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Anchored foams and annular homology

ROSTISLAV AKHMECHET

MIKHAIL KHOVANOV

We describe equivariant SL.2/ and SL.3/ homology for links in the thickened an-

nulus via foam evaluation. The thickened annulus is replaced by 3–space with a

distinguished line in it. Generators of state spaces for annular webs are represented

by foams with boundary that may intersect the distinguished line; intersection points,

called anchor points, contribute additional terms, reminiscent of square roots of the

Hessian, to the foam evaluation. Both oriented and unoriented SL.3/ foams are

treated.

57K18; 18N25, 57K16

1 Introduction

Asaeda–Przytycki–Sikora [2] homology of links in the thickened annulus has led to

a number of interesting developments — see the first author [1], Baldwin, Beliakova,

Grigsby, Licata, Putyra and Wehrli [3; 5; 11; 12; 13] and Roberts [35] — and extensions

of their work to SL.N / and GL.N / link homology in the thickened annulus — see

Queffelec, Rose, Sartori and Wedrich [30; 31; 32].

GL.N / and SL.N / link homology theories are closely related to foam evaluation. This

connection was made the most transparent by the work of Robert and Wagner [34], who

wrote down a combinatorial formula for GL.N / closed foam evaluation that allows to

build GL.N / link homology from the ground up, bypassing categorical approaches to

the latter. A variation of their formula was used by Robert and the second author [18]

to evaluate unoriented SL.3/ foams, giving a combinatorial approach to some of the

structures discovered by Kronheimer and Mrowka [23].

In this paper we extend foam evaluation framework to build equivariant SL.2/ and

SL.3/ state spaces for annular webs and, consequently, equivariant SL.2/ and SL.3/

homology for links in the thickened annulus. Our construction complements earlier

work [30; 32] on the subject. The same approach allows us to define state spaces for
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3130 Rostislav Akhmechet and Mikhail Khovanov

unoriented SL.3/ annular webs, extending the construction in [18]. As in [18], the

unoriented SL.3/ theory yields state spaces and skein relations for planar webs but

does not extend to a link homology theory.

In the APS (Asaeda–Przytycki–Sikora) annular homology and its equivariant and

SL.N / generalizations, one first defines state spaces for annular SL.2/ and SL.N /

webs, where annular SL.2/ webs are just collections of embedded circles in an annulus.

See also Boerner [7; 8], where the APS theory is reformulated using embedded surfaces.

Our idea is to think of an open thickened annulus as the complement to a line L in R
3,

chosen for convenience to be the z–axis. An annular SL.N / web � is then placed into

the xy–plane with .0; 0/ removed. To define its state space h�i, we consider SL.N /

foams F in the half-space R
3
� bounded by the xy–plane such that � is the boundary

of F . These foams may intersect the z–axis, and we refer to the intersection points as

anchor points and to such foams as anchored foams. Anchor points additionally carry

a label from 1 to N , and we modify foam evaluation by adding a new type of factors

associated to anchor points.

We treat N D 2 and N D 3 cases, with modified evaluations given by formulas (2)

and (77), respectively; also see (35) for the unoriented SL.3/ anchored foam evaluation.

Anchored foam evaluation take values in the ring of polynomials rather than the ring

of symmetric polynomials. One starts with an admissible coloring c of facets of a

foam F , as usual. An anchor point labeled i lying on a facet of color j contributes

ıi;j
p

Ûf 0.xi/ to the evaluation hF; ci, where, in the SL.3/ case as an example,

f .x/D .x � x1/.x � x2/.x � x3/

is the polynomial of degree three with roots x1, x2 and x3. The full evaluation hFi is

given by summing over hF; ci for all admissible colorings c. We check integrality of

these evaluations, with hFi a polynomial in x1, x2 and x3, in the SL.3/ case.

Given evaluations of anchored closed foams, one can form state spaces for annular webs.

We show that this modified evaluation, with anchor points contributing ıi;j
p

Ûf 0.xi/,

perfectly matches the structure of state spaces of annular homology, in SL.2/ and

SL.3/ cases. The construction also allows us to define unoriented SL.3/ homology for

annular trivalent graphs, extending [18] to the annular framework.

With state spaces at hand, it is straightforward to define annular SL.2/ and SL.3/ link

homology, by analogy with [1; 2; 4; 14] in the SL.2/ setting, with [18] in the unoriented
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SL.3/ setting, and with [15; 28; 34] in the oriented SL.3/ setting. State spaces and

link homology carry additional gradings coming from intersection points of foams

with the z–axis. We show that the result matches equivariant SL.2/ homology [1]

of the first author. A simple modification of the construction (truncating the ground

ring by sending the xi to 0 upon evaluation) gives a foam approach to the original

APS homology. We expect that the nonequivariant variant of our SL.3/ construction

recovers the N D 3 case of the homology in [30]. It seems that the equivariant annular

SL.3/ homology, as described in the present paper, is new.

Section 2 describes SL.2/ homology via anchored foams. The evaluation is defined in

Section 2.1, which also contains the skein relations for anchored SL.2/ foams. The

state spaces are studied in Section 2.2. The state space of n circles in the annulus is a

free module of rank 2n over the ground ring R˛ of polynomials in two variables; see

Theorem 2.11. The numbers of contractible and essential circles control the bigraded

rank. This section also discusses categories of anchored and annular cobordisms.

Annular cobordisms between annular SL.2/ webs are disjoint from the z–axis, while

anchored cobordism may intersect it.

Theorem 2.20 identifies the annular cobordism functor with that constructed in [1].

Consequently, equivariant annular SL.2/ link homology [1] can be rederived via an-

chored foams. To obtain the original APS homology, one can use anchored foam

evaluation, combined with the homomorphism R˛ ! Z taking ˛1 and ˛2 to 0 to get

state spaces and cobordism maps in the APS theory.

Section 3 constructs the state spaces for the annular unoriented SL.3/ foam theory,

extending the construction of [18]. We start with the evaluation (Section 3.1), fol-

lowed by skein relations on annular foams (Section 3.2) and properties of state spaces

(Section 3.3). Section 3.4 describes similarities between anchor points contributions

and Lee’s theory, given by inverting the discriminant in the ground ring. Similar to the

planar case [18], we don’t know a way to describe the state space of an annular web

when regions of valency at most four, allowing an inductive simplification, are absent.

In Section 4 we describe annular equivariant SL.3/ link homology, based on anchored

(annular) oriented SL.3/ foams. This homology extends Mackaay–Vaz [28] equivariant

SL.3/ homology of links in R
3; also see Clark [10], the second author [15], Morrison

and Nieh [29], and Robert [33] for the nonequivariant homology in R
3. We start with

a review of oriented SL.3/ foams in Section 4.1 and then follow a similar route to that

of the earlier sections.

Algebraic & Geometric Topology, Volume 23 (2023)



3132 Rostislav Akhmechet and Mikhail Khovanov

Our constructions of annular equivariant link homology via foam evaluation requires

working with U.1/�N –equivariant homology rather than U.N / or GL.N /–equivariant

homology. In these G–equivariant theories homology of the empty link is HG.p;Z/,

the G–equivariant cohomology of a point. For U.1/�N that cohomology consists of

polynomials in N variables (denoted here by ˛1 and ˛2 for N D 2, and x1 x2 and x3

for N D 3), which is a larger ring than its subring of symmetric polynomials, which is

the corresponding equivariant cohomology of a point for U.N / and GL.N /. Having

a larger background ring gives additional freedom and allows a “symmetry breaking”

between these polynomial variables, necessary in our case as clear from the evaluation

(also see Remark 2.1 below).

Working with that larger ring and U.1/�N –equivariant cohomology is a recent phe-

nomenon. It was used by T Sano [37] in resolving the minus sign ambiguity in the

functorial extension of Khovanov homology to link cobordisms, bypassing earlier

constructions that required additional decorations of links and cobordisms (see [19]

for more references and a short discussion). We expect this symmetry breaking of the

ground ring generators to find more applications to link homology in the future.

A recent paper of R Lipshitz and S Sarkar [25] contains an application of annular

equivariant link homology. The authors use maps associated to moving a strand across

the puncture. These maps come for free from the anchored foam perspective of the

present paper; see [25, Remark 3.2].

Unoriented SL.3/ homology for planar graphs (webs) is closely related to the 4–color

theorem and Kronheimer–Mrowka instanton homology for 3–orbifolds [18; 23]. This

homology of webs remains a mysterious structure which has only been computed

for reducible webs (see Boozer [9] for a computational approach to homology of the

dodecahedron and other nonreducible webs). In the annular case, nonreducible webs

have fewer vertices, with the smallest such web shown in Figure 10, and annular

homology may shed light on and aid in understanding unoriented SL.3/ homology of

nonreducible webs and related structures.

We expect that our construction admits a generalization to SL.N / homology for all N

via an extension of the Robert–Wagner formula [34] to the anchored case.

Acknowledgments Khovanov was partially supported by NSF grant DMS-1807425

while working on the paper. Akhmechet was supported by the Jefferson Scholars

Foundation. He would like to thank his advisor Slava Krushkal for encouraging him to

pursue this project.
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2 SL.2/ anchored homology

2.1 Anchored surfaces and their evaluations

Consider the integral polynomial ring R˛ D ZŒ˛1; ˛2� in two variables ˛1; ˛2. Define

a grading on R˛ by setting

(1) deg.˛1/D deg.˛2/D 2:

Denote by � the nontrivial involution of f1; 2g. It is given by �.i/D 3� i for i 2 f1; 2g.

