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We construct various modular compactifications of the space of elliptic K3 surfaces
using tools from the minimal model program, and explicitly describe the surfaces
parametrized by their boundaries. The coarse spaces of our constructed compactifi-

cations admit morphisms to the Satake—Baily—Borel compactification and the GIT
compactification of Miranda.
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Ever since the compactification of the moduli space of smooth curves by Deligne and

Mumford was accomplished, the search for analogous compactifications in higher

dimensions became an actively studied problem in algebraic geometry. While moduli

in higher dimensions is highly intricate, the pioneering work of Kolldr and Shepherd-
Barron [31] and Alexeev [3] (see also Hacon, McKernan and Xu [19], Hacon and
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1892 Kenneth Ascher and Dori Bejleri

Xu [20] Kollar [28] and Kovacs and Patakfalvi [32]) has established much of the
underlying framework for modular compactifications in the (log) general type case via
KSBA stable pairs, where semi-log canonical singularities serve as the generalization
of nodal curves; see the survey by Kollar [27].

One of the most sought-after compactifications is for the space of K3 surfaces. K3
surfaces do not immediately fit into the above framework as they are not of general
type, but rather Calabi—Yau varieties. On the other hand, like for abelian varieties,
since the space of (polarized) K3 surfaces is a locally symmetric variety it has several
natural compactifications, eg the Satake—Baily—Borel (SBB), toroidal, and semitoric
compactifications of Looijenga. Unlike the KSBA approach, these compactifications
do not necessarily carry a universal family or modular meaning over the boundary.

As such, one of the central questions in moduli theory is to give the aforementioned
naturally arising compactifications a stronger geometric meaning by connecting them
with a KSBA compactification. With this in mind, our goal is to construct modular
compactifications for elliptic K3 surfaces — compactifications where the degenerate ob-
jects are K3 surfaces with controlled singularities — and understand how they compare
to the Satake—Baily—Borel compactification.

By the Torelli theorem, the moduli space of polarized K3 surfaces is a 19-dimensional
locally symmetric variety. Similarly, it is well known that the moduli space of elliptic
K3 surfaces with a section, which we denote by W with coarse space W, is an 18-
dimensional locally symmetric variety, corresponding to U—polarized K3 surfaces; see
Dolgachev [14] and Nikulin [38]. Recall that a generic elliptic K3 surface f: X — P!
with section S has 24 I, singular fibers. Let F 4 = >_ a; F; denote the sum of these
24 fibers weighted by a; € Q N[0, 1]**. We consider the closure of the locus of pairs
(f: X = C,S + Fj) inside the KSBA moduli space. For the moment we assume all
a; = a, so that we can quotient by S,4. Denote the closure of the resulting locus by
W (a), and let 0 < € < 1.

Theorem 1.1 (Theorems 6.13, 6.15 and 6.14, and Figure 1) The proper Deligne—
Mumford stacks Wy (a) fora € QN[0, 1] give modular compactifications of V. There is
an explicit classification of the broken elliptic K3 surfaces parametrized by W (€), and
an explicit morphism from the coarse space Wy (€) to W*, the SBB compactification
of W. Furthermore, the surfaces parametrized by Wy (€) satisfy H' (X, Ox) = 0 and
wy = Oy.
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Compact moduli of elliptic K3 surfaces 1893

Theorem 1.1 shows that the boundary of W, (¢) parametrizes K3 surfaces with slc
singularities. Although W, (¢) compactifies a moduli space of pairs, it gives a natural
compactification of the space of elliptic K3s as the singular fibers are an intrinsic choice
of divisor. Moreover, without choosing a divisor, the moduli space is a nonseparated
Artin stack. In Section 7, we present an alternative explicit description of the surfaces
parametrized on the boundary of the moduli space more akin to Kulikov models. In
particular, we show that we can decompose the boundary of W, (a) into combinatorially
described parameter spaces.

As mentioned above, viewing the moduli space of elliptic K3 surfaces as a locally
symmetric variety, one naturally obtains the SBB compactification W*. While a priori
the SBB compactification does not have a modular meaning, it turns out that in the
case of elliptic K3 surfaces, this compactification can be identified with the GIT
compactification of Weierstrass models of Miranda WY (see Section 2.6 and Odaka and
Oshima [39, Theorem 7.9]), which provides some geometric meaning. In particular,
in the theorem above as well as the remainder of this section, all of our spaces admit
morphisms to WO,

One benefit of the SBB compactification is that all of the parametrized surfaces are
irreducible. The next theorem discusses a modular compactification coming from
the KSBA approach, where the boundary parametrizes irreducible surfaces. Indeed,
consider pairs (f: X — P!, S +€F) for 0 < € < 1, ie only one singular fiber carries a
nonzero weight, and this weight is very small. We denote the closure of this locus by K.

Theorem 1.2 (Theorems 8.1 and 8.2, and Figure 1) The compact moduli space K
parametrizes irreducible semi-log canonical Weierstrass elliptic K3 surfaces satisfying
H'(X,0x) = 0 and wxy = Ox. Moreover, there is an explicit generically finite
morphism from the coarse space K¢ to W*.

In light of the above theorem, it is natural to ask how the compactifications W, (€) and
Ke are related. In previous work (see Ascher and Bejleri [8]) we showed the existence
of wall-crossing morphisms on moduli spaces of elliptic surfaces. In particular, our
previous work implies that (up to a 24-to-1 base change corresponding to choosing a
singular fiber) the universal families of Wy (€) and K¢ are related by an explicit series
of flips and divisorial contractions as the weights of 23 of the marked fibers are reduced
from € to 0. This aspect is crucial to our work (see eg Section 8.1) —these explicit
morphisms allow us to understand how our compactifications are related to each other,
and how they compare to others lacking a modular meaning.
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W(A)
I )
We(a) Ke — Fe

= |
BV W We « WC

Figure 1: This diagram shows the various compactifications we introduce as
well as how they are related; see also Remark 4.10.

Finally, we introduce one more KSBA compactification. While in K¢ we mark one
singular fiber with weight e, it is natural to ask what happens if we mark any fiber,
not necessarily singular, with weight €. We denote this compactification by F. See
Figure 1 for the relations between the spaces we introduce, which are:

Y The normalization of Brunyate’s compactification with small weights on both
section and singular fibers; see Section 1.1.

W(A) The KSBA compactification with A-weighted singular fibers.
Wy (a) The quotient by S4 when A = (a,...,a).
e The KSBA compactification with a single e—marked singular fiber (where
ek D).
Fe The KSBA compactification with any fiber marked by € (where € < 1).
W* The SBB compactification of the period domain moduli space W

WC  Miranda’s GIT compactification of Weierstrass models; see Section 2.6.

W~ The GIT compactification of Weierstrass models with a chosen fiber; see the
discussion after Theorem 1.3.

Theorem 1.3 (Theorem 8.8 and Figure 1) There exists a smooth proper Deligne—
Mumford stack F parametrizing semi-log canonical elliptic K3 surfaces with a single
marked fiber. Its coarse space is isomorphic to an explicit GIT quotient w¢ of Weier-
strass K3 surfaces and a chosen fiber. Furthermore, the surfaces parametrized by Fe
satisfy H'(X, Ox) = 0 and wy =~ Oy.

On the interior, F¢ is a P! bundle over W. In this sense F is similar in spirit to the
KSBA compactification of Laza of degree-two K3 surfaces [34]. The GIT problem
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of Miranda can be modified to parametrize Weierstrass fibrations with a chosen fiber
(see Section 8.3), denoted above by V~VG. It turns out that V~VG is precisely the coarse
moduli space of F.; in particular, the morphism Fe — W realizes Fe as a smooth
Deligne-Mumford stack.

Our approach combines explicit use of the theory of twisted stable maps (see eg Ascher
and Bejleri [7]) with the minimal model program (MMP). The various compactifications
are then related by an explicit series of wall-crossing morphisms. In particular, we wish
to emphasize that the power of our approach lies in understanding the compactifications
for various coefficients and how they are related via wall crossing morphisms. Often
the spaces with very small coefficients are the smallest compactifications which are still
modular, but having access to the spaces for all coefficients is helpful in understanding
the geometry of compactifications obtained via different methods.

1.1 Previous results

Using Kulikov models, Brunyate’s thesis [12] constructs a stable pairs compactification
of the space of elliptic K3 surfaces % which parametrizes pairs (X, €S + §F), where
€ and § are both small. In particular, Brunyate gives a classification of the surfaces
appearing on the boundary, and conjectures that the normalization of B is a toroidal
compactification. Recently Alexeev, Brunyate and Engel [4] confirmed Brunyate’s
conjecture, and showed that this space is isomorphic to a particular toroidal compactifi-
cation using the theory of integral affine geometry and continuing the program started
by Alexeev, Engel and Thompson [5].

One difference between our approach and the work of Brunyate is in our descriptions of
the compactifications at various weights and choice of markings. Instead of using Ku-
likov models, we describe the steps of MMP and the induced wall-crossing morphisms
that relate the stable limits of elliptic K3 surfaces for different weights to highlight
the underlying geometry of the various compactifications. Brunyate’s space % admits
a morphism W, (¢€) — % which identifies W, (¢) with the normalization of %B; see
Proposition 4.4 and Remark 4.7. In particular, the boundary components of % and
Wq (€) are in bijection (see Remark 4.5) and the moduli spaces parametrize essentially
the same surfaces. Indeed there is a sequence of flips relating the universal family of %
and the universal family over W, (€) which induces this morphism.

Finally, we note that in a slightly different direction, Inchiostro constructs a KSBA
compactification of the space of Weierstrass fibrations (of not necessarily K3 surfaces)
with both section and fibers marked by 0 < €,§ < 1 [25],
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1.2 Other lattice polarizations

It is natural to consider fibrations with specified singular fibers. In this case, one obtains
a moduli space which is a locally symmetric variety, corresponding to a M —lattice
polarization, encoding the singular fiber type. Our methods work in that case as well.
Here we quickly discuss an example of this point of view.

Example 1.4 Consider the lattice M =U & D?“. Then M —polarized K3 surfaces
correspond to 417 isotrivial elliptic K3 surfaces. Equivalently, these are Kummer K3
surfaces obtained from abelian surfaces of the form E x E’ with the elliptic fibration
induced by the projection E x E’ — E. Marking the four minimal Weierstrass cusps
by a single weight a gives us a moduli space whose coarse space is two copies of the
j-line, one parametrizing the j—invariant of the fibration, and the other the j-invariant
of the configuration of singular fibers. The stable pairs compactification has coarse
space given by PIxP' =M 0,4 X M 0,4- The universal family consists of 4N isotrivial
Jj—invariant oo fibrations over the locus {oo} x P!, a union X Uy, X of two copies of
the 2I§ rational elliptic surface glued along a smooth fiber over the locus P! x {oo},
and a union X Uy, X of two copies of the 2N isotrivial j—invariant oo fibration glued
along an N fiber over the point (0o, 00).

Structure of the paper

In Section 2 we discuss the background on elliptic K3 surfaces and their moduli (as a
period domain, the Satake—Baily—Borel compactification, and a geometric invariant
theory compactification). In Section 3 we review the results from our previous works
[6; 7; 8; 9] on KSBA compactifications of moduli spaces of elliptic fibrations and
the connection with twisted stable maps. In Section 4 we restrict to the case of
elliptic K3 surfaces and collect the definitions of and preliminary observations on
the compactifications we consider, including a discussion on isotrivial j—invariant co
fibrations of K3 type.

The main body of the paper begins with Section 5, where we discuss the wall-crossings
that occur for the compactification Wy (a) as the coefficient @ is lowered from 1 down
to % + € for 0 < € < 1. In Section 6 we continue the wall-crossing analysis as a
is decreased down to 0 < € <« 1, and we prove Theorem 1.1, which describes the
surfaces appearing on the boundary of the moduli space Wy (€). In Section 7 we
use Theorem 1.1 and twisted stable maps (see Section 3.2) to explicitly describe the
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boundary components of W (¢). Finally, in Section 8 we describe the moduli spaces
with one marked fiber (K and F¢) and prove Theorems 1.2 and 1.3; the latter theorem
is proven by introducing a modified version of Miranda’s GIT compactification; see
Section 8.3.
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2 Elliptic K3 surfaces and their moduli

2.1 Elliptic surfaces

We begin with the basic definitions surrounding elliptic surfaces following [8]; see
also [37].

Definition 2.1 An irreducible elliptic surface with section (f: X — C,S) is an
irreducible surface X together with a surjective proper flat morphism f: X — C to a
smooth curve C and a section S such that

(i) the generic fiber of f is a stable elliptic curve, and

(ii) the generic point of the section is contained in the smooth locus of f.

We call the pair (f: X — C, S) standard if all of S is contained in the smooth locus

of f.

Definition 2.2 A Weierstrass fibration is an elliptic surface obtained from a standard
elliptic surface by contracting all fiber components not meeting the section. We call the
output of this process a Weierstrass model. If starting with a smooth relatively minimal
elliptic surface, we call the result a minimal Weierstrass model.

The geometry of an elliptic surface is largely influenced by the fundamental line
bundle &.

Geometry & Topology, Volume 27 (2023)



1898 Kenneth Ascher and Dori Bejleri

Definition 2.3 The fundamental line bundle of a standard elliptic surface is

(1) L= (fiNs/x) ™",

where N,y denotes the normal bundle of S in X. For an arbitrary elliptic surface we
define & as the line bundle associated to its minimal semiresolution.!

For X a standard elliptic surface, the line bundle ¥ is invariant under taking a semires-
olution or Weierstrass model, is independent of choice of section S, has nonnegative
degree, and determines the canonical bundle of X if X is either relatively minimal or
Weierstrass; see [37, I1I1.1.1].

2.2 Singular fibers

If (f: X — C,S) is a smooth relatively minimal elliptic surface, then f has finitely
many singular fibers, which are each unions of rational curves with possibly nonreduced
components whose dual graphs are ADE Dynkin diagrams. The singular fibers were
classified by Kodaira and Néron (see [11, Section V.7]).

