b)* + (a* + b>)*b*(a* + b*)* (3.13)

of circular paths that pass through g is strongly circular.

Language L” is not the trace language of any automaton. Indeed, suppose it is the
trace language of an automaton (Q1). Notice that words in L” contain subwords a"
for all n. This implies that there exist m > 1 and a state ¢ € Q1 with a circular path
a™ from q to g. Then, the trace language of (Q1) contains a”. This is a contradiction
with (3.13) or with Fig. 18, since any nonempty word in L” contains the letter b.

Corollary 3.5 Not every strongly circular language is the trace language of an automa-
ton.
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a Q Qs
R
—0 © Ly = (a®)* L= (a*)*
/\E/ LO:(GZ)* Lo:(aﬁ)*

Fig. 19 An automaton (Q) for the language (az)"< and its covering automaton (Q3). The two automata

share the interval language but have different trace languages

It is a natural question whether any strongly circular language is the language L”
associated with an automaton (Q’) and a subset Q" C Q’ of its states. Language L”
consists of words realizable as circular paths in (Q) that go through a state in Q”.

Proposition 3.6 Any regular strongly circular one-letter language is the trace lan-
guage of some automaton.

Proof Let L C a* be a regular strongly circular one-letter language. Then, L is
eventually periodic [20], so that for some N and k > 1 we have @™ € L < amtk ¢
L,m > N.Letji,..., j be exponents of words in L that are less than N. Since L is
strongly circular, with any word it contains all its powers. This implies that k = mn
for some n, m such that L N aa* = a® (a™)*.

We can now realize L as the trace language of the automaton (Q) which is the

disjoint union of oriented loop automata of lengths ji, ..., j- and a flower automaton
which is the one-vertex union of oriented loops of lengths N, N+n, ..., N+(m—1)n.
O

Remark 3.7 Let us also refer the reader to the related notion of a strongly cyclic lan-
guage in [1, 6].

Coverings of automata. An automaton (Q) can be viewed as a decorated oriented
graph, possibly with loops and multiple edges. Viewing the underlying graph as a
topological space ¥ = Y(¢), pick a finite locally trivial covering p : Z — Y (in
particular, p is surjective). Topological space Z can be viewed as a graph. We lift all
decorations from Y to Z to turn it into an automaton. Namely, let Q' := p~!(Q)
be the set of vertices of Z. Define sets of initial and accepting vertices of (Q’) by
Qi = p 1 (Qin), O} := p~'(Qy), i.e., sets of initial and accepting vertices of (Q")
are the inverse image under p of sets of initial and accepting vertices of (Q). Edges
of Z are oriented to match orientation with edges of Y, so that p applied to any edge
preserves its orientation. Labels on edges of Z must match those of ¥ under the map
p as well.

Two examples of automata and their covering automata are shown in Figs. 19 and 20.
In both examples, graphs Y underlying automata (Q) are connected and coverings have
degree three.

Proposition 3.8 An automaton (Q) and its covering automaton (Q’) have the same
interval language, while the trace language of (Q') is a subset of the trace language
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a a b % a
aom@Q D ol D Y >©Q ,
~~— 1 N N \'ﬁl
a a b a a
Ly = (ab*a)*ab* , aba € Lo

¢ Lo = (a?") Y abay Log

Fig.20 An automaton (Q) for the language L) = (ab*a)*ab* with the trace language Lo, = (a2b*)* and
its covering automaton (Q’) with the same interval language L, but a different trace language

of (Q):

Loy = L. L) C Li-

Proof Note that any accepting path in (Q') with a word w projects to an accepting
path in (Q) carrying the same word, and any lifting of a path with a word w in (Q)
gives a path in (Q’) with the same word, implying the equality of interval languages.
A circular path in (Q’) projects to a circular path in (Q), preserving the word, while
a circular path in (Q) does not always lift to a circular path in (Q’). O

Example 3.9 Graph Y underlying the automaton (Q) in Fig.19 is a cycle, and its
connected coverings are parameterized by the degree n of the covering. Denote by
(Qpn) the corresponding automaton. Then, (Q1) = (Q) and (Q3) is also shown in
Fig. 19. The interval and circular languages for (Q) and (Q,) are

Li) = Licg,) = @)*, Logg) = (@)*, Log, = @™*.

In particular, as n becomes large, the only short length word in the circular language
for (Qy) is the empty word @.

