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Wall crossing for moduli of stable log pairs

By Kenneth Ascher, Dori Bejleri, Giovanni Inchiostro,
and Zsolt Patakfalvi

Abstract

We prove, under suitable conditions, that there exist wall-crossing and

reduction morphisms for moduli spaces of stable log pairs in all dimensions

as one varies the coe�cients of the divisor.

1. Introduction

Compactifying moduli spaces is a central problem of algebraic geometry.
It has long been apparent that moduli spaces often admit di↵erent compactifi-
cations depending on some choice of parameters, and so it is natural to ask how
these compactifications and their universal families are related as one varies
the parameters. The goal of the present article is to answer this question for
compact moduli spaces of higher dimensional stable log pairs or stable pairs
for short.

A stable pair is a pair (X,
P

aiDi) consisting of a varietyX and aQ-divisorP
aiDi satisfying certain singularity and stability conditions, which we will

recall below. The standard example is a smooth normal crossings pair with 0 <

ai  1 and KX +
P

aiDi ample. Compact moduli spaces of stable pairs with
fixed coe�cient or weight vector a = (a1, . . . , an) and fixed numerical invariants
have been constructed using the tools of the minimal model program (mmp);
see [Kol22] and Section 2. These moduli spaces are quite large and unwieldy in
general, and so in practice one studies the closure of a family of interest inside
the larger moduli space. Theorem 1.1 below summarizes our main results in a
simplified, but typical situation. We will state our general results in Section 1.1.

Theorem 1.1. Let (X,D1, . . . , Dn) ! B be a family of smooth nor-
mal crossings pairs over a smooth connected base B, and let P be a finite,
rational polytope of weight vectors a = (a1, . . . , an) such that ai < 1 and
(X,

P
aiDi) ! B is a family of stable pairs for each a 2 P . Let Na denote

the normalized closure of the image of B in the moduli space of a-weighted

Keywords: moduli spaces, minimal model program, varieties of log general type

AMS Classification: Primary: 14J10, 14J17, 14E30.

© 2023 Department of Mathematics, Princeton University.

825



826 K. ASCHER, D. BEJLERI, G. INCHIOSTRO, and Z. PATAKFALVI

stable pairs with universal family of stable pairs (Xa,
P

aiDi) ! Na. Then
there exists a finite, rational polyhedral wall-and-chamber decomposition of P
such that the following hold :

(a) For a,a0 contained in the same chamber, there are canonical isomorphisms

Xa
⇠= //

✏✏

Xa0

✏✏
Na

⇠= // Na0 .

(b) For a,b 2 P contained in di↵erent chambers and satisfying bi  ai for
all i, there are canonical birational wall-crossing morphisms

⇢b,a : Na ! Nb

such that for any third weight vector c with ci  bi, we have ⇢c,b � ⇢b,a =
⇢c,a. Moreover, the map ⇢b,a is induced by a birational map h

b,a : Xa 99K
⇢
⇤
b,aXb such that, for a generic u 2 Na, the fiberwise map h

b,a
u : (Xa)u 99K

(Xb)⇢b,a(u) is the canonical model of ((Xa)u,
P

bi(Di)u).

Remark 1.2. We note that, to obtain the strongest results, taking the
normalization of the closure in the above theorem is necessary; see Section 8.1
for a discussion and example.

Before stating our more general results, let us recap the history and con-
text behind Theorem 1.1. In dimension one, we have the classical moduli
space Mg,n of smooth projective n-pointed curves (C, p1, . . . , pn) of genus
g and the Deligne–Mumford–Knudsen compactification Mg,n parametrizing
n-pointed stable curves of genus g. Inspired by ideas from the minimal model
program, Hassett in [Has03] introduced a new family of modular compactifi-
cations of Mg,n depending on a rational weight vector a = (a1, . . . , an) with
0 < ai  1 that parametrizes a-weighted stable curves.

An a-weighted pointed stable curve is a tuple (C, p1, . . . , pn) such that

• C has genus g and at worst nodal singularities;
• the points pi lie in the smooth locus of C, and for any subset pi1 , . . . , pir of
points that coincide, we have

P
k aik  1;

• the divisor KC +
P

aipi is ample.

When ai = 1 for all i, the second condition is the requirement that the pi are
distinct and the third condition is the Deligne–Mumford–Knudsen stability
condition, and so we recover Mg,n.

Weighted stable curves form a proper moduli space Mg,a for 0 < ai  1
satisfying the condition that 2g�2+

Pn
i=1 ai>0. These conditions define a finite,

rational polytope of admissible weight vectors P as in Theorem 1.1, where the
family (X,D1, . . . , Dn)! B is the universal family of smooth n-pointed curves
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of Mg,n. In particular, Hassett [Has03] proved Theorem 1.1 in this setting. In
fact, in this case h is a birational morphism produced as an explicit sequence of
contractions of rational tails on which the degree ofKC+

P
bipi is non-positive,

that is, b-unstable rational tails.
The natural generalization of a pointed stable curve to higher dimensions,

introduced by Kollár and Shepherd-Barron [KSB88] and Alexeev [Ale94], is a
stable pair (X,

P
aiDi) such that

(1) (X,
P

aiDi) has semi-log canonical singularities (slc — see Definition 2.2);
and

(2) KX +
P

aiDi is an ample Q-Cartier divisor.

Explicit stable pair compactifications of moduli of higher dimensional varieties
have been studied extensively in recent years, e.g., weighted hyperplane ar-
rangements [HKT06], [Ale15], principally polarized abelian varieties [Ale02],
plane curves [Hac04], and elliptic surfaces [AB21], [Inc20], etc.

Thanks to the combined e↵orts of many authors (see, e.g., [Kol21, 30] for
a historical summary), there exists a proper moduli space Ka,v of a-weighted
stable pairs with volume of vol(KX +

P
aiDi) = v in all dimensions. For con-

venience, we often suppress the volume v or consider instead Ka :=
F

v Ka,v.
Note that the volume will vary as a function of the weight vector a and also
changes under wall-crossing morphisms; e.g., in the case of curves, the volume
is 2g � 2 +

Pn
i=1 ai.

The basic idea then behind Theorem 1.1 is to consider the universal
a-weighted stable family (Xa,

P
aiDi) and run the minimal model program

with scaling. This produces the canonical model of (Xa,
P

biDi)/Na and the
birational map h. We then need to check that this is indeed a stable family of
b-weighted pairs that then induces the wall-crossing morphism ⇢b,a. The fi-
nite wall-and-chamber decomposition is ultimately a consequence of [BCHM10,
Cor. 1.1.5].

One complication of the higher dimensional case is that h is in general
not a morphism due to the existence of flips. A more serious challenge is that,
contrary to the one dimensional case, Ka,v is in general very singular with
many irreducible components parametrizing non-smoothable, reducible vari-
eties [Vak06], [PP83]. Moreover, the MMP and even finite generation of the
log canonical ring can fail in general. In order to overcome some of the many
complications, we need to work with the closure of irreducible loci parametriz-
ing normal crossings, or more generally klt pairs. Indeed, one of the key insights
of this paper is that wall-crossing for moduli of stable pairs is controlled by
the minimal model program with scaling on the total spaces of one-parameter
smoothings of the slc pairs on the boundary. Finally, in order to apply the
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strategy described above, we need to work over some smooth base (e.g.,a com-
pactification of B in Theorem 1.1) and then descend to the seminormalization
or normalization of the corresponding moduli space.

1.1. Statements of the main results. We are now ready to state our main
results in full generality. Fix some weight vector a = (a1, . . . , an) of rational
numbers ai 2 (0, 1] \ Q. Let f : (X,

P
aiDi) ! B be a locally stable family

(Definition 2.15).

Definition 1.3. We say that a weight vector b = (b1, . . . , bn) is admissible
if (X,

P
biDi)! B is locally stable and KX +

P
biDi is f -big. We say that a

polytope P ⇢ ((0, 1] \Q)n is admissible if every vector b 2 P is admissible.

Notation 1.4. For b  a admissible weight vectors, we define v(t) = ta+
(1� t)b for t 2 [0, 1].

Notation 1.5. For any weight vector v = (v1, . . . , vn), we denote by vD
the divisor

P
viDi.

Let K � ⇢ Ka be a quasicompact locally closed substack of the space
of a-weighted stable pairs, and suppose that K � parametrizes klt pairs. Let
f
� : (X �

,aD�)! K � denote the universal family of klt stable pairs over K �.
Fix an admissible weight vector b  a for f

�. For each t 2 [0, 1], we have a
set theoretic map �t : K �(k)! Kv(t)(k) that takes a point x : Spec k ! K �

classifying the klt stable pair (X,aD) to the point xv(t) : Spec(k) ! Kv(t)(k)
classifying the canonical model of (X,v(t)D).

Definition 1.6. For each t 2 [0, 1], we let Mt denote the seminormalization
of the closure of the image of �t, and we let Nt denote the normalization of Mt.
We let Ma (resp. Mb) denote M0 (resp. M1) and similarly for N .

Remark 1.7. Note that Mt and Nt are proper Deligne–Mumford stacks
with families of v(t)-weighted stable pairs pulled back from the universal family
of Kv(t). Moreover, since seminormalization is functorial, the family over Mt,
which we denote (Xt,v(t)Dt)!Mt, is the universal family for the functor of
stable families g : (Z,v(t)�)! B over seminormal base schemes B such that
for each b 2 B, the fiber gb is the limit of a family of canonical models of the
pairs parametrized by f

�.

Theorem 1.8 (Theorem 4.2, Corollary 4.10 and Theorem 5.1). There
exist finitely many rational numbers ti 2 [0, 1] \Q with 0 < t1 < · · · < tm < 1
such that the following hold :

(1) For each ti < s < s
0
< ti+1, Ms

⇠= Ms0 and the universal families
(Xs,v(s)Ds) and (Xs0 ,v(s0)Ds0) have isomorphic underlying marked fami-
lies so that

(Xs0 ,v(s
0)Ds0) ⇠= (Xs,v(s

0)Ds).



WALL CROSSING FOR MODULI OF STABLE LOG PAIRS 829

Moreover, these isomorphisms fit in a commutative diagram below :

Xs
⇠= //

✏✏

Xs0

✏✏
Ms

⇠= // Ms0 .

(2) For each consecutive pair ti < ti+1 and any ti < s < ti+1, there is a
commutative diagram

Xti

✏✏

Xs
oo //

✏✏

Xti+1

✏✏
Mti Ms

�ti+1//
↵tioo Mti+1 ,

where the morphism Xs !Ms in the middle is independent of s by part (1).
(3) There is a dense open substack U ⇢Ms parametrizing klt pairs such that

for each u 2 U classifying the klt stable pair (Xu,v(s)Du), ↵ti(u) classifies
the canonical model of (Xu,v(ti)Du) and �ti+1(u) classifies the canonical
model of (Xu,v(tti+1)Du).

In particular, Theorem 1.8 shows that there are finitely many walls ti and
finitely many moduli spaces parametrizing canonical models of the fibers of f�

as we reduce weights from a to b along the line v(t). Moreover, around each
wall, the moduli spaces are related via the morphisms ↵ti and �ti which we call
flip-like morphisms as they are induced by flips in the mmp with scaling as one
reduces weights from ti+ " to ti� ". This is a higher dimensional phenomenon
not witnessed in the case of curves.

In order to obtain reduction morphisms as in [Has03] and in Theorem 1.1,
we need to invert �ti . In general, this is only possible up to normalization.
(See Section 8.1 for an example.)

Theorem 1.9 (Theorems 6.1 and 7.6). The morphism �ti : Mti�" !Mti

is quasi-finite, proper, birational and representable. In particular, the induced
morphism on normalizations �

⌫
ti : Nti�" ! Nti is an isomorphism.

Theorem 1.9 allows us to define reduction morphisms ⇢b,a : Na ! Nb

by composing the induced maps ↵
⌫
ti on normalizations with the inverses of

�
⌫
ti for all (a ! b)-walls (see Definition 7.3). Under the assumption that the

generic fiber of f� is v(t)-weighted stable for all t 2 [0, 1], which is the case for
example in dimension one as well as in the setting of Theorem 1.1, we have
the following.

Theorem 1.10 (Theorem 8.1 and Corollary 7.10). Let P be an admissible
polytope of weight vectors such that the generic fiber of the universal family
(Xa,aD) !Ma is v-weighted stable for all v 2 P . Then, for all b  a in P ,
the reduction morphisms ⇢b,a : Na ! Nb are birational and independent of
the choice of path from a to b. In particular,
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⇢c,b � ⇢b,a = ⇢c,a.