Also denote by � the induced involution of R˛ which permutes ˛1 and ˛2, so that

�.˛i/ D ˛�.i/ D ˛3�i . Let R be the �–invariant subring of R˛, which consists of

symmetric polynomials in ˛1 and ˛2. The subring R is itself a polynomial ring,

R D ZŒE1;E2�, where E1 and E2 are elementary symmetric polynomials in ˛1

and ˛2,

E1 D ˛1 C˛2; E2 D ˛1˛2:

Degrees of E1 and E2 are 2 and 4, respectively.

Let L � R
3 denote the z–axis, L D .0; 0/� R. Let S � R

3 be a closed, smoothly

embedded surface which intersects L transversely. The surface S may be decorated

by dots, disjoint from L, that can otherwise float freely on components of S . The

intersection points S \ L are called anchor points. Fix a labeling `, which is a map

from the set of anchor points to f1; 2g,

` W S \ L ! f1; 2g:

Order the anchor points by 1; : : : ; 2k, read from bottom to top, so that the labeling `

consists of a choice `.j / 2 f1; 2g for each 1 � j � 2k. We will define an evaluation

hSi 2 R˛

for S with the fixed labeling `, which is omitted from the notation.

Let Comp.S/ denote the set of connected components of S . A coloring of S is a

function c W Comp.S/! f1; 2g, and we denote by adm.S/ the set of colorings of S .

The surface S has 2j Comp.S/j colorings. Fix a coloring c. For i D 1; 2, let di.c/ denote

the number of dots on components colored i . Let S2 denote the union of the 2–colored

components. For 1 � j � 2k, let c.j / denote the color of the j th anchor point, induced

by c, which may in general be different from the fixed label `.j /. Define

(2) hS; ci D .�1/�.S2/=2
˛

d1.c/
1

˛
d2.c/
2

�
Q2k

jD1.˛c.j/�˛`.j//
�1=2

.˛1 �˛2/�.S/=2
:

Algebraic & Geometric Topology, Volume 23 (2023)
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Note that �.S2/ is even since S2 is a closed surface in R
3. Let us explain the square

root in the above equation.

Each component S 0 of S can be made disjoint from L via a homotopy. Since the mod 2

intersection number is preserved under homotopy, it follows that S 0 intersects L at an

even number of points p1; : : : ;p2m, which can be ordered as encountered along L,

from bottom to top. Suppose S 0 is colored by c.S 0/D j , and moreover S 0 contains an

anchor point labeled j . Then the product
Q2m

jD1.˛c.j/�˛`.j//D 0, since it contains a

term j̨ � j̨ D 0, and the entire evaluation hS; ci D 0. Thus, the evaluation (2) is only

nonzero when the anchor points on a component S 0 colored j are all labeled by the

complementary color �.j /. In this case, each component contributes an even number

of factors of either ˛1 � ˛2 or ˛2 � ˛1 to the product
Q2m

jD1.˛c.j/ � ˛`.j//, and we

define the square root to be .˛1 �˛2/
m or .˛2 �˛1/

m, respectively. If S 0 has no anchor

points, this term is 1 and can be removed from the product.

Note that the evaluation is the product of evaluations of individual components,

(3) hS; ci D
Y

S 02Comp .S/

hS 0; c.S 0/i:

Thus, if S 0 is colored 1 by c0 D c.S 0/, has 2k anchor points all labeled 2 and carries d

dots, then

(4) hS 0; c0i D ˛d
1 .˛1 �˛2/

k��.S 0/=2:

If S 0 is colored 2 by c0 D c.S 0/, has 2k anchor points all labeled 1 and carries d dots,

then

(5) hS 0; c0i D .�1/�.S
0/=2Ck˛d

2 .˛1 �˛2/
k��.S 0/=2 D ˛d

2 .˛2 �˛1/
k��.S 0/=2:

Otherwise, if one of the anchor points has the same label as the color of S 0, the

evaluation hS 0; c0i D 0 and hS; ci D 0.

Define the evaluation of S by

(6) hSi D
X

c

hS; ci;

where the sum is over all colorings of S . Note that if S \L D ¿, then hSi agrees with

the evaluation in [19; 34]. Also note that hSi D 0 if a component of S has two anchor

points with different labels 1, 2.

Algebraic & Geometric Topology, Volume 23 (2023)
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We have

(7) hSi D
Y

S 02Comp S

hS 0i;

that is, evaluation of S is the product of evaluations over connected components of S .

We can rewrite hSi as follows. First, suppose S is connected, carrying d dots, with

2k � 0 anchor points. For i D 1; 2, let ci denote the coloring of S by i . Define

hS; c1i D
˛d

1
..˛1 �˛`.1// � � � .˛1 �˛`.2k///

1=2

.˛1 �˛2/�.S/=2
;(8)

hS; c2i D .�1/�.S/=2
˛d

2
..˛2 �˛`.1// � � � .˛2 �˛`.2k///

1=2

.˛1 �˛2/�.S/=2
:(9)

Again, square roots in the above equations are taken in the natural way. If S has

oppositely labeled anchor points then both (8) and (9) are zero. If all anchor points are

labeled 1, then (8) is zero, whereas (9) is equal to

hS; c2i D .�1/�.S/=2
˛d

2
.˛2 �˛1/

k

.˛1 �˛2/�.S/=2
:

On the other hand, if all anchor points are labeled by 2 then (9) is zero and (8) equals

˛d
1
.˛1 �˛2/

k

.˛1 �˛2/�.S/=2
:

Then for connected S with anchor points,

hSi D hS; c1i C hS; c2i;

where at most one of the summands hS; cii is nonzero.

Clearly the evaluation is multiplicative under disjoint union. That is, if S D S1t� � �tSn,

then

hSi D hS1i � � � hSni:

Remark 2.1 Unlike closed foam evaluations appearing elsewhere [16; 18; 19; 34;

36], our evaluation does not in general produce a symmetric function. The following

examples illustrate this.

Example 2.2 Let S be a sphere intersecting L in two points with labels i and j and

carrying d dots. If i ¤ j , then each coloring c yields hS; ci D 0. If both anchor points

are labeled 1, then only coloring S by 2 contributes to the sum, and we have

hSi D hS; c2i D �
˛d

2
.˛2 �˛1/

˛1 �˛2

D ˛d
2 :

Algebraic & Geometric Topology, Volume 23 (2023)
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On the other hand, if both anchor points are labeled 2, then

hSi D hS; c1i D ˛d
1 :

This is summarized pictorially by

(10)

� d

�

�

i

j

D ıij�.˛i/
d .

Both signs are positive since k C�.S2/=2 D 1 C 1 D 2 is even.

Note that these evaluations are not symmetric in ˛1 and ˛2.

Example 2.3 More generally, let S be a genus g surface with d dots and 2k anchor

points. If k D 0 (that is, if S is disjoint from L) then the evaluation is

hSi D
˛d

1
C .�1/g�1˛d

2

.˛1 �˛2/1�g
:

On the other hand, if k > 0, then

(11) hSi D

8

<

:

˛d
2
.˛2 �˛1/

kCg�1 if `.1/D � � � D `.2k/D 1;

˛d
1
.˛1 �˛2/

kCg�1 if `.1/D � � � D `.2k/D 2;

0 otherwise:

Proposition 2.4 For any anchored surface S � R
3 with d dots and 2k anchor points ,

its evaluation hSi is a homogeneous polynomial in ˛1 and ˛2 of degree

��.S/C 2d C 2k:

Proof If S does not intersect L, then this follows from Example 2.3. Suppose that S

intersects L. It suffices to verify the statement for connected surfaces. If S intersects L,

then the statement follows from (11), since k > 0.

We recall the following notation from [19]. For i D 1; 2, we allow surfaces to carry

decorations i consisting of i inscribed in a small circle. They must be disjoint from

Algebraic & Geometric Topology, Volume 23 (2023)
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L and are allowed to float freely along the connected component on which they appear.

We call these shifted dots. Diagrammatically, a shifted dot i is the difference between

a dot and ˛i :

(12) i D �� ˛i

Lemma 2.5 Let S be an anchored foam and let S [ i denote the anchored foam

obtained by placing a shifted dot i on some component S 0 of S . Then

hS [ i i D
�

0 if S 0 has an anchor point labeled �.i/;

( � 1/i.˛1 �˛2/hSi if all anchor points on S 0 are labeled i:

Proof This is clear from the definitions.

Lemma 2.5 is summarized diagrammatically by

(13)

1 �2
2 �1D D 0

1 �1 �1D .˛2 �˛1/

2 �2 �2D .˛1 �˛2/

Alternatively, the skein relations (13) may written compactly as

(14) � �i �iD �.˛i/

Lemma 2.6 The following local relations hold :

� � D E1 � E2�(15)

Algebraic & Geometric Topology, Volume 23 (2023)



3138 Rostislav Akhmechet and Mikhail Khovanov

�

�

D C � E1(16)

�

�

1

1

�

�

2

2
D C(17)

Proof The relation (15) is straightforward. Let us now verify (16), which is proved in

the same way as for nonanchored foams, see [19, Lemma 3.5]. Let S denote the surface

on the left, and let F denote the surface obtained by surgering S as shown on the right.

Denote by F t (resp. Fb) the surface obtained from F by placing an additional dot on

the top (resp. bottom) depicted disk. Note that anchor points, as well as their labels, are

the same for F t , Fb , and F . Colorings of F , F t , and Fb are in a canonical bijection.

There are four local models for a coloring of F , illustrated in Figure 1.