Given an automaton (Q) with the interval language L, assume that (Q) has at least
one oriented cycle, so that L, (g) contains a nonempty word. Arrange states of (Q)

around a circle and draw arrows g BN q’, a € T so that they all go clockwise around

the circle, at most one full rotation each. In particular, an arrow ¢ N q from a state
to itself will make a full rotation around the circle. An example of such arrangement
for the automaton (Q) in Fig. 20 is shown in Fig.21.

Now, foreachn > 1 we canform the “cyclic” cover (Q,,) of (Q) by taking the cyclic
n-cover of the circle and extending to a cover of the automaton (Q). The resulting
automaton (Q,) has as n times as many states and edges as (Q), with (Q1) = (Q).
An example is shown in Fig. 21 on the right. The following observation holds.

Proposition 3.10 Automata (Q,) all have the same interval language L. The trace
language L (o, for the automaton (Q,) does not contain any words of length less
than n other than the empty word @. The trace language L, (g, is infinite for each
n>1.
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Fig. 21 Left: automaton (Q) with states arranged along a circle and edges going clockwise around the
circle. Right: a 4-fold cyclic cover automaton (Q4) of that arrangement

Fig.22 A weak covering, with three states mapping to g1 and two states mapping to g

From automata (Q,), we obtain a family of TQFTs with defects with the same
interval evaluation ) but circular evaluations given by languages L, (¢p,) that shrink
as n increases, in the sense that L, (g,,,) C Lo,(0,) and L. (g,) does not contain words
of length strictly between 0 and n.

Remark 3.11 A sample of coverings of the figure eight graph, in relation to subgroups
of the free group F3, can be found in A. Hatcher’s textbook [10, Section 1.3].

Weak coverings. The covering automata construction can be generalized as follows.
A weak covering p : (Q') —> (Q) of automata is a surjective map of underlying
graphs p : Yoy —> Y(() such that

° p_l (Qin) = Qi’n, p_l (Qv) = Oy, that is, p preserves properties of a state to be
initial and accepting,

e The label a € T of each edge of (Q’) is preserved by p,

e For each arrow y : g LN g2in (Q),a € ¥, and any ¢ € 2~ (q1), there exists
an arrow ¥’ : g LN g5 which lifts y, that is g5 € p~!(¢2) or, equivalently,
py)=vy.

See Fig.22 for an example of a weak covering.

Proposition 3.12 Given a weak covering p : (Q') —> (Q) of automata, the two
automata share the interval language, while the trace language of (Q’) is a subset of
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that of (Q):

L o) = Lio: Ly o) C Lig-

The above constructions show that there is a lot of variety in possible trace languages
L, of automata (Q) with a fixed interval language L. Taking coverings and weak
coverings of (Q) shrinks the trace language, while taking the disjoint union of (Q)
and an automaton ( Q") with the empty interval language, see Proposition 3.4, enlarges
the trace language.

Question 3.13 Given a regular language L, is there an efficient classification of
strongly circular languages L, that are trace languages of automata with the interval
language L?

A similar question may be posted with “7-automata” replacing “automata” above,
see Sect. 4.3 for 7-automata.

Trimming an automaton. For an automaton (Q), denote by Q” C Q the subset
such that g € Q" if and only if g is either a state in a path from some initial state (state
in Qjn) to an accepting state or ¢ is a state in some oriented loop in the graph (Q).
Denote by Q' C Q the set of states reachable from states in Q”. The B-submodule
BQ’ of BQ is closed under the action of X and we turn Q’ into the automaton (Q")
using that action of X, with the set of initial states—the intersection Q' N Qi and the
set of accepting state—the intersection Q' N Qx.

B-submodule B(Q'\ Q") is stable under X. The quotient of BQ' by this submodule
produces a free B-module BQ”. Form the automaton (Q”) on the set of states Q”,
with the induced X-action, initial states Q” N Q¢ and terminal states Q” N Ox.

Thus, from the automaton (Q) we first pass to the B[ X*]-submodule BQ’ and the
associated automaton (Q’), then to the quotient B[X*]-module BQ” of BQ’ and the
associated automaton (Q”). The following observation is clear.

Proposition 3.14 Automata (Q), (Q'), and (Q") share the same pair of interval and
circular languages (L (g), Lo,(0))-

The proposition says that the three TQFTs associated with the three automata
evaluate the same on all closed morphisms in Coby |. (By a closed morphism in a
monoidal category, we mean an endomorphism of the identity object 1.)