In Section 8, we give several examples illustrating that Theorem 1.10 is
subtle without the extra assumption on the generic fiber of the universal family.

1.2. Relations to other work. The behavior of stable pairs moduli under
changing the coe�cients has been studied in a few previous cases. In [Ale15],
Alexeev constructed compact moduli spaces of weighted stable hyperplane ar-
rangements. These are moduli spaces parametrizing pairs (X,

P
aiHi), where

X is a degeneration of Pn and the Hi are the limits of hyperplanes. Among
other things, Alexeev shows that there are wall-crossing morphisms as one
varies the weights on the Hi as in Theorem 1.1. This provides alternate com-
pactifications of the spaces of Hacking–Keel–Tevelev [HKT06]. Similarly, in
[AB21] compact moduli spaces of weighted stable elliptic surfaces are con-
structed; see also [Inc20]. These moduli spaces parametrize pairs of an elliptic
surface with the divisor consisting of a section and some weighted (possibly sin-
gular) fibers. It is proven that these moduli spaces also satisfy the above wall-
crossing morphisms as the weight vector varies. A similar phenomenon has also
been recently studied from the viewpoint of K-moduli [ADL19]. Wall-crossing
morphisms play an important role in the study of explicit moduli compactifica-
tions, their birational geometry, and for the sake of computations on compact
moduli spaces. (See, e.g., [AB23], [AB22], the related Hassett–Keel program
[FS13], variation of GIT [DH98], [Tha96], and the Hassett–Keel–Looijenga
program [LO18], [LO19], [LO21], [ADL23].)

Conventions. We work over an algebraically closed field k of character-
istic 0. All schemes are finite type over k, unless otherwise stated. A point
will be a closed point, unless otherwise stated. Given a morphism f : X ! Y
between two separated Deligne–Mumford stacks, the closure of the image of f
will be defined as follows. If X (resp. Y ) is the coarse space of X (resp. Y)
and g is the morphism X ! Y induced by f , then the closure of the image
of f will be g(X) ⇥Y Y. Unless otherwise specified, when we talk about a
pair (X,D) we assume that D > 0 and that D has rational coe�cients. For
a = (a1, . . . , an) 2 Qn

>0 and divisors D1, . . . , Dn, we will adopt the notation

aD :=
X

aiDi.

If D is a Weil divisor such that each irreducible component of Supp(D) inter-
sects the smooth locus of X, we will make no distinction between D and its
associated divisorial subsheaf.

Remark 1.11. The theory of R-divisors is not as well-developed from the
point of view of moduli theory as compared to the theory of Q-divisors. For
example, at the time of writing this article, [Kol22, §11.4] was not yet avail-
able. So for technical reasons, we restrict to Q-divisors. Nevertheless, since by
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[BCHM10, Cor. 1.1.5], the “walls” are always rational numbers, we do expect
that one can apply the theory in this paper to the setting of R-divisors.
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2. The moduli space of stable log pairs

In this section, we recall the definitions and basic setup of the moduli of
stable log pairs (or stable pairs). We refer the reader to [Kol22], [Kol13] for
more details on this formalism, and to [KM98, §2.3] for the singularities of the
MMP. We begin by recalling the particular kind of singularities appearing on
stable log pairs (see [Kol13, Ch. 5]).

Definition 2.1. A scheme X is deminormal if it is S2, and the singularities
in codimension one are at worse nodal singularities.

Let ⌫ : X
⌫ ! X be the normalization of a deminormal scheme. The

conductor ideal

Ann(⌫⇤OX⌫/OX) ⇢ OX

defines reduced, pure codimension one, closed subschemes � ⇢ X and �̄ ⇢ X
⌫

collectively referred to as the double locus.

Definition 2.2. Let (X,�) be a pair consisting of a deminormal variety
X and an e↵ective Weil Q-divisor � whose support does not contain any irre-
ducible component of the double locus. We say (X,�) has semi-log canonical
singularities (abbreviated slc) if

• KX +� is Q-Cartier, and
• (X⌫

, ⌫
⇤�+ �̄) is log canonical.
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Definition 2.3. A stable log variety or stable pair is a pair (X,�) such
that (X,�) has semi-log canonical singularities and KX +� is ample.

Definition 2.4. Given an slc pair (X,�) with KX +� big and semiample,
consider the scheme

Y := Proj(
M

r�0

H
0(OX(r(KX +�)))) = ProjR(X,KX +�).

There is a morphism f : X ! Y , and we refer to the pair (Y, f⇤�) as the
stable model of (X,�) if Y is S2. When (X,�) has klt singularities, this is the
canonical model of the pair.

Remark 2.5. In our setting, (X,�) is always the central fiber of a degen-
eration of klt pairs, so the total space of the degeneration is klt. Kawamata–
Viehweg vanishing (see Lemma 3.6) guarantees that Y is the central fiber of
the ample model of the total space, and Y is S2 by a result of Alexeev (see
[Ale08, Th. 0.1]).

2.1. Families of stable pairs. Defining families of stable pairs, and espe-
cially defining how the divisor � varies, is quite technical. If the base scheme
is smooth, then many of the subtleties disappear, and one can give a simple
definition of a family of stable pairs (see Definition 2.6). The goal of this sub-
section is to recall the results in [Kol22, Ch. 4] that extend the aforementioned
definition from smooth bases to reduced bases and to give the general definition
of the moduli space of stable pairs in this setting.

Definition 2.6 ([Kol22, Cor. 4.55]). Let (X,�) be a pair, and let f : X!B

be a flat morphism to a smooth scheme B. Then (X,�)! B is a stable family
if (X,�+ f

⇤
D) is slc for every snc divisor D ✓ B, and KX/B +� is f -ample.

Note that by the previous condition with D = 0, the divisor KX/B + � is
Q-Cartier, so this is well defined.

Definition 2.7 ([Kol22, Def. 4.2 and Th. 4.3]). A family of pairs f :
(X,D)! S over a reduced base scheme S is the data of a morphism f : X ! S

and an e↵ective Weil Z-divisor D of X. This data has to satisfy the following
conditions:

• f : X ! S is flat with reduced, connected and S2 fibers of pure dimension d;
• the nonempty fibers of Supp(D)! S are pure dimensional of dimension d�1
and every component of Supp(D) dominates an irreducible component of S;

• f is smooth at the generic points of Xs \ Supp(D); and
• for every s 2 S, we have that D is Cartier in X and flat over S locally
around each generic point of Supp(D) \Xs



WALL CROSSING FOR MODULI OF STABLE LOG PAIRS 833

Remark 2.8. The last point above is automatic when S is normal, given
the first three (see [Kol22, Th. 4.4]). Moreover, by our assumptions, we need
not distinguish between a Weil divisor and its associated divisorial subscheme
(see [Kol22, §4.3]). More precisely, the closed subscheme associated to D will
be the closure of the closed subscheme given by the equation defining D locally
around each generic point of Supp(D) \Xs.

Remark 2.9. Observe that D in Definition 2.7 is a relative Mumford divi-
sor in the sense of [Kol22, Def. 4.68].

In our case, since there is a relatively big open set U ✓ X such that
OU (�D|U ) ✓ OU is a relative line bundle, after each base change S

0 ! S

the pullback is still a line bundle on the pullback US0 . This gives a pull-back
operation on U , and we can extend divisorially to get the pulled back family of
divisors on XS0 . This gives a way to pull back a family of Z-divisors, and in the
case where we instead have a Q-divisor, we can choose an m divisible enough so
that mD is a Z-divisor, pull it back as before, and divide the resulting divisor
by m. This is known as the pullback with the common denominator definition.

Notation 2.10. Given a morphism g : S
0 ! S and a projective family

of pairs f : (X,D) ! S, we will denote with (XS0 , DS0) ! S
0 the pullback,

defined as above, of f along g.

Finally recall that if f : (X,D)! S and S
0 ! S are as above, then

Supp(DS0) = Supp(h�1(Supp(D))),

where h : XS0 ! X is the projection (see [Kol22, Ch. 4]).
Since in our case it is necessary to label the various components of D, we

recall the following.

Definition 2.11 ([Kol22, §4]). A family of varieties marked with n di-
visors or an n-marked family over a reduced scheme S is the data of f :
(X;D1, . . . , Dn) ! S satisfying the following condition: for every i, the pair
(X,Di) ! S is a family of pairs, and X ! S is flat with connected and
S2-fibers.

Fix (ai)ni=1 2 (Q \ (0, 1])n, and consider an n-marked family

f : (X;D1, . . . , Dn)! S

such that for every s 2 S, the pair (Xs, a1(D1)s+ · · ·+an(Dn)s) is stable. The
functor of such families is not well-behaved. Therefore, on needs the following
notion of stable families:

Definition 2.12 ([Kol22, Def.-Th. 4.45 and 4.70.3]). A family of varieties
marked with divisors f : (X;D1, . . . , Dn) ! B over a reduced scheme B is
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stable with coe�cients in a = (a1, . . . , an) if KX/B +
P

aiDi is Q-Cartier
and the fibers (Xb,

P
ai(Di)b) are stable pairs. We will often write that f :

(X,
P

aiDi)! B is a stable family, or that f is stable.

Theorem 2.13 ([Kol22, Ths. 4.1 and 4.8]). Fix a positive rational num-
ber v, a positive integer d, and a vector of positive rational numbers a. Then
there is a proper Deligne–Mumford stack Ka,d,v that, for B seminormal, rep-
resents the moduli problem of stable families f : (X,

P
aiDi) ! B with fibers

of dimension d and volume v.

Notation 2.14. Often, when d plays no role, we will omit the subscript d
in Ka,d,v. We use Ka to denote

S
v Ka,v.

Finally, we will need the notion of a locally stable family.

Definition 2.15 ([Kol22, Def.-Th. 4.7]). Let S be a reduced scheme and
f : (X,�) ! S a projective family of pairs. Assume that (Xs,�s) is slc for
every s 2 S. Then f : (X,�) ! S is locally stable or slc if the following
equivalent conditions hold:

(1) KX/S +� is Q-Cartier,

(2) fT : (XT ,�T )! T is locally stable whenever T is the spectrum of a DVR
and q : T ! S is a morphism.

Remark 2.16. Note that the definition of a family of stable pairs over a
reduced base is étale local. Therefore, the space Ka represents the functor of
stable families with coe�cients a for reduced Deligne–Mumford stacks.

Remark 2.17. Kollár has introduced a condition on the reflexive pow-
ers of relative pluri-canonical sheaves (see [Kol22, Ch. 9] and also [AH11],
[BI21]) and the K-flatness condition on the family of divisors [Kol19] that give
a well-behaved functor of stable families over arbitrary bases representable by
a Deligne–Mumford stack locally of finite type whose seminormalization is the
space Ka introduced above. The reason we avoid this and work with semi-
normalizations in this paper is twofold. First, checking these conditions over
non-reduced bases is subtle, and it is not clear that K-flatness in particular
is preserved by the constructions in this paper. (See especially the proof of
Theorem 5.1.) Second, the reduction morphisms we produce are ultimately
only well defined on the normalization of the moduli space (see Section 8.1).

3. Preliminaries from the MMP

In this section, we collect some preliminary results from the minimal model
program that we need for the proofs of the main theorems.
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3.1. Dlt modifications and canonical models. Let (X,D) be a log pair
where D is a Q-divisor. One of the main obstacles in “reducing weights”
on the divisor in a stable pair is that the pair is not necessarily Q-factorial.
Indeed, while for a pair (X,D) the divisor KX +D is required to be Q-Cartier,
there is no reason for D itself to be Q-Cartier. A somewhat standard approach
that allows one to perturb coe�cients on a divisor is using dlt modifications.

Theorem 3.1 (Small dlt modification; [Kol13, Cor. 1.37]). Let (X,D) be

a dlt pair with D a boundary. There is a proper birational morphism g : ‹X ! X

such that

(1) ‹X is Q-factorial,
(2) the morphism g is small,

(3)
Ä‹X, g

�1
⇤ D

ä
is dlt, and

(4) discrep
Ä‹X, g

�1
⇤ D

ä
= discrep(X,D).

Definition 3.2. Let f : (X,D) ! B be a projective morphism such that
(X,D) is a dlt pair and let � be any Weil divisor on X. We say that KX +�
is f -big if its restriction to the generic fiber is big. Note that the generic fiber
is normal, so this makes sense.