Let c be a coloring of F of the type shown in Figure 1(c), with the corresponding

coloring of F t and Fb still denoted by c. We have

hF t ; ci D ˛1hF; ci; hFb; ci D ˛2hF; ci;

hence hF t ; ci C hFb; ci � E1hF; ci D 0. A similar calculation holds for a coloring c

of Figure 1(d) type.

There is a natural bijection between colorings of S and colorings of F of Figures 1(a)

and 1(b) types. Let c be a coloring of F of Figure 1(a) type, and continue to denote by

(a) (b) (c) (d)

Figure 1: Local models for colorings of F . Shaded indicates color 1 and

solid white indicates color 2.

Algebraic & Geometric Topology, Volume 23 (2023)
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�

�

i

i

(a)

�

�

i

i

(b)

�

�

i

i

(c)

�

�

i

i

(d)

Figure 2: Local models for colorings of F i . Shaded indicates color 1 and

solid white indicates color 2.

c the corresponding coloring of S . Then

�.F /D �.S/C 2; �.F2.c//D �.S2.c//;

hF t ; ci D ˛1hF; ci; hFb; ci D ˛1hF; ci;
so we have

hF t ; ci C hFb; ci � E1hF; ci D .˛1 �˛2/hF; ci D hS; ci:

Finally, if c is a coloring of F of the Figure 1(b) type, then

�.F /D �.S/C 2; hF t ; ci D ˛2hF; ci;
�.F2.c//D �.S2.c//C 2; hFb; ci D ˛2hF; ci;

which yields

hF t ; ci C hFb; ci � E1hF; ci D .˛2 �˛1/hF; ci D �.˛2 �˛1/
hS; ci
˛1 �˛2

D hS; ci:

We now address (17), where anchor points are present. Let S denote the surface on the

left-hand side of the equality. Let F1 and F2 denote the two anchored foams obtained

by surgery on S in which the new anchor points are both labeled 1 or 2, respectively,

so that (17) reads hSi D hF1i C hF2i. For each i D 1; 2 there are four local models

for a coloring of F i , shown in Figure 2. Colorings c in Figures 2(c) and 2(d) evaluate

to zero for both i D 1; 2,

hF1; ci D hF2; ci D 0;

and they don’t correspond to any colorings of S . There is a natural bijection between

colorings of S and colorings of F i of the types in Figures 2(a) and 2(b).

Let c be a coloring of S in which the depicted region of S in (17) is colored 1, with

the corresponding colorings of F1 and F2 still denoted by c. We have immediately

Algebraic & Geometric Topology, Volume 23 (2023)
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that hF1; ci D 0. On the other hand,

�.F2/D �.S/C 2; �.F2
2 .c//D �.S2.c//;

and F2 has two additional anchor points compared to S , both labeled 2 and their

regions colored 1. Therefore,

hF1; ci C hF2; ci D hF2; ci D .˛1 �˛2/
hS; ci
˛1 �˛2

D hS; ci:

Now let c be a coloring of S in which the depicted region of (17) is colored 2, and

continue to denote by c the corresponding colorings of F1 and F2. Then hF2; ci D 0.

Since

�.F1/D �.S/C 2; �.F1
2 .c//D �.S2.c//C 2;

and F1 contains two more anchor points labeled 1 and colored 2 than S does, we

obtain

hF1; ci C hF2; ci D hF1; ci D �.˛2 �˛1/
hS; ci
˛1 �˛2

D hS; ci:

Relation hSi D hF1i C hF2i in (17) follows.

Equation (16) can also be written using shifted dots:

(18)

1

2

2

1

D C D C

Corollary 2.7 The following local relation holds:

(19)

�

�

i

j

i

D ıij

Proof This can be seen by applying the neck-cutting relation (16) near the depicted

contractible circle and evaluating the resulting anchored sphere according to (10).

Algebraic & Geometric Topology, Volume 23 (2023)
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2.2 State spaces

Following [6; 19], we can apply the universal construction to the evaluation described

above. Let P D R
2 n .0; 0/ denote the punctured plane. Given a collection C of

disjoint simple closed curves in P , let Fr.C / denote the free R˛–module with a basis

consisting of properly embedded compact surfaces S � R
2 � .�1; 0� with @S D C

and which are transverse to the ray L� WD .0; 0/� .�1; 0�. The intersection S \ L�

is a 0–submanifold of L� and consists of finitely many points. Moreover, each such

surface S must carry a labeling, a map

`D `S W S \ L� ! f1; 2g

from the set of its intersection points with the ray L� (its anchor points) to f1; 2g.

For a basis element S 2 Fr.C /, let S � R
2 � Œ0;1/ denote its reflection through

the plane R
2. Labels of anchor points do not change upon reflection. For two basis

elements S;S 0 2 Fr.C /, denote by SS 0 the closed anchored surface obtained by gluing

S to S 0 along their common boundary C .

Define a bilinear form

(20) .�;�/ W Fr.C /� Fr.C /! R˛

by setting .S;S 0/D hSS 0i. A direct computation shows that the form is symmetric,

since for a closed surface T the evaluation satisfies hT i D hT i.

Define the state space of C , denoted by hC i, to be the quotient of Fr.C / by the kernel

fx 2 Fr.C / j .x;y/D 0 for all y 2 Fr.C /g

of this bilinear form. For a basis element S 2 Fr.C /, we will write ŒS � to denote its

equivalence class in hC i.

Equip the ground ring R˛ with a bigrading by placing ˛1 and ˛2 in bidegree .2; 0/. We

extend this bigrading .qdeg; adeg/ to Fr.C / as follows. For a basis element S 2 Fr.C /

with d dots and m anchor points, set the quantum grading qdeg.S/ 2 Z to be

(21) qdeg.S/D ��.S/C 2d C m:

Note that if S is a closed surface, then hSi 2 R˛ is a homogeneous polynomial of

degree qdeg.S/, following the degree convention (1).
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label 1 label 2

i odd 1 �1

i even �1 1

Table 1: The contribution of the i th anchor point on S to adeg.S/.

Next, let `.1/; : : : ; `.m/ denote the labels of the anchor points of S , ordered from

bottom to top, and define the annular grading adeg.S/ 2 Z by setting

(22) adeg.S/D
m

X

iD1

.�1/iC`.i/:

In other words, if the i th anchor point pi is labeled 1, then it contributes 1 to adeg

if i is odd and �1 if i is even. Likewise, if pi has label 2 then it contributes �1 if i

is odd and 1 if i is even; see also Table 1. Multiplication by ˛1 or ˛2 increases the

.qdeg; adeg/–bidegree by .2; 0/.

Example 2.8 Let C consist of two noncontractible circles. The bidegree .qdeg; adeg/

of the four anchored surfaces in Fr.C / whose underlying surface consists of two disks

each intersecting L� once are recorded in Figure 3.

Lemma 2.9 Let S be an anchored surface. Then hSi D 0 or adeg.S/D 0.

Proof If some component of S has anchor points with different labels then hSi D 0.

Assume that all anchor points on any component of S are labeled identically. We also

assume that S intersects L, otherwise adeg.S/D 0 is immediate. As usual, order the

anchor points p1; : : : ;pm from bottom to top.

�

�

�

1

1

.0; 0/

�

�

�

2

1

.0;�2/

�

�

�

1

2

.0; 2/

�

�

�

2

2

.0; 0/

Figure 3: The .qdeg; adeg/–bidegrees of some anchored surfaces whose

boundary consists of two noncontractible circles.
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Take a generic half-plane P in R
3 containing the anchor line L, so that P \ S consists

of finitely many arcs (with boundary on L) and circles (disjoint from L). For any arc a

in P \ S with boundary @a D fpi ;pj g, necessarily i and j have opposite parities. To

see this, any anchor point between pi and pj is one boundary point of an arc in P \ S ,

and the other boundary point of this arc must also be between pi and pj , which shows

that the number of anchor points between pi and pj is even. Moreover, `.pi/D `.pj /

by assumption. Therefore the total contribution of the anchor points pi and pj to

adeg.S/ is zero. Summing over all arcs in P \ S yields the statement of the lemma.

The subspace ker..�;�// � Fr.C / respects this bigrading on Fr.C /. Consequently,

the bigrading descends to the state space hC i.
Note that the relations (16) and (17) are bihomogeneous. Let S 2 Fr.C / be a basis

element of the form S D S1 t S2 where S1;S2 2 Fr.C / are anchored surfaces with

S2 closed. Then in hC i,

(23) ŒS �D hS2iŒS1�; hS2i 2 R˛:

Moreover, the relation (23) is bihomogeneous. That it is homogeneous with respect

to qdeg follows from the fact that hS2i 2 R˛ is a polynomial of degree qdeg.S2/.

Lemma 2.9 ensures that adeg.S2/D adeg.hS2i/D 0, so adeg.S/D adeg.S1/.

Given a bigraded module M D
L

.i;j/2Z2 Mi;j over a commutative domain such that

each Mi;j has finite rank, define its graded rank to be

grank.M /D
X

i;j

rank.Mi;j /q
iaj :

Lemma 2.10 Let C � P be a single circle. Then the state space hC i is a free R˛–

module of rank 2. Moreover ,

grank.hC i/D
�

q C q�1 if C is contractible;

a C a�1 if C is noncontractible:

Proof We consider two cases. If C is contractible, then by applying the neck-cutting

relation (16) near C and evaluating closed anchored surfaces as in (23), we see that

hC i is spanned by the two elements S and S� shown in Figure 4. Bidegrees of S and

S� are .�1; 0/ and .1; 0/, respectively. Computing the matrix of the bilinear form (20)

for these elements yields
�

SS SS�

S�S S�S�

�

D
�

0 1

1 E1

�

;

which is invertible; thus S and S� constitute a basis for hC i.
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�

S

�

�

S�

�

�
1

S1

�

�
2

S2

Figure 4: Basis elements for the state space of a single circle C . The first two

surfaces form a basis if C is contractible, and the last two form a basis if C

is noncontractible.