An elliptic surface in Weierstrass form can be described locally by an equation of the
form y2 = x3 + Ax + B, where A and B are functions of the base curve. Furthermore,
the possible singular fiber types can be characterized in terms of vanishing orders of
A and B by Tate’s algorithm; see [43, Table 1]. Moreover, if the smooth relatively
minimal model (f: X — C, S) has a singular fiber with a given Dynkin diagram, the
minimal Weierstrass model will have an ADE singularity of the same type.

2.3 Elliptic K3 surfaces

By the canonical bundle formula and the observation that deg £ = 0 if and only if the
surface is a product, a smooth elliptic surface with section (f: X — C,S) is a K3
surface if and only if C = P! and deg(¥) = 2; see [37, I11.4.6].

Definition 2.4 A standard (possibly singular) elliptic surface is of K3 type if C = P!
and deg(¥) = 2.

For an elliptic surface of K3 type, the Weierstrass model is given by y? = x3 4+ Ax + B,
where A and B are sections of O(8) and O(12), respectively, and the discriminant
9 =443 +27B? is a section of £®12 =~ 0(24).

I'The seminormal version of resolution of singularities; see eg [26, Section 1.13].
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Remark 2.5 The number of singular fibers of a Weierstrass elliptic K3 counted with
multiplicity is 24, and a generic elliptic K3 has exactly 24 nodal (I;) singular fibers.

2.4 Moduli of lattice polarized K3 surfaces

We now discuss lattice polarized K3 surfaces and their moduli; see [21; 15; 16]. An
elliptic K3 with section (f: X — P!, S) is characterized by the fact that NS(X)
contains a lattice U which is spanned by the classes of the fiber f and section S. The
moduli of K3 surfaces with specified NS(X) were studied by Dolgachev [14]; see
also [38]. By the Torelli theorem for polarized K3 surfaces, the moduli space of minimal
Weierstrass elliptic K3 surfaces with at worst ADE singularities is an 18—dimensional
locally symmetric variety W = I'\ D associated to the lattice Ué} ~U?QE g.

2.5 The Satake-Baily—Borel compactification

One can use the techniques of Baily and Borel [10] to obtain a compactification W*
by adding some curves and points. We briefly review this compactification following
[35, Section 3.1]. The boundary components of W* are determined by rational maximal
parabolic subgroups of the identity component of the orthogonal group O(2, 18) of the
lattice Ulé. Every boundary component of W* has the structure of a locally symmetric
variety of lower dimension. We recall the following properties:

(i) The compactification is canonical.

(i) The boundary components have high codimension (as they are points and curves).

(iii) The compactification is minimal: if S is a smooth variety with S a smooth
simple normal crossing compactification, then any locally liftable map S — W
extends to a regular map S — W*.

Theorem 2.6 [21, Section 2.3; 42] The boundary of W* is a union of 0— and 1-
dimensional strata. The O—dimensional strata correspond to K3s of type 11I, and the
1-dimensional strata to degenerate K3s of type II. Moreover, the 1-dimensional strata
are all rational curves, each parametrizing the j—invariant of the elliptic double curves
appearing in the corresponding type II degenerate K 3.

2.6 Geometric invariant theory

Miranda [36] used geometric invariant theory (GIT) to construct a compactification of
the moduli space of Weierstrass fibrations, and completed an explicit classification in
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the case of rational elliptic surfaces. More recently, Odaka and Oshima [39] explicitly
calculated Miranda’s compactification for the case of elliptic K3 surfaces. Moreover,
they showed that the GIT compactification of Miranda, WY, is isomorphic to W*, the
SBB compactification. In particular, using this identification, one is able to give a
geometric meaning to W* by relating the boundary of W* with the GIT polystable
orbits in WC. We review these results now.

Let T, = T'(P!, Op1(n)). The surface X has a Weierstrass equation, and as such X
can be realized as a divisor in a P?~bundle over the base curve. For the Weierstrass
model of an elliptic K3 surface, we think of X as being the closed subscheme of
P(Op1(4) ® Op1(6) ® Op1) defined by the equation y2z = x3 + Axz% 4+ Bz3, where
AeTlyg, BeTl,,and

(i) 4A4(q)® +27B(q)* = 0 precisely at the (finitely many) singular fibers Xy, and
(ii) foreach g € P! we have v4(A4) <3 or vys(B) <35.

We note that any Weierstrass elliptic K3 surface with section and ADE singularities sat-
isfies the above conditions, and conversely, the surface defined as above is a Weierstrass
elliptic K3 surface with section and ADE singularities; see [39, Theorem 7.1].

We write V54 = I's @ I'1; and define the GIT moduli space for Weierstrass elliptic
K3 surfaces by W¢ = V34 // SLa. By the above discussion the open locus WO c W
parametrizes the ADE Weierstrass elliptic K3 surfaces. The following theorem describes
the boundary WY \ WO

Theorem 2.7 [39, Proposition 7.4] The boundary W¢ \ WC consists of

(i) a l-dimensional component WS?; parametrizing isotrivial j—invariant oo slc
surfaces,

(i) a l-dimensional component V_Vg whose open locus Wg , barametrizes normal
surfaces with two type L type cusps.

Furthermore, the intersection of the two components is the infinity point of both P's
parametrizing the unique j—invariant oo slc surface with two L type cusps. This point
is polystable, and the strictly semistable locus is W¢ , ie Wsch is part of the GIT-stable
locus of WO,

It is natural to compare the GIT compactification WY to the SBB compactification W*.
This is the content of [39, Theorem 7.9], where we define Wsch, 0= wa \Wg

slc
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Theorem 2.8 [39, Theorem 7.9] The period map W¢ — W extends to an isomor-
phism W¢ =~ W*, which identifies WG

slc,0
identifies WS

U V_Vg , With the 1-dimensional cusps and
¥ NWY with the 0~dimensional cusp.

3 Moduli of .A-broken elliptic surfaces and wall-crossing

In this section we review and supplement the results from our previous work on
compactifications of the moduli spaces of elliptic surfaces via KSBA stable pairs.

Definition 3.1 A KSBA stable pair (X, D) is a pair consisting of a variety X and a
Weil divisor D such that

(1) (X, D) has semi-log canonical (slc) singularities, and

(i) Ky + D is an ample Q—Cartier divisor.

Stable pairs are the natural higher-dimensional generalization of stable curves, and
their moduli space compactifies the moduli space of log canonical models of pairs of
log general type.

In [8], we defined KSBA compactifications £ 4 of the moduli space of log canonical (Ic)
models (f: X — C, S+ F,) of A-weighted Weierstrass elliptic surface pairs. For each
admissible weight vector .A, we obtained a compactification £ 4, which is representable
by a proper Deligne-Mumford stack of finite type [8, Theorems 1.1 and 1.2]. These
spaces parametrize slc pairs (f: X — C, S + F4), where (f: X — C,S) is an slc
elliptic surface with section, F 4 = > a; F; is a weighted sum of marked fibers with
A= (ai,...,an),and 0 <a; <1, and (X, S + F4) is a stable pair.

Before stating the main result, Theorem 3.6, we must first discuss the different (singular)
fiber types that appear in semi-log canonical models of elliptic fibrations as studied
in [6].

Definition 3.2 Let (g: Y — C, S’ +aF’) be a Weierstrass elliptic surface pair over
the spectrum of a DVR and let (f: X — C, S + F,) be its relative log canonical model.
We say that X has

(i) a twisted fiber if the special fiber f™*(s) is irreducible and (X, S + E) has
(semi-)log canonical singularities where E = f*(s)™9;
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(ii) an intermediate fiber if f*(s) is a nodal union of an arithmetic genus-zero
component A, and a possibly nonreduced arithmetic genus-one component
supported on a curve E such that the section meets A along the smooth locus of
f*(s) and the pair (X, S + 4 + E) has (semi-)log canonical singularities.

Given an elliptic surface f: X — C over the spectrum of a DVR such that X has an
intermediate fiber we obtain the Weierstrass model of X by contracting the compo-
nent E, and we obtain the twisted model by contracting the component 4. As such,
the intermediate fiber can be seen to interpolate between the Weierstrass and twisted
models.

One can consider a Weierstrass elliptic surface (g: Y — C, S’ +a F’) over the spectrum
of a DVR, where either F’ is a Kodaira singular fiber type, or g is isotrivial with constant
Jj—invariant oo with F’ being an Ny, fiber type. Then the relative log canonical model
(f: X - C,S + F,) depends on the value of a. When a = 1 the fiber is in twisted
form, when a = 0 the fiber is in Weierstrass form, and for some 0 < ag < 1 the
fiber enters intermediate form. The values ag were calculated for all fiber types in
[8, Theorem 3.10]:

fiber type | 11 T IV Ny II* III* IV* I
(2) 5 3 2 1 1 1 1

1
do 6 4 3 2 6 4 3 2

We now state the definition of pseudoelliptic surfaces, which appear as components of
surfaces in our moduli spaces, a phenomenon first observed by La Nave [33].

Definition 3.3 A pseudoelliptic pair is a surface pair (Z, F') obtained by contracting
the section of an irreducible elliptic surface pair (f: X — C, S + F’). We call F the
marked pseudofibers of Z. We call (f: X — C, S) the associated elliptic surface to
(Z,F).

The MMP will contract the section of an elliptic surface if it has nonpositive intersection
with the log canonical divisor of the surface. There are two types of pseudoelliptic
surfaces which appear, and we refer the reader to [8, Definitions 4.6 and 4.7] for the
precise definitions.

Definition 3.4 A pseudoelliptic surface of type II is formed by the log canonical
contraction of a section of an elliptic component attached along twisted or stable fibers.

Geometry & Topology, Volume 27 (2023)



Compact moduli of elliptic K3 surfaces 1903

Figure 2: An A-broken elliptic surface. Two types of pseudoelliptic surfaces
(see Definitions 3.4 and 3.5) are circled: type II (left) and type I (right).

Definition 3.5 A pseudoelliptic surface of fype I appears in pseudoelliptic trees,
attached by gluing an irreducible pseudofiber Gy on the root component to an arithmetic
genus-one component E of an intermediate (pseudo)fiber of an elliptic or pseudoelliptic
component.

Figure 2 has a tree of pseudoelliptic surfaces of type I circled on the right, with a
pseudoelliptic of type II circled on the left.

Theorem 3.6 [8, Theorem 1.6] The boundary of the proper moduli space &, 4
parametrizes A-broken stable elliptic surfaces, which are pairs (f: X — C,S + F4)
consisting of a stable pair (X, S + F4) with a map to a nodal curve C such that X
consists of

¢ an slc union of elliptic surfaces with section S and marked fibers, as well as

e chains of pseudoelliptic surfaces of types I and II (see Definition 3.3) contracted
by f with marked pseudofibers.

Contracting the section of a component to form a pseudoelliptic component corre-
sponds to stabilizing the base curve as an .4-stable curve in the sense of Hassett; see
[6, Corollaries 6.7 and 6.8]. In particular:

Theorem 3.7 [8, Theorem 1.4] There are forgetful morphisms £, 4 — M g, A

Remark 3.8 For an irreducible component with base curve P! and deg £ > 0, con-
tracting the section of an elliptic component may not be the final step in the MMP —
we may need to contract the entire pseudoelliptic component to a curve or a point; see
[6, Proposition 7.4].
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3.0.1 Wall and chamber structure We are now ready to discuss how the moduli
spaces & 4 change as we vary .A. There are three types of walls in our wall and chamber
decomposition.

Definition 3.9 (I) A wall of rype Wi is a wall arising from the log canonical
transformations, ie the walls where the fibers of the relative log canonical model
transition between fiber types.

(II) A wall of type Wy is a wall at which the morphism induced by the log canonical
transformation contracts the section of some components.

(III) A wall of type Wy is a wall at which the morphism induced by the log
canonical transformation contracts an entire rational pseudoelliptic component;
see Remark 3.8.

Remark 3.10 (i) The walls of type Wy are precisely the walls of Hassett’s wall
and chamber decomposition [23]; see discussion preceding Theorem 3.7.

(i) There are finitely many walls; see [8, Theorem 6.3].

Theorem 3.11 [8, Theorem 1.5] Let A, B€ Q" be weight vectors with 0 < A<B <1.
Then:

(i) If A and B are in the same chamber, then the moduli spaces and universal
families are isomorphic.

(ii) If A < B then there are reduction morphisms &, g — &£y, 4 on moduli spaces
which are compatible with the reduction morphisms on the Hassett spaces.

(iii)) The universal families are related by a sequence of explicit divisorial contrac-
tions and flips. More precisely, across W1 and Wy walls there is a divisorial
contraction of the universal family, and across a Wy wall the universal family
undergoes a log flip.

Remark 3.12 For more on Theorem 3.11(iii), we refer the reader to [8, Section 8].
La Nave (see [33, Section 4.3 and Theorem 7.1.2]) noticed that the contraction of the
section of a component is a log flipping contraction inside the total space of a one-
parameter degeneration. In particular, the type I pseudoelliptic surfaces are thus attached
along the reduced component of an intermediate (pseudo)fiber; see [8, Figure 13].
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3.1 Strictly (semi-)log canonical Weierstrass models

In order to understand the stable pair degenerations of log canonical models of Weier-
strass elliptic surfaces, we need to understand strictly log canonical and semi-log
canonical Weierstrass fibrations. We collect some results in this direction here, begin-
ning with the definition of a rype L singular fiber.

Definition 3.13 [33, Section 3.3] Let f: X — C be a Weierstrass fibration with
smooth generic fiber and Weierstrass data (A4, B). If 12 =min(3vy(A4), 2v4(B)), where
vq denotes the order of vanishing at a point ¢ € P !, we say that f has a type L fiber at q.

Lemma 3.14 If F isatypeL cusp of X, then X has strictly log canonical singularities
in a neighborhood of F and the log canonical threshold lct(X, 0, F) equals 0.