We will need the following standard lemma and its corollary.

Lemma 3.3. Let f : (X,DX) 99K (Y,DY ) be a birational rational map
of klt pairs that is an isomorphism in codimension one on both X and Y ,
and assume that f⇤(DX) = DY . Assume further that the canonical models
of (X,DX) and (Y,DY ) exist. Then f induces an isomorphism of canonical
models.

Proof. Let LX := OX(m(KX +DX)) and LY := OY (m(KY +DY )) with
m so that they are both line bundles. Then if U is the open subset where X

and Y are isomorphic,

H
0 �

X,L
⌦m
X

�
= H

0 �
U,
�
L
⌦m
X

�
U

�
= H

0 �
U,
�
L
⌦m
Y

�
U

�
= H

0 �
Y, L

⌦m
Y

�

since the complement of U has codimension at least two in bothX and Y . Then
the canonical models of X and Y are Proj of the same graded algebra. ⇤

Corollary 3.4. Let (X,D) be a klt pair, and let p : X 0 ! X and q :
X

00 ! X be two small dlt modifications. Then

(1) the pairs
�
X

0
, p

�1
⇤ (D)

�
and

�
X

00
, q

�1
⇤ (D)

�
are klt ; and

(2) the pairs in (1) have the same canonical model if it exists.

Proof. (1) follows from [KM98, Lemma 2.30]. We now show (2). Since
X

0 ! X and X
00 ! X are isomorphisms in codimension one, so is X 0 99K X

00.
The result then follows from Lemma 3.3. ⇤
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Notation 3.5. Consider a klt pair (X,
P

aiDi), and let 0 < bi  ai. Let
‹X ! X be a small dlt modification as above, and let ‹Di ✓ ‹X be the proper
transform of Di. We will refer to the canonical model of

Ä‹X,
P

bi
‹Di

ä
as “the

canonical model of (X,
P

biDi).” This is independent of the choice of ‹X by
Corollary 3.4.

We also need the following version of the basepoint free theorem for de-
generations of klt pairs.

Lemma 3.6. Let R be a DVR essentially of finite type over k with closed
point p. Let (X,D) be a klt pair with a flat proper morphism f : X ! Spec(R).
If L is a nef line bundle such that L �KX �D is f -nef and big, then for m

divisible enough, L⌦m
|Xp

is basepoint free and the morphism induced by |L⌦m| on

X restricts to the morphism induced by
���L⌦m

|Xp

��� on Xp.

In particular, if (X,D)! Spec(R) is a stable family (see Section 2) such
that (X,D) is klt andKX+D is f -nef and big, thenm(KX+D)|Xp

=m(KXp+Dp)
is semi-ample for m divisible enough.

Proof. We know from the basepoint free theorem [KMM87, Th. 6-1-13]
that for m divisible enough, L⌦m is globally generated, and thus its restric-
tion to a fiber is as well. To conclude, note that R

1
f⇤L = 0 from rela-

tive Kawamata–Viehweg vanishing and thus by cohomology and base change,
H

0(Xp, L
⌦m
p ) = H

0(X,L
⌦m)|Xp . ⇤

3.2. MMP with scaling. In this subsection, we recall the version of the
MMP with scaling we will use throughout the paper. We refer the reader to
[HK10] and [BCHM10] for more details.

Let (X,D) be a Q-factorial pair with D a big Q-divisor. Assume that
KX +D is big, and let H be an e↵ective divisor such that the pair (X,D+H)
is a klt stable pair. Then to obtain the stable model of (X,D) one can first run
an MMP for (X,D) with scaling by H to obtain a minimal model (Xmin

, D
min)

of (X,D) [BCHM10, Cor. 1.4.2]. After that, one can apply the basepoint free
theorem to the klt pair (Xmin

, D
min) to get the stable model.

In our setting, we only assume that KX + D is big, but not necessarily
that D is big. In this case, we may pick a big e↵ective divisor

D
0 ⇠Q "(KX +D)

for " > 0 small, such that (X,D+D
0+H) is klt. Then the canonical model of

(X,D+D
0) is the same as that of (X,D) so we can run MMP with scaling byH

on (X,D+D
0) where now the divisorD+D

0 is big, and then apply the basepoint
free theorem to compute the canonical model. In particular, we may apply
this method to a small dlt modification to compute the canonical models of
(X,D+tH) for t 2 [0, 1] whereH is e↵ective and (X,D+H) is a klt stable pair.
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Proposition 3.7. Let (X,D) ! B be a klt and Q-factorial pair over B

with both D or KX +D big over B. Let H be an e↵ective divisor so that the
pair (X,D +H) is klt, and let t0 2 (0, 1). Assume that KX +D + tH is nef
over B for every t0  t  1. Let (Y,DY + t0HY ) be the canonical model of
(X,D+ t0H) over B. Let (Z,DZ + (t0� ")HZ) denote the canonical model of
(Y,D + (t0 � ")H) over B for " small enough (see Notation 3.5).

Then, for all " > 0 small enough, we have that

(I) there is a small birational morphism Z ! Y ; and
(II) (Z,DZ +(t0� ")HZ) is the canonical model of (X,D+(t0�")H) over B.

Proof. Let g : X ! Y denote the natural morphism, and let

g
+ : (X+

, D
+ + (t0 � ")H+)! Y

be the canonical model of (X,D + (t0 � ")H) over Y for 0 < " ⌧ 1. Let
⇡ : X 99K X

+ denote the resulting birational contraction. The canonical
model is independent of " small enough by [BCHM10, Cor. 1.1.5]. Now KX +
D + (t0 + ")H is nef by assumption, and KX +D + t0H ⌘g 0, so H is g-nef.
On the other hand, H+ is Q-Cartier, KX+ + D

+ + (t0 � ")H+ is g
+-ample,

and Y is the log canonical model of (X+
, D

+ + t0H
+) over B. It follows that

�H+ = �⇡⇤H is g
+-ample. We conclude that g

+ is small by the following
lemma.

Lemma 3.8. Let g : X ! Y and g
+ : X+ ! Y be projective and bira-

tional. Assume that ⇡ : X 99K X
+ is a rational contraction. Let H be an

e↵ective, g-nef divisor, such that �⇡⇤(H) is g
+-ample. Then g

+ is small.

Proof. Without loss of generality, we can assume that ⇡ is a morphism.
Indeed, let h : W ! X and h

+ : W ! X
+ be a resolution of ⇡. Then h

⇤
H is

e↵ective and nef over Y . Since ⇡ is a rational contraction, ⇡⇤H = h
+
⇤ h

⇤
H, so

we may replace (X,H,⇡) with (W,h
⇤
H,h

+). Moreover, we suppose that g+ is
not an isomorphism, otherwise we are done.

For the sake of contradiction, suppose that there exists a divisor E ⇢
Ex(g+). Then ⇡ is an isomorphism over the generic point of E. Thus, there
exist a curve C ⇢ E contracted by g

+ and a curve C
0 ⇢ X such that C 0 is not

contained in the ⇡-exceptional locus and ⇡⇤C
0 = C. Note that F := ⇡

⇤
⇡⇤H�H

is ⇡-exceptional and �F is ⇡-nef, so F is e↵ective by the negativity lemma
[KM98, Lemma 3.39]. Since ⇡⇤H is g

+-ample, H is g = (g+ � ⇡)-nef, and
C

0 6⇢ SuppF , we have that

0 > C · ⇡⇤H = ⇡⇤C
0 · ⇡⇤H = C

0 · ⇡⇤
⇡⇤H = C

0 · (H + F ) � C
0 ·H > 0,

which is a contradiction. ⇤
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As �"H+ is ample over Y for 0 < " ⌧ 1, and since KY +DY + t0HY is
ample over B, we conclude that

KX+ +D
+ + (t0 � ")H+ = (g+)⇤(KY +DY + t0HY )� "H

+

is ample over B. Since the discrepancies of (X+
, D

++(t0� ")H+) are greater
than or equal to those of (X,D + (t0 � ")H), we see that X+ is the canonical
model of (X,D + (t0 � ")H) over B. Moreover, as g+ is small, it follows that
X

+ is is also the canonical model of (Y,D+(t0� ")H) over B. By uniqueness
of canonical models, X+ = Z, and the proposition follows. ⇤

4. Wall-crossing loci in the moduli space

The goal of this section is to define the natural moduli spaces Mt, de-
pending on a parameter t 2 [0, 1], which admit a wall-crossing structure. The
basic idea is as follows. Let f : (X,aD) ! B be a stable family of interest
parametrized by some smooth and irreducible base B, and denote by v(t) the
value ta + (1 � t)b for t 2 [0, 1]. Furthermore, suppose that KX/B + bD is
f -big. Then taking the relative canonical model of (X,v(t)D) over B gives us
an a priori rational map B 99K Kv(t). We will see in Theorem 4.2 below that,
under some mild assumptions, this extends to a morphism �t : B ! Kv(t) that
on some open set is induced by sending b 2 U ⇢ B to the point classifying the
canonical model of (Xb,v(t)Db).

Then Mt, defined as the seminormalization of the scheme theoretic image
of �t, carries a universal family of v(t)-weighted stable pairs that are limits of
the canonical models parametrized by U . We will see in Corollary 4.10 that,
as t varies, there are only finitely many di↵erent moduli spaces Mt and finitely
many universal families, up to rescaling the boundary.

Notation 4.1. For coe�cient n-vectors a,b, we write b  a if bi  ai for
all i = 1, . . . , n. For t 2 [0, 1], we will denote v(t) := ta+ (1� t)b.

We are now ready to present the main theorem of this section.

Theorem 4.2. Let f : (X,aD) ! B be a stable family over a smooth
irreducible quasi-projective scheme B. Suppose that the generic fiber is klt and
that KX + v(t)D is f -big for each t 2 [0, 1].

(1) There exist a unique morphism �t : B ! Kv(t) and a nonempty open
subset U ⇢ B such that �t(u) is the point classifying the canonical model
of (Xu,v(t)Du) for all u 2 U ;

(2) There are finitely many ti 2 Q, with 0 = t0 < t1 < · · · < tm = 1, that
satisfy the following condition. If we denote by (Zt,v(t)�t) the family of
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stable pairs classified by �t, then for every ti < s1  s2 < ti+1, the under-
lying n-marked families (Zs1 ;�s1,1, . . . ,�s1,n) and (Zs2 ;�s2,1, . . . ,�s2,n)
are equal, so that (Zs2 ,v(s2)�s2) = (Zs1 ,v(s2)�s1).

(3) For every t 2 [0, 1], the stable family ft : (Zt,v(t)�t) ! B is the relative
canonical model of (X,v(t)D) over B.

Remark 4.3. Observe that, in the particular case where the divisor KX +
v(t)D restricted to the generic fiber is ample for every t 2 [0, 1], we automat-
ically have a non-empty open subset U and a morphism U ! Kv(t). In this
special case, the content of the theorem is that we can extend this morphism
to B. This is the case, for example, in dimension one [Has03].

The proof proceeds as follows. We first show the existence of the rational
numbers ti, the so-called walls. We will begin by defining ft : (Zt,v(t)�t)! B

as the canonical model of (X,v(t)D) over B. Since B is smooth, [Kol22,
Th. 4.54] guarantees that ft is stable, whereas [BCHM10] provides us with the
finitely many ti. Finally, to show that ft is the relative canonical model over an
open set of the base, we use an invariance of plurigenera result of [HMX13, §4].

Proof of Theorem 4.2. We begin by observing that, since the generic fiber
of f is klt, the pair (X,aD) is klt from [Kol22, Cor. 4.56]. If X was also
Q-factorial, we would consider the canonical model (Zt,v(t)�t) of the pair
(X,v(t)D) over B. The morphism (Zt,v(t)�t)! B would be stable ([Kol22,
Cor. 4.57]) and would induce the morphisms �t. However, since X may not
be Q-factorial, we need to replace X with a small Q-factorial modification in
the argument above. In particular, consider a small Q-factorial modification
⇡ : ‹X ! X, let a‹D be the proper transform of aD, and denote by f̃ : ‹X ! B

the composition f � ⇡. Since ⇡ is small, observe that

• ⇡
⇤(KX + aD) = K‹X + a‹D, so K‹X + a‹D is f̃ -big and f̃ -nef over B since it

is the pullback of an f -ample divisor;
• ⇡⇤(aD) = aD and the discrepancies of (‹X, a‹D) are the same as those of
(X,aD); and

• ⇡
�1
⇤ (aD) = a‹D.