Now suppose C is noncontractible. Applying the neck-cutting relation (17) near C and

evaluating closed anchored surfaces shows that the two elements S1 and S2 depicted

in Figure 4 span hC i. Bidegrees of S1 and S2 are .0; 1/ and .0;�1/, respectively. The

matrix of the bilinear form is

�

S1S1 S1S2

S2S1 S2S2

�

D
�

1 0

0 1

�

;

hence S1 and S2 are linearly independent and constitute a basis of hC i.

Theorem 2.11 Let C � P consist of n contractible circles and m noncontractible

circles. Then the state space hC i is a free R˛–module of rank 2nCm. Moreover ,

grank.hC i/D .q C q�1/n.a C a�1/m:

Proof Consider a 2nCm–element set B.C / of basis vectors of Fr.C / consisting of

surfaces S satisfying:

� Each component of S is a disk.

� Each disk in S with contractible boundary is disjoint from L� and carries either

zero or one dot.

� Each disk in S with noncontractible boundary intersects L� exactly once, and

its intersection point may be labeled by either 1 or 2.

That B.C / spans hSi follows from applying the two neck-cutting relations (16) and

(17) near the circles in C and evaluating closed anchored surfaces. Linear independence

of B.C / and the statement regarding graded rank follow from the computations in

Lemma 2.10.
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Elements of the basis B.C / constructed above are standard generators. For such a

 2 B.C / with d dots and anchor points labeled `1; : : : ; `m, we have

(24) qdeg. /D �n C 2d; adeg. /D
m

X

iD1

.�1/iC`.i/:

Let C0;C1 � P be two collections of disjoint circles in the punctured plane. An

anchored cobordism from C0 to C1 is a smoothly and properly embedded compact

surface S � R
2 � Œ0; 1� with boundary @S D C0 t C1, such that Ci � R

2 � fig for

i D 0; 1. Moreover, S is required to intersect the arc LŒ0;1� WD .0; 0/� Œ0; 1� transversely

and come equipped with a labeling of these intersection points (called anchor points),

which is a map

`D `S W S \ LŒ0;1� ! f1; 2g

from the set of its anchor points to f1; 2g. Anchored cobordisms are allowed to carry

dots which can float on components but cannot jump to a different component.

We compose anchored cobordisms in the usual manner. For anchored cobordisms

S1 W C0 ! C1 and S2 W C1 ! C2, let S2S1 W C0 ! C2 denote the anchored cobordism

obtained by gluing along the common boundary C1 and rescaling. Labels of anchor

points of S2S1 are inherited from labels of S1 and S2.

As above, if an anchored cobordism S from C0 to C1 has m anchor points and carries

d dots, define

qdeg.S/D ��.S/C 2d C m:

Let `.1/; : : : ; `.m/ denote the labels of anchor points of S , ordered from bottom to

top, and let n be the number of noncontractible circles in C0. Set

adeg.S/D .�1/n
m

X

iD1

.�1/iC`.i/:

Remark 2.12 If C0 D ¿, then S is a basis element of Fr.C1/, and moreover the

two degrees qdeg.S/, adeg.S/ defined above for anchored cobordisms agree with the

definitions in (21) and (22) for elements of Fr.C1/.

An anchored cobordism S from C0 to C1 induces an R˛–linear map

S W Fr.C0/! Fr.C1/

defined on the basis by gluing along the common boundary C0. The definition of state

spaces via universal construction immediately implies that we have an induced map

(25) hSiW hC0i ! hC1i:
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type A type B type C type D

Figure 5: Elementary saddles involving noncontractible circles.

Lemma 2.13 Let S1 W C0 ! C1 and S2 W C1 ! C2 be anchored cobordisms. Then

qdeg.S2S1/D qdeg.S2/C qdeg.S1/; adeg.S2S1/D adeg.S2/C adeg.S1/:

In particular , hS1iW hC0i ! hC1i is a map of bidegree .qdeg.S1/; adeg.S1//.

Proof The first equality involving qdeg is straightforward. Let n and m denote the

number of noncontractible circles in C0 and C1 respectively, and let k denote the

number of anchor points of S1. We have

adeg.S2S1/D adeg.S1/C .�1/nCmCk adeg.S2/:

Note n C m C k is even, since it is equal to the number of anchor points of the closed

surface obtained by gluing disks to all boundary circles of S1.

The final statement concerning the bidegree of hS1i follows from interpreting generators

of hC0i as anchored cobordisms ¿ ! C0, as in Remark 2.12.

Definition 2.14 An annular cobordism is an anchored cobordism S � R
2 � Œ0; 1�

which is disjoint from the arc LŒ0;1� D .0; 0/� Œ0; 1�. An elementary annular cobordism

is one with a single nondegenerate critical point with respect to the height function

R
2 � Œ0; 1�! Œ0; 1�.

Elementary annular cobordisms consist of a union of a product cobordism with a

cup, cap, or saddle. Every annular cobordism may be obtained by composing finitely

many elementary ones. Cup and cap annular cobordisms always have contractible

boundary. There are four types of elementary annular saddles involving at least one

noncontractible circle, illustrated in Figure 5. In the next four examples we write down

the maps assigned to these four cobordisms in the standard bases of state spaces, as

defined in the proof of Theorem 2.11. We also use the notation of shifted dots from (12).
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Example 2.15 (Figure 5, type A map) The calculation for this map follows at once

from the skein relation (14):

�

�
1

�

�
1

7�!
�

�
1

�

�
1

� ˛27�!

�

�
2

�

�
2

7�!
�

�
2

�

�
2

� ˛17�!

Example 2.16 (Figure 5, type B map) This calculation follows easily from the skein

relation (19):

�

�
�

1

1

�

17�!
�

�
�

2

1

7�! 0

�

�
�

2

2

�

27�!
�

�
�

1

2

7�! 0

Example 2.17 (Figure 5, type C map) A convenient way to perform this calculation

is to use neck-cutting with shifted dots (18) near the contractible circle and then simplify

using the relations (13):

�

�
1

�

�
1

17�!
�

�
2

�

�
2

27�!

Example 2.18 (Figure 5, type D map) The neck-cutting relation (17) is helpful here.

For the dotted cup we also use (14) to simplify further:

� �

�
�

1

1

�

�
�

2

2

7�! C

�

�

�

�
�

1

1

�

�
�

2

2

7�! C˛2 ˛1
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Recall the involution � of R˛ that transposes ˛1 and ˛2, and extend it to an antilinear

involution, also denoted � , of the free R˛–module Fr.C / as follows. Involution �

on Fr.C / sends a surface S to the same surface with the labeling ` of anchor points

reversed and acts on linear combinations by

�

�

X

i

�iSi

�

D
X

i

�.�i/�.Si/:

For a closed surface S we have, by direct computation, h�.S/i D �.hSi/, showing

compatibility of the two involutions. If S , in addition, carries shifted dots, involution �

reverses their labels, so that �. 1 /D 2 and �. 2 /D 1 . Involution � descends to an

involution, also denoted � , on hC i. Annular degree is negated under � : adeg.�.S//D
�adeg.S/ for an anchored cobordism S .

2.3 Annular link homology

Let ACob denote the category whose objects consist of collections of finitely many

disjoint simple closed curves in the punctured plane P . A morphism from C0 to C1

in ACob is an anchored cobordism from C0 to C1, up to ambient isotopy fixing the

boundary pointwise and mapping LŒ0;1� to itself. Let ACob0 denote the subcategory

of ACob with the same objects as ACob but whose morphisms are isotopy classes

of annular cobordisms, disjoint from the anchor line L. The composition of annular

cobordisms is again annular.

Let R˛–ggmod denote the category of bigraded R˛–modules and homogeneous maps

(of any bidegree) between them. We have a functor

h�iW ACob ! R˛–ggmod;

which sends a collection of circles C � P to the state space hC i and sends an anchored

cobordism S from C0 to C1 to the map hSiW hC0i ! hC1i as in (25). By Lemma 2.13,

hSi is a map of bidegree .qdeg.S/; adeg.S//. We can restrict to the category of annular

cobordisms to get a functor

h�i0 W ACob0 ! R˛–ggmod;

which assigns to an annular cobordism S a map hSi0 D hSi of bidegree .qdeg.S/; 0/.

The restriction h�i0 does not change the state space assigned to a collection of circles

C � P .
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On the other hand, a functor

G˛ W ACob0 ! R˛–ggmod

was introduced in [1]. We briefly recall G˛ below.

Consider the algebra

A˛ D R˛ ŒX �=..X �˛1/.X �˛2//:

It is a free R˛–module with basis f1;X g. The trace �˛ W A˛ ! R˛ given by 1 7! 0 and

X 7! 1 makes A˛ into a Frobenius algebra, which defines a .1C1/–dimensional TQFT,

a functor F˛ from the category of dotted cobordisms to the category of R˛–modules.

A dot on a cobordism is interpreted as multiplication by X 2 A˛. Define a grading

on A˛ by setting

(26) qdeg.1/D �1; qdeg.X /D 1:

With this grading, a cobordism S with d dots is assigned by F˛ a map of degree

��.S/ C 2d . Alternatively, the TQFT F˛ is the result of applying the universal

construction to the closed surface evaluation (6) when restricted to surfaces disjoint

from L and collections of contractible circles in P . See [19] for further details about

the Frobenius pair .R˛;A˛/.