Proof After performing a weighted blowup p: Y — X at the cuspidal point of F,
we get an exceptional divisor E (a possibly nodal elliptic curve) and strict transform
A := ;! (F) (arational curve meeting E transversely). Writing u*Ky = Ky +aE,
it follows from the projection formula that Ky.E 4+ aE? = 0. On the other hand,
Ky.E + E? = K = 0 by the adjunction formula and E? # 0, since it is exceptional.
Therefore a = 1, so X has a strictly log canonical singularity at the cuspidal point of
F, and the discrepancy of (X, € F) for any € > 0 will be strictly greater than 1. a

Remark 3.15 The type L cusp decreases the self intersection S2 by 1, and thus
increases deg & by 1; see [33, Remark 5.3.8].

We now discuss some facts on nonnormal Weierstrass fibrations with generic fiber
a nodal elliptic curve. These appear as semi-log canonical degenerations of normal
elliptic surfaces and as isotrivial j—invariant oo components of broken elliptic surfaces.

We first recall the definition of the fiber types Ny of these fibrations; see [6, Section 5]
and [33, Lemma 3.2.2].

Definition 3.16 Fibers of type N; have Weierstrass equation y2 = x2(x — k).
Lemma 3.17 [33, Lemma 3.2.2] Fibers of type Ny, are slc if and only if k € {0, 1, 2}.

Remark 3.18 (i) The general fiber of an isotrivial j—invariant oo fibration is
type Np.

(i) N is the j—invariant oo version of the L cusp; see Remark 3.19.
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Remark 3.19 The N, fiber behaves analogously to the type L fiber. Indeed by the
proof of [6, Lemma 5.1], on the normalization (X, D) of a surface X with an N,
fiber, the double locus D consists of a nodal curve with node lying over the cuspidal
point of the N fiber, and XV is smooth in a neighborhood of this point. In particular,
(X7, D) has log canonical singularities in a neighborhood of the nodal point of D
and let(XV, D, A) = 0 for any curve A4 passing through this point. Therefore by the
definition of semi-log canonical, X has strictly semi-log canonical singularities in a
neighborhood of the N, fiber F and slct(X, 0, F) = 0.

The local equation given above for a type Ny, fiber is not a standard Weierstrass equation.
One can check that the standard equation of an Ny, fiber is given by

2 _ .3 1.2k 2 3k
(3) y =X —gl‘ X+ﬁt .

Proposition 3.20 If (f: X — C,S) is an isotrivial j—invariant oo slc Weierstrass
fibration with ay, type Ny fibers, then —S? = deg(¥) = Dk ak%k.

Proof Let A and B the Weierstrass data of (f: X — C, S). If ¢ € C lies under an
N, fiber, then A vanishes to order 2k and B to order 3k at ¢. Then A and B have
degree > 2kay and ) 3kay, respectively. The result follows since the degrees of A
and B are 4deg & and 6 deg &, respectively. |

Note that for k even the Ny fiber has trivial monodromy, and for k& odd it has u,
monodromy. This determines the twisted models of these fibers.

Corollary 3.21 Let F be an Ny fiber. Then the twisted model of F is an N
(respectively twisted Ny) fiber if k is even (respectively odd).

Proof By the local analysis of [7, Section 6.2], in the even case the twisted model
must be stable since there is no base change required, and the odd case there is a ;
base change so the twisted model is a nodal cubic curve modulo the p, action, ie a
twisted N, fiber. O

Thus, given an Ny, fiber, we can cut it out and glue in an Ng , fiber since the families
are isomorphic to Ny (respectively N) families over a punctured neighborhood. We
can ask how this surgery affects —S? = deg &.

Corollary 3.22 Let (f: X — C, S) be an isotrivial j—invariant co Weierstrass fibra-
tion and let (f: X’ — C, S’) be the result of replacing an Ny, fiber by an Ny, fiber.
Then —(S")> = —S? + 1.
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3.2 Elliptic fibrations via twisted stable maps

In [7] we used the theory of twisted stable maps, originally developed by Abramovich
and Vistoli [1; 2], to understand limits of families of elliptic fibrations. The basic
idea is that an elliptic surface f: X — C gives an a priori rational map C --> /Wl,l
which extends to a morphism C --> M 1,1 from an orbifold curve C with coarse moduli
space C. Now we understand limits of a family of elliptic surfaces by computing limits
of the corresponding family of such maps. The twisted stable limits serve the same
purpose for elliptic fibrations that Kulikov models serve for K3 surfaces, ie they form
the starting point from which applying the MMP yields the stable limit.

3.2.1 Twisted stable maps limits We now recall structure of the limiting surfaces
obtained using the twisted stable maps construction. As we will be studying slc degen-
erations of surfaces, the surfaces themselves will degenerate into possibly reducible
surfaces. The degenerate surfaces will carry a fibration over a nodal curve whose j—map
is the limit of the j—map of the degenerating family. Furthermore, there is a balancing
condition on the stabilizers of the orbicurve C over nodes, which implies the action on
the tangent spaces of the two branches at a node must be dual; see [1, Definition 3.2.4]
and [40]. Finally, the stabilizers of a twisted stable map are concentrated either over
nodes or at marked gerbes contained in the smooth locus. In particular, the limit of a
map from a smooth schematic curve C can only have stabilizers over the nodes.

These observations motivate the following necessary conditions for a twisted surface
to appear as a limit of a family of degenerating elliptic surfaces. We consider the case
where the degenerating family of elliptic surfaces has 12d1; marked singular fibers
where d = deg &, as this is the generic situation and the relevant one for the present
paper. This corresponds to the moduli map C — M ; extending to a morphism on all
of C such that the j—map C — M 1,1 = P! has degree 12d, and is unramified over co.

Proposition 3.23 Suppose (f: X — C, S + F) is a twisted elliptic surface [7] over a
rational curve which is the limit of a degenerating family of smooth elliptic surfaces
with 12d1, and arbitrary marked fibers. Then:

(i) If X is reducible, its irreducible components are either attached along nodal
fibers, or in the pairs of twisted fibers Iy, /Ty /Ny, II/II*, III/TIT* or IV /IV*,

(ii) The total degree of the j—map C — My 1 is 12d.

(ili) Away from the singular locus of C, the fibers of f are at worst nodal. In
particular, every marked fiberin F = ;_, F; is an I, fiber for some a > 0.
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The surfaces of Proposition 3.23 correspond to genus-zero balanced twisted stable
maps to M 1 of degree 12d which are parametrized by the space Ko ,(M1,1, 12d)(0).
Here 0 is the tuple of n zeroes, denoting the fact that the marked points have trivial
stabilizer.

Theorem 3.24 [9, Theorem 5.5] Each point

[(f:C—> My, pro....pn)] € Kou(My 1,12d)(0)

admits a smoothing to a map from a nonsingular n—pointed schematic rational curve.

Corollary 3.25 A twisted elliptic surface admits a smoothing to a generic 12d1,
elliptic surface it and only if it satisfies the conditions of Proposition 3.23.

3.2.2 Relative twisted stable maps One of the primary moduli spaces of interest
from the perspective of stable pairs is the closure of the locus where the marked fibers
are exactly the 12d1; fibers. These fibers lie above the preimages of co € M ;
under the j—invariant map C — M 1, and thus we are concerned with the closure
Koo C IC0,24(./\_/1 1,1, 24) of the locus parametrizing maps from a smooth rational curve
which are unramified over co and such that all marked fibers map to co. Equivalently,
this locus is the space of maps relative to the divisor [oco] with multiplicities (1,...,1).
The closure of such loci has been studied in the Gromov—Witten literature under the
name of relative stable maps; see eg [13; 17; 45]. In [9], we considered the question
of determining the points of this locus for twisted stable maps to stacky curves. The
conditions characterizing this locus [9, Conditions ()] can be phrased in the context
of elliptic fibrations:

Proposition 3.26 Suppose (f: X — C, S + F) is a twisted elliptic surface over a
rational curve which is the limit of a degenerating family of 12d1; elliptic surfaces
with marked singular fibers. Then the following hold in addition to the conditions of
Proposition 3.23:

(i) F consists of 12d nodal singular fibers.

(ii) Every fiber with j = oo which is not on an isotrivial component is marked.

(iii) For each maximal connected tree T of isotrivial j = co components X, the
number of marked fibers contained on T is equal to the sum of the multiplicities
of the twisted fibers of the nonisotrivial components along which T is attached.
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Remark 3.27 The last condition says that if an isotrivial j—invariant co component is
attached to an I, fiber, there must be » markings on that component, since an I, fiber
is produced when n marked I; fibers collide.

Theorem 3.28 [9, Theorems 1.7 and 1.8] The conditions of Proposition 3.26 charac-
terize the boundary of K. In particular, any twisted surface satisfying these conditions
is the limit of a family of smooth 12d1; elliptically fibered surface with marked singular
fibers.

Remark 3.29 After determining the shape of a twisted stable maps limit, we will use
wall-crossing to compute the limits as one reduces weights.

4 Moduli of weighted stable elliptic K3 surfaces

In this section we specialize the discussion of Section 3 to the case of elliptic K3
surfaces and define the various compactifications of the stack W of elliptic K3 surfaces
and its coarse space W which we need. The goal is to obtain an explicit description of
the compactifications for various choices of weights 4. In particular, we will explicitly
describe the surfaces parametrized by the boundary of £4 in this case, as well as
understand the wall-crossing morphisms.

From now on we assume that g(C) =0 and deg £ =2 so that C = P! and £ = Op1(2),
and (f: X — C,S) is an elliptic K3 surface with section.

Definition 4.1 Let W(A) be the closure in £ 4 of the locus of pairs (f: X — C, S+ F4)
where X is an elliptic K3 surface and Supp(F 4) consists of 24 I; singular fibers.

Definition 4.2 If A= (a,...,a) is the constant weight vector, then S,4 acts on W(A)
by permuting the marked fibers, and we denote the quotient by W (a).

Proposition 4.3 W(A) and W, (a) are proper Deligne-Mumford stacks. Moreover,
the coarse space W o (a) of Wy (a) is a modular compactifications of W for each
0<a<l.

Proof The fact that they are proper Deligne—Mumford stacks follows from [§8]. By
construction, Wy (a) has an open set parametrizing elliptic K3s with 241, fibers. Recall
that W parametrizes lattice polarized K3 surfaces, and such a lattice polarization is
equivalent to the structure of an elliptic fibration with chosen section. The result follows
by the observation that a generic elliptically fibered K3 surface has 241, fibers. |
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Brunyate constructs a compactification % of the space of elliptic K3 surfaces by studying
degenerations of pairs (X, €15 + Fi) where B = (¢, ..., €), ie with small weights
on both the section and the fibers (in particular, Brunyate requires €; < €), so that
Supp(Fp) is the closure of the rational curves on X [12]; see also [4, Section 7]. In fact
there is a morphism B” — W, (€), given by increasing the weight on the section to 1.

Proposition 4.4 There is a morphism B* — Wy (€) fore < 1.

Proof Consider a 1-parameter degeneration of pairs (X, €S + Fg) inside %. We may
generically choose smooth fibers G = | J;; G; to mark so that the pair (X, S+ Fz+G)
is stable, where the section has coefficient 1. By the results of [8], there is a sequence
of flips and contractions as one reduces the coefficients of G from 1 to 0. The resulting
stable limit in W, (¢€) only depends on the point (Xo, €Sy + (Fz)o) in % and not on
the family or choice of auxiliary markings. Therefore we obtain the desired morphism
by [18, Theorem 7.3]. O

Remark 4.5 Comparing Theorem 6.13 with [12, Theorem 9.1.4] (see also [4, Sec-
tion 7]), we see that there is a bijection between the boundary strata of % and
Wy (€) = W(B)/S»4. For example, the third case in [12, Theorem 9.1.4] maps to
case (E) of Theorem 6.13 if there are no Iy components, and to either case (D) or (F)
depending on the parity of the number of components if there are [Fy components.

Corollary 4.6 The morphism from Proposition 4.4 is an isomorphism.
Proof It is a proper birational set-theoretic bijection between normal spaces. |

Remark 4.7 It follows from Corollary 4.6 that there is in fact a morphism Wy (¢) — %
which can be thought of as induced by decreasing weights on the section.

Definition 4.8 Let C. denote stable pairs compactification of the space parametrizing
pairs with only one singular fiber marked with weight 0 < € < 1, and let K¢ be its
coarse moduli space.

Next we define the moduli space F,, which is like K¢, only we allow any fiber to be
marked.

Definition 4.9 Let F¢ be the closure in £ 4 of the locus of pairs (f: X — C, S +¢€F),
where f has precisely 24 1; fibers, 0 < € < 1, and F is any fiber.
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Remark 4.10 At this point we have introduced many compactifications (see Figure 1
and the list on page 1894):
W(A) The stable pair compactification with A-weighted singular fibers.
Wy (a) The quotient by Sy4 when A = (a,...,a).
Ke The stable pairs compactification with a single e-marked singular fiber.
Fe The stable pairs compactification with any fiber marked by e.
W* The SBB compactification of the period domain moduli space W

We now give a brief overview of how they are related (again, see Figure 1).

(i) There are 24 generically finite morphisms W(A) — K. of degree 23!, corre-
sponding to forgetting all but one marked singular fiber.

(ii) There is a degree 24 generically finite rational map K¢ --> W (€), corresponding
to choosing a singular fiber.

(iii)) There are morphisms W, () > W* and K. — W*; see Theorems 6.15 and 8.2,
respectively.

(iv) We will see in Section 8.3 that the moduli space Fe is a smooth Deligne-Mumford
stack whose coarse space is an (explicit) GIT quotient. Furthermore, there is a
morphism Fe — W* (see Theorem 8.8) which is generically a P! bundle.

We end this section with an important proposition.

Proposition 4.11 For any surface X parametrized by W(A) (for any A) or Fe (in
particular K.), we have H! (X, Oy) = 0.