In particular, the pair (‹X, a‹D) is a weak canonical model of (X,aD), and

from [Kol22, Cor. 4.57] the morphism (‹X, a‹D) ! B is locally stable. Now ‹X
is Q-factorial, so for every t 2 [0, 1], the morphism (‹X,v(t)‹D) ! B is also
locally stable. Then we can run MMP with scaling by (a�b)D̃ as described in
Section 3.2 to take the canonical model (Zt,v(t)�t) of the pair (X,v(t)D) over
B for all t 2 [0, 1]. By [Kol22, Cor. 4.57] the map (Zt,v(t)�t)! B is stable.

Now the key input is [BCHM10, Cor. 1.1.5]. Indeed, by loc. cit. there are
rational numbers ti with 0 = t0 < t1 < · · · < tm = 1 such that, for every
ti < s1  s2 < ti+1, the pair (Zs1 ,v(s1)�s1) is obtained from (Zs2 ,v(s2)�s2)
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by perturbing the coe�cients, i.e., the underlying marked varieties are the
same so that

(Zs2 ,v(s2)�s2) = (Zs1 ,v(s2)�s1).

We are left with proving that there exists an open subset U ⇢ B such
that the morphisms �t on U can be described by sending a pair (Xu,aDu)
to the canonical model of (Xu,v(t)Du) — or in other words, that taking the

canonical model of (‹X,v(t)‹D) gives the fiberwise canonical models.

We begin by fixing a t and taking a log-resolution ⇠ : (Y,�Y )!(‹X,v(t)‹D),

where we denote by�Y the divisor on Y such thatKY +�Y = ⇠
⇤(K‹X+v(t)‹D).

From [KM98, Prop. 2.36], we may assume �Y is of the form �Y = �+
Y ���

Y ,
where �+

Y and ��
Y are e↵ective, ��

Y is ⇠-exceptional, and �+
Y is smooth. Then

from [KM98, Cor. 3.53], the canonical models of (Y,�+
Y ) and (‹X,v(t)‹D) agree.

Moreover, we can find an open subset U ✓ B where the morphisms Y |U ! U

and Supp(�+
Y )|U ! U are smooth, as being smooth is an open condition.

Therefore, we can now apply [HMX13, Th. 4.2]: the formation of the canonical
models commutes with base change. So for every u 2 U , the canonical model
of (Y,�+

Y )u is the fiber over u of the canonical model of (Y,�+
Y )! U , namely

(Zt,v(t)�t)u. To conclude, note that after further shrinking U , we can assume
that (Y,�Y )! (X̃,v(t)D̃) is a fiberwise log resolution for u 2 U . Then

KYu + (�+
Y )u � ⇠

⇤
u(KX̃u

+ (v(t)D̃)u)

is both e↵ective and ⇠u-exceptional, so the log canonical model of (X̃u,(v(t)D̃)u)
equals the log canonical model of (Yu, (�

+
Y )u), which equals (Zt,v(t)�t)u as

required. ⇤

Remark 4.4. As phrased, the set of rational numbers {ti}mi=0 of Theo-
rem 4.2 is not unique, as we can always subdivide the interval [0, 1] further by
adding extra tj and relabeling. However, there is a minimal choice for this set,
given by the intersection of all the possible sets of ti. These are the ti where
the canonical models (Zt,v(t)�t) actually change.

This leads to the following definition.

Definition 4.5. Given b  a and B as above, we will denote by (a! b)-
walls, pronounced “a-to-b walls”, the minimal choice of numbers

0 = t0 < · · · < ti < · · · < tm = 1

as in Theorem 4.2.

Remark 4.6. We record two consequences of Theorem 4.2:

• for every i and for every rational s 2 (ti, ti+1), the divisor v(s)�s isQ-Cartier
on Zs; and
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• the pair (Zti ,v(ti)�ti) is the canonical model of (Zs1 ,v(ti)�s1), and�
Zti+1 ,v(ti+1)�ti+1

�
is the canonical model of (Zs1 ,v(ti+1)�s1) for ti < si

< ti+1.

The first consequence holds since, for every ti < s1 < s2 < ti+1, the
divisors KZs2

+v(s2)�2 and KZs2
+v(s1)�2 are Q-Cartier, so their di↵erence

is also Q-Cartier. The second consequence follows from the definition of the
canonical model. In particular, to check [KM98, Def. 3.50 (4)], one can use
that the discrepancies of a pair (X,

P
aiDi) are continuous functions of the

coe�cients ai.

We are ready to define the moduli spaces Mt that form the natural setting
for wall-crossing.

Definition 4.7. Let f : (X,aD) ! B be a stable family satisfying the
conditions of Theorem 4.2, and suppose that B is proper. Let �t be as in
the conclusion of the theorem. Define Mt to be the seminormalization of the
image of �t : B ! Kv(t) for t 2 [0, 1]. We will denote by (Xt,v(t)Dt) the
universal family of v(t)-weighted stable pairs over Mt. We will denote by Ma

and (Xa,aDa) (resp. Mb and (Xb,bDb)) the case when t = 1 (resp. t = 0).

Remark 4.8. Note that Mt is proper as both B and �t are proper, and
the seminormalization preserves properness.

Remark 4.9. The reader should keep in mind the following situations that
are the most common in practice, noting that the setup of Theorem 4.2 allows
us the flexibility to consider more general settings:

• Given a stable family of snc pairs of interest (X0
,aD0)! U over a smooth

but non-proper base (e.g.,(Pn
, smooth hypersurface)) we have an induced

map U ! Ka. This may be compactified to a map B ! Ka from a smooth,
proper base B using [LMB00, Th. 16.6], Chow’s Lemma and resolution of
singularities. Pulling back the universal family toB gives us a family (X,aD)
of stable pairs for which we can apply the proposition. In this case, Mt

can be thought of as the seminormalization of the v(t)-weighted stable pair
compactification of the original family of interest.

• Let K0 ⇢ Ka be some irreducible component of the moduli space Ka that
generically parametrizes klt pairs. Then as above, up to taking a finite
cover by a scheme and resolving singularities, we obtain an a-weighted stable
family f : (X,aD) ! B over a smooth and proper base with a morphism
B ! Ka dominating the component K0. In this case, M1 is simply the
seminormalization of K0. If we assume further that a generic pair lying over
K0 is v(t)-weighted stable for all t 2 [0, 1], then Mt are birational models of
M1 that carry v(t)-weighted stable families.
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• Let K � ⇢ Ka be a reduced and irreducible locally closed substack that
parametrizes klt pairs. After shrinking K �, we can assume without loss of
generality that it is smooth. After taking a finite cover of the closure of
K � and resolving singularities, we obtain a stable family f : (X,aD) ! B

such that B dominates K � under the morphism �1 : B ! Ka. Then M1

is the seminormalization of the closure of K �, and under the assumptions
of Theorem 4.2, the a-weighted stable klt pairs parametrized by K � are
also klt and stable with weights v(t) all t 2 [0, 1] and thus K � admits a
monomorphism to Kv(t), which extend to the morphisms �t : B ! Kv(t)

given by the theorem. Thus Mt are birational models of M1 carrying v(t)-
weighted stable families as before. This case is a hybrid of the above two.

We have the following immediate corollary of Theorem 4.2.

Corollary 4.10. For each ti < s < s
0
< ti+1, Ms

⇠= Ms0 and the
universal families (Xs,v(s)Ds) and (Xs0 ,v(s0)Ds0) have isomorphic underlying
marked families so that (Xs0 ,v(s0)Ds0) ⇠= (Xs,v(s0)Ds). Moreover, these iso-
morphisms fit in a commutative diagram below, where each side is cartesian :

Zs

✏✏ ((QQ
QQQ

QQQ
QQQ

QQQ
QQ Zs0

✏✏ ((RR
RRR

RRR
RRR

RRR
RRR

B

((QQ
QQQ

QQQ
QQQ

QQQ
QQ B

((RR
RRR

RRR
RRR

RRR
RRR Xs

⇠= //

✏✏

Xs0

✏✏
Ms

⇠= // Ms0 .

Proof. We claim that the morphism (Xs,v(s0)Ds)!Ms0 is locally stable.
Since (Xs,v(s0)Ds)!Ms is a well defined family of pairs, to prove the claim
we can use Definition 2.15. In particular, by [Kol22, Def.-Th. 4.7] it su�ces to
check that for every DVR R and for every morphism T = Spec(R)!Ms, the
family (Xs,v(s0)Ds)T ! T is locally stable. By Riemann-Hurwitz, it su�ces
to check that the family is locally stable, after a further possibly ramified
extension of DVRs T

0 ! T , as in the proof of [Kol22, Prop. 2.10] (see also
[Kol22, §11.23]). In particular, by the valuative criterion of properness, we can
assume that the morphism T !Ms factors through �s : B !Ms as follows:

B
�s // Ms.

T

=={{{{{{{{

__????????

Thus, we can replace Ms and its universal family with B and the family lying
over B. The claim then follows from Theorem 4.2(2).
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Observe now that (Xs,v(s0)Ds) ! Ms is in fact stable; i.e., KXs/Ms
+

v(s0)Ds is relatively ample over Ms. Indeed, by Theorem 4.2(2) it is relatively
ample when pulled back to B, and B !Ms is a proper surjection. Therefore,
the family (Xs,v(s0)Ds)!Ms induces a morphism Ms !Ms0 . The argument
is symmetric in s and s

0 so we also have a morphism in the other direction.
Finally, the fact that these morphisms are inverses and are induced by

isomorphisms

(X 0
s,v(s

0)Ds0) ⇠= (Xs,v(s
0)Ds)

can be checked pointwise over the moduli space and fiberwise on the univer-
sal family and thus follows from Theorem 4.2(2). Commutativity is clear by
construction. ⇤

Given the corollary, we will introduce the following notation.

Notation 4.11. For consecutive walls ti < ti+1, we will denote by

(X(ti,ti+1),D(ti,ti+1))!M(ti,ti+1)

the moduli space and universal family of varieties marked with divisor for any
s 2 (ti, ti+1).

5. Flip-like morphisms

In this section, we will prove the existence of flip-like morphisms that
relate the moduli spaces Mt defined in the previous section as t-varies across
the (a! b)-walls. With notation as in 4.1, suppose we are in the situation of
Theorem 4.2. Recall that the spaces Mt as in Definition 4.7 admit morphisms
B ! Mt ! Kv(t). If 0 = t0 < · · · < ti < · · · < tm = 1 are the (a ! b)-walls
and ti < si < s

0
i < ti+1, then the flip-like morphisms assemble into the diagram

below:

B

✏✏ %%K
KK

KK
KK

KK
KK

))TTT
TTT

TTT
TTT

TTT
TTT

TTT

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW

WW

,,YYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY

Ma = Mt0

✏✏

Ms0
oo oo

⇠=
//

✏✏

Ms00
//

✏✏

Mt1

✏✏

Ms1
oo

✏✏

oo
⇠=
// · · ·

Kt0 Ks0 Ks00
Kt1 Ks1 · · ·

(1)

By Theorem 4.2, we obtain a diagram without the horizontal arrows,
where the composition B ! Kt is the morphism �t and Mt is the seminor-
malization of the image of �t, and by Corollary 4.10, we have the horizontal
isomorphisms Ms0

⇠= Ms00
. We can summarize the situation as follows:
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B

✏✏ $$I
II

II
II

II
I

))TTT
TTT

TTT
TTT

TTT
TTT

TTT

++XXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXXX

XX

,,ZZZZZ
ZZZZZZ

ZZZZZZ
ZZZZZZ

ZZZZZZ
ZZZZZZ

ZZZZZZ
ZZZ

Mt0 M(t0,t1) Mt1 M(t1,t2) Mt2 · · ·

(2)

Note here that M(t0,t1) admit morphisms to Ks for each t0 < s < t1, but
the target and these morphisms are actually varying even though the source
moduli space is independent of s.