Let C � P be a collection of n contractible and m noncontractible circles. Define the

bigraded R˛–module G˛.C / as follows. As an R˛–module, we set

G˛.C /D F˛.C /D A˝.nCm/
˛ :

Define the annular grading, denoted adeg, on F˛.C / as follows.

Every tensor factor A˛ corresponding to a contractible circle is concentrated in annular

degree zero. Order the noncontractible circles in C from outermost (furthest from the

puncture) to innermost. Introduce the notation

(27) v0 D 1; v1 D X �˛1; v0
0 D 1; v0

1 D X �˛2:

Both fv0; v1g D f1;X �˛1g and fv0
0
; v0

1
g D f1;X �˛2g constitute an R˛–basis for A˛ .

Set

(28) adeg.v0/D adeg.v0
0/D �1; adeg.v1/D adeg.v0

1/D 1:

The annular grading on noncontractible circle is defined by assigning the homogeneous

basis fv0; v1g or fv0
0
; v0

1
g to the corresponding tensor factor of A˛ in an alternating
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1 X v0 v1 v0
0
v0

1

qdeg0 �1 1 0 0 0 0

adeg 0 0 �1 1 �1 1

Table 2: The .qdeg0; adeg/–bidegrees of relevant elements, where f1;X g
is a basis for a contractible circle and fv0; v1g and fv0

0
; v0

1
g are bases for

noncontractible circles.

manner with respect to nesting in P , with the convention that the outermost circle is

assigned fv0; v1g.

It is convenient to distinguish between the modules assigned to different types of circles

in P . Let V˛ and V 0
˛ denote the R˛–modules A˛ with bases fv0; v1g and fv0

0
; v0

1
g,

respectively. The notation A˛ will be reserved for the module assigned to a contractible

circle, with basis f1;X g.

The R˛–module G˛.C / also carries a quantum grading qdeg inherited from (26). Define

a modified quantum grading qdeg0 on G˛.C / by

(29) qdeg0 D qdeg � adeg:

We will consider G˛.C / as a bigraded R˛–module with bigrading .qdeg0; adeg/. Bide-

grees are recorded in Table 2.

Remark 2.19 The modified quantum grading qdeg0 appears elsewhere in the literature

and is more natural in the context of annular link homology. In [12] this grading was

denoted j 0. Similarly, the annular link homology defined in [5] carries the modified

quantum grading.

We now define G˛ on annular cobordisms. For an annular cobordism S � R
2 � Œ0; 1�,

if the boundary of S is contractible in P then G˛.S/D F˛.S/, where F˛ is the TQFT

corresponding to the Frobenius algebra A˛ as above. Formulas for the maps assigned by

G˛ to the four elementary cobordisms in Figure 5 are recorded below. If other essential

circles are present, then due to parity the formulas may be slightly different from those

below. To obtain the full set of formulas, one interchanges v0 $ v0
0
, v1 $ v0

1
, and

˛1 $ ˛2:

V˛ ˝ A˛
.A/�! V˛;

v0 ˝ 1 7! v0; v1 ˝ 1 7! v1; v0 ˝ X 7! ˛1v0; v1 ˝ X 7! ˛2v1;
(30)
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V˛ ˝ V 0
˛
.B/�! A˛;

v0 ˝ v0
0 7! 0; v1 ˝ v0

0 7! X �˛1; v0 ˝ v0
1 7! X �˛2; v1 ˝ v0

1 7! 0;
(31)

V˛
.C/�! V˛ ˝ A˛;

v0 7! v0 ˝ .X �˛2/; v1 7! v1 ˝ .X �˛1/;
(32)

A˛
.D/�! V˛ ˝ V 0

˛;

1 7! v0 ˝ v0
1 C v1 ˝ v0

0; X 7! ˛1v0 ˝ v0
1 C˛2v1 ˝ v0

0:
(33)

Theorem 2.20 The functors h�i0 WACob0 !R˛–ggmod and G˛ WACob0 !R˛–ggmod

are naturally isomorphic via bidegree-preserving maps.

Proof Let C � P be a collection of circles. We will define an R˛–linear, bidegree

preserving isomorphism ˆC W hC i ! G˛.C / and show that it is natural with respect to

annular cobordisms.

Let n and m denote the number of contractible and noncontractible circles in C ,

respectively. Fix an ordering 1; : : : ; n of the contractible circles in C . The R˛–module

G˛.C / is free with basis given by elements of the form

y1 ˝ � � � ˝ yn ˝ z1 ˝ � � � ˝ zm;

where each yi is in f1;X g, specifying a basis element of the i th contractible circle, and

each zj is in either fv0; v1g or fv0
0
; v0

1
g, depending on nesting, specifying basis elements

of the noncontractible circles. The ordering of factors z1 ˝ � � � ˝ zm corresponding to

noncontractible circles is from outermost to innermost as usual, so that the first factor

z1 labels the outermost noncontractible circle.

We now define the isomorphism ˆC W hC i ! G˛.C /. Recall the standard basis B D
B.C / for hC i defined in the proof of Theorem 2.11. For  2 B with anchor points

labeled `1; : : : ; `m, read from bottom to top, set

ˆC . /D y1 ˝ � � � ˝ yn ˝ z1 ˝ � � � ˝ zm;

where yi D 1 if the corresponding cup in is undotted and yi D X if the corresponding

cup in  is dotted. The generators zj of noncontractible circles are determined using

the rule

zj D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

v1 if j is odd and j̀ D 1;

v0 if j is odd and j̀ D 2;

v0
0

if j is even and j̀ D 1;

v0
1

if j is even and j̀ D 2:
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�

�
�

1

1

1 ˝ v1 ˝ v0
0

�

�
�

1

1

�

X ˝ v1 ˝ v0
0

�

�
�

2

1

1 ˝ v0 ˝ v0
0

�

�
�

2

1

�

X ˝ v0 ˝ v0
0

�

�
�

1

2

1 ˝ v1 ˝ v0
1

�

�
�

1

2

�

X ˝ v1 ˝ v0
1

�

�
�

2

2

1 ˝ v0 ˝ v0
1

�

�
�

2

2

�

X ˝ v0 ˝ v0
1

Figure 6: An example of the isomorphism ˆC when C consists of one

contractible circle and two noncontractible circles. Basis elements  of hC i
are drawn with the corresponding basis element ˆC . / 2 G˛.C / written

underneath.

See Figure 6 for an example of the assignment ˆC when n D 1 and m D 2. By

comparing the bidegree formula (24) for  with the bidegree of ˆC . / (see Table 2),

we see that ˆC is a bidegree-preserving isomorphism. Recall that we use the modified

quantum grading (29) for G˛.C /.

Now let S W C1 ! C2 be an annular cobordism. To complete the proof, we check that

the square

hC1i G˛.C1/

hC2i G˛.C2/

ˆC1

hSi G˛.S/

ˆC2

commutes. If all the boundary circles of S are contractible, then commutativity

of the square is straightforward. Otherwise, if S has at least one noncontractible

boundary circle, it suffices to consider the case where S is one of the elementary

annular cobordisms depicted in Figure 5. Formulas for these maps were recorded in

Examples 2.15–2.18. Comparing with the formulas (30)–(33) completes the proof.

Let A WD S1 � Œ0; 1� denote the annulus. For an oriented link L � A � Œ0; 1� in the

thickened annulus, a generic projection of L onto A � f0g yields a link diagram D in

the interior of A. Identifying the interior of A with the punctured plane P , we may
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form the cube of resolutions of D in the usual way, for instance as described in [4,

Section 2], with all smoothings drawn in P . The result is a commutative cube in the

category ACob0. Introducing signs to make the cube anticommutative, taking direct

sums along diagonals, adding homological and quantum grading shifts, and applying

the functor h�i0 W ACob0 ! R˛–ggmod, one obtains a chain complex C.D/ of bigraded

R˛–modules. Diagrams representing isotopic annular links are related by Reidemeister

moves away from the puncture. By standard arguments [4; 14], the chain homotopy

class of C.D/ is an invariant of the annular link L. We write H.L/ to denote the

homology of C.D/, for any diagram D of L. Theorem 2.20 implies that the resulting

annular homology is isomorphic to that of [1].

Example 2.21 As an explicit example, let � denote the positive crossing generator of

the 2–strand braid group, and let Ln denote the annular link obtained as the annular

closure of ��n. Consider the complex C.n/:

@�1

fc0g
@�2

fc1g
@�3

fc2g� � �
@�n

fcng

The right-most term is in homological degree zero and the quantum grading shifts ci

are given by c0 D n and ci D n C 2i � 1 for 1 � i � n. The right-most differential @�1

is the saddle cobordism, and for �n � i � �2 the differentials are

@i D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

� �
� if i is even;

� C � � E1 if i is odd:

The above schematic depiction of @i is interpreted as follows: each @i is an R˛–linear

combination of surfaces, each of which is given by the product cobordism on the

depicted planar tangle, with a dot on a component of the surface if the corresponding

tangle component is dotted. One can show that the chain complex C.Ln/ is chain

homotopy equivalent to the annular closure of C.n/.