Passage from (Q) to (Q”) and from BQ to its subquotient B[ X*]-module BQ" is
analogous to passing from an automaton to the associated trim automaton.

3.3 Path integral interpretation of automata

Consider a regular language L and an automaton (Q) that describes it. In the graph
of the automaton oriented edges are labeled by letters (elements of X), while in the
category Coby, | itis vertices (defects) inside a cobordism that are labeled by elements
of .

Let us now pass to the Poincaré dual decomposition of our cobordisms. Suppose
given amorphism u € Coby | from a sign sequence ¢ to &', thus a cobordism decorated
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a \j/ \;./”./ Q Poincaré a p df#oa/o G

dual

Fig. 24 An unlabeled arc is composed with two labeled arcs, and then, one of the two vertices of the
unlabeled arc can be erased. One may obtain similar diagrams for the opposite orientation

as earlier. Consider the Poincaré dual of the decomposition of u into defects and
intervals between defects. Now, each such interval becomes a vertex and a defect
becomes an interval, see Fig.23 for an example. The orientation of intervals and
circles is preserved.

Let us understand this transformation, for a particular morphisms on the left of
Fig.23. A vertical interval (a morphism from 4 to +) has defects a, b. It turns into an
interval with three vertices (two at the endpoints) and two edges, labeled a and b. An
arc at the top, which is a morphism from @y to —+ with a defect ¢, becomes an arc
with two vertices and an interval labeled c. In particular, all boundary points become
vertices and each edge inside the cobordism between two defects becomes a vertex as
well.

A half-interval with no defects on it (there are two such on the left of Fig.23)
becomes a single boundary vertex which carries a sign (+ or —). A half-interval with
one or more defects on it becomes an interval with two or more vertices and labels of
defects becoming labels of edges. (The example in the figure is for one defect b on a
half-interval.) A floating interval with £ > 0 defects becomes an interval with k + 1
vertices. A floating interval with no defects turns into a floating point.

An arc or a circle with no defects remains as they are. This creates a minor
inconvenience—one should think of such an arc as unlabeled, but when composed
with a labeled interval, the label of the latter can be extended to the arc, see Fig.7.

Remark 3.15 A related construction starts with a category Cx, with a single object W
with generating morphisms @ : W — W for each a € ¥, with no relations on
these morphiims, so that Endcy, (W) = ¥*. One then passes to the rigid monoidal
completion Cyx, a category with objects—sequences of signed objects of Cx and
morphisms—oriented one-manifolds decorated by morphisms in Cyx,. In this category,
endomorphisms of the unit object 1 (the empty sequence) are finite unions of loops in
Cs, that is, pairs (Y, y), where Y € Ob(Cx) and y is an endomorphism of ¥, modulo
the equivalence relation: For any morphisms y; : Y1 —> Y2, y» : Yo —> Y, the
pairs (Y1, y2v1) and (Y2, y1y») are equivalent.
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O0—0—0——»—0—0
aq ao an

Fig. 25 Decorated graph I (w) associated with a word w = ay ---a

An unlabeled arc in this category, see Fig. 24, can be thought of as an arc labeled
by the identity morphism of the object assigned to its boundary points. Any identity
morphism in Cx will be given by a union of such unlabeled arcs, going vertically
(rather than sideways, as in Fig.24). Such a rigid symmetric monoidal completion
category C can be defined for any small category C.

The Poincaré dual setup matches the graph description of finite state automata, for
now an oriented interval between two vertices in a floating component of a cobordism
is labeled by an element of X, similar to labeling of oriented intervals in the graph of
the automaton by letters in X.

A word w € ¥* defines an oriented floating interval I (w), see Fig.25 on the left,
the Poincaré dual of the one in Fig.7.

Word w is in the language L if and only if there exists a map ¢ : I(w) — (Q)
from the graph of the interval to the graph of the automaton that

o Takes vertices to vertices and edges to edges, preserving orientation of edges,

e Labels of edges are preserved as well,

e Takes the initial vertex of the interval to one of the initial vertices of (Q),

e Takes the terminal vertex of the interval to one of the accepting vertices of (Q).