For each t, the base B carries a stable family (Zt,v(t)�t) that is pulled
back from the universal family (Xt,v(t)Dt)!Mt. We know from Theorem 4.2
that the marked pair (Zs,�s) is independent of s for ti < s < ti+1 with only
the coe�cients changing. Moreover, (Zti ,v(ti)�ti) and (Zti+1 ,v(ti+1)�ti+1) re-
spectively are the canonical models of (Zs,v(ti)�s) and (Zs,v(ti+1)�s) (Re-
mark 4.6). We showed in Corollary 4.10 that the first fact descends to a
statement on the universal family. Putting this together, we have the diagram
below, where the squares coming out of the paper are cartesian:

(Zti ,v(ti)�ti)

✏✏

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

D
(Zs,v(s)�s)oo

✏✏

//

$$I
II

II
II

II
II

II
II

II
II

II
II

(Zti+1 ,v(ti+1)�ti+1)

✏✏

%%L
LL

LL
LL

LL
LL

LL
LL

LL
LL

LL
LL

LL

B

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
C B

$$I
II

II
II

II
II

II
II

II
II

II
II

II
B

%%K
KK

KK
KK

KK
KK

KK
KK

KK
KK

KK
KK

KK
KK

(Xti ,v(ti)Dti)

✏✏

(X(t1,ti+1),v(s)D(t1,ti+1))

✏✏

(Xti+1 ,v(ti+1)Dti+1)

✏✏
Mti M(t1,ti+1) Mti+1.

(3)

Note that the a priori rational maps Zs!Zti given by taking the canonical
model are actually morphisms. Indeed, since (Zs,v(ti)�s) and (Zsi ,v(ti+1)�s)
are good minimal models, they admit morphisms to their canonical models.
The idea now is to descend these morphisms to the universal families and use
them to induce the flip-like morphisms Mti M(ti,ti+1)!Mti+1 .

Theorem 5.1 (Flip-like morphisms). In the setting of Theorem 4.2, con-
sider ti < ti+1 consecutive (a! b)-walls. There is a commutative diagram

Xti

✏✏

X(ti,ti+1)
oo //

✏✏

Xti+1

✏✏
Mti M(ti,ti+1)

�ti+1 //
↵tioo Mti+1

(4)

that commutes with diagram (3). Moreover, we have

(i) ↵ti is induced by taking a pair (X,v(ti)�) to ProjR(KX + v(ti)�) with
the pushforward divisor;
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(ii) �ti+1 is induced by taking a pair (X,v(ti+1)�) to ProjR(KX +v(ti+1)�)
with the pushforward divisor.

In particular, over the dense open subset U ⇢M(ti,ti+1) parametrizing klt
pairs, ↵ti and �ti+1 can be described by taking fiberwise canonical models.

Proof. We will denote (X(ti,ti+1),D(ti,ti+1)) ! M(ti,ti+1) by (X ,D) ! M
for convenience.

We need to construct a well-defined family of pairs over M , but with
coe�cients v(ti), that pulls back to (Zti ,v(ti)�ti) over B and similarly for co-
e�cients v(ti+1). In particular, we have to show that the canonical model map

(5) (Zs,v(t)�s) 99K (Zt,v(t)�t)

is a morphism that is pulled back from a morphism of families of M for any
s 2 (ti, ti+1) and t = ti, ti+1. Note that (5) is in fact a morphism for t = ti, ti+1

by the basepoint free theorem applied to KZs + v(t)�t. By construction,
(Zs,�s) is the pullback of the universal pair (X ,D)!M .

Our task is to descend the stable family (Zt,v(t)�t)! B to a stable fam-
ily (Y,v(t)DY) !M along with a log canonical linear series X 99K Y whose
construction is compatible with base change.

By 4.10, we know that for every s 2 (ti, ti+1), the family (X ,v(s)D)!M
is stable. Therefore, since both having lc singularities and being nef are closed
conditions on the coe�cients of the divisor, the morphism ⇡ : (X ,v(t)D)!M
is locally stable, and KX/M +v(t)D is ⇡-nef. For d divisible enough, we define

Y := ProjM

 
M

m2N
(⇡⇤OX (md(KX/M + v(t)D))

!
.

That is, Y is the relative canonical model of (X ,v(t)�).
We claim that the construction of X 99K Y commutes with base change.

By cohomology and base change it su�ces to prove that for d and m divisible
enough, and for every p 2M , we have

H
1 �Xp,md

�
KXp + v(t)Dp

��
= 0.

Recall that from the definition of M , every pair appearing as a fiber of ⇡ can
be obtained as the degeneration of a klt pair over a DVR and moreover that
KXp + v(t)Dp is big and nef. Now the desired vanishing follows from relative
Kawamata–Viehweg vanishing as in [Inc20, Th. 8.1].

In particular, for every p 2M ,

Yp = Proj

 
M

n2N

�
H

0 �Xp, nd(KXp + v(ti)Dp
��
!

is the canonical model of (Xp,v(t)Dp). We conclude moreover that the rational
map h : X 99K Y is in fact a morphism as it basechanges to the morphism (5)



846 K. ASCHER, D. BEJLERI, G. INCHIOSTRO, and Z. PATAKFALVI

via the surjective map B ! M , and that h induces the fiberwise canonical
model for each p 2M .

We now need to produce a family of divisors DY (see Section 2). On X
we have n well-defined families of divisors

Ä
X ,D(i)

ä
!M and a universal pairÄ

X ,
P

(sai + (1� s)bi)D(i)
ä
!M . We wish to define D(i)

Y as the pushforward

to get D(i)
Y := h⇤

Ä
D(i)
ä
to Y. We need to check that

Ä
Y,D(i)

Y

ä
is a well-defined

family of divisors for each i [Kol22, Def. 4.2] (see also Section 2); that is,

(a) Y !M is flat with deminormal fibers;

(b) for every i, Supp
Ä
D(i)

Y

ä
!M is equidimensional of dimension n� 1;

(c) for every p 2M , the fiber Yp is smooth at the generic point of Supp
Ä
D(i)

Y

ä
;

and
(d) the assumptions of [Kol22, Cor. 4.5 (2)] (which we recall below) apply.

Each of the statements (a)–(d) can be checked étale locally, so we can pull
back to an étale cover U ! M by a scheme. We denote by f : X ! Y the

pullback of h and let D,D
(i) and D

(i)
Y be the divisorial pullbacks of D, D(i) and

D(i)
Y respectively as defined in Section 2. Note, moreover, that f⇤D

(i) = D
(i)
Y

as taking divisorial part and scheme theoretic image both commute with étale
base change. The situation is summarized in the following diagram:

Supp
Ä
D

(i)
ä

// X //

f

✏✏

X

h

✏✏
Supp

Ä
D

(i)
Y

ä
// Y //

g

✏✏

Y

✏✏
U // M .

Recall now that for every u 2 U , we have

• the morphism fu : Xu ! Yu is the stable model ofÑ
Xu,

X

j

(tiaj + (1� ti)bj)D
(j)
u

é
;

and
• Supp

Ä
D

(i)
ä
u
= Supp

Ä
D

(i)
u

ä
since

Ä
X,D

(i)
ä
! U is a family of pairs.

In particular, for each u 2 U , the fiber Yu comes with n divisors (namely

(fu)⇤(D
(i)
u )).

Claim: For each u 2 U , we have

Supp
Ä
f⇤D

(i)
ä
u

(⇤⇤)
==== Supp

Ä
(fu)⇤D

(i)
u

ä
.
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We thank the referee for suggesting a more elegant proof of this claim.

Proof of claim. To prove the claim, we may replace D
(i) with an irre-

ducible component, and since we work on one i at a time, we simply denote
it by D. The key observation is that D ! f(D) is generically finite if and
only if f(D) ! U is equidimensional of relative dimension dimDu. Indeed,
the dimensions of the fibers of both f(D)! U and D ! f(D) are both upper
semicontinuous, and the sum

dim f(D)u + (dimDu � dim f(D)u) = dimDu

is constant by assumption. Thus f(D)! U is equidimensional and

dimDu � dim f(D)u

is constant. Note that f is also fiberwise birational for general u 2 U , so we
conclude that D ! f(D) is generically finite if and only if f⇤D = f(D), if and
only if (fu)⇤(Du) = fu(Du) for general u 2 U , if and only if Supp((fu)⇤(Du)) =
fu(Du) for all u 2 U . In this case, it follows that

Supp
Ä
(fu)⇤D

(i)
u

ä
= fu(D

(i)
u ) = f(D(i))u = Supp

Ä
f⇤D

(i)
ä
u
.

Otherwise, f⇤D = 0, and so (fu)⇤(Du) = 0 for all u 2 U as well. In either case,
the claim holds. ⇤

Now we are ready to check conditions (a)–(d). For (a), it su�ces to check
the conditions after pulling back along all morphisms ⇠ : Spec(R) !M from
the spectrum of a DVR by the valuative criterion for flatness (see also, e.g.,
[Kol22, Lemma 10.58]). Now the construction of Y ! M via the relative
Proj commutes with base change so the pullback is the canonical model of a
locally stable family over a DVR that is flat with deminormal fibers by the
construction of stable limits.

Next, (b) and (c) are properties of the fibers over points, so they can be
checked for each u 2 U . Thus, they follow from the claim that

Supp(f⇤D
(i))u = Supp((fu)⇤D

(i)
u )

and the fact that
Ä
Yu,
P

j(tiaj + (1� ti)bj)(fu)⇤D
(j)
u

ä
is a stable pair.

We now show (d), using [Kol22, Cor. 4.5]. With the notation of the
previous paragraphs, we need to show the following. Consider ⌫ : U⌫ ! U

the normalization, and let Xn (resp. D
(i)
n , Yn and fn) be the pullback of

X (resp. D(i), Y and f). Then (Yn, (fn)⇤(D
(i)
n )) is a well-defined family of

pairs from [Kol22, Ths. 4.3, 4.4]. We need to show that for every two points

u, v 2 U with ⌫(u) = ⌫(v), we have (Yu, ((fn)⇤(D
(i)
n ))u) = (Yv, ((fn)⇤(D

(i)
n ))v).

But from the claim above, we know that Supp((fn)⇤(D
(i)
n ))u is the support

of the pushforward of (D(i)
n )u, via the map that takes the stable model of
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(Xu,
P

j(tiaj + (1 � ti)bj)(D
(i)
n )u). In particular, it is uniquely determined

by (Xu,
P

j(tiaj + (1 � ti)bj)(D
(i)
n )u). But since ⌫(s) = ⌫(t) and the family

(Xn,
P

j(tiaj + (1� ti)bj)D
(j)
n ) is pulled back via ⌫, we have

(Xu,
X

j

(tiaj + (1� ti)bj)(D
(i)
n )u) = (Xv,

X

j

(tiaj + (1� ti)bj)(D
(i)
n )v).

Putting this together, we conclude M carries a canonical v(t)-weighted
stable family (Y, h⇤v(t)D) that induces the required morphism M !Mt.

Finally, as we showed above, the formation of the log canonical morphism

f : X ! ProjB R(X/B,KX/B + v(t)D)

of the log canonical ring commutes with base change for all v(s)-weighted sta-
ble families parametrized by M , and similarly the formation of the Weil divisor
Weil(f⇤D) also commutes. Therefore, the resulting morphism M ! Mt can
be described pointwise as taking a point p corresponding to the stable pair
(Xp,v(s)Dp) to the point of Mt classifying the stable pair

(ProjR(KXp + v(t)Dp), f⇤v(t)D).

In particular, over the locus where X is normal, the morphism is induced by
taking the fiberwise canonical model. ⇤

Remark 5.2. If (X,D) ! B is a locally stable family of pairs with B

smooth, then the canonical model over B is a stable family by [Kol22, Cor. 4.57].
The main di�culty in the above theorem then is descending the conditions on
a stable family along the non-smooth morphism B !M .

The following corollary will be useful in the proof of Theorem 7.6.

Corollary 5.3. Following the notation of Theorem 5.1, the morphisms
�ti+1 and ↵ti are surjective.

Proof. We prove the desired statement for ↵ti ; the case of �ti+1 is analo-
gous.

From Theorem 4.2 and Definition 4.7, we have a surjective morphism
p : B ! M(ti,ti+1) with B a smooth projective variety, induced by the family
(Zs,v(s)�s)! B for any s 2 (ti, ti+1). Then to show that ↵ti is surjective, it
su�ces to show that ↵ti � p is surjective.

The composition B !M(ti,ti+1)
↵ti��!Mti is induced by taking the canon-

ical model of the pair (Zs,v(ti)�s) over B, which from Proposition 3.7 agrees
with (Zti ,v(ti)�ti). Now, the desired statement follows from the definition
of Mt. ⇤

Finally, we end the section with a discussion of the name “flip-like mor-
phisms.”
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Notation 5.4. When working around a single (a ! b)-wall ti, we will
denote M(ti�1,ti) (resp. M(ti,ti+1)) by Mti�" (resp. Mti+").