Note that the annular closure of chain groups of C.n/ in negative homological degree

are each a contractible circle, contributing a free module with basis 1 and X (represented

by the surfaces S and S� in Figure 4). In homological degree zero the result is two

essential circles. We also see that, upon taking the annular closure, that @i D 0 for i

even, and that @i for i � �3 odd is given by @i.1/D 2X �E1 and @i.X /D E1X �2E2,
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Figure 7: Local model of a prefoam near singular points. Left, seam points

where three facets meet. Right, a seam vertex where six facets meet. The

singular graph s.F / is drawn bold.

which is injective. The differential @�1 is the map in Example 2.18, which is also

injective. Therefore, in homological degree i � 0,

H i.Ln/D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if i is odd;
R˛fn � 2i � 2; 0g ˚ R˛fn � 2i; 0g

h.�E1; 2/; .�2E2;E1/i
if i < 0 and i is even;

R˛fn;�2g ˚ R˛fn; 2g ˚ .R˛fn; 0g=h˛2 �˛1i/ if i D 0;

where the curly brackets fj ; kg denote an upwards .qdeg; adeg/ shift of .j ; k/, and the

angled brackets denote the R˛–submodule generated by the enclosed elements.

3 Unoriented SL.3/ anchored homology of planar annular

webs

We recall definitions and notations from [18], including that of (unoriented) SL.3/

foams and refer the reader to [18, Section 2.1] for more details.

Definition 3.1 A (closed) SL.3/ prefoam is a compact 2–dimensional CW complex

equipped with a PL–structure such that each point has an open neighborhood that is

either an open disk, the product of a tripod and an open interval (Figure 7, left), or the

cone over the 1–skeleton of a tetrahedron (Figure 7, right). Points of the first type are

called regular, those of the second are called seam points, and those of the third are

called seam vertices. A (closed) SL.3/ foam is a closed SL.3/ prefoam together with a

PL embedding into R
3.

We will simply write prefoam and foam in place of closed SL.3/ (pre)foam. For a

prefoam F , denote by v.F / the set of seam vertices and by s.F / the set of seam points
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12

3

Figure 8: The local model for a preadmissible coloring near a seam point.

and seam vertices. The subspace s.F / is a 4–valent graph which may contain closed

loops. Connected components of s.F / n v.F / are called seams.

The subspace F n s.F / is a (not necessarily compact) surface, and a connected compo-

nent of F n s.F / will be called a facet of F . The (finite) set of facets of F is denoted

by f .F /. Facets of prefoams may be decorated by a finite number of dots, which are

allowed to float freely on their facets but may not cross seams or enter seam vertices.

A coloring of a prefoam F is a map

c W f .F /! f1; 2; 3g:

That is, a coloring assigns 1, 2 or 3 to each facet of F . A coloring is called preadmissible

if the three facets meeting at each seam of F have distinct colors; see Figure 8. For a

preadmissible coloring c and 1 � i; j � 3 with i ¤ j , let Fij .c/ denote the union of

facets colored i or j . The preadmissibility condition guarantees that each Fij .c/ is a

closed surface; see [18, Proposition 2.2].

A coloring c is called admissible if each Fij .c/ is orientable. For a foam F (that is, a

prefoam embedded in R
3), every preadmissible coloring is admissible, since Fij .c/ is

a closed surface in R
3.

3.1 Unoriented anchored SL.3/ foams and their evaluations

Fix a field k of characteristic 2. In this section the following commutative rings will be

used:

� R0
x D kŒx1;x2;x3� is the ring of polynomials in three variables.

� Rx D kŒE1;E2;E3� the subring of R0
x that consists of symmetric polynomials

in x1, x2 and x3, with generators Ei being elementary symmetric polynomials:

E1 D x1 C x2 C x3; E2 D x1x2 C x1x3 C x2x3; E3 D x1x2x3:

� R00
x D R0

x Œ.x1 Cx2/
�1; .x2 Cx3/

�1; .x1 Cx3/
�1� is a localization of R0

x given

by inverting xi C xj , for 1 � i < j � 3.
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� zR0
x D kŒ

p
x1;

p
x2;

p
x3 � is the extension of R0

x obtained by introducing square

roots of x1, x2 and x3.

� zR00
x D kŒ

p
x1;

p
x2;

p
x3; .x1 Cx2/

�1; .x2 Cx3/
�1; .x1 Cx3/

�1� is a localiza-

tion of zR0
x given by inverting xi C xj , for 1 � i < j � 3.

All five of these rings are graded by setting deg.xi/D 2 for i D 1; 2; 3. Inclusions of

the above rings are summarized in the following diagram:

(34)

zR0
x � zR00

x

[ [
Rx � R0

x � R00
x

We follow the notation established in [18] for these rings with the additional subscript

x to distinguish from the notation in Section 2.

Definition 3.2 An anchored SL.3/ foam F is an SL.3/ foam F 0 � R
3 that may

intersect the line L at finitely many points away from the singular graph s.F 0/ of F 0.

Thus each intersection point belongs to some facet f of F 0, and intersection of facets

with L are required to be transverse. Denote by p.F /D F \ L the set of intersection

points (anchor points) of F . Intersection points carry labels in f1; 2; 3g; that is, F

comes equipped with a fixed map

` W p.F /! f1; 2; 3g:

It is convenient to order anchor points p1; : : : ;pm from bottom to top, with labels

`i D `.pi/, i D 1; : : : ;m.

We now refine the notion of admissible coloring of a foam to that of admissible coloring

of an anchored foam F . Consider an anchored foam F with the underlying foam F 0. A

coloring c 2 adm.F 0/ induces a coloring of anchor points in F 0, by assigning to each

point the color of its facet. We say that c is admissible if that’s exactly the labeling

of anchor points of F , that is, `.p/D c.f / for each anchor point p in a facet f , and

then set c.p/D `.p/.

In this way, the set of admissible colorings of F 0 is in a bijection with the set of

admissible colorings of anchored foams F that become F 0 upon forgetting the labeling

of anchor points:

adm.F 0/Š
a

F

adm.F /:
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Various constructions with SL.3/ foams in [18] extend directly to anchored foams.

In particular, bicolored surfaces Fij .c/ are well defined, associated to an admissible

coloring c. We will also call an admissible coloring simply a coloring. We will use i ,

j and k to denote the three elements of f1; 2; 3g, not necessarily in that order.

We refine [18, Definition 2.9] for anchored foams.

Definition 3.3 Let F be an anchored foam, c 2 adm.F / be an admissible coloring,

and  a connected component of Fij .c/ which is disjoint from L. Define a coloring c0

of F which swaps the colors i and j on facets of  , and leaves all other facets colored

according to c. We say that c and c0 are related by an ij –Kempe move along  . Note

that since  has no anchor points, c0 is still an admissible coloring of F .

Kempe moves can be done on components  of Fij .c/ that intersect L as well, but

the resulting anchored foam F0 is different from F due to carrying different labels on

anchor points on  .

For k 2 f1; 2; 3g, denote by k 0 and k 00 its two complementary elements, so that

fk; k 0; k 00g D f1; 2; 3g. Let F be an anchored foam with labeling `. Let c 2 adm.F /

be an admissible coloring. For an anchor point p 2 p.F / lying on a facet f 2 f .F /,
we set c.p/D c.f /D `.p/; that is, c.p/ is the color of the facet, according to c, on

which p lies, which equals `.p/ since c is admissible. For 1 � i � 3, let di.c/ denote

the number of dots on facets colored i . For 1 � i ¤ j � 3, let Fij .c/ be the union of

facets of F colored i or j . The space Fij .c/ is a closed surface in R
3 and hence has

even Euler characteristic. Set

(35) hF; ci D P .F; c/

Q.F; c/
;

where

P .F; c/D
3

Y

iD1

x
di .c/
i �

�

Y

p2p.F /

.xc.p/C x`.p/0/.xc.p/C x`.p/00/

�1=2

;(36)

Q.F; c/D
Y

1�i<j�3

.xi C xj /
�.Fij .c//=2:(37)

The product of the two terms under the square root, for a given anchor point p, is equal

to
.x1 C x2/.x1 C x3/ if c.p/D 1;

.x2 C x1/.x2 C x3/ if c.p/D 2;

.x3 C x1/.x3 C x2/ if c.p/D 3:
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Remark 3.4 This product is the inverse of the square decoration � in [18, Section 4.1].

The square decoration was used to study a separable version of the unoriented SL.3/

theory, with the discriminant D D .x1 C x2/.x1 C x3/.x2 C x3/ inverted, which is a

version of the Lee theory. Here, we use the defect line L rather than freely floating

square dots in [18, Section 4.1] in the opposite way, to add factors to the evaluation

rather than divide by terms in the discriminant.

Remark 3.5 If c is an admissible coloring of the underlying foam F 0 of F but not of

the anchored foam F , then the evaluation (35) is still defined and equal to zero;

(38) hF; ci D 0; c 2 adm F 0 n adm F:

This holds since, for some p 2 p.F /, its color c.p/ differs from its label `.p/, so that

xc.p/C xc.p/ D 0 appears under the square root in (36) and P .F; c/D 0. Thus,

.xc.p/Cx`.p/0/.xc.p/Cx`.p/00/D
�

.x`.p/Cx`.p/0/.x`.p/Cx`.p/00/ if c.p/D `.p/;

0 otherwise:

Define the evaluation of F to be

(39) hFi D
X

c2adm.F /

hF; ci:

Alternatively, we can sum over the larger set of c 2 adm.F 0/, due to (38).

Let us explain the square root in (36). The equality
p

x C y D
p

x C p
y holds in a

commutative ring of characteristic 2, so hF; ci is in the ring zR00
x; see (34). We will

show in Proposition 3.11 that, in fact, no square roots appear, so that hF; ci 2 R00
x .

Likewise, in Proposition 3.12 we show that hFi 2 R0
x .

The evaluation (39) is multiplicative with respect to disjoint union and does not depend

on a particular embedding of F into M D .R3;L/ as long as anchor points on F and

their labels are specified.