More generally, we can consider all maps T € Hom(/ (w), (Q)) of oriented graphs
that satisfy the first condition and evaluate t to 1 € B if it additionally satisfies the
next three conditions and to O otherwise. Denote the evaluation by (7). Recall the
evaluation «; that evaluates words in L to 1 and not in L to 0. Note that a sum of
elements of B is 1 if at least one of the terms is 1; otherwise, it is 0.

We have

a(w) = > (t). (3.14)

reMap(l(w).(Q))

In other words, « can be written as the sum of evaluations, over all maps from the
oriented chain graph I (w) to the graph of (Q).

One can loosely interpret this expression as a path integral interpretation of the
evaluation ¢, determining whether a word w is in the language L. We sum over all
maps from a graph which is a chain to (Q) and assign 1 to the map if the labels of
all edges match, and boundary vertices are mapped to Qj, and Qy, respectively, see
Fig.26. This evaluation (r) can be written as the product of local evaluations, one for
each edge of the graph I (w), and for each of the two boundary vertices of I (w).

A degenerate interval I (), for the empty word ¥y, is a single vertex in the Poincaré
dual presentation. We sum over all maps to (Q); in this case, over all states of Q, and
evaluate a map to 1 if the state if both an initial and an accepting state of (Q). The
empty word is in L if such a state exists.

This interpretation extends to circular words. Recall that automaton (Q) determines
a circular language L, = L, (o) and the corresponding circular evaluation «,, where

@ Springer



93 Page280f38 P. Gustafson et al.

(@)
I(w)

ay as as a4 as T

Fig. 26 A map of graph /() to (Q) that evaluates to 1, for word length || = 5. The leftmost vertex of
I (w) maps to one of the initial states of (Q) and the rightmost vertex maps to an accepting state (state in

0Or)

S(w) (@)

Fig. 27 Map of a circle graph to (Q) that evaluates to 1, word length |w| = 6

a circular word w € L, if there exists an w-path in (Q), and then o, (w) = 1. Denote
by S(w) the graph which is an oriented circle with word w written along the edges.
We have

oo (@) = Z (t). (3.15)

TeMap(S(w).(Q))

Here, we are looking at all maps t of the circle graph to the graph of (Q) and evaluate
amap to 1 if and only if the labels of all edges match, see Fig.27.

Thus, we can think of both languages L, (g) and L, (p) associated with an automa-
ton (Q) as computed via Boolean-valued path integrals or sums. To determine if w is
in L) (p) we sum over maps of the interval graph I (w) to the graph of (Q). Whether
w is in L, (o) is determined by the sum over all maps of the circle graph S(w) to the
graph of (Q).

3.4 Relation to topological theories

The earlier paper [13] obtained a relation between Boolean topological theories and
automata. There one starts with a regular language L| and a circular language L,
and builds state spaces A(e) for oriented 0-manifolds given by sign sequences €. The
state spaces A(e) are finite B-modules, but they are not necessarily free or projective
modules. The resulting theory is not a TQFT, in general: maps

Ale) ® A(e') — A(sué)
are not isomorphisms, in general, unlike in the construction of the present paper.
In the present paper, one starts with an automaton and defines a Boolean one-

dimensional TQFT, with the state space BQ for the 4+ point. In particular, the state
spaces are free B-modules (see Sect. 4.3 for a generalization to projective B-modules
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where one replaces the discrete topological space of states of (Q) by afinite topological
space X). If the automaton (Q) describes the language L), the state space A(+) can
be obtained as the subquotient B-module of BQ. Thus, in [13] one starts with a pair of
languages (L, L,), while in the present paper both languages L, L, are determined
by the automaton (Q). If one picks the pair (L), L,) associated with the automaton
(Q), the state space A(¢e) for a sign sequence € in [13] is a subquotient of the free
B-module F () (). This can be phrased more naturally, as the topological theory given
by (L, L,) being a subquotient theory of F(p).

In particular, an automaton gives rise to a Boolean one-dimensional oriented TQFT
(with inner endpoints and defects), while a pair of regular languages (L), L,), with
the second language circular, gives rise, in general, only to a one-dimensional oriented
topological theory (also with inner endpoints and defects).

Boolean TQFTs can only produce strongly circular trace languages L, see earlier
and Proposition 4.7 in Sect. 4.3, where the construction is extended to 7-automata and
giving projective rather than free Boolean state spaces. In topological theories, one can
use more general languages (circular rather than only strongly circular), still resulting
in theories with finite state spaces but failing the TQFT axiom, see also the table in
Sect.4.4.