Proof Since slc singularities are Du Bois [26, Corollary 6.32; 29], X has Du Bois
singularities. Then H! (X, Ox) = 0 since H' (X}, Oy, ) is constant in any flat family of
varieties with Du Bois singularities [29, Corollary 1.2], and any X arises as the special
fiber of a flat family whose general fiber is a surface X with H! (X, Ox,)=0. O

Remark 4.12 We will see in Theorem 8.1 that the surfaces on the boundary of F (and
thus also /C¢) satisfy wy = Oy . Moreover, if F is the marked fiber, then 2 F is an ample
Cartier divisor such that (2F)? = 2. Then following [5, Definition 3.4, Proposition 3.8,
and Theorem 3.11], we see that F and /C are proper Deligne-Mumford stacks repre-
senting a functor over arbitrary base schemes. Due to subtleties with defining moduli
spaces in higher dimensions, the remaining spaces follow the formalism developed
in [8] and thus correspond to Deligne—-Mumford stacks representing functors only over
normal base schemes; see [8, Section 2.2.2] for more details.
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4.1 Isotrivial j—invariant oo fibrations

Here we prove some preliminary results on isotrivial j—invariant oo elliptic fibrations
of K3 type which appear in the boundary of the various moduli spaces described above.
We begin by bounding the number of N; fibers (see Definition 3.16) which can appear
on an slc elliptic K3.

Proposition4.13 Let (f: X — P!, S) be an isotrivial j = oo slc Weierstrass fibration
of K3 type. Then X has one of the following configurations of cuspidal fibers:
(1) 4Ny,
(i1) 2NN, or
(iii) 2Nj.
Proof We must have only No, N1 and N, by the slc assumption, so, by Proposition 3.20,

2= %al + a,, which only admits the nonnegative integer solutions (4, 0), (2, 1) and
(0,2) for (ay,ay). a

Remark 4.14 Up to automorphisms of P!, the global Weierstrass equation for the
surfaces in Proposition 4.13 can be written as follows:

G y?=x? —%tzsz(t—s)z(z—)\s)zx+%t3s3 (t—5)3(t—Ls)3 for A e P1\{0, 1, 0o}.
(i) y*=x3— %tzsz(t —s5)*x + 2—27t3s3(t —5)°.
(iii) y2 =x3— %t4s4x + 2—27t6s6.
In particular, up to isomorphism there are unique surfaces with configurations (ii)
and (iii).
Finally, we need the following key proposition.

Proposition 4.15 Suppose (fo: X — P!, S) is an isotrivial j = oo slc Weierstrass
fibration of K3 type and F C X is an Ny, fiber. If fy is the central fiber of a 1-parameter
family of Weierstrass models ( f : %X — 6, ¥) — B with generic fiber ( f: %, — Cy, )
a 241, elliptic fibration, then there are at least k + 1 type 1, fibers of f; that limit to
the Ny, fiber F fork =1,2,3,4.

Proof Consider the twisted stable maps limit of f;. By Proposition 3.23(i), the
Weierstrass Ny fiber F must be replaced by a surface component Y attached along
the twisted model of F by a twisted fiber of type I* (resp. I) if k is odd (resp. even).
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By Proposition 4.13, the possibilities for X are 4N, 2NN, and 2N,, as well as
the non-slc cases N1N3 and Ny. Since the degree of the j—map is constant for a
family of twisted stable maps, the sum of degrees of the j—map of the components
of the twisted model is 24. This means that Y is rational when k£ = 1,2 and K3
when k = 3,4. The number of I fibers of f, limiting to the N fiber F of f is the
same as the number of I; fibers limiting to the component Y in the twisted model.
By Proposition 3.23(ii)—(iii), the component Y cannot be isotrivial and deg(¥) > 1.
By Persson’s classification [41], a rational elliptic surface Y with an I* fiber has at
least 21; fibers, and one with an I,, fiber has at least three other I; fibers counted with
multiplicity. Similarly, by [44, Theorems 1.1 and 1.2], an elliptic K3 surface with an
I* fiber has at least 41; fibers, and one with an I,, fiber has at least five other I; fibers
counted with multiplicity. a

5 Wall crossings inside W, (a) for a > %

Recall that W, (@) denotes the space where all singular fibers are marked with weight
a and we have taken the S,4 quotient. The main goal of this section is to describe
the surfaces parametrized by W, (% + e) for 0 < € <« 1. In particular, we explicitly
describe the wall crossings that happen as we vary the weight vector from a = 1 to
a= 11—2 + €.

By Corollary 5.6 we see that surfaces parametrized by Wy (a) have at most two
elliptically fibered components, but possibly with trees of pseudoelliptic surfaces
attached to them. In Proposition 5.15 we classify the possible surfaces parametrized by
Wy (a) with a single normal elliptically fibered component. In Theorem 5.16 we classify
the possible surfaces parametrized by W (a) with a single nonnormal elliptically fibered
component. In Theorem 5.19, we classify the possible surfaces parametrized by Wy (a)
with two elliptically fibered components. Finally, in Propositions 5.18 and 5.20, we
show that surfaces of each type appearing in the aforementioned results do exist on the
boundary of Wy (a).

Lemma 5.1 There are type Wy walls where type 1 pseudoelliptic surfaces form at
a=1/k fork=1,...,11.

Proof Recall that type I pseudoelliptic surfaces form when a component of the
underlying weighted curve is contracted — this occurs when ka = 1. Finally, note that
24a > 2 for each of these values of k, so the moduli space is nontrivial. |
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Lemma 5.2 There are type Wy walls at a = %, % and 12—2 where rational pseudo-
elliptic surfaces attached along intermediate type 11, Il and 1V fibers, respectively,
contract to a point.

Proof This follows from [8, Theorem 6.3] as well as the observation that a rational
elliptic surface attached to a type II, III or IV fiber must have a IT*, IIT* or IV* fiber,
respectively, and so it has 2, 3 or 4 other marked fibers counted with multiplicity. O

Since these walls are all above %, we obtain:

Corollary 5.3 Any type I1, 111 or IV fiber on a surface parametrized by W (ﬁ + e)
is a Weierstrass fiber. In particular, there are no pseudoelliptic trees sprouting off of it.

In a similar vein we have the following two lemmas:

Lemma 5.4 There are type Wy walls at a = %, %, % and %, where:

() Rational pseudoelliptic surfaces attached along intermediate type N fibers con-
tract onto a point.

(ii) Isotrivial j—invariant oo surfaces with deg ¥ = 1 attached along intermediate
type N fibers contract onto a point.

Proof A rational elliptic surface attached along an N; fiber must have an I,t fiber in
the double locus. Since an I,t has discriminant 6 + k, there are 6 — k markings counted
with multiplicity on the rational pseudoelliptic. By the classification in [41], there
exist rational elliptic surfaces with I;' for 0 < k < 4. Since the log canonical threshold
of an intermediate Ny fiber is %, the surfaces with an N; / IZ double locus contract at
1/(2(6—k)). These give walls above % for 1 <k <4. Similarly, isotrivial j—invariant
oo surfaces with an N fiber and deg & = 1 must be attached along another N fiber
and so contract at 1/(2k), where they support k fibers. m|

Next we consider the base curve at 11—2 +€:

Lemma 5.5 Let A= (a,...,a) fora = % + €. Then curves C parametrized by
Mo, are either

(i) asmooth P! with 24 marked points, with at most 11 markings coinciding, or

(ii) the union of two rational curves, each with 12 marked points and at most 11
markings coinciding.
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Proof If C is a smooth P!, since the total weight for any marking is at most 1, we
see that at most 11 points can coincide. If C is the union of two rational curves, since
each point is weighted by % + € and since each curve needs total weight greater than 2
(including the node), each curve must have (exactly) 12 points, and again at most 11
can coincide. Finally, suppose C is the union of three components C = U?:l C; with
C1 and Cj3 the end components. Since the C component needs at least one marking to
be stable, at least one of C; and C; will not have enough marked points to be stable. O

Corollary 5.6 Let (f: X — C, S+ F,) be a surface pair parametrized by W (% +€).
Then f: X — C has at most two elliptically fibered components.

Remark 5.7 X can have many type I pseudoelliptic components mapping by f onto
marked points of C.

Definition 5.8 If (f: X — C, S + F,) is a surface pair parametrized by W (% + e),
the main component of X, denoted by X,,, is the union of all elliptically fibered
components of f: X — C.

Remark 5.9 By Corollary 5.6, for all surfaces pairs parametrized by V_Vg(% + e),
either X}, and C are irreducible or X;;, = X7 U X, and C = C; U C,, where X; and
C; are irreducible and f'|x, : X; — C; is an elliptic fibration.

5.1 Explicit classification of surfaces inside W, (75 + ¢)

We conclude that every surface parametrized by 1/_\/0(% + e) consists of a main
component (see Definition 5.8) possibly with trees of pseudoelliptics sprouting off. In
order to do understand the possible main components X, parametrized by W, (% + e),
we will use the following construction of a Weierstrass model for X,.

5.1.1 Construction of a family of Weierstrass models Let
(fo: Xo = Co, So + (Fa)o)

be an elliptic surface pair parametrized by W (75 + €), which by Corollary 5.6 has at
most two elliptic components. Consider a 1-parameter family (f: X —€,S+%F,) > T
with generic fiber (f: X — Cy, Sy + (Fa)y), a 241, elliptic K3 surface, and special
fiber Xo. Let 9, be a generic smooth fiber of the elliptic fibration f: % — % such that
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the closure % is a generic smooth fiber of fy: Xo — Cy. In particular, Gy = %¢ avoids
any pseudoelliptic trees of Xj.

Let Y, denote the irreducible component of Xy on which Gy lies. The component ¥
is necessarily elliptically fibered, and so either Yy = X, is the main component or
Xm = Yo Up, Y1 glued along a twisted fiber Hy. To classify the possible elliptically
fibered components of X, we will take the relative log canonical model of the pair
(¥, 4+ 9) — T using the main results of [8].

First, if X7, = Yy U Yy, there is a type Wy crossing causing a flip of the section of Y;
such that Y; becomes a type I pseudoelliptic. Then in either case we have a new family
where Y is the unique elliptically fibered component with trees of type I pseudoelliptic
surfaces sprouting off of it. We make the following assumption, and revisit it when we
see it holds in Lemmas 5.13 and 5.14:

Assumption 5.10 Suppose every type I pseudoelliptic tree attached to Yy is attached
along the intermediate model of a log canonical Weierstrass cusp.

There exists a sequence of type Wy extremal contractions followed by a type Wiy
relative log canonical morphism of the family that contract the trees of type I pseudo-
elliptic components to a point, resulting in a Weierstrass model Y’ of Y. Denote the
resulting family of surfaces by &' — T'.

Since type Wy contractions preserve the generic fiber of the family & — 7', we must
only check type Wy contractions of the section S. By [25, Proposition 5.9], we may
blow up the point to which the section has contracted to preserve the generic fiber of the
family, and so we have that 96;7 = %¥. The resulting family of fibrations (¥’ — €6) — T
is a family of slc Weierstrass models over P! with deg(¥) = 2, generic fiber a 241,
elliptic K3, and special fiber Y'. By Remark 3.15, we can conclude that Y’ is one of
the following Weierstrass limits:

(1) a minimal Weierstrass elliptic K3 surface (deg & = 2),
(i1) a rational elliptic surface with a single type L cusp, or

(iii) an isotrivial elliptic surface with two type L cusps and all other fibers stable.

By considering the discriminant of ¥ — % as a flat family of divisors on %, we have
the following key observation:
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Remark 5.11 Suppose Y’ — Cj is normal. The number of I; fibers of the generic
fibration X; — C,, that collide onto a singular fiber F of Y’ — Cj is the multiplicity
of F in the discriminant of the Weierstrass model Y/ — Cj.

We can use this observation to constrain the possible components of the twisted stable
maps limit of (f: &, — 6,, Fy, + F). In this limit, the singular fibers (f: X, — €;)
cannot collide since they are marked with coefficient one. Let Y” be the unique
component of a twisted model that maps birationally to the component Y in the above
family of Weierstrass models. Then each connected component of the complement of
Y” is a tree of twisted surfaces that gets collapsed onto a fiber of Y by the sequence
of flips and contractions that produce the Weierstrass model above. In particular the
number of marked fibers on each tree of elliptic components sprouting off a fiber of
Y is exactly the multiplicity of the discriminant of the resulting singular fiber on the
Weierstrass model Y.

Remark 5.12 The type L cusps are the Weierstrass model of an intermediate fiber
of type I, for m > 0. Such fibers are not contracted until they have coefficient O,
and so any pseudoelliptic tree glued along a type I, fiber will remain when lowering
coefficients to any € > 0.

Finally we revisit Assumption 5.10. We first need the following characterization of
intermediate models of non-log canonical Weierstrass cusps:

Lemma 5.13 Suppose X = Xy Ug X is a smoothable broken elliptic surface that
is the union of broken elliptic surfaces X; — C;, where C; == P! and each X; has a
unique main component. Let X' be the result of the type I pseudoelliptic flip of the
section of Xy, so that the strict transform X is attached to X| by an intermediate fiber
AUG. Then AU G is the intermediate fiber of an slc cusp if and only if —Sg <1,
where S is the section of Xo — Cj.

Proof The question is local around a neighborhood of the flip. Therefore, we may
assume that Xy and X are irreducible, so that there are no pseudoelliptic trees sprouting
off either of them. On the component X| we have the divisor S; +a4 + G. Note that
G has coefficient 1 since it is in the double locus, and the coefficient a is given by
the sum of coefficients of marked fibers on X|. Then the Weierstrass model of AU G
inside X 1/ has log canonical singularities if and only if G contracts onto the Weierstrass
model in the log canonical model of the pair (X7, S 4+ G), ie when all the coefficients
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on X are 0. Since the pair is smoothable, this occurs if and only if X contracts to a
point in the log canonical model of X', where all the coefficients on X are set to 0.
Since G is marked with coefficient 1 on X, this occurs if only if X is a minimal
rational elliptic surface by [6, Proposition 7.4], which holds if and only if —Sg <1
(where the strictly less than 1 case happens if G is a twisted fiber rather than a stable
fiber of Xj). O

Lemma 5.14 Let X be a surface parametrized by W, (11—2 + e) and suppose Y C X,
is a normal main component. Then Assumption 5.10 is satisfied for every pseudoelliptic
tree attached to Y . Moreover, the fibers these pseudoelliptic trees are attached to are
minimal intermediate fibers.