If an anchored foam F is a disjoint union of anchored foams F1 t � � � t Fk , then

hFi D hF1i � � � hFki:

If F is disjoint from L, then hFi is equal to the evaluation in [18, Section 2.3].

Example 3.6 Let F be a 2–sphere S
2 with two anchor points and d dots. Its evaluation

is zero unless both points have the same label i 2 f1; 2; 3g, in which case there is

only admissible coloring c which colors F by i . Let j ; k 2 f1; 2; 3g denote the
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complementary elements to i . The surfaces Fij .c/ and Fik.c/ are 2–spheres, while

Fjk.c/D ¿. Then the evaluation is

hFi D
xd

i ..xi C xj /
2.xi C xk/

2/1=2

.xi C xj /.xi C xk/
D xd

i :

Example 3.7 More generally, let F be a genus g surface carrying d dots and 2n> 0

anchor points. It evaluates to zero unless all points are labeled by the same i 2 f1; 2; 3g.

In this case, letting j ; k 2 f1; 2; 3g be the complementary elements to i , the evaluation

is

hFi D
xd

i ..xi C xj /.xi C xk//
n

..xi C xj /.xi C xk//
1�g

D xd
i ..xi C xj /.xi C xk//

nCg�1:

Example 3.8 Consider the theta foam F whose facets each intersect L once, with

anchor points labeled i; j ; k 2 f1; 2; 3g and facets carrying d1, d2 and d3 dots,

�

�

�

d1

d2

d3

�

�

�

i

j

k

In an admissible coloring of the underlying foam, the three facets must have distinct

colors, so hFi D 0 if i , j and k are not distinct. If i , j and k are distinct, then there is

one admissible coloring c which colors the top, middle, and bottom facets, respectively,

by i , j and k. The surfaces Fij .c/;Fik.c/;Fjk.c/ are 2–spheres, and the evaluation is

hFi D x
d1

i x
d2

j x
d3

k
:

Remark 3.9 Note that the evaluation of an anchored foam is in general not a symmetric

function in x1, x2 and x3, whereas in [18] the evaluation is always an element of Rx .

Let us call a sequence ` 2 f1; 2; 3gm preadmissible if the following holds. Let u1, u2

and u3 be three nonzero elements of the abelian group Z=2 � Z=2. Sequence ` is

preadmissible if and only if

(40)

m
X

iD1

u`.i/ D 0 2 Z=2 � Z=2:
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Proposition 3.10 If an anchored foam F has an admissible coloring , the sequence `

of its anchor points is preadmissible.

Proof Consider a generic intersection of F with a half-plane in R
3 bounding L. This

intersection is a trivalent graph � in the half-plane. Coloring c of F induces a coloring

c0 of edges of � such that around each trivalent vertex of � the colors of the three

edges are distinct (Tait coloring). On the boundary points (one-valent vertices) of �

the coloring is given by labeling `. The sum on the left hand side of (40) is zero since

it can alternatively be written as the sum of triples of vectors u1 C u2 C u3 D 0 over

all trivalent vertices of � . Each inner edge of � , that bounds two trivalent vertices,

contributes ui C ui D 0 to the sum, where i is the color of the edge. An edge with

one or both endpoints on the boundary contributes the sum of the ui over its boundary

points.

For an anchored foam F and 1 � i � 3, let an.i/ denote the number of anchor points

of F with label i (the dependence on F is omitted).

Proposition 3.11 For an anchored foam F and an admissible coloring c, we have

hF; ci 2 R00
x .

Proof Recall the rings R00
x and zR00

x defined in (34). It’s clear that hF; ci belongs to

the larger ring zR00
x .

The expression in (35) under the square root is equal to

.x1 C x2/
an.1/Can.2/.x2 C x3/

an.2/Can.3/.x1 C x3/
an.1/Can.3/:

For 1 � i < j � 3, the integer an.i/C an.j / is even since it is equal to the number

of intersection points of the closed surface Fij .c/ with L; see also Proposition 3.10.

Consequently, taking the square root produces integral exponent of xi C xj , implying

that hF; ci is in R00
x .

Using the above notation, the square root term in (36) is equal to

(41) zQ.F; c/ WD
Y

1�i<j�3

.xi C xj /
.an.i/Can.j//=2;

so formula (35) can be rewritten as

(42) hF; ci D
3

Y

iD1

x
di .c/
i

Y

1�i<j�3

.xi C xj /
.an.i/Can.j/��.Fij .c///=2:
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Proposition 3.12 For an anchored foam F , we have hFi 2 R0
x D kŒx1;x2;x3�.

Proof The proof of Theorem 2.17 in [18] extends with minor changes to this case.

Note that the evaluation is no longer a symmetric function. We must show that positive

powers of xi C xj for 1 � i < j � 3, do not appear in the denominator of hFi. Let

us specialize to i D 1 and j D 2. Denominators x1 C x2 in the evaluations hF; ci
may appear only from the components of F12.c/ that are 2–spheres. If a 2–sphere

does not intersect L, the proof in [18] works in this case as well. Suppose a 2–sphere

component of F12.c/ intersects L in an.1/ points colored 1 and an.2/ points colored 2

(necessarily in the corresponding facets of F carrying those colors under c). These

points contribute

.x1 C x2/
an.1/Can.2/.x1 C x3/

an.1/.x2 C x3/
an.2/

to the expression under the square root, and an.1/C an.2/� 2, allowing to cancel the

denominator term x1 C x2 that  contributes. Summing over all admissible colorings

and otherwise following the arguments in [18, Theorem 2.17] implies the result.

Remark 3.13 Contributions of anchor points to the evaluation hF; ci can be interpreted

as follows. Consider polynomial f .x/D .x � x1/.x � x2/.x � x3/ 2 R0
x Œx�. Then

f 0.x/D .x � x2/.x � x3/C .x � x1/.x � x3/C .x � x1/.x � x2/

and
f 0.x1/D .x1 � x2/.x1 � x3/;

f 0.x2/D .x2 � x1/.x2 � x3/;

f 0.x3/D .x3 � x1/.x3 � x2/:

Contribution of an anchor point p with a label i D `.p/ to the evaluations hF; ci
and hFi is then

p

f 0.xi/, the square root of the derivative of f at the root xi of the

polynomial f . In characteristic two, signs do not matter, but this observation hints how

to extend the evaluation to characteristic 0.

Since the labels i1; : : : ; im of anchor points are fixed in a given F , these marked points

contribute the same term,

p

f 0jL\F WD
� m

Y

rD1

f 0.xir
/

�1=2

;

and we have

(43) hF; ci D
p

f 0jL\F � hF 0; ci; hFi D
p

f 0jL\F � hF 0i;
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where F 0 is the foam F viewed as a regular foam with anchored points and their labels

ignored. When coloring c of F is not compatible with labels of anchor points, though,

we should define
p

f 0jL\F D 0 to match the formula hF; ci D 0.

Also notice that, switching to characteristic 0 and from the matrix factorization view-

point [20], f .x/D w0.x/ is the derivative of the potential

w.x/D 1
4
x4 � 1

3
E1x3 C 1

2
E2x2 � E3x;

so the contributions of anchor points are given by square roots of the second derivative
p

w00.xi/ at critical points of w, analogous to the square root of the Hessian factor that

appears, for example, in the steepest descent method formulas.

3.2 Skein relations

In this subsection we record several local relations satisfied by the evaluation of anchored

SL.3/ foams. We start with the following proposition concerning the relations in [18,

Section 2.5], which should be understood as occurring away from the anchor line L.

Proposition 3.14 The twelve local relations in [18, Propositions 2.22–2.33] hold.

Proof The arguments in [18] apply without modification.

We will use shifted dots in this section, as in (12). For 1 � i � 3, we allow anchored

foams to carry decorations of the form i D � C xi on a facet. They are required to

be disjoint from L, float freely on their facets, but cannot move past seams or seam

vertices:

i D C xi�

For an anchored foam F carrying i on some facet f 2f .F /, any coloring c 2 adm.F /

which colors f by i evaluates to zero, hF; ci D 0. An anchor point labeled i has the

same effect as placing
q

j k D
q

i 0 i 00

on the facet on which it lies (recall our conventions that f1; 2; 3gDfi; j ; kgDfi; i 0; i 00g).

See also (47) and the discussion in Section 3.4.

We also have relations involving the anchor line.

Algebraic & Geometric Topology, Volume 23 (2023)



Anchored foams and annular homology 3163

Lemma 3.15 The following local relations hold :

�

�

1

1

�

�

2

2

�

�

3

3
D C C(44)

� �i �iD xi(45)

�

�

1

1

�

�

2

2

�

�

3

3

D C C(46)

�

�

i

i

j

k
D(47)

.xj C xk/
�

i
�

�

k

j

�

�

j

k

D C(48)

In the last two equations, fi; j ; kg D f1; 2; 3g.

Proof Let us verify (44); the other four relations are easier to check and the proof is

left to the reader. Denote by F the anchored foam on the left-hand side, and by G1, G2

and G3 the three foams on the right-hand side, with the superscript corresponding to the

labels of the depicted anchor points. For 1 � i � 3, let admi.F / be the set of admissible

colorings of F in which the depicted tube is colored by i . Admissible colorings of Gi

must color the two disks by i , so there is a natural bijection admi.F /Š adm.Gi/.