4 Extending TQFTs to 1-foams
4.1 Boolean 1D TQFTs and finite topological spaces

Finite projective B-modules and finite topological spaces. Assume M is a finite B-
module. Then, M has a lattice structure, with

XAY:i= Z c, 1:=Zc;

C=X,c=y ceM

that is, x A y is the largest element less than or equal to both x and y. Denote by M”"
the set M viewed as a lattice with join v and meet A as above.

Proposition 4.1 The following conditions on a finite B-module M are equivalent.

(1) M is a distributive lattice.

(2) M is a retract of a free B-module B" for some n.

(3) M is projective in the category of finite B-modules, i.e., it has the lifting property
for surjective semimodule homomorphisms.

(4) M is isomorphic to the lattice of open sets U(X) of a finite topological space X.

M is a retract of a free B-module if there are module maps M 5 B" -2 M such
that p ot = idy,.

We refer to [13, Section 3.2] for a discussion of this proposition and more references
on B-modules. The tensor product M ® N of two B-modules has good behavior when
one of M, N is a projective B-module.
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Let X be a finite topological space. The set L/(X) of open subsets of X is naturally a
finite distributive lattice, with join and meet operations UVV = UUV, UAV = UNV,
the empty set ¥ as the minimal element 0 and X as the largest element 1. Viewing
U(X) as a finite B-module, the additionisU + V :=U U V.

Let M be a finite projective B-module. The proposition says, in particular, that
M = U(X), for some finite topological space X.

For x € X, denote by U, the smallest open set that contains x. If Uy = U, for some
x,y € X, one of x, y can be removed from X without changing the lattice U(X), so
we can assume Uy # Uy forx # yin X. Letus call an X with this property a minimal
topological space and consider from now on only minimal X.

A nonzero element u of a B-module M is called irreducible if u = uy + u, implies
that 1 = u or up = u. Denote by irr(M) the set of irreducible elements of M.

The set irr(U(X)) consists of elements Uy, x € X,

irUX)) = {Uslx € X). 4.1)

In particular, irreducibles in U(X) are in a bijection with points of X. Inclusion and
projection maps

UX) - BX -2 UX) (4.2)
are given by
W)=Y x,  plx)=U, 4.3)
xeU

and pL= idz,{(x).

Duality. We continue to assume that X is a minimal topological space, so that
irreducibles in U(X) are in a bijection with points of X. Denote by X* the dual
topological space of X. It has the same underlying set of points and a set V is open
in X* if and only if it is closed in X. Thus, open sets of X* are complements of open
sets of X. Irreducible elements irr(L/(X)*) are in a bijection with elements of X and
consist of minimal closed subsets V, of X that contain x, one for each x € X.

There are evaluation and coevaluation maps

coevy 1B — UX) @UXY), 1+ Y Ur® Vi, 4.4)
xeX
evy : UX*) @ UX) — B, VU dunv, 4.5)

Here, éw = 1 if set W is nonempty and 8y = 0. It is straightforward to check that
these maps satisfy the deformation relations in Fig. 1 bottom row, see also (2.10),
where M should be replaced by U(X) and M* by U(X*). Consequently, U(X*) is
naturally isomorphic to the dual semimodule of U(X):

UX*) = UK (4.6)
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1 UX) > U, 1 UX*) > V,
T Y

1 1 e

--- B > 1 --- B > 1 -

Fig. 28 Inner endpoints with in and out orientations labeled by points x, y € X. In endpoint labeled x
denotes the element Uy of U(X), while an out endpoint labeled y denotes the functional on /(X) given by
intersecting an open set in X with the closed set Vy. A floating interval with x, y endpoint labels evaluates
to 1if and only if Uy and Vy, have a nonempty intersection. (Notation §y denotes 1 if the set W is nonempty
and 0if W =0.)

Corollary 4.2 A finite projective B-module M defines a symmetric monoidal functor
Fu : Cob — B—mod 4.7

taking objects + and — to M and M*, respectively, and cup and cap to coevy and
evy under a fixed isomorphism M = U(X) for a finite topological space X.

Of course, X is determined by M up to an isomorphism. For any sign sequence ¢ the
B-module F(¢) is projective, isomorphic to the tensor product of projective modules
M and M*. A circle evaluates to 1 € B under this functor, for any nonzero M. For an
additional discussion of duality, we refer to [13, Section 3.2].