Theorem 5.1 guarantees the existence of maps Xti�" ! Xti  Xti+" of
universal families. These universal families lie over di↵erent moduli spaces.
However, we can pull back the above diagram to the fiber product F :=
Mti�" ⇥Mti

Mti+" to obtain a diagram

Zti�"

""E
EE

EE
EE

E

⇡⇡3
33

33
33

33
33

33
33

3
Zti+"

||yy
yy
yy
yy

⇧⇧↵↵
↵↵
↵↵
↵↵
↵↵
↵↵
↵↵
↵↵

Zti

✏✏
F,

which one can think of as a sort of universal generalized log flip. (See [AB21,
Prop. 8.4] and the preceding discussion.) Indeed, pulling back this diagram
along the natural morphism B ! F yields a generalized log flip over B. Here
we say generalized to emphasize the fact that the log canonical contraction
Zti+" ! Zti can be the contraction of a higher dimensional extremal face and
thus can contract both divisorial and higher codimension exceptional loci.

Theorem 5.1 can be summarized then by saying that this universal gen-

eralized log flip induces flip-like morphisms Mti�"
�ti��!Mti

↵ti ��Mti+". In the
following sections, we will see that �ti is in fact an isomorphism after passing
to the normalizations of the moduli spaces. In the following sections, we will
see that �ti is in fact an isomorphism after passing to the normalizations of
the moduli spaces.

6. Quasi-finiteness of the flip-like morphism below a wall

The goal of this section is to prove that for any (a ! b)-wall ti, the
flip-like morphism �ti : Mti�" !Mti of Theorem 5.1 is quasi-finite.

Theorem 6.1. The morphism �ti is quasi-finite.

To prove Theorem 6.1, we consider the following situation. Let q 2 Mti

be a point corresponding to a stable pair (X,v(ti)DX). Each point p 2 �
�1
ti (q)

corresponds to a v(ti � ")-weighted stable pair (Y,v(ti � ")DY ). We need
to show that there are finitely many such Y given a fixed (X,v(ti)DX). To
do this, we need to understand how the di↵erent models (Y,v(ti � ")DY ) are
related to (X,v(ti)DX). This is accomplished by the following lemma.

Lemma 6.2. Let (Y,v(ti � ")D) be an slc pair corresponding to p 2
Mti�"(k), and let the pair (X,v(ti)DX) be the image �ti(p). Then there is
a morphism h : Y ! X with the following properties :
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(1) a curve C gets contracted by h if and only if (KY + v(ti)D) · C = 0;
(2) h has connected fibers ;
(3) Exc(h) ✓ Supp(v(ti)D) — in particular, h does not contract any compo-

nent of Y ; and
(4) h

⇤(KX + v(ti)DX) = KY + v(ti)D.

Proof. By Theorem 5.1 and the construction of �ti , X is the Proj of the
log canonical ring of (X,v(ti)D), the a priori rational map h : X ! Y is a
morphism, DX = h⇤D, and the formation of the Proj and h⇤D as a Weil divisor
both commute with base change. If Y is klt, then X is klt and (1), (2) and (4)
follow from basic properties of the canonical model of log terminal model.

In general, every point of Mti�" is smoothable to a klt pair. There-
fore, consider a one parameter family (Y ,v(ti � ")D) ! Spec(R) in Mti�"

with closed fiber isomorphic to (Y,v(ti � ")D) and generic fiber klt, and
consider the relative canonical model of (Y ,v(ti)D) over Spec(R), namely
(X ,v(ti)DX ) ! Spec(R). Then the pair (X,v(ti)DX) is the closed fiber of
(X ,v(ti)DX )! Spec(R) and the total spaces X and Y are normal, so from
the construction of the canonical model, we have that

• the morphism � : Y !X has connected fibers; and
• a curve C ✓ Y gets contracted by � if and only if

C · (KY + v(ti)D) = C · (KY + v(ti)D) = 0.

In particular, we have shown (1). Moreover, since a fiber of h : Y ! X is also
a fiber of � : Y !X , we have also shown (2).

To prove (3), we only need to check that a curve C that is not contained in
Supp(v(ti)D) satisfies (KY +v(ti)D)·C > 0. Note that (KY+v(ti�")D)·C > 0
since the pair (Y,v(ti�")D) is stable. Moreover, (v(ti)D) ·C � (v(ti�")D) ·C
since C is not contained in Supp(v(ti)D). Therefore

(KY + v(ti)) · C � (KY + v(ti � ")) · C > 0.

Finally, to show (4), let us denote the closed point by c 2 Spec(R). By
[Kol13, Lemma 1.28], the pair (X ,v(ti)DX + Xc) is the stable model of
(Y ,v(ti)D + Yc). In particular, there is a morphism � : Y ! X that re-
stricts to h, such that �⇤(KX + v(ti)DX + Xc) = KY + v(ti)D + Yc. But

(KX + v(ti)DX + Xc)|Xc
= KX + v(ti)DX

and (KY +v(ti)D+Yc)|Yc
= KY +v(ti)D, so (4) follows from the commutative

diagram below, and functoriality of pullback:

Y //

h
✏✏

Y

�
✏✏

X // X . ⇤
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Our task now is to show that given (X,v(ti)DX), there are finitely many
(Y,v(ti�")D) as in Lemma 6.2. In fact, it su�ces to show there are countably
many. The following lemma allows us to normalize (X,v(ti)DX) and reduce
to the log canonical case.

Lemma 6.3. Let (X,v(t)D) be a v(t)-weighted stable pair corresponding
to a point q 2 Mt(k), and let ⌫ : X⌫ ! X be the normalization of X , with
conductor divisor � ⇢ X

⌫ . Assume that there are countably many log canonical
pairs (Y,v(t)DY + �Y ) such that

• (Y,v(t� ")DY + �Y ) is stable;
• KY + v(t)DY + �Y is semiample; and
• the canonical model of (Y,v(t)DY + �Y ) is (X⌫

,v(t)D + �).

Then the fiber of ��1
t (q) is countable.

Proof. Let (Z,v(ti � ")DZ) be a pair in the fiber of �ti at p, and let

(Z⌫
,v(ti � ")D⌫

Z + �Z)

be its normalization. We need to show two claims:

(1) KZ⌫ + v(ti)D⌫
Z + �Z is semiample and the canonical model of

(Z⌫
,v(ti)D

⌫
Z + �Z)

is (X⌫
,v(t)D + �); and

(2) there are only finitely many stable pairs with a given normalization.

Claim (1) and the assumption imply there are countably many pairs

(Z⌫
,v(ti � ")D⌫

Z + �Z)

that could be the normalization of the pair (Z,v(ti� ")DZ). Claim (2) follows
from [Kol13, Th. 5.13]. For claim (1), we first produce a morphism as below,
using the universal property of the normalization (see [Sta18, Tag 0BB4]):

(Z⌫
,v(ti)D⌫

Z + �Z)
�⌫
//

⌫

✏✏

(X⌫
,v(ti)D⌫ + �)

µ

✏✏
(Z,v(ti)DZ)

�
// (X,v(ti)D).

We need to check that the composition Z
⌫ ⌫�! Z

��! X does not contract
any irreducible components. This follows since ⌫ is finite and � does not
contract any irreducible component by Lemma 6.2. By Lemma, 6.2 we also
have that �

⇤(KX + v(ti)D) = KZ + v(ti)DZ . Moreover, since µ and ⌫ are
normalizations,

⌫
⇤(KZ + v(ti)DZ) = KZ⌫ + v(ti)D

⌫
Z + �Z

and
µ
⇤(KX + v(ti)D) = KX⌫ + v(ti)D

⌫ + �.
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Then from the commutativity of the diagram above, we have

(�⌫)⇤(KX⌫ + v(ti)D
⌫ + �) = KZ⌫ + v(ti)D

⌫
Z + �Z .

The latter is semiample as it is the pullback of an ample divisor. To check that
�
⌫ is the canonical model, it su�ces to check that a curve C is contracted by

�
⌫ if and only if C · (KZ⌫ + v(ti)D⌫

Z + �Z) = 0. Since the normalizations ⌫

and µ do not contract curves, we have

�
⌫ contracts C () µ � �⌫ contracts C

() � � ⌫ contracts C () � contracts ⌫(C).

From Lemma 6.2, the morphism � contracts ⌫(E) if and only if

0 = (KZ + v(ti)DZ) · ⌫⇤(C) = (KZ⌫ + v(ti)D
⌫
Z + �Z) · C,

as desired.
To conclude the statement, observe that by [Kol13, Th. 5.13], a stable

pair (Z,v(ti � ")DZ) is uniquely determined by its normalization

(Z⌫
,v(ti � ")DZ + �Z)

and an involution on the di↵erent (�
⌫
Z ,Di↵�⌫

Z
(D)). The latter is a stable pair

by adjunction, and so has finitely many automorphisms by [KP17, Prop. 5.5].
⇤

We are left with proving the following result, which was communicated to
us by János Kollár. We thank him for allowing us to include it here.

Proposition 6.4. Assume that (X,D + �̄) is a normal stable pair, and
let I be a finite set of positive rational numbers. Consider the set of pairs
(Y,DY + �Y ) such that

(1) (Y, (1� ")DY + �Y ) is stable for every 0 < " < "0;
(2) the canonical model of (Y,DY + �Y ) is (X,D + �̄); and
(3) the coe�cients of DY + �Y are in I .

Then this set is countable.

Proof. Let p : Y ! X be the morphism that gives the stable model of
(Y,DY +�Y ). First observe that by a theorem of Matsusaka–Mumford applied
to the variety Y and the divisor KY + (1� ")DY + �Y (see [Kol22, Ths. 11.39
& 11.40]), the pair (Y,DY + �Y ) is uniquely determined by (X,D), the coe�-
cients I, and the divisors extracted by Y ! X with their discrepancy. These
divisors have strictly negative discrepancy for (X,D). Indeed, by Lemma 6.2
the exceptional locus is contained in DY + �Y > 0 and

p
⇤(KX +D + �) = KY +DY + �Y = KY + p

�1
⇤ (D + �)

�
X

E is p�exceptional

a(E,X,D)E.
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Then it su�ces to show that there are countably many divisors with strictly
negative discrepancy for (X,D+ �). Indeed, let Z ! X be a log-resolution of
(X,D + �). As the map q : Z ! X extracts finitely many divisors, it su�ces
to check that there are finitely many divisors with negative discrepancy for the
pair (Z,DZ +�Z), where DZ +�Z satisfies KZ +DZ +�Z = q

⇤(KX +D+�)
(so DZ + �Z no longer needs to be e↵ective). This follows from Lemma 6.6
below, as such divisors can only be extracted by repeatedly blowing up some
strata of the snc pair (Z,DZ + �Z) (Definition 6.5 below). ⇤

Definition 6.5 (see [Kol22, Def. 11.10]). Let (X,D =
P

i2I aiDi) be a
simple normal crossing (snc) pair. A stratum of (X,D) is any irreducible
component of an intersection \i2JDi for some J ⇢ I.

Lemma 6.6. Let (X,D) be an lc pair, with D a priori not e↵ective, such
that (X, Supp(D)) is snc. Let E ✓ W be a divisor on a birational model
W ! X , with a(E;X,D) < 0. Let R := OW,E be the local ring at the generic
point of E in W , and let ⇠ be the closed point of Spec(R). Then there is a

sequence of blow-ups Xm
pm��! Xm+1

pm�1���! · · · p2�! X1 := X so that, if we
denote with Di := p

⇤
i (Di�1) and with qi the image of ⇠ through the morphism

Spec(R)! Xi, then

(1) (Xi, Supp(Di)) is snc;

(2) Xi ! Xi�1 is the blow up of a stratum of Xi�1; and

(3) qm has codimension one in Xm.

Proof. Let v be the valuation associated to R. Now, [KM98, Lemma 2.45]
gives us a recipe for producing a sequence of blow-ups Xm ! Xm�1 ! · · · !
X0 so that E is a divisor in Xm. In particular, each morphism Xi ! Xi�1 is
the blow-up of the closure of qi�1.