Proof Let X' — C’ denote the twisted stable maps model of X — C, and let X, and
Y’ denote the strict transform of X, and Y in X’. Let Z be a pseudoelliptic glued to
an intermediate fiber F of Y, and let Z’ be the components of X’ that map to Z. By
Remark 5.11, the number of markings on Z is equal to the contribution of F to the
discriminant of the Weierstrass model of Y. Since X}, is the main component, there
are less than 12 markings on Z, and so the order of vanishing of the discriminant of
F in Y is less than 12. It follows that the order of vanishing of the Weierstrass data
in a neighborhood of this fiber satisfies min{3v(a), 2v(b)} < 12, so these are minimal
Kodaira types by the standard classification. O

5.1.2 X, isirreducible We first deal with the case where the main component X3,
of a surface parametrized by Wo (75 + €) is irreducible.

Proposition 5.15 Let X be a surface parametrized by W, (11—2 + e) such that the main
component X, is irreducible and normal. Then X3, is a minimal elliptic K3 surface
with trees of pseudoelliptic surfaces of type I attached along intermediate models of
L, I1*, III* and IV* fibers.

Proof By Lemma 5.14, Assumption 5.10 is satisfied. Following Section 5.1.1, we
saw that there are three possibilities for the Weierstrass stable replacement of the
main component X,, of a surface in W, (1—12 + €). In case (i) we have a minimal
Weierstrass elliptic K3 surface. Then since all fibers are minimal Weierstrass fibers,
any pseudoelliptic surface has to be attached by the intermediate model of a minimal

Weierstrass fiber. These are exactly the intermediate models of type I;‘;, 1L, 100, IV, I1*,
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IT* and IV*, since type I, Weierstrass fibers do not have intermediate models. By
Corollary 5.3, pseudoelliptics sprouting off of II, III and IV fibers have contracted onto
the Weierstrass model. We now rule out cases (ii) and (iii) of Section 5.1.1.

In case (ii), the Weierstrass model of the main component is a rational elliptic surface
with exactly one type L cusp. In this case, there must be a type I pseudoelliptic tree Z
in X attached to X}, along an intermediate model of an L cusp, and by Remark 5.11,
there are 12 marked pseudofibers on Z. Let X; — C; be a twisted stable maps model
that maps to X in Wy ({5 +€). We may write X; = Y U, Z;, where

(i) Z; is a broken elliptic fibration that dominates the pseudoelliptic tree Z,
(ii) Y; is a broken elliptic fibration that dominates X \ Z,
(iii) the component of Y; supporting the fiber Y; N Z| = I, is birational to X}, and

(iv) the Y1 N Z{ =1, fiber becomes the intermediate fiber on X3, after Z; undergoes
a type II transformation into the pseudoelliptic tree Z.

Then 12 of the marked fibers of X7 — C; must lie on Z; and the other 12 on Y;.
In particular there is a node of Cj, such that if we separate C; along that node we
obtain two trees of rational curves each with 12 marked points. However, this means
the stable replacement of C; inside the Hassett space /\70, 4, for A= (a,...,a) with
a= 11—2 + €, is a nodal union of two components, contradicting that X has only one
main component.

In case (iii), the Weierstrass model of X, is a trivial surface with exactly two type L
cusps and all other fibers stable. There must be type I pseudoelliptic trees attached
along each of these L cusp fibers in X}, and no other pseudoelliptic trees attached
to X7, as every other fiber of its Weierstrass model is stable. As in the previous analysis,
let X1 — (1 be a twisted stable maps surface whose image in ]/_Vg(% + 6) is X, and
let X’ be the component of X that dominates X,,. Then X" is attached to exactly
two other components of X, so by stability it must have at least one marked point
on it. Since X; — Cj is the twisted stable maps model, all the marked fibers have
Jj—invariant oo, and so since X" is isotrivial, it must be nonnormal, a contradiction. O

Next we consider the irreducible, but nonnormal main component case:

Theorem 5.16 Let X be a surface parametrized by W (11—2 + e) with an irreducible
nonnormal main component X,,. Then one of the following holds:

(a) Xy, is an isotrivial j = oo fibration with 4N; minimal Weierstrass fibers.
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(b) Xy, is an isotrivial j = oo fibration with 2N; minimal Weierstrass fibers, as well
as an intermediate N, fiber which must have a tree of pseudoelliptic surfaces
attached to it along a type 1,, pseudofiber.

(¢) X is an isotrivial j = oo fibration with 2N, intermediate fibers, each of which
has a tree of pseudoelliptic surfaces attached to it by an 1 fiber.

(d) Xy, is an isotrivial j = oo fibration with a minimal Weierstrass N fiber, as well
as an intermediate N5 fiber which has a tree of pseudoelliptic surfaces attached
to it by an I} fiber.

(e) Xy is an isotrivial j = oo fibration with a single intermediate N4 fiber which
has a tree of pseudoelliptic surfaces attached to it by an 1, fiber.

Moreover, if we denote by [ the number of marked Ng fibers on X,,, then

(a) (b) (©) (d (e)
4=/=16 3=<I/=<17 2=/=18 8=/=<18 13=/=19

Proof Suppose that Assumption 5.10 is satisfied. By Section 5.1.1, the Weierstrass
model of the main component must be an slc isotrivial j = co Weierstrass fibration
with deg & = 2, which are classified by Proposition 4.13. The Ict of a type N, fiber
is 0, so these do not contract to Weierstrass models, and any attached pseudoelliptic
trees do not contract for nonzero weight.

In case (c), the stability condition on the twisted stable maps limit implies that there
must be at least one marked N fiber to give that rational component of the base curve
at least three special points.

The types of pseudofibers that are attached to intermediate N; and N, fibers must
have j—invariant oo, so they are either type I, or I}, respectively. The twisted model
of an N fiber is a nonreduced rational curve, and so must have a stabilizer at the
corresponding point of the twisted stable map. Therefore, it must be attached to an I
fiber, which also has a nontrivial stabilizer at the corresponding point of the twisted
stable map. Similarly, the twisted model of an N, fiber is a nodal curve so it has no
stabilizer, and therefore must be attached to an I, fiber.

If Assumption 5.10 is not satisfied, then by Lemma 5.13 we must have a K3 component
Y attached to X, along a fiber F such that Y is not the main component. This only
happens if Y has less than 12 singular fibers counted with multiplicity away from the
fiber along which Y is attached to Xj,. In that case F is a fiber of ¥ with discriminant
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at least 13, so F is either an I, fiber for n > 13 or an I} for n > 7. Consider a generic
family of 241, surfaces degenerating to this surface as in Section 5.1.1.

In the first case, we have that n type I fibers collide to sprout out a trivial component
with n markings, which becomes the main component when Y flips into a pseudoelliptic.
Since X}, has only Ny fibers away from where Y is attached and the degree of & must
be 2, the attaching fiber is N4 by Proposition 3.20. This gives us (e). In the second
case, let us denote by Y’ and X, ,’n the strict transforms of Y and X, in the twisted
stable maps replacement of the limit of the family. Then Y’ and X, are glued along
twisted Iy /N fibers since the order of the stabilizer is 2. Then the base curve of the
X,, component must have at least one more point with a stabilizer since any finite
cover of P! is ramified in at least two points. On the other hand, the stabilizer of any
Jj—invariant co—curve is p, so these other points have to have stabilizers of order 2.
Now when the component Y’ flips into the pseudoelliptic surface Y, the twisted fiber
on X,, to which it is attached must flip into a non-semi-log canonical intermediate
fiber since Assumption 5.10 fails. Thus it must be an Ny, fiber for £ > 3. The other
twisted fibers on X, must flip into intermediate models of Ny, fibers for k£ > 1 since
the Ny fiber has no stabilizers. Since the degree of & for the main component X7, must
be 2, by Proposition 3.20, the fiber along which Y is attached must be N3, and the only
other nonstable fiber is a single N;. This gives us case (d).

To obtain the number of markings, we may apply Proposition 4.15 to see that each Ny
fiber is marked with multiplicity at least k 4+ 1. This gives an upper bound on 7. For
the lower bound, we look at the largest number of marked I; fibers that can appear on
a component attached to the Ny fiber. For an N fiber this is five markings on a 5I; I}
rational, for N this is 11 markings on a 12I; (attached along one of the I; fibers), for
Nj this is 11 markings on an 1115 elliptic K3, and for Ny this is 11 markings on a
1214155 elliptic K3. Here we have used that X3, is the main component so all the other
components must have undergone pseudoelliptic flips at a wall above 11—2 + €. Finally,
each N fiber is Weierstrass since there are at most five markings on the component
attached to it, and so by Lemma 5.4, these components contract to a point at a Wy
wall above % +e€. m|

Remark 5.17 Each of the main components in Theorem 5.16 that have only interme-
diate models of semi-log canonical cusps (cases (a), (b) and (c)) are j = oo limits of
normal isotrivial elliptic surfaces. The 4N surfaces are limits of 417 isotrivial fibrations.
Indeed, the locus in the moduli space of such surfaces is birational to P I« P!, where the
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first coordinate parametrizes the j—invariant of the fibration and the second coordinate
parametrizes the configuration of the 413 (or 4N1) singular fibers. Similarly the 2NN,
surface is the limit of the isotrivial 2IfL, surface and there is a rational curve of these
in the moduli space. Finally the 2N, surface is the limit of isotrivial 2L. Weierstrass
fibrations, but this family of 2L surfaces does not actually appear on this component of
the moduli space as we describe below.

Note that in each of these cases, when the surface is isotrivial with j # oo, all the
markings must be concentrated on the special fibers. Indeed by Remark 5.11, there
must be six markings concentrated at an Ij fiber and 12 concentrated at a type L fiber.
Therefore the isotrivial j = oo surface pairs that are limits of Weierstrass models as
in the above paragraph must have six markings concentrated at each N fiber and 12
markings concentrated at each N, fiber. In particular, they cannot have any marked
Ny fibers. Therefore, not all surface pairs with isotrivial j = co main components are
in the limit of the above locus of normal Weierstrass fibrations. In particular, since
the type 2N, fibrations must have at least one marked Ny fiber by stability for twisted
stable maps, we see that the 2L family limiting to 2N, does not appear.

Finally we address the question of existence of each of the limits described above.

Proposition 5.18 Each of the cases described by Proposition 5.15 and Theorem 5.16
occurs in 1/_\/0(% +¢€).

Proof We may take the Weierstrass model of the described main component. In
each case it has a Weierstrass equation with A and B of degree § and 12, respectively.
Since the space of Weierstrass equations is irreducible, there exists a family of 241,
elliptic K3 surfaces with this Weierstrass limit. By taking the stable replacement in
W (% + e) we must obtain stable limits as described. O

5.1.3 X,, is reducible Now we classify the broken elliptic surfaces in W (11—2 + e)
where X}, is the union of two irreducible surfaces.

Theorem 5.19 Let X be a surface parametrized by W (11—2 + e) with reducible main
component X, = Yo U Y;. Then one of the following holds:

(i) The Y; are rational elliptic surfaces glued along an 1y fiber. They are minimal
Weierstrass surfaces away from possible intermediate type 1I*, III* and IV*
fibers along which type I pseudoelliptic trees are attached.
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(i1) Yy is an elliptic K3 surface, Y is a trivial j—invariant oo surface, and they are
glued along 11, /Ny fibers. There are 12 marked Ny fibers on Y1, and Y has
minimal Weierstrass fibers or minimal intermediate type IT*, III* or IV* fibers
where type 1 pseudoelliptic trees are attached.

(iii) Yy is an elliptic K3 with an Iz fiber, Y; is a 2N isotrivial j—invariant oo surface,
and they are glued along twisted If /Ny fibers. Away from the I fiber, Yo has
minimal Weierstrass fibers or minimal intermediate type IT*, III* and TV* fibers
where type 1 pseudoelliptic trees are attached. There are 7 < [ < 10 marked Ny
fibers on Y.

(iv) TheY; are isotrivial j—invariant oo surfaces glued along Ny fibers. Each surface
has a single intermediate N, fiber with a type 1 pseudoelliptic tree attached.
There are 1 < [; <9 marked N fibers on Y;.

(v) TheY; are isotrivial j—invariant oo surfaces glued along Ny fibers. Each surface
has two minimal Weierstrass N fibers. There are 2 < [; < 8 marked N, fibers
onY;.

(vi) The Y; are isotrivial j—invariant oo surfaces glued along Ny fibers. Yy has two
minimal Weierstrass N1 fibers and Y, has one intermediate N, fiber with a type
I pseudoelliptic tree attached. There are 2 < |y < 8 marked N fibers on Yy and
1 </; <9 marked Ny fibers on Y.

Proof We will proceed by taking the Weierstrass limit of the main component and
using the classification in Section 5.1.1 to determine what can be attached as the other
main component.

First suppose that Assumption 5.10 does not hold for the fiber along which the Y; are
glued, so that after performing a pseudoelliptic flip of Yy, the fiber on Y7 is not the
intermediate model of a semi-log canonical Weierstrass cusp. Then as in the proof of
Theorem 5.16, Y is a K3 component and Y7 is an isotrivial j—invariant co surface.
Furthermore, they are either glued along twisted I,/Ng or I’ /Ny fibers. Since they
are the two main components, they must each have 12 markings, so we conclude that
n = 12 in the first case and n» = 6 in the second case. Furthermore, as in the proof of
Theorem 5.16, in the I} /N case Y7 must have another N; fiber. This gives us cases
(i1) and (iii), respectively.

From now on we can suppose that Assumption 5.10 holds. Let us fix some notation.
Denote the Weierstrass limit of the Y; by Yio, which must be one of the surfaces listed
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Figure 3: The circled component Z; represents the union of Y; along with
the pseudoelliptic trees emanating from Y;. The entire Z; component domi-
nates Y;, and the ¥, component contains the pseudoelliptics.

in Section 5.1.1 if it is normal, or Proposition 4.13 if it is isotrivial j—invariant co.
We will denote by X! — C! a twisted stable maps model of the surface X — C in
Weo (% + e) and we will denote by Yl.1 the unique component of X! dominating Y;.
Let Z l-l C X! be the maximal connected union of connected components of X! that
contains Yil. Finally we will denote by G the fiber along which Y, and Y7 are glued,
and by G; its model in the Weierstrass limit, which is obtained by flipping one of the
Y; and contracting the transform on G on the other; see Figure 3.