Adding endpoints. Given X as above, we can enhance category Cob to a category
denoted Cob|X by allowing inner endpoints labeled by elements of X, see Fig.28. A
floating interval then carries two labels from X, one for each endpoint.

Functor F74x) extends to a functor

Fucx) : Cob — B—mod (4.8)
(keeping the same notation for the functor) that takes a half-interval with an endpoint
labeled x to Uy, € U(X) and, for the opposite orientation, taking U to 8y ,y,, see
Fig.28. A floating interval with in, respectively, out endpoint labeled x, respectively,
v, evaluates to 8y, y,, that is, to 1 if and only if the smallest open set that contains y
intersects nontrivially the smallest closed set that contains x.

It makes sense to simplify the notation and denote the functor F4x) by Fx, for
short.

4.2 Extending to one-foams
Multiplication on U(X) and foams. Intersection of sets gives rise to a B-module map
UX) @UX) > UKX), U-vV:=UnNV. (4.9)

This map is well defined due to distributivity of the intersection over union, U -
Vi4+ Vo) =U -V + U - V,. It makes U(X) into an associative commutative unital
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Ux) > x

B > 1

e UX)eUX) B 3 1

N

———————— u(x) - UX) s U0

Fig.29 Multiplication, comultiplication, unit and counit diagrams for U(X)

' '
:’ '
Iy
= N
® —
e
>

——+

semialgebra over B. The unit element 1 of 2/(X) is given by the biggest open set X,
since X - U = U for U € U(X).

Consider the multiplication on the dual topological space U(X*) ® U(X*) —>
U(X™). Dualizing this multiplication via Hompg_ 04 (%, B) and isomorphism (4.6)
gives a commutative coassociative comultiplication

UKX) 2> UX) @ UKX) (4.10)
with the counit map
€:UX)— B, e(U)=1 ifandonlyif U # @. “4.11)
The formula for comultiplication is:

AU) =Ur ®Uy, x€X, AU):= Y AU = Y. Ux® Uy,
x|U,CcU x|UyCcU
4.12)

where, for instance, the first sum is over x such that U, C U. Irreducible elements
Uy of U(X) are sent by A to their tensor squares, and then, the map is extended to
all open sets U by summing over applications of this map to all irreducibles in U. To
check that A is indeed dual to multiplication m in U(X*), pick open sets Uy, U, and
a closed set V in X. Then, the pairing (4.5) computes

(V, Uy -U2) =évnuinu, = Z Sv,.u18v,,u, = (A(V), U1 ® Up). (4.13)
x|VyCV

where V, is the smallest closed set in X that contains x. We see that the multiplication
(4.9) on U(X) is dual to the comultiplication on U(X*) with respect to the pairing
4.5).

We can now extend our graphical calculus by adding oriented 3-valent vertices of
two kinds, see Fig.29, to denote multiplication and comultiplication on U(X), and
inner endpoints to denote the unit element X € U(X) and the trace &, which dualizes
to the unit element in /(X ™).
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R ST

Fig. 30 The duality relation between multiplication and comultiplication for Z(X) and U(X*)

+ + +
T+ T+ T+ v+ T+
Fig.31 Associativity, commutativity and the unit relations in 2(X)

+ + o+ + + o+ +
____+____ ____+____ _+_

Fig.33 Split-merge composition is the identity

A three-valent vertex either has two edges oriented in and one edge oriented out
or two edges oriented out and one edge oriented in, describing multiplication, respec-
tively, comultiplication on U(X), see Fig.29.

Orientation reversal corresponds to switching between X and X*, and the relevant
duality relations (relating multiplication mx in U(X) with comultiplication A= in
U(X™), and likewise for Ay and m x+) are shown in Fig. 30.

Associative commutative unital B-algebra relations on 2/(X) are shown in Fig.31.
The same relations with all orientations reversed hold as well, see Fig.32, where
these relations are also rotated. These correspond to the coassociative cocommutative
counital B-coalgebra structure on U(X) or, equivalently, to the algebra structure on
the dual module U(X*). Additionally, the relation in Fig. 33 holds.
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caps

trivalent vertices

cups

Fig.34 A closed one-foam C (an endomorphism of the identity object 1 of FCob) in standard position

Remark 4.3 In general, m and A do not satisfy the bialgebra axiom: A is not a homo-
morphism of semirings, A om % (m @ m) o P,z o (A ® A). However,

Aom(UV) < m@®m)oPio(AQAU®V), YU,V e UX),

where u < v means that u +v = v, for elements u, v of a semilattice M. This relation,
then, holds for the operators A om and (A ® A)(U ® V), and we can write

Aom+(mm)oPr3o (AR A)=(mRm)o Przo(ARQA).