Therefore, since if we blow-up a stratum in a log-smooth pair, we still get
a log-smooth pair, it su�ces to proceed by induction showing that

• the closure of qi is a stratum in Xi; and

• for every divisor F over X, we have a(F ;Xi, Di) = a(F ;Xi+1, Di+1).

The first claim follows from [Kol13, 2.10.1] and the next line. The second claim
follows from [KM98, Lemma 2.30]. ⇤

Proof of Theorem 6.1. By Lemma 6.3 and Proposition 6.4, the fibers of
�ti are countable. Since�ti is of finite type, it follows that the fibers are finite,
so �ti is quasi-finite. ⇤

7. Reduction morphisms up to normalization

The goal of this section is to construct reduction morphisms ⇢a,b for weight
vectors b  a generalizing Hassett’s reduction morphisms [Has03, Th. 4.1] to
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higher dimensions. To accomplish this, we need to normalize the moduli space.
(See Section 8.1 for an example showing that this is necessary.)

Definition 7.1. In the setting of Definition 4.7, we let Nt for t 2 [0, 1] de-
note the normalization of Mt. We denote by Na (resp. Nb) the normalization
of Ma (resp. Mb).

Theorem 7.2. Let b  a be weight vectors, and let 0 < t1 < · · · < tm = 1
be the (b ! a)-walls. Then for any ti, the flip-like morphism �ti : Mti�" !
Mti induces an isomorphism �

⌫
ti : Nti�" ! Nti .

The proof of Theorem 7.2 proceeds as follows:

(1) �ti is quasi-finite by Theorem 6.1 in the previous section; and
(2) �ti is proper, representable, and an isomorphism on a dense open subset

(see Theorem 7.6 below).

Then Theorem 7.2 follows then from Zariski’s main theorem.

Definition 7.3. Composing (�⌫
ti)

�1 : Nti ! Nti�" with ↵
⌫
ti�1

: Nti�1+" !
Nti�1 for all i gives the desired reduction morphisms:

⇢b,a : Na ! Nb,

⇢b,a := ↵
⌫
t0 � (�

⌫
t1)

�1 � ↵⌫
t1 � . . . � ↵

⌫
tm�1

� ��1
tm .

Remark 7.4. Note that both ↵ti and �ti are dominant by Corollary 5.3,
so they induce morphisms ↵⌫

ti and �
⌫
ti between normalizations.

Remark 7.5. For any weight vector v(t) = ta + (1 � t)b, the reduction
morphisms are compatible by definition: ⇢b,v(t) � ⇢v(t),a = ⇢b,a. In general, for
weight vectors c  b  a that are not co-planar, we may have

⇢c,b � ⇢b,a 6= ⇢c,a.

This is because the construction of the moduli spaces and morphisms a priori
depends on the MMP with scaling we used to get from weights a to b. In
Section 8, we will give some examples showing this can occur and state con-
ditions under which the reduction morphisms are compatible for all weights
(Theorem 8.1).

Theorem 7.6. The morphism �ti : Mti�" !Mti is representable, proper
and birational.

Proof. Recall that by Theorem 4.2, the morphism � : Mti�" !Mti can be
described as follows on the dense open subset parametrizing klt pairs. Given
a point p 2 Mti�"(k) corresponding to a stable pair (Y,v(ti � ")D), �ti(p)
classifies the canonical model of the pair (Y,v(ti)D), which we will denote by
(X,v(ti)DX).
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The morphism �ti is proper since the source and target are proper, and it
is surjective by Corollary 5.3. It is generically injective, since we can recover
(Y,v(ti� ")D) from the pair (X,v(ti)DX) in the klt case. Indeed, by Proposi-
tion 3.7 the pair (Y,v(ti� ")D) is the log canonical model of (X,v(ti� ")DX)
when (X,v(ti)DX).

To show representability, consider a stable pair (Y,v(ti � ")D) that cor-
responds to a point p 2 Mti�"(k), and suppose ⌧ is an automorphism of the
pair. Let (X,v(ti)DX) be the pair corresponding to �ti(p). Then ⌧ induces an
automorphism ⌧X of (X,v(ti)DX) by functoriality of the construction of �ti .
We need to prove that ⌧X = Id =) ⌧ = Id. This is proved as in [Inc20,
Obs. 8.4], using Lemma 6.2.

We are left with showing that �ti is birational. To do this, we produce a
dense open substack U ✓Mti such that �ti : �

�1
ti (U)! U is an isomorphism.

First, observe that if we denote with roman letters the coarse moduli
spaces, the induced morphism �

c
ti : Mti�" ! Mti is proper as the source is

proper and the target is separated. Moreover, �
c
ti is quasi-finite, surjective

and generically injective, since these are properties that we can check on al-
gebraically closed points, they hold for �ti : Mti�" ! Mti , and we have a
bijection |Mt(Spec(k))| ⇠= |Mt(Spec(k))| for k algebraically closed. Since we
are in characteristic 0, �c

ti is also generically unramified. Therefore, by Zariski’s
main theorem, the morphism �

c
ti induces an isomorphism of normalizations.

As Mti ,Mti�", Mti and Mti�" are reduced and irreducible, there exist
normal dense open subsets of all these spaces. Moreover, these can be chosen
to fit in the following diagram:

V ((

✏✏

// Mti�"

✏✏

�ti

// Mti

✏✏

Uoo

✏✏
V 66// Mti�"

�c
ti // Mti Uoo

where the left and right squares are cartesian. Since normalization is an iso-
morphism on the locus that is already normal, then up to shrinking the open
subsets, we can summarize the situation as follows:

• U ⇢Mti and V = (�c
ti)

�1(U) ⇢Mti�" are open and dense subsets such that
(�c

ti)|V : V ! U is an isomorphism;
• V (resp. U) is a normal dense open substack of Mti (resp. Mti�"), with
coarse space U (resp. V ); and

• U and V are contained in the locus parametrizing klt pairs.

Then the restriction �ti

��
V : V ! U is a representable morphism between

normal Deligne–Mumford stacks that is an isomorphism on coarse moduli
spaces. We wish to show that this is an isomorphism on the level of stacks.
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By construction, it induces an isomorphism of coarse spaces and hence a bi-
jection on geometric points. Moreover, since we are in characteristic 0, then
up to shrinking U and V, we may assume that �ti

��
V is étale. Thus, by [AK16,

Lemma 3.1], it su�ces to show that the morphism is stabilizer preserving.
As we already know the morphism is representable, we are left with show-

ing surjectivity of automorphism groups. In the notation above, for p 2 V(k)
classifying a klt stable pair (Y,v(ti�")D), we need to show that any automor-
phism of the pair (X,v(ti)DX) comes from an automorphism of (Y,v(ti�")D).
Recall that by construction of �ti , (X,v(ti)DX) is the canonical model of
(Y,v(ti)D). On the other hand, by Proposition 3.7, (Y,v(ti � ")D) is the
canonical model of (X,v(ti � ")DX) and there is a small birational morphism
Y ! X.

In particular, there is an open subscheme W ✓ Y such that

(1) W ! X is an isomorphism with its image (which we denote with WX);
(2) W is Q-factorial; and
(3) the complement of W and WX have codimension at least two in Y and X

respectively.

Therefore, Y = Proj(
L

nH
0(WX , nd(KWX+v(ti�")(DX)|WX

))) for d divisible
enough. Recall that v(ti)D is shorthand for

X
(tiai + (1� ti)bi)D

(i)),

so any automorphism of (X,v(ti)D) fixes the components D(i). In particular,
it induces an automorphism of X that sends D(i) to itself. Thus, it induces an
automorphism of

Y = Proj(
M

n

H
0(WX , nd(KWX + v(ti � ")(DX)|WX

))),

and since it preserves the D
(i), it induces an automorphism of the pair

(Y,v(ti � ")D),

completing the proof. ⇤

Proof of Theorem 7.2. This follows from Theorems 6.1, 7.6 and Zariski’s
main theorem for representable morphisms of algebraic stacks (Theorem 16.5
in [LMB00]). ⇤

Next we show that under some natural assumptions, the flip-like morphism
↵ti : Mti+" !Mti is also birational.

Proposition 7.7. Let ti be an (a! b)-wall, and suppose that there ex-
ists a dense open substack U ⇢ Mti+". Denote by (XU ,v(ti + ")DU ) ! U
the universal v(ti + ")-weighted stable family over U . Suppose that the family
(XU ,v(ti)DU )!U is also a stable family. Then up to shrinking U , we have that
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• ↵ti(U) is a dense open substack of Mti ;
• (↵ti)|U : U ! ↵ti(U) is an isomorphism ; and
• the pullback of (XU ,v(ti)DU ) ! U along (↵ti)

�1 is the universal v(ti)-
weighted stable family over ↵ti(U).

In particular, ↵ti : Mti+" !Mti is birational.

Remark 7.8. Note that in contrast to �ti , the flip-like morphism ↵ti is not
finite in general. This happens already in the case of weighted stable curves
[Has03], where ↵ti can contract high dimensional loci parametrizing rational
tails with n � 4 special points that are contracted to a point by the canonical
model for coe�cients v(ti).

Remark 7.9. The hypothesis of Proposition 7.7 is often satisfied in prac-
tice. For example (see also Remark 4.9), one often begins with a family of
pairs over an open base U that are stable for all t 2 [0, 1] and asks how the
stable pairs compactification changes as t varies. In this case, the image of U
inside Mt is constructible by Chevalley’s Theorem and dense by construction.
Therefore, the image of U contains a dense open substack of Mt. By assump-
tion, the pairs over this substack are stable for all t 2 [0, 1] so the hypothesis
of the proposition is satisfied.

Proof. We will denote ↵ti by ↵ for convenience.
Let f : U!Mti be the coarse space map of the restriction ↵|U :U!Mti .

Then f is dominant since U is dense in Mti+" and ↵ is surjective by Corol-
lary 5.3. Therefore, the image f(U) is dense and constructible so, for example,
by [Har77, Ch. 2, Exercises 3.18, 3.19], there exists a dense open subset

V ⇢ f(U) ⇢Mti .

Then, defining V := Mti ⇥Mti
V and up to replacing U with ↵

�1(V), we can
assume that

(1) U is an open and dense substack of Mti+";
(2) V is an open and dense substack of Mti ; and
(3) ↵(U) = V and ↵

�1(V) = U .
Now we proceed as in the proof of Theorem 7.6. We know that the induced

map on k-points U(k)! V(k) is injective, since by assumption, for any stable
pair (X,v(ti + ")D) parametrized by U , the pair (X,v(ti)D) is also stable.
Moreover, it is surjective since ↵(U) = V. Thus ↵|U : U ! V is a morphism
between normal separated stacks of finite type in characteristic 0 that is a
bijection on geometric points, so up to shrinking U and V further, we may
assume that it is étale. Then by [AK16, Lemma 3.1], to show that ↵|U is
an isomorphism, it su�ces to show it is stabilizer preserving. But this again
follows by assumption since over U , the pair corresponding to a point ↵ti(p) is
simply (X,v(ti)D) where p corresponds to (X,v(ti + ")D). ⇤
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Corollary 7.10. Let b  a, and let f : (X ,Da)!Ma be the universal
pair. Suppose that the restriction of f to the generic point is b-weighted stable.
Then the reduction morphism ⇢b,a : Na ! Nb is birational.

Proof. Since the normalization of a reduced stack is birational, it su�ces to
check the desired statement for the rational map Ma 99K Mb. But according to
Theorem 5.1, this factors as a finite sequence of flip-like morphisms Ms !Mt.
Such morphisms are birational by Theorem 7.6 and Proposition 7.7, so their
composition is birational. ⇤

We conclude the section with an application of representability of �t to
isotrivial families.

Corollary 7.11. Let C be a smooth and irreducible curve, and let

f : (Y,v(ti � ")D)! C

be a v(ti � ")-weighted stable family. Suppose that the v(ti)-weighted stable
model over C is isomorphic to a product (X,v(ti)D) ⇥ C ! C . Then the
family f : (Y,v(ti � ")D)! C is also isomorphic to a product.

Proof. Let ' : C ! Mti�" be the moduli map induced by the stable
family f . By assumption, the composition �ti � ' : C ! Mti with �ti is
constant; that is, it factors through a closed point x : Spec k !Mti . Since C

is a smooth connected curve, ' factors through a connected component of the
reduced preimage (��1

ti (x))red. By Theorems 6.1 and 7.6, ��1
ti (x) is finite and

representable over Spec k. Therefore, (��1
ti (x))red is a finite union of points

and so ' is the constant map. ⇤

8. Examples, counterexamples, and natural questions

In this section, we discuss several natural generalizations of our main
results one might hope for and give examples showing that some of these are
not possible.