Now, since Yy and Y7 satisfy Assumption 5.10 for the fiber along which they are glued,
by Lemma 5.13 we must have 0 < —Si2 <1, where S; is the section of Y;. Note that
Sg # 0, otherwise Y would be trivial and so the degree of the j—map on Z( would be 0
and the degree of the j—map on Z; would be 24, which would put us in situation (ii).

Suppose that Yy is normal. Then, by Section 5.1.1, Yy is a rational elliptic surface and
Gy is a type L cusp. Since the twisted model of a type L cusp is a stable curve, G is
an I, fiber. On the other hand, there must be 12 markings on Y, away from G, and
son = 0 and G is in fact a smooth fiber. Since G is smooth, Y; cannot be isotrivial
Jj—invariant co so it is normal, and the same analysis applies to Y;. Thus we obtain (i).

Next, if Yy is not normal, then as above Y; is also nonnormal. Now the Y; satisfy
Assumption 5.10 for the fiber G. We claim that they must also satisfy it for any
pseudoelliptic trees away from G. Indeed suppose that ¥y has an intermediate fiber
F not satisfying Assumption 5.10. Then by Lemma 5.13, there must be an elliptic K3
attached to it. Every fiber of Y; is N for k£ < 2, and we get cases (iv), (v) and (vi) by
considering the various possible Ny fibers on a surface with —S? < 1.
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Since N, fibers have 0 Ict, they must be intermediate with pseudoelliptic trees attached,
while pseudoelliptic trees attached to an N; fiber undergo type Wy contractions at
walls above % + € by Lemma 5.4 so Ny fibers are minimal Weierstrass. Finally, the
number of markings is constrained by Proposition 4.15, stability, and the fact that there
are two main components so there must be 12 total markings on each. O

Proposition 5.20 Each of the cases described in Theorem 5.19 occurs in the boundary
of Wy (% +€).

Proof Case (i) is the stable replacement in W, (11—2 + e) of a Kulikov degeneration of
type II. Case (ii) occurs when 12I; fibers collide to give an Iy, fiber. Similarly, case
(iii) occurs when 121, fibers collide to form an Iz fiber. Case (iv) occurs when one
starts with a degeneration of type (i) and takes the limit as the I; fibers approach the
double locus G. Since marked I; fibers from both Y, and Y; must fall into G as the
j—invariant of G must match on both sides, two isotrivial components appear such
that each rational surface is attached to one of them along an Ny fiber which leads to
N, fibers when the rational surfaces undergo a flip. Similarly, case (v) occurs when
you start with a surface of type (i) and degenerate the two rational components into
2N; isotrivial j—invariant oo surfaces. Finally, for case (vi), take a degeneration as in
case (i) and then further degenerate Y so that it is an isotrivial 213 surface. Then the
stable replacement of the limit as the j—invariant of the 2If surface approaches oo is
case (vi). O

6 Surfaces in W, (¢), the 24-marked space at a = ¢

In the previous section, we studied the wall crossings that occur in Wy (a) as we let the
weight vary from 1 to 11—2 + €, and we used this to classify the surfaces parametrized
by the boundary of Wy (a) for a = % + €. The goal of this section is to explicitly
study the wall crossings that occur as we reduce the weight further, from a = % +e€
toa =€ for 0 < e < 1. As aresult, we determine the surfaces parametrized by the
boundary of W, (€). The main results in this direction are Theorems 6.13 and 6.14. In
Theorem 6.13 we describe the possible surfaces on the boundary, and in Theorem 6.14
we use the theory of twisted stable maps (see Section 3.2) to show that all such surfaces
appear on the boundary. Finally, in Theorem 6.15, we describe a morphism from the
coarse space of Wy (€) to the GIT quotient WE . These three theorems together give a
proof of Theorem 1.1.
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We begin with the wall at %:

Lemma 6.1 At a = %,

components attached by an I fiber.

there are type Il contractions of rational pseudoelliptic

Proof An Ig must be attached along another I; by the stabilizer condition. Furthermore,
an If rational surface has six other markings with multiplicity. Putting this together
with the description of the walls, we get a wall at 1/(2k) = % since % is the lct of T*';
see (2) in Section 3. O

Lemma 6.2 Ata= % the trivial component Y7 in case (ii) of Theorem 5.19 contracts
onto the 1, fiber it is attached to.

Proof The component of the base curve lying under Y; contracts to a point, but since
Y; is trivial, it contracts onto a fiber. O

Lemma 6.3 Let X be a surface parametrized by W (% + e) from Theorem 5.19(iii).
Then the stable replacement for coefficients 11—2 — € is an irreducible pseudoelliptic K3
surface with an I} fiber.

Proof X has main component X,, = Yy U Y; consisting of an elliptic K3 with a
twisted I fiber glued to an isotrivial j—invariant oo surface along a twisted N fiber.
Each surface has 12 markings. At coefficient % — €, both section components are
contracted by an extremal contraction. We first perform the extremal contraction of
the section of Y7 which results in a flip of Y; to a pseudoelliptic surface. Then the
section of Y contracts to form a pseudoelliptic with the pseudoelliptic model of Y;
glued along an I} pseudofiber. Finally, Y} contracts onto a point as in Lemma 6.1. O

Putting the above together with the observation that the Hassett space becomes a point

at ll so the base curves all contract to a point, we get:

Theorem 6.4 Let X be a surface parametrized by W (% — e).

(i) If X has a single main component, then X, is the pseudoelliptic surface asso-
ciated to an elliptic surface, as in Proposition 5.15 and Theorem 5.16, with an
A singularity where the section contracted. Any type 11, 111, IV, N and Ilt for
k <5 pseudofibers of X, are Weierstrass and any 1, fibers satisfy n < 12. There
are pseudoelliptic trees sprouting off of intermediate type IT*, III*, IV* and Ny,
for k > 2 fibers as before.
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Figure 4: Illustration of Example 6.6.

(i) If X has two main components, then Xy, is a union along a twisted pseudofiber
of the surfaces appearing in Theorem 5.19, parts (i), (iv), (v) and (vi). Any typell,
III, IV, Ny and I}’(‘ for k <5 pseudofibers are Weierstrass. There are pseudoelliptic
trees sprouting off of intermediate IT*, IIT*, IV* and N, fibers as before.

Lemma 6.5 There are type Il walls at a = %, % and ﬁ where rational pseudoelliptic
surfaces attached along intermediate type I1*, III* and IV* fibers, respectively, contract
to a point.

Proof This follows from [8, Theorem 6.3] as well as the observation that a rational
elliptic surface attached to a type II*, III* or IV* fiber must have a II, III or IV fiber,
respectively, and so it has 10, 9 or 8 other marked fibers counted with multiplicity. O

Next we study some examples of the transformations that occur for small coefficients.

Example 6.6 (Figure 4) Suppose X, is a smooth elliptic K3 surface with 24 (I;)
fibers, and suppose it appears as the general fiber of a family (f: ¥ — B, ¥+ %,) with
limit as in Theorem 5.16, case (d). In particular, this is a stable limit for @ = 11—2 + €
and F consisting of the 24I; fibers on the generic surface X. We will compute the
stable limit of this family for a < % We will denote by X the a—stable special fiber
of ¥ - B.
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We begin with the twisted stable maps limit X' — C. It consists of a union Y} U Y
where YO1 is an elliptic K3 and Yl1 is a trivial j—invariant oo surface with » marked
fibers glued along an I, fiber of YO1 where n > 12. At a = 1/(24 — n), the component
Yo1 undergoes a pseudoelliptic flip to obtain the model in Theorem 5.16(d), ie Y is
a pseudoelliptic K3 glued along an intermediate Ny fiber A* U G of Y. Next, for
a=< %, the section of Y{* contracts onto an A singularity so that X consists of a
pseudoelliptic isotrivial j—invariant co surface with an intermediate N4 pseudofiber and
a pseudoelliptic K3 sprouting off it. To continue the MMP on this 1—parameter family
and compute the stable limit for smaller a, we need to compute (Kga + F4). A% and

(Kga +%“).G*. We can restrict the log canonical divisor to the component Y{* to obtain
Kya+G + (24 —n)aA® +naf,

where [ is a pseudofiber class. Pulling back to the blowup of the section ft: Ylb - Yy
where b = % + e,

M*(Kylcl +G+Q4—n)aA® +naf®) = Kylh +Gb + (24—n)ad® +naft + 12aS{’.

Here S {’ is the section which is a (—2)—curve and fb is a fiber class. Now A? is
the curve obtained by flipping the section Sy of YOI. Using the local structure of
the flip (see eg [33, Section 7.1]), we compute that (4%)2 = —%, Ab.Ggb = % and
(Gb )2 = —%. Similarly, using push—pull for the contraction p: Ylb — Yl1 onto the
twisted model of Yll, we get that K y) = —2/% 4245, Putting all these together and
using push—pull for p,

(Kya+G+(24—n)adA*+naf).A* = (KY1b+Gb+(24—n)aAb+na 1P +12a8%).4°

=1,, 1
= sna—y,

(Kye+G+Q24-n)ad®+naf).B* = (Kyy +GP+(24-n)ad’ +nafb+12a8?).G°
= 1+(4-n)1a.

In particular, for @ < 1/n, there is an extremal contraction of the curve class of 44 in 4.

On the other hand, since (4%)% = —% and p is the contraction of a (—2)—curve which

intersects A? transversely, we have (4%)? = 0, so this curve class rules Ylb over G®
and the extremal contraction for @ < 1/n contracts X onto Y, the pseudoelliptic K3.

Remark 6.7 In the above example, n < 19, by eg [44].

Example 6.8 (Figure 5) Suppose X3 as above is a smooth elliptic K3 surface with
24 (I,) fibers, which appears as the general fiber of a family (f: ¥ — B, ¥ + %,) with
limit as in Theorem 5.16(e). We compute the stable limit for small a as above and we
keep the same notation.
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Figure 5: Illustration of Example 6.8.

The twisted stable maps limit X! — C'! consists of a union ¥ UY,! where Y is an
elliptic K3 and Yl1 is a 2Ny isotrivial j—invariant co surface. They are glued along
twisted I} /N; fibers with n > 6. Ata = 1/(18 —n), the component YO1 undergoes a
pseudoelliptic flip to obtain the model in Theorem 5.16, case (e), ie Y is a pseudoelliptic
K3 with a twisted I; pseudofiber glued along an intermediate N3 fiber A% U G* of Y.
As above, the section of Y| contracts onto an A singularity for a < 11—2 so that X'¢
consists of a pseudoelliptic isotrivial j—invariant co surface with an intermediate N3
pseudofiber and a pseudoelliptic K3 sprouting off it. The N pseudofiber of Y{* may
have a pseudoelliptic tree sprouting off of it, but it exhibits a type Wy contraction onto
the Weierstrass model of the N fiber by Lemma 5.4.

Restricting the log canonical divisor to the component Y#, we obtain
Kys+G+(18 —n)aA® + (6 +n)af

where [ is a pseudofiber class. Pulling back to the blowup of the section 1 : Ylb - Yy
where b = 11—2 + €,

M*(KYla +G + (18 —n)aA* + (6 + n)af?)
= KYIb +Gb+ (18—n)aAb + (6+n)afb + 12aS{’.
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As above, A is the curve obtained by flipping the section S of YO1 which is a rational
curve with self intersection —% since YO1 has a twisted I} fiber. Thus we can compute
that (4%)2 = —%, Ab.gb = % and (G%)2 = —%. Using push—pull for the contraction
Jo¥ Ylb — Yl1 onto the model of Yl1 with a twisted N fiber for the double locus and a
Weierstrass Ny fiber for the other Ny, we get that K yp == / by b, Putting all these

together and using push—pull for u,

(Kya + G + (18 —n)ad® + (6 + n)af).A*
= (Kyp + G? + (18 —n)aA® + (6 + n)af® + 12aS}).4°

=2gn-1
= zan— 3,

(KYIH +G + (18 —n)aA® 4+ (6 + n)af).B*
= (Kyp + G? + (18 —n)ad® + (6 + n)af® +12a8?).G*
= % +(18—n)-%a.
For a < 1/(2n), there is an extremal contraction of the curve class of A% in ¥¢. On
the other hand, since (4%)% = —% and p is the contraction of a (—2)—curve which
intersects A4° transversely, we have (4%)? = —% so this curve class is rigid and
therefore undergoes a flip. After the flip, the strict transform Y{* for @ < 1/(2n) is now
a pseudoelliptic attached along an intermediate pseudofiber of Yf'. By Lemma 5.13, the

flipped pseudoelliptic contracts and goes through a type Wy pseudoelliptic flip for some
small ¢ = € > 0, giving the stable limit as the minimal Weierstrass pseudoelliptic of Y.

Remark 6.9 By eg [44], the maximum # such that there exists an elliptic K3 with an
I is 14 and so the above phenomena occur for 6 <n < 14.

Combining the above examples gives:

Proposition 6.10 (i) There are type Il walls at 1/k for 13 < k < 19 where the
isotrivial j—invariant co main component of the surfaces from Theorem 5.16,
case (d), contract as a ruled surface onto the 1,, fiber of the pseudoelliptic K3
sprouting off of it.

(ii) There are type I1l walls at 1/(2n) for 6 <n < 14, where the isotrivial j—invariant
oo main component as in Theorem 5.16, case (e), goes through a flip to become a
pseudoelliptic attached to an intermediate model of the I}, on the K3 component.
At some smaller a = € > 0, this pseudoelliptic contracts onto the Weierstrass
model of the I'' fiber.
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Corollary 6.11 The stable replacements in W (€) of the two main component surfaces
of We (15 + €) from Theorem 5.19(d)~(e) are pseudoelliptic K3s with Weierstrass 1,
and I} fibers, respectively.

Proposition 6.12 If X is a surface parametrized by W (€) then wy = Oy.

Proof If X is irreducible then the result is clear, since X is the contraction of the
section, a (—2)—curve, on a K3 type Weierstrass fibration.