We did not look for general inequalities of this form and feel that they likely hold for
random reasons and will not naturally generalize from the Boolean to more general
commutative semirings.

Motivated by these relations, one can introduce rigid symmetric monoidal cate-
gory FCob with sign sequences as objects. It contains Cob as a subcategory and has
additional trivalent vertex and inner endpoint generators as in Fig.29. Relations in
Figs. 30, 31, and 32 hold, as well as the standard relations from the symmetric struc-
ture on trivalent and univalent graphs, such as sliding a disjoint line over a vertex. One
may or may not impose Fig. 33 relation.

Any finite topological space X defines a symmetric monoidal functor

Fx : FCob — B—mod.
This functor is given on objects by
Fx(+) =UX), Fx =UX"),
and on generating morphisms by the formulas in Fig.29 (also formulas (4.9) and
(4.12)) and the cup and cap formulas (4.4) and (4.5).

It is natural to view morphisms in FCob as describing one-foams with boundary.
Two-foams appear when constructing link homology theories [15, 21-23].

Proposition 4.4 Any closed diagram C € Endgcop (1) evaluates to 1, ie., Fx (C) = 1.

@ Springer



Automata and one-dimensional TQFTs with defects Page350f38 93

Proof Any closed connected diagram C can be simplified not to have inner endpoints
(as on the right of Fig.29), by canceling them against an adjacent trivalent vertex.
After this simplification, C is either an interval (and evaluates to 1) or it can be put
in the form as shown in Fig.34, with all cups at the bottom, all caps at the top and
merge and split trivalent vertices in the middle. To evaluate this diagram, one uses
multiplication and comultiplication in U(X) given by (4.9) and (4.12) as well as the
evaluation and coevaluation maps in equations (4.5) and (4.4).

Each cup in the diagram, the diagram can be evaluated from the bottom up, with
each cup contributing the sum »_  Ux ®V,, see (4.4), where, recall, Uy, respectively,
Vi, is the smallest open, respectively, closed, set that contains x. Let us fix y € X and
restrict to one term in the sum over all cups which is U, ® V), for each cup. Evaluating
the diagram for this single term, minimal open and closed sets Uy, V), propagate via
multiplication and comultiplication to the tensor product of Uy and V), at the “caps”
dashed line. Coupling them in pairs via caps results in 1, since (Uy, Vy) = 1.

For each y € X, we obtain a term in the sum which is 1. In B, any sum with at least
one term 1 equals 1. O

Remark 4.5 Replacing B by a field k and avoiding the relation in Fig. 33, the k-linear
analogue of the structure above should be a commutative associative unital finite-
dimensional k-algebra A. Such an algebra defines a symmetric monoidal functor F4
from the cobordism category FCob to k—vect taking 0-manifold (+) to A, (—) to
A*, duality morphisms to the usual duality maps between A and A*, trivalent vertices
to the multiplication map on A and the dual comultiplication map coming from the
isomorphism A = A*. Univalent vertex is given by the inclusion of the unit element
into A and, for the opposite orientation, by the dual map A* — k.

4.3 Automata on finite topological spaces (Z-automata)

Recall that a one-dimensional Boolean TQFT F : Cob — B—mod associates a finite
projective B-module P = F(+) to the plus point and the dual module P* = F(—) to
the minus point. A finite projective B-module P is isomorphic to the module of open
sets U(X) of a finite topological space X, with P* = U/(X™*) and duality morphisms in
the TQFT coming from the standard duality maps coev and ev for U(X) and U(X™),
respectively.

Let us see how such a theory extends to a functor F : Coby; — B—mod,
allowing cobordisms with inner endpoints and X-defects. A map B — U(X) takes
1 € B to an open set Xj, C X. A map U(X) —> B is determined by picking a closed
set Xt in X (equivalently, an open set X in X*) and taking open U C X to éx,ny, see
the notation in Fig. 28 caption. That is, U goes to 0 if and only if it is disjoint from X.