8.1. Normalizing the moduli space. It is natural to ask if Theorem 7.2
holds without taking the normalization of the moduli space Mt. However, the
following example shows that the morphism �ti is not injective in general and
thus not an isomorphism. In particular, reduction morphisms ⇢b,a can only be
well defined on the normalization of the moduli space.

We recall the following construction due to Hassett (see [Kol22, Exam-
ples 2.41 and 1.42]). Consider the cone S ✓ P5 over the degree four rational
curve in P4. This is a surface with an A2

/
1
4(1, 1) singularity on the vertex of

the cone, and it can be obtained as a flat degeneration of both P2 (see [Kol22,
Example 1.42]) and P1 ⇥ P1. In particular, there are two DVRs, which we
will denote by R1 and R2, and two projective families fi : Xi ! Spec(Ri), so



WALL CROSSING FOR MODULI OF STABLE LOG PAIRS 859

that the special fiber of fi is isomorphic to S, and the generic fiber of f1 is
isomorphic to P1 ⇥ P1 whereas the one of f2 is isomorphic to P2.

Moreover, there are families of divisors Di ✓ Xi that can be described as
follows. First, fix a natural number r and let D0 ⇢ S be the union of 2r generic
lines through the cone point. Now for i = 1, the divisor D1 is the union of
r lines of one ruling on the generic fiber with divisorial limit D0. Note that
in this case D0 is not the flat limit of the generic fiber (D1)⌘1 but merely the
divisorial component of the flat limit. Similarly, the divisor D2 is r general
lines on the generic fiber P2 with divisorial limit D0. In this case, it turns out
that D0 is actually the flat limit (D2)⌘2 . The pairs (Xi,

1
rDi) ! Spec(Ri) are

projective locally stable families with special fiber (S, 1rD0).
In particular, we can pick an fi-ample hyperplane section Hi ✓ Xi as

follows. First, choose an fi-ample line bundle Li satisfying R
1(fi)⇤(L⌦m

i ) = 0
for everym > 0. Then any section ofH0((Li)|S) extends to a section ofH0(Li).
This follows from the following exact sequence, where ti is the uniformizer of
Spec(Ri):

0! Li
·ti�! Li ! (Li)|S ! 0.

In [Kol22, Example 2.41] it is shown that the divisorKXi+
1
rDi is Q-Cartier and

anti-ample, so if we choose Li := OXi(�n(KXi +
1
rDi)) for n divisible enough,

then R
1(fi)⇤(L⌦m

i ) = 0 for m > 0, and (L1)|S = (L2)|S . In particular, we can
choose two generic hyperplane sections Hi ✓ Xi of an appropriate multiple of
Li so that (H1)|S = (H2)|S and the divisor (H1)|S avoids the singular locus of

S and intersects D0 transversally. In particular, the pair (S, 1rD0+
1
2(Hi)|S) is

lc, so by inversion of adjunction, the morphisms (Xi,
1
rDi +

1
2Hi) ! Spec(Ri)

are stable.
This produces two stable families (Xi,

1
rDi +

1
2Hi)! Spec(Ri) such that,

if ⌘i is the generic point of Spec(Ri), then
• the generic fiber is klt;
• the special fibers are the same; but
• K

2
(X1)⌘1

6= K
2
(X2)⌘2

.

In particular, let a := (1r ,
1
2). Then for every " > 0, the pairs

(Xi, (1� ")(
1

r
Di +

1

2
Hi))⌘i

have di↵erent volumes. Therefore their stable limits along Spec(Ri) are two
di↵erent points in Ma�", but they have the same a-weighted stable limit and
thus map to the same point in Ma. Therefore, the morphism �a is not injective.

8.2. Multiple ways to reduce weights. In Theorem 5.1, we construct wall-
crossing morphisms for the (a ! b)-walls along the line segment connecting
the two weights vectors. However, the wall-and-chamber structure ultimately
is a result of [BCHM10, Th. E], which gives a decomposition of a polytope of
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weight vectors rather than just a line segment. Thus, it is natural to ask how
the wall-crossing morphisms behave over the whole polytope.

In particular, given weight vectors a � b � c we have reduction mor-
phisms ⇢b,a, ⇢c,b and ⇢c,a defined as a composition of flip-like morphisms and
their inverses for the straight line segment (a ! b), (b ! c) and (a ! c)
respectively. Do these reduction morphisms commute? That is, do we have
⇢c,b � ⇢b,a = ⇢c,a in general (see Remark 7.5)? Recall that the construction
of the flip-like morphisms proceeds by running a minimal model program with
scaling as we reduce the coe�cients along the corresponding line segment.
The example below illustrates that these mmp with scaling do not commute
in general and therefore the ⇢ do not necessarily commute.

We refer the reader to [Mir89] for the background about on elliptic fibra-
tions (see also [AB17]). Consider a Weierstrass elliptic fibration f : X ! P1

with section S, and assume that the fundamental line bundle L on P1 has
degree 3. Consider five generic fibers F1, . . . , F5, and let F :=

P
Fi. Then we

have that KX +(1� ")S+ 1
2F is ample and the pair (X,S+ 1

2F ) is stable. For

a suitable " small enough, the pair (X, dS + d
2F ) is also stable and klt, with

d := 1� ".
Recall now that

• KX = f
⇤(!P1 ⌦ L) = f

⇤(OP1(1)); therefore
• �2 = (KX + S).S = KX .S + S

2 = 1 + S
2 so S

2 = �3.

We aim at reducing the weights on S and on F . We first reduce the weight
on S from d to " for " > 0 small enough. It is easy to check that the pair
(X, (td+ (1� t)")S + d

2F ) is stable for every t 2 [0, 1]. Now we can reduce the

weight on F from d
2 to 1

5 . Again, if " is small enough, it is easy to check that

the pair (X, "S + (td2 + (1� t)15)F ) is stable for every t 2 [0, 1].
On the other hand, we can reduce the weights on F first, and then on S. If

we reduce the weights on F from d
2 to 2

5 � ", then (KX +dS+(25 � ")F ).S < 0.
In particular, the section S must be contracted in the stable model. This gives
a contraction morphism g : X ! Y and a pseudoelliptic pair (Y, g⇤((

2
5 �")F )).

We can now keep reducing the weights from 2
5�" to

1
5 , which produces a stable

surface (Z,D) with a contraction morphism X ! Z, which factors through g.
In particular, X and Z are not isomorphic despite being the result of starting
with the same (1�", (1�")/2)-weighted stable pair and reducing to coe�cients
(", 15).

One can produce a positive dimensional family of varieties of the above
type by considering a Weierstrass fibration defined over the field C(t). This
gives a morphism ' : Spec(C(t)) ! Ka whose closure of its image, assuming
that ' is non-isotrivial, will be a higher dimensional family of elliptic surfaces
with generic fiber as in the example. In this case, the objects parametrized by
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the interior of the moduli spaces Mt in Theorem 5.1 depends on the chosen
path from a! c.

This shows that the moduli spaces Mt and the flip-like morphisms depend
a priori on the choice of path. However, if we assume that we have a family such
that the generic fiber has the same stable model for all coe�cient vectors, then
we can avoid this issue. More generally, suppose that there exists a polytope
P of admissible weight vectors and moduli spaces Mv of v-weighted stable
models for each v 2 P such that

• there are dense open substacks Uv ⇢ Mv with reduction morphisms rb,a :
Ua ! Ub for b  a; and

• for every c  b  a in P , we have rc,b � rb,a = rc,a.

Then since the moduli spaces are separated, we must have that ⇢c,b�⇢b,a = ⇢c,a

(see [DH21, Lemma 7.2]). This applies, for example, in the hypothesis of
Theorem 1.1.

More generally, we have proved the following.

Theorem 8.1. Let ⇡ : (X ,D1, . . . ,Dn) !Ma be the universal family of
pairs over Ma, and assume that for every v  a in an admissible polytope of
weight vectors P (Definition 1.3), the generic point of ⇡ : (X ,vD) ! Ma is
a stable family. Then the moduli spaces Mv and morphisms ⇢b,c � ⇢a,b = ⇢a,c

are well defined for every pair c  b in P .

8.3. Reduction morphisms are not birational onto its image. We give an
example where the reduction morphisms are not birational if we do not assume
that the generic fiber is stable for each t 2 [0, 1]. As we noted in Theorem 7.6,
the morphisms �ti are always birational. The following example shows that
the morphisms ↵ti are not always birational.

Consider pairs (P2
, C0 + L0), where

• C0 is a generic curve of degree d� 0, and
• L0 is a generic line.

By the genericity assumption, C0 and L0 meet transversely at d points. Let
p 2 C0 \ L0, and let µ : X ! P2 be the blowup of P2 at p with exceptional
divisor E. Let C and L be the strict transforms of C0 and L0 respectively.
Consider the pair (X, aC + aL) for some a 2 (0, 1). We can compute

(6) KX + aC + aL = f
⇤(KP2 + aC0 + aL0) + (1� 2a)E.

For a = 1+"
2 with 0 < " ⌧ 1, the divisor KX + aC + aL is ample so�

X,
1+"
2 (C + L)

�
is stable. On the other hand, at a = 1

2 the canonical model
contracts the exceptional curve E to obtain

�
P2

,
1
2(C0 + L0)

�
as the log canon-

ical model.
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Let U be the moduli space of such pairs (X, aC + aL). Explicitly, we can
construct U as a d-fold cover of

[U/PGL3] ⇢ [(H1 ⇥Hd)/PGL3] ,

where Hi is the Hilbert scheme of degree i curves and the d-fold cover cor-
responds to a choice of point in C0 \ L0 to blow up. Then U is smooth and
supports a universal family

(X , aC + bL)
of such pairs (X, aC + aL). This is an open subset of the moduli of stable log
pairs for a = 1+"

2 but at coe�cient a = 1
2 , the reduction morphism ⇢ 1

2 ,
1+"
2

can

be identified with the d-fold cover

U ! [U/PGL3]

as ⇢ blows X down to P2 and thus forgets about the choice of p 2 C0 \ L0.

8.4. Reduction morphisms are not dominant on irreducible components.
It is natural to ask if the image of the normalization of an irreducible compo-
nent of Ka under a reduction map ⇢b,a is the normalization of an irreducible
component of Kb. More generally, one can ask if the image of the klt locus
under ⇢ is open. While this is true in dimension one, it fails in higher di-
mensions. The following example of this phenomena was pointed out to us by
János Kollár, answering questions that appeared in an earlier version of this
manuscript. We thank him for allowing us to include it here.

Example 8.2 (Kollár). Consider (Q0, uL0 + vL
0
0), where Q0 is a quadric

cone and both L and L
0 are lines. If u = v, then this pair deforms to (Qt, uLt+

vL
0
t), where Qt is a smooth quadric cone, and Lt and L

0
t are now lines in

di↵erent families. However if u 6= v, then there is no such deformation. Thus,
the image of the irreducible component of the moduli space parametrizing such
pairs at coe�cient (u, v) does not dominate an irreducible component of the
moduli space for coe�cients (u, u) where u < v.

8.5. Further questions. We end with a few natural open questions. In the
examples of Sections 8.2 and 8.3, what seems to go wrong is that the stable
model contracts marked divisors of our pairs. Thus, it is natural to ask if this
is the only thing that can go wrong.

Question 1. In the setting of Theorem 1.8, if we further assume that the
stable models of (X,

P
aiDi)! B are isomorphic in codimension one for each

admissible weight a, do the stronger conclusions of Theorem 1.1 hold?

Finally, we make use throughout of the klt assumption for the generic
fiber of our universal family in order to apply the results of [BCHM10] among
other things. It is natural to ask the following.
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Question 2. Do the wall-crossing results of this paper hold if we only
assume that the generic fiber of the universal family over the moduli space is
log canonical rather than klt?

Remark 8.3. It is also natural to ask if the main results of this paper
hold when the generic fiber is log canonical while assuming the full minimal
model program and abundance. We are using the klt assumption at least in
Proposition 3.7 and Theorem 5.1 when we used Kawamata–Viehweg vanishing,
and in Theorem 4.2 where we used [BCHM10]. We do expect our results to
hold in the case where the generic fiber of our moduli spaces admit a good
minimal model, and we will leave it for future exploration.
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