Therefore, suppose X consists of multiple components. Let p: ¥ — D be a 1-parameter
family over the spectrum of a DVR with generic fiber a 241; elliptic K3 and central
fiber X'. Now there is a sequence of pseudoelliptic flips producing a model p’: ¥’ — D,
where the sections of X are blown back up so that the components of central fiber X’
of p’ are all elliptically fibered and glued along twisted fibers (for example, these flips
occur as part of the MMP when decreasing the coefficient on the section of the twisted
model, or equivalently, X" is the model parametrized by the Brunyate/Inchiostro moduli
space). Then X' = X Up, X1 Up, ---UF,_, Xn UF, Xyy1, where Xo and X, are
rational elliptic surfaces and X1, ..., X} are trivial j—invariant oo fibrations.

Then KX’|X0 = KX() + Fy, KX/|Xn+1 = KXn+1 + F, and KXle. = KX,- + F_ 1+ F;
fori =1,...,n, which are all 0 by the canonical bundle formula since Xy and X, 41
(resp. X1, ..., Xp) satisfy deg £ =1 (resp. deg £ = 0). Thus Kx- is numerically trivial,
that is, Ky = 0.

We proceed in two steps. First we show that X’ is Gorenstein and then we show that
the pullback

n+1
(4) Pic(X') — EP Pic(X))

i=0
is injective. For the first claim, note that away from the gluing fibers F;, the surface X" is
a minimal Weierstrass fibration. From the classification of surfaces (see Corollary 6.11),
the components X; are glued along I, type fibers, and so in a neighborhood of F; the
surface corresponds to a map from a nonstacky nodal curve into /\71,1. In particular,
in a neighborhood of Fj, the elliptic fibration X’ — C is a flat family of nodal curves
over a nodal curve. In either case, X’ is Gorenstein.

Next, denote by 7: | | X; — X’ the natural morphism. By [22, Proposition 2.6 and
Remark 2.7] there is a diagram of short exact sequences of sheaves of abelian groups
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on X’ o )
1 Oy, | 75 0%, —— N ——0
1 (@) P 7+ O% ./U/ 0
F’ «UF

where F’ is the double locus on X’ and F is the double locus on X;. As an abstract
variety, F is the disjoint union of two copies of F’. By [22, Proposition 4.2], (4) is
injective if and only if y : Pic(F’) — Pic(F) is injective and coker H° (o) = coker H (B).
The map y is simply the diagonal, so it is injective. Moreover, since X’, X; and F; are
all connected projective varieties, applying H° to the above diagram gives

HO
1 k* @ Tk

flJ/ le
H°(B)

l —— 1'[?:0 k* —— 1’[?:0 k* x k*

Here f; and H°(«) are the diagonal maps, H°(B) is the product of diagonal maps
for each i, and f; is given by (xg, ..., Xy+1) = (X0, X1, X1, X2, ..., Xn, Xp+1). The
cokernel of H%(c) can be identified with [T k* by the map

i=1

X1 Xn+1
(xo,...,xn+1)|—> ..., — .
X0 X0

Similarly, the cokernel of H°(8) can be identified with [}_, k* by the map

bo by by
(ao,bo,al,bl,...,an,bn)l—) (—,—,.‘.,— .
do a1 An
Therefore the induced map on cokernels is given by
X2 Xn+1
(X1, Xp41) > (xl——)
X1 Xn

which is an isomorphism. Thus we conclude that (4) is an injection.

This means that X" is Gorenstein and wy- pulls back to the trivial line bundle under (4),
so wy’ = Ox-. It follows that wy//p = Ogr. Now &’ is related to ¥ by a sequence
of log flips. Since these flips always contract K—trivial curves, we conclude from the
cone theorem (see eg [30, Theorem 3.7(4)]) that the canonical line bundle is preserved,
s0 wy = Oy and so wy = Oy. O

Putting all of this together, we have a classification of the boundary components of
Wy (€); see Section 7 for an alternative description.
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Theorem 6.13 The surfaces in W (€) are

(A) an irreducible pseudoelliptic K3 with the section contracted to an A, singularity
and minimal Weierstrass pseudofibers,

(B) an irreducible isotrivial j = oo pseudoelliptic with 4N Weierstrass fibers,

(C) anisotrivial j = oo fibration with 2N| Weierstrass fibers and an N, intermediate
fiber with a tree of pseudoelliptics sprouting off of it,

(D) anisotrivial j = oo fibration with 2N, intermediate fibers each sprouting a tree
of pseudoelliptics,

(E) a union of irreducible pseudoelliptic rational surfaces along an 1 fiber,

(F) a union of isotrivial j = oo pseudoelliptic surfaces with a single intermediate
N, fiber sprouting a pseudoelliptic tree on each, glued along an N, fiber,

(G) aunion of irreducible isotrivial j = oo surfaces each with 2N; Weierstrass fibers
glued along an Ny fiber,

(H) a union of an irreducible isotrivial j = oo surface with 2N{ Weierstrass fibers
and an isotrivial j = oo surface with a single N, fiber sprouting a pseudoelliptic
tree, glued along an Ny fiber.

Furthermore, every surface X satisfies wy = Ox and H'(X, Ox) = 0. Finally, the
number of marked N fibers are as in Theorems 5.16 and 5.19.

Now we show that each surface actually appears on the boundary, using the full
smoothability results of Section 3.2.

Theorem 6.14 Every slc surface pair in Theorem 6.13 appears in the boundary of
We (€).

Proof Given any surface satisfying the conditions of Theorem 6.13, we can construct
a twisted surface whose stable replacement is the surface obtained by flipping the
pseudoelliptic components into elliptically fibered ones as in the previous section,
replacing each cuspidal fiber by a twisted fiber, and attaching a component with dual
monodromy satisfying the conditions of Propositions 3.23 and 3.26 to each of these
twisted fibers. By full smoothability (Theorems 3.24 and 3.28), this twisted model
is the limit of a family of 241 elliptic K3 surfaces with singular fibers marked, and
its stable replacement must be the initial surface as computed in the previous two
sections. |
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We conclude this section by discussing the connection between W (¢) and the GIT
quotient W .

Theorem 6.15 (connection with GIT/SBB) If W, (¢) denotes the coarse space of
W (€) then there is a morphism W (€) — WY =~ W* with the following structure:

(i) The locus of surfaces of type (A) maps isomorphically onto WSG.

(i) The locus of surfaces of type (B) maps as a generic P 12—bundle onto Wgc’ o by
forgetting the marked fibers. The closure of this locus in W (€) parametrizes the
unique surface of type (G) along with a choice of marked fibers, and this locus
all maps onto W§, NW¢.

slc

(iii) The locus of surfaces of type (E) maps onto Wg by taking the j—invariant of the
Iy fiber along which the two components are glued.

(iv) The surfaces of type (C), (D), (F) and (H) all get mapped onto the point

wG A WG

wslc N WL :
Proof By Theorem 6.13, we have a classification of surfaces in W (¢€). Each of the
irreducible surfaces mentioned in the theorem is also parametrized by W*, yielding
a rational map Wy (€) — WO defined on a dense open subset. Now one can easily
check that the limit in W€ of a Weierstrass family limiting to a surface of type (B)
(resp. type (C), (D), (G), (F) or (H)) is the j—invariant of the L (resp. N;) fiber in Wf.
This depends only the central fiber of the family, not the family itself, so the morphism
extends uniquely by normality after applying [18, Theorem 7.3]. |

7 Explicit description of the boundary of W, (¢)

In the previous section, specifically Theorems 6.13 and 6.14, we gave an explicit
description of the surfaces parametrized by the boundary of W, (¢). The goal of this
section is to enumerate the resulting boundary strata of YW, (€) in a combinatorial way,
akin to Kulikov models; see Proposition 7.2 for the analogue of type II degenerations,
and Theorems 7.5, 7.7 and 7.9 for the analogues of the type II] degenerations.

Before starting, we define R, to be the space parametrizing pairs (X, S + F), where
X is a minimal Weierstrass rational elliptic surface, S is a section, and F is a fiber of
type I,. Note that n < 9. The following is well known:
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Lemma 7.1 [24, Section 3.3] R, is a (9—n)—dimensional affine variety which is
irreducible for n # 8, while Rg has two components.

Using these spaces, we will explicitly describe the boundary of Wy (€). To do so, we
use the notation of Kulikov models (models of type II and III).

7.1 Type II degenerations

Proposition 7.2 There are two type II strata:

(i) The first is a dimension-17 stratum Wy isomorphic to a quotient of the fiber
product Rg x; Rg, namely the self fiber product of the j—map j: Ro — Al A
point parametrizes two rational elliptic surfaces with a marked 1 fiber of the
same j—invariant glued along this fiber, and the quotient comes from swapping
the two surfaces; see Theorem 6.13(E).

(ii) The second is a dimension-17 stratum W = Sym!®(P') x A! where A! is the
j—line. The j-line parametrizes the 4N isotrivial j—invariant co component,
and Sym!®(P') parametrizes the m markings on this surface other than the N;
fibers counted with multiplicity; see Theorem 6.13(B).

7.2 Type III degenerations

The first step is to “unflip” the pseudoelliptic components in Theorem 6.13. After, we
can describe each surface as a chain Xy U---U X},41, where both X, and X, are
Weierstrass fibrations of rational type (deg¥ = 1), and X7, ..., X}, are all isomorphic
to trivial j—invariant oo fibrations C x P!, with C being a nodal cubic. These surfaces
are all glued along nodal cubic fibers (ie either I, or Ny fibers). Further, each X; for
i =1,...,n must have at least one marked fiber by stability. We call the surfaces X
and X+ the end components and X1, ..., X, the intermediate components.

Lemma 7.3 An end component must have at least three marked fibers if it is normal,
or at least four marked fibers if it is isotrivial j—invariant oo, counted with multiplicity.

Proof If an end component is an isotrivial j—invariant co surface, then it must be
a 2N, fibration glued along an Ny fiber. Each N; must carry at least two markings
counted with multiplicity so the surface carries at least four. If it is a normal rational
elliptic surface, then the number of markings is given by 12 — n, where the surface is
glued along an I, fiber. Since n < 9 for I, fibers on a rational elliptic surface, then
there are at most three markings on such a component. |
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Corollary 7.4 For the chains Xo U ---U X, 41 in the type 11l locus, n is at most 18.

Proof As there is at least one marking on each of the intermediate components, the
number of components is bounded by the number of markings not on Xy and Xj,4 .
By Lemma 7.3, there are at least six combined on these components so there are at
least 18 markings to be distributed among the intermediate components. |

Now we will describe an explicit parametrization of each of the type III strata. There
are three cases, depending on whether none, one or both of the end components X
and X,y are isotrivial j—invariant co. We call these strata type Illy, III; and III5,
respectively. The type Illj strata are further indexed by the fiber types I, and Iy along
which X and Xj,4 are glued. In this case, there are 12 —r and 12 — s fibers marked
on Xy and X1, respectively, which gives us r + s markings remaining for the middle
components X7, ..., Xy. Thus, n must satisfy 1 <n <r +s.

Finally, for each n, we can fix a single marking on each component X1, ..., X, and fix
coordinates so that the components are glued along fibers at 0 and oo, and the chosen
marking is at 1. That gives us freedom to parametrize r + s — n additional markings
among X1, ..., Xy. For each choice of partition Y 7_; a; = r +s —n we can consider
the stratum where there are ¢; markings on X;.

Theorem 7.5 (type Illy locus) Fix data

n
1<rs<9, 1<n=<r-+s, E a;=r+s—n.
i=1
r,s,n r,s,n
0,ai,...,an 0,ai,...
finite parametrization by Ry x G X ---x Gy' x R,. Here a point of the above product

There is a type 1l stratum 111 of dimension dim(III an) =18 —n with a
determines the surface pairs Xo, X,41 as well as the configuration of a; marked fibers

on X1, ..., X, avoiding the double locus.

Remark 7.6 Just to reiterate, Ry and R, parametrize the surfaces Xy and X, 41,
respectively, and the G/ parametrize the marked fibers on the X; avoiding the double
locus.

Next, we consider type III; strata where exactly one of the end surfaces, without loss of

generality X, is an isotrivial j—invariant oo surface of rational type. Then Xy must be
the 2N surface glued along an N fiber. There are two markings each on the Ny fibers
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for a total of four. Then for each 0 < s < 17, there is a stratum with 17 —s marked N
fibers on Xj; see Theorem 5.16. After picking coordinates so that the N; fibers are
at 0 and 1 and the double locus is at co, these 17 — s markings must avoid co and so
give a factor of A7~ parametrizing X,. The other end component X, is a rational
elliptic surface glued along an I, fiber for some r and with 12 — r marked fibers.

This gives 33 —s — r total markings on Xy and X, +1. On the other hand, there are at
most 24 markings, so 33 —s —r < 24. In the case of equality, there are no intermediate
components and we have a stratum parametrized by A!7=5 x R,. Otherwise, we have
1 <n <s+4r—9 intermediate components with s + r — 9 markings distributed on
them. After fixing one marking on each intermediate component at coordinate 1, there
are r +s —9 —n marked fibers partitioned into Y ;_; @; =r +s—9 —n. This gives a
finite parametrization by A!775 x Gl x --- x G X R, .

Theorem 7.7 (type III; locus) (1) Fix the data
1=r=<9, 0=s=17, s+r=09.
There is a type 111 stratum IIIq’s of dimension dim(IHq’s) = 17 with a finite
parametrization by A17=5 x R, .

(i) Fix the data

n
1<r=<9, 1=<s=<17 1=n=<s+r-9, Zai=r+s—9—n.
i=1

of dimension dim(IH:’,sa’ﬁm, an) =17—n

r,s,n
Lai,...,an
with a finite parametrization by A5 x Gyl x -+ x Gyt X R,

There is a type 111 stratum II1

Remark 7.8 Again, here A8~ parametrizes the 8 —s marked Ny fibers on X, the G/
parametrize the marked Ny fibers on the X;, and R, parametrizes the surface X, 4.