Eacha € X determines an endomorphism m, € End(U(X)) which sends open sets
to open set and respects the union:

mg : UX) — UX), ma(Uy UUz) =ma(Uy) Umg(Uz), ma(#) = 0.

An endomorphism 7 of U(X) can be described by its action on minimal open sets
Uy, x € X.Reducing topological space X, if necessary, we can assume that Uy # Uy,
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forx #y € X. Then T (U,) is an open setin X, foreachx € X,and T'(Uy) C T (Uy)
whenever y € Uy, sothat U, C Uy, sothat T preserves the inclusions of minimal open
sets. Vice versa, an assignment x —> T (U,) € U(X) subject to the above condition
describes an endomorphism 7 of U(X).

The trace of T is given by (see also (4.4), (4.5))

tr(T) = evyx o (T ® idy+) o coevy

=Y Srwonv, = Y 8, CTWU) =Y 8(x e T(Uy)). (4.14)

xeX xeX xeX

Here, §(A) = 1 if and only if the statement A is true and §y = 1 if and only if the
set W is nonempty; otherwise, the value of § is O € B. Thus, the trace is 1 if and only
if for some x € X the image 7 (Uy) has a nonempty intersection with V,, the smallest
closed subset of X that contains x. This condition is equivalent to U, C T (Uy) for
some x and to x € T (U,) for some x.

Corollary 4.6 Iftr(T) = 1, for an endomorphism T of a finite projective B-module P,
thentr(T™) = 1 foranyn € Z.

Since tr(7") = 1 is equivalent to U, C T (Uy) for some x € X, iterating the inclusion
implies the corollary. ]
By a 7-automaton or a quasi-automaton, we may call the data as above:

(X) = (X’ Xin, Xt’ {ma}aEE)-

It consists of a finite topological space X, an initial open set Xjn, an accepting closed
set Xt, and endomorphisms m, of U(X), fora € X. A 7-automaton is equivalent to a
one-dimensional oriented B-valued TQFT with inner endpoints and X-defects.
The interval language L, (x) of a 7-automaton (X) consists of words w € X* such
that the intersection Xt N m,(Xin) # @. Here, my, = mg, - - -mg, forw =ay - - - ay.
The trace language L, (x) of (X) consists of words w such that for some x € X the
set m,(Uy) contains x, see (4.14).

Proposition 4.7 The interval trace languages (L (x), Lo (x)) of a T-automaton (X)
are regular, and the trace language L, (x) is strongly circular.

The second statement follows from Corollary 4.6. ]

An automaton (Q) is a special case of a 7-automaton. Nondeterministic finite-
state automata are precisely 7-automata for discrete topological spaces X. To match
the definitions, more than one initial state in a nondeterministic finite automaton is
allowed.

Categories Coby, | and FCob can be combined into a category FCoby; | of one-foams
with defects, where now edges of a one-foam carry dots (defects) labeled by elements
of X. One also needs to allow two types of inner endpoints, for the unit element
X € U(X) and its dual and for the initial (and accepting) 7-automata sets. Projective
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Automaton (Q) | T-automaton (X) pair (Ly, L)
TQFT Yes Yes No, in general

F(+) free B-module | projective B-module | finite B-module

L, strongly circular strongly circular circular

L regular language regular language regular language

() | evaluates to 1€ B | evaluates to 1€B | either 0 or 1 ¢B

Fig.35 TQFTs associated with automata and 7-automata (present paper) versus topological theories asso-
ciated with pairs (L|, L) of a regular language and a regular circular language [13]

B-module U(X) comes with a commutative associative multiplicationU -V := UNV,
giving rise to a monoidal functor

Fx) : FCoby | — B—mod.
We leave the details to an interested reader.

4.4 Summary table

Table in Fig.35 summarizes similarities and differences between TQFTs con-
structed in the present paper and associated with automata and 7-automata and
topological theories associated with a pair of regular language (with a circular sec-
ond language) in [13]. Topological theory associated with (L, L) is not a TQFT,
in general, and some pairs (L, L,) cannot be realized via any TQFT (for instance if
# ¢ L, and language L, is nonempty). More generally, (L, L,) is not realizable in
any TQFT if L, is not strongly circular. For all three columns, the state space F(+) is
a finite B-module; it is additionally free or projective for the first or second column,
respectively.
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