Finally, we have the type Ill, stratum where both Xy and X, are isotrivial j—
invariant oco. In this case, Xy and X}, are described by affine spaces of dimension
17—s and 17 —r, respectively, where there are 17 —s and 17 —r marked Ny fibers on
Xo and X4 in addition to the 2N; which each appear with multiplicity two. This
gives 42 —r — s total marked fibers among the end components, so 42 —r —s < 24, and
we again have two cases: this is an equality and there are no intermediate components,
or this inequality is strict and there are intermediate components with » 4+ s — 18 marked
fibers. Thus, as before:
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Theorem 7.9 (type III, locus) (1) Fix the data
0<s,r<17, s+r=18.

There is a type 111, stratum IIIZ’S of dimension dim(III;’s) = 16 with a finite
parametrization by A1775 x A1775 = A16,

(i1) Fix the data

n
1<s,r <17, 1<n=<s+r—18, Zai:r—i-s—n—l&
i=1

There is a type 111, stratum IIIr > '11 i of dimension dlm(IH; sa': an) =16—n
with a finite parametrization by ATT=5 5 GO s x GO x AV,

Remark 7.10 In the above theorem, the A7~ (resp. A!7~") parametrize the markings
on Xy (resp. Xy+1), and the Gy parametrize the markings on the X;.

8 Spaces with one marked fiber

The goal of this section is to describe the surfaces parametrized by the boundary of the
moduli spaces K¢ (resp. Fe¢), ie the moduli spaces parametrizing one e—marked singular
fiber (resp. any fiber). In Section 8.1 we describe the boundary of the two moduli
spaces; see Theorem 8.1. In Section 8.2 we prove Theorem 8.2, which describes a
morphism from K¢ to WO . Finally, in Section 8.3 we extend Miranda’s GIT construction
to produce a moduli space of Weierstrass surfaces with a choice of marked fiber.
The main result in this direction is Theorem 8.8, which shows that F. is a smooth
Deligne-Mumford stack with coarse space map Fe¢ — WG given by the extended GIT
compactification we discuss in Section 8.3.

8.1 Spaces with one marked fiber

In this section we first consider the moduli space Fe (see Definition 4.9), which
corresponds to marking only one (possibly singular) fiber with € weight. In particular,
we give a description of the surfaces parametrized by the boundary. Note that since Ce
is a slice of Fe, this description also applies to the surfaces parametrized by K.

Theorem 8.1 (characterization of the boundary) The surfaces parametrized by F¢
are single-component pseudoelliptic K3 surfaces whose corresponding elliptic surfaces
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are semi-log canonical Weierstrass elliptic K3s, and the marked fiber F can be any
fiber other than an L type cusp. Moreover, all surfaces parametrized by Fe satisfy
H'(X,Ox) =0 and wy = Oy.

Proof We follow the explicit stable reduction process explained in eg [8, Section 6]. Let
([ —>6S+F)—>T

be a 1-parameter family whose generic fiber (f/: X — Cy, Sy + Fy) is a Weierstrass
elliptic K3 surface with 24 1; fibers, and a single (possibly singular) marked fiber F,.
Denote by ( fo: Xo — Co, So + Fp) the special fiber, and consider the limit obtained
via twisted stable maps; see eg [7]. The limit (fo: Xj — C;. Sy + Fjy) will be a tree
of elliptic fibrations glued along twisted fibers, and the closure of the fiber F' will be
contained in precisely one such surface component. While this surface will be stable as
amap to M1, it will not necessarily be stable as a surface pair. To resolve this, choose
some generic markings G = | J;<; G; to make the above limit stable as a surface pair.
In this case, G will consist of generic smooth fibers.

As we (uniformly) lower the coefficients marking G towards O, there will be some
choice of coefficients such that the weighted stable base curve is an irreducible rational
curve. Indeed, the components of the base curve will contract precisely when there
is not enough weight being supported on the marked fibers. As we only lowered
the coefficients marking G, and the fiber F(’) remained marked with coefficient 1, the
(unique) main component, call it Yy, fibered over the rational curve will contain the
original marked fiber.

Now we have a single main component with marked fiber F, 6 with type I pseudoelliptic
trees attached to it. When the coefficients of G are set to 0, the type I trees will undergo
type Wy contractions to a point to produce the Weierstrass model of Y, away from
the fiber F(’). When the coefficient of F (’) is reduced to 0 < € < 1, it will cross Wy walls
to become a Weierstrass fiber.

We saw in Proposition 4.11 that H! (X, Ox) = 0, so it suffices to show that wy = Oy.
This holds on any Weierstrass elliptic K3 surface (see [37, Proposition III.1.1]), and
since X is obtained from a Weierstrass elliptic K3 by contracting a (—2)—curve (the
section), we have wy = Oy. O

8.2 Stable pairs to GIT/SBB

The goal of this section is to describe the morphism from Wy (¢) to WY (and thus
to W*).
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Theorem 8.2 (connection with GIT/SBB) Let K¢ be the coarse moduli space of Ke
and let A C K¢ be the boundary locus parametrizing surfaces with an L type cusp, with
U = K¢ \ A. There is a morphism K¢ — WY = W* such that the diagram

A < > Ke ¢ > U

A

Pl — WO WO

commutes, where j: A — P! sends a surface with an L cusp to its j—invariant, the
morphism U — WSG is proper and finite of degree 24, and P! — Wg C WY maps
bijectively onto the strictly GIT semistable locus.

Proof By Theorem 8.1 every surface parametrized by K. is a single-component
pseudoelliptic K3 surface. In particular, if we blow up the point to where the section
contracted, we obtain an (unstable) slc Weierstrass elliptic K3 surface. Consider the
PGL,—torsor P = {(X,s,1) | (s.t) € C = P!}/ ~, where X is an slc Weierstrass
elliptic K3 surface obtained by blowing up the section of a surface parametrized by /Ce,
s and ¢ are coordinates on the base C 2 P! (or equivalently a basis for the linear
series | F'| of a fiber F on X), and we quotient by scaling. Note that the Weierstrass
coefficients (A(s, t), B(s,t)) defining X are unique up to the scaling of the G, action
(A4, B) —~ (A\*4,1°B).

Since the semi-log canonical Weierstrass elliptic K3 surfaces are GIT semistable (see
[36, Proposition 5.1]), we obtain a PGL,—equivariant morphism P — V which induces
a morphism ¢: K¢ — WO, |

Remark 8.3 (i) The morphism K. — W is generically a 24-to-1 cover, as it requires
the choice of some marked fiber and generically there are 24 choices. The morphism is
not finite — eg families with one L type cusp of fixed j—invariant are all collapsed to
the same polystable point.

(ii) All the underlying surfaces of pairs parametrized by K¢ are in fact GIT semistable,
even though all pairs with an L type cusp of fixed j—invariant map to the same GIT
polystable point. One might wonder if the locus inside the GIT stack [V, // PGL;]
consisting of those surfaces that appear in /C¢ is an open Deligne—-Mumford substack
with proper coarse moduli space factoring the morphism K — WY Furthermore, it is
natural to compare this to a Kirwan desingularization of W¢. We will pursue these
questions in the future.
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(iii)) In the morphism from stable pairs to GIT, all surfaces with an L type cusp
get collapsed to the polystable orbit corresponding to the KSBA-unstable but GIT
semistable (unique) surface with 2L cusps of the same j—invariant.

(iv) The locus of surfaces with an L type cusp is 9—-dimensional. Indeed, such surfaces
are birational to a rational elliptic surface (which has an 8—dimensional moduli space)
with a choice of a fiber to replace by an L type cusp. There is a P! worth of choices.

8.3 GIT for Weierstrass surfaces with a marked fiber

We extend Miranda’s GIT construction to produce a moduli space of Weierstrass surfaces
with a choice of marked fiber. Such data can be represented by triples (A4, B, /), where
(A, B) € Vyn ® Ven are Weierstrass data as above and / € Vj is a linear form. Then
Gm x Gy x SL, acts naturally on Vany @ Vgny @ Vi, where the first G, acts on
Van @ Ven with weights 4N and 6 N and the second acts on V; with weight one.

To study GIT (semi)stability, we follow Miranda’s strategy. Consider the natural
morphism
fVan @ Ven — S°Van & S* V.,

let Zy be the image of £, and let My C P(S3Viny ® S? V) be its projectivization.
By [36, Propositions 3.1 and 3.2]:

Proposition 8.4 The morphism f xid: Van ® Ven ® Vi — S*Vun @ S*Ven ® V3
is finite and SL,—equivariant with fibers contained in G, X Gy, orbits. In particular,
two triples (A, B, 1) and (A’, B’,’) are in the same G, x G, x SL, orbit if and only
if the corresponding points in 9ty x P(V7) are in the same SL, orbit.

This lets us compute a GIT compactification of the moduli space of minimal Weierstrass
fibrations with a chosen marked fiber as a GIT quotient (9tx x P1) // SL,. We will
linearize the moduli problem using the Segre embedding of P(S3V,n & S2Vsy) xPL.

Proposition 8.5 A triple (A, B, 1) is stable if and only if it is semistable. Further, it is
not stable if and only if there exists a point ¢ € P! with v4(4) > 2N and v4(B) > 3N,
or with vg(A) > 2N, vg(B) = 3N (with at least one equality) and vy (/) = 1.

Proof Let (A, B,Il) € My, let A: G, — SL, be a l-parameter subgroup, and pick
coordinates [Ty, T7] so that A acts by Ty + ATy and Ty +— A~ ¢T}. Then it acts on
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(4, B,1) by 4N 4N
A= Zai T(;Z;lN—l — ZaiAZei—4eNTész—i,

i=0 i=0

6N 4N
B = ZbiTéth_l — Z bi)\zel_6eNTéth_l,

1 =1oT) +1,T° — IgpA™¢Ty + 1116 Ty.
The coordinates of P(S3Vyn @ S2Ven) x P(V}) are given by loaiajag,lob;bm,
lyajajay, and lob;b,, which respectively have weights
2e(i +j+k)—12eN —e, 2e(l +m)—12eN —e,
2e(i+j+k)—12eN +e, 2e(l+m)—12eN +e.
By the Hilbert—-Mumford criterion, a point is not stable (resp. semistable) if and only if

there exists a 1—-parameter subgroup such that all the weights are nonnegative (resp.
positive).

Suppose (A, B, 1) is not (semi)stable and pick a 1-parameter subgroup and coordinates
as above. Then we have, after dividing by e # 0,

2e(i+ j+k)—12eN —e < (2) 0 = lyajajar =0,

2¢e(l +m)—12eN —e < ()0 = lobiby,, =0,

2e(i+ j+k)—12eN +e < (=)0 = lajajar =0,

2e(l +m)—12eN +e < ()0 = I1bjby, = 0.
Note that the left-hand side is always odd and so equality is never achieved. From
this we can conclude that stability coincides with semistability. Now consider the
cases where i = j = k and / = m. We see that loaf =0 fori <2N, lla? = 0 for
i <2N —1, lyb} =0 for !/ <3N and /}b} =0 for/ <3N —1. Let ¢ =[0,1] be
the point given by Ty = 0. If /y # 0, then we must have that ¢; = 0 for i <2N and
by =0 fori <3N. Thus the order of vanishing satisfies v4(A4) > 2N and vy(B) > 3N.

Otherwise, if /o = 0 then /1 # 0 so we must have that ¢; =0 fori <2N —1and b; =0
fori <3N —1. In this case, vy (/) =1, v4(A4) = 2N and vy(B) = 3N.

Conversely, given a triple (A4, B, [) satisfying such order of vanishing conditions, we
may pick coordinates such that ¢ = [0, 1]. Then clearly the 1-parameter subgroup
acting by (Ty, T1) — (AT, A~' T}) demonstrates that (4, B, /) is not stable. |

In the case of K3 surfaces where N = 2, we obtain an especially pleasant result:
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Corollary 8.6 A point of 9, is stable if and only if it represents a 1-marked Weier-
strass fibration (f: X — P!, S 4 € F) with at worst semi-log canonical singularities.

Proof First note that the generic fiber of the fibration f: X — P! represented by a
stable point in 91, is at worst nodal, since the Weierstrass data of a stable point cannot
be identically 0. Then combining Proposition 8.5 with [33, Lemmas 3.2.1 and 3.2.2
and Corollary 3.2.4], and noting that the log canonical threshold of a type L /N, fiber
is 0 (see Lemma 3.14), a point is unstable if and only if there exists a point ¢ € P!
such that the pair (X, S + €F) is not semi-log canonical around the singular point of
/7 1(g). The result then follows since a Weierstrass fibration (X, S + € F) has semi-log
canonical singularities away from the singular points of the fibers. |

Definition 8.7 If 215 denotes the stable/semistable locus, we define we = 9, // SL,.

Theorem 8.8 F. is a smooth Deligne—-Mumford stack with a coarse space map
Fe — WG given by the GIT compactification. Furthermore, there is a morphism
Fe— WO given by forgetting the marked fiber. A Weierstrass fibration (f: X — P!, S)
is represented by a point in WO if and only if there exists a fiber F such that (X, S +€F)
is a stable pair.

Proof By the proof of Theorem 8.2 we obtain a birational morphism F¢ — [9013 /PGLs;].
On the other hand, by Corollary 8.6, there is a family of KSBA-stable one e—marked
Weierstrass fibrations ( /: X — P!, S+¢€F) over 90t3. This induces a PGL; equivariant
map M3 — Fe which gives an inverse map [95 /PGL;] — F¢ exhibiting these as
isomorphisms. Then note that [213 /PGL,] is a smooth stack, as 215 is an open subset
of a smooth variety, so F¢ is smooth.

The composition F¢ — [0t} /PGLy] — 9M, // SL; is the coarse moduli space map.
Indeed, [0} /SL,] and [90] /PGL;] have the same coarse moduli space; note that
[903/SLy] — [9N5/PGLy] is a pp—gerbe since it is the base change of the map
BSL; — BPGL,, so [ /SL,] — [ /PGL,] is a relative coarse space and the
coarse map [I5/SLy| — IS // SL, factors through it.

If (4, B,1) is in 9] then (4, B) is a semistable point for Miranda’s space, and con-
versely if (4, B) is semistable in Miranda’s space, then for a generic choice of fiber F,
the corresponding fibration (X — P!, S + ¢F) is a stable pair and the corresponding
GIT data (4, B, /) is GIT stable. |
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