For c 2 admi.F /, let c0 2 adm.Gi/ denote the corresponding coloring. We will show

that

hF; ci D hGi ; c0i;
which completes the proof.
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The anchored foam Gi carries two more anchor points, both labeled i , than F does,

while the dot placement for Gi and F is the same, so

P .G; c0/D .xi C xj /.xi C xk/P .F; c/;

where fi; j ; kg D f1; 2; 3g. On the other hand,

�.Gi
ij .c

0//D�.Fij .c//C2; �.Gi
ik.c

0//D�.Fik.c//C2; �.Gi
jk.c

0//D�.Fjk.c//;

which yields

Q.G; c0/D .xi C xj /.xi C xk/Q.F; c/:

Thus hF; ci D hQ; c0i as desired. Summing over all admissible colorings of F we get

hFi D hG1i C hG2i C hG3i;
completing the proof.

3.3 State spaces

We generalize the notion of webs and cobordisms between them from [18, Section 3.1]

in the presence of the anchor line L.

Definition 3.16 A web is a trivalent graph � which is PL–embedded into the punctured

plane P D R
2 n f.0; 0/g. We allow webs to have closed loops with no vertices. A

anchored foam with boundary V is obtained by intersecting a closed anchored foam

F � R
3 carrying no dots with a thickened plane R

2 � Œ0; 1� such that F \ .P � fig/ for

i D 0; 1 is a web (in particular, F is disjoint from the two points .0; 0; 0/ and .0; 0; 1/).

A connected component of the complement of singular points in F \ .R2 � Œ0; 1�/ is

called a facet. Each facet may be decorated by finitely many dots which can float freely

along the facet but cannot intersect the anchor line or cross singular points.

Foams with boundary are considered equivalent if there is an orientation-preserving

homeomorphism of R
2 � Œ0; 1� taking one to the other which fixes the boundary of

R
2 � Œ0; 1� pointwise and maps the line segment LŒ0;1� WD f.0; 0/g � Œ0; 1� to itself.

For a foam with boundary V , let

p.V /D V \ LŒ0;1�

denote its intersection points with the anchor line, called anchor points. Each anchor

point is required to carry a label in f1; 2; 3g.
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We view V as a cobordism from the web @0V WD V \ .R2 � f0g/ to the web @1V WD
V \ .R2 � f1g/. A closed foam is then a cobordism from the empty web to itself. We

will often refer to foams with boundary simply as foams when the meaning is clear

from context. Composition W V of foams V and W with @1V D @0W is defined in

the natural way. We obtain a category AFoam of webs and anchored foams.

The category AFoam has a contravariant involution ! which is the identity on webs and

which sends a foam to its reflection about R
2 �

˚

1
2

	

, preserving the labels of anchor

points. As for closed foams, denote by s.V / and v.V / the singular graph and singular

vertices, respectively, of a foam with boundary V . Define the degree of V to be

(49) deg.V /D 2
�

jd.V /j C jp.V /j ��.V /
�

��.s.V //;

where d.V / is the set of dots on V .

The definition of admissible colorings extends naturally to anchored foams with bound-

ary. An admissible coloring induces a Tait coloring on the boundary webs. If a foam

with boundary V has an admissible coloring c, then by [18, Remark 2.8],

(50) deg.V /D 2jd.V /j C 2jp.V /j �
�

�.V12.c//C�.V13.c//C�.V23.c//
�

:

It follows that for a closed foam F , its evaluation hFi 2 R0
x is a homogeneous polyno-

mial of degree deg.F /.

Lemma 3.17 For composable foams V and W ,

deg.W V /D deg.W /C deg.V /:

Proof This follows from [18, Proposition 3.1] and jp.W V /j D jp.W /j C jp.V /j.

We now define state spaces for webs via universal construction and the evaluation

formula (39). For a web � , let

Fr.�/

denote the free R0
x–module generated by all anchored foams V from the empty web

to � . Define a bilinear form

.�;�/ W Fr.�/� Fr.�/! R0
x

by .V;W /D h!.V /W i. This bilinear form is symmetric since hFi D h!.F /i for any

closed anchored foam F . Define the state space h�i WD Fr.�/=ker..�;�// to be the
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Š ¿f2g ˚ ¿ ˚ ¿f�2g

a contractible circle

f1g f�1gŠ ˚

a bigon face

Š ˚

a square face

Š

a triangle face

Figure 9: Direct sum decompositions from [18, Section 3.3], where the

depicted regions do not contain the puncture.

quotient of Fr.�/ by the kernel

ker..�;�//D fx 2 Fr.�/ j .x;y/D 0 for all y 2 Fr.�/g

of the bilinear form. Note that .�;�/ is degree-preserving, so its kernel and the state

space h�i are graded R0
x–modules.

An anchored foam V W �0 ! �1 naturally induces a map

hV iW h�0i ! h�1i

of degree deg.V /, defined by sending the equivalence class of a basis element U 2Fr.�0/

to the class of the composition V U . This is functorial with respect to composition of

anchored foams, hW V i D hW ihV i for composable anchored foams with boundary V

and W .

Remark 3.18 For a web � and basis elements V1;V2 2 Fr.�/, an admissible coloring

of the closed foam !.V2/V1 induces a Tait coloring of � . Thus h�i D 0 if � has no

Tait colorings; see also [18, Proposition 3.16].

Proposition 3.19 The local1 isomorphisms in [18, Propositions 3.12–3.15], also

shown in Figure 9, hold.

Proof Proposition 3.14 guarantees that the explicit isomorphisms defined in [18] hold

in the anchored setting as well.

1Here local means that the webs involved in the isomorphisms are identical outside of a disk which is

disjoint from the puncture, and in this disk they are related as in the figures accompanying the statements

of the propositions.
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Proposition 3.20 Let � � P be a web with a noncontractible circle C which bounds

a disk in R
2 n� , and let � 0 D � n C be the web obtained by removing C . Then there

is an isomorphism

h�i Š h� 0i ˚ h� 0i ˚ h� 0i

given by the maps

�

�

�

�

˚

˚

�

�3

�

�2

�

�1

�

�
1

�

�
2

�

�
3

Proof This follows from Example 3.6 and the relation (44). Note that there are no

grading shifts in the three copies of h� 0i.

It is an interesting and nontrivial problem to identify the state spaces h�i. In the

construction in [18] without the anchor line, state spaces can be simplified using

the relations in [18, Section 3.3]; see Figure 9. In particular, bipartite webs always

contain a contractible circle, bigon, or square, so the state space in the bipartite case

is a free module of graded rank equal to the Kuperberg bracket [24], normalized as

in [15]; see also [18, Propositions 3.17 and 4.15]. The simplest web which cannot be

simplified using the relations in Figure 9 and for which the state space is unknown

is the dodecahedral graph, as explored in [9; 17], and, on the gauge theory side,

in [21; 22; 23].

One may also ask to identify state spaces in the presence of the anchor line and the

modified evaluation considered in this paper. Propositions 3.19 and 3.20 give some

ways to simplify state spaces. In general, we are not able to decompose the bigon,
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square, and triangle regions in Figure 9 if they contain the puncture. An extended

evaluation, obtained by introducing additional types of intersection points of L with

a foam, is discussed in Section 3.5. The following lemma addresses reducibility of

smallest webs.

Lemma 3.21 Let � � R
2 be a connected , planar , trivalent graph with no edges

connecting a vertex to itself. 2

(1) If � is bipartite , then � has at least two bounded faces with at most four edges

each.

(2) If at most one of the bounded faces of � has fewer than five edges , then � has at

least eight vertices.

Proof Let v, e, and f denote the number of vertices, edges, and faces (including the

unbounded face) of � , respectively. Label the faces 1; : : : ; f , and for 1 � i � f , let ri

denote the number of edges that form the boundary of the i th face. We have

(51)

f
X

iD1

ri D 2e D 3v;

where the second equality holds since � is trivalent.

We first prove statement .1/. Since � is bipartite, each ri is even. Suppose for the sake

of contradiction that at most one bounded face of � has four or fewer edges. Then (51)

implies
f

X

iD1

ri > 6.f � 2/;

so 12> 6f � 3v. On the other hand, an Euler characteristic computation gives

12 D 6.f � e C v/D 6f � 3v;

which is a contradiction.

Let us now address statement .2/. From (51) we obtain

3v � 5.f � 2/C 4 D 5f � 6

since, by assumption, there are f �2 faces with at least five edges each, and the remain-

ing two faces each have at least two edges. This together with an Euler characteristic

computation gives f � 6, and it follows that v � 8.

2A graph with such an edge has trivial state space; see Remark 3.18.
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�

Figure 10: The simplest nonreducible web in the punctured plane.

Corollary 3.22 Let � � P be a bipartite web. Then h�i is a free R0
x–module of rank

equal to the number of Tait colorings of � .

Proof By statement (1) of Lemma 3.21, any such web has either an innermost

noncontractible circle or a region, not containing the puncture, which either bounds

a closed loop, or is a bigon or square face. Thus state space can be reduced using

Propositions 3.19 and 3.20. Since the resulting web remains bipartite we can continue

the procedure until the state space is reduced to a direct sum of empty webs, each

of which is free of rank 1. On the other hand, the number of Tait colorings can be

computed using the same relations.

It is natural to ask what is the simplest web for which the state space cannot be reduced

using Propositions 3.19 and 3.20. By statement (2) of Lemma 3.21, such a web has

at least eight vertices. The web shown in Figure 10 has precisely eight vertices and

cannot be simplified using our local relations. We have not identified the state space

of this web, but it can be approached via the 4–periodic (and, in general, nonexact)

complex described in [18, Section 4.3]. It can be applied along any of the four edges of

Figure 10 web near either the marked or the infinite point. One of the other three webs

in the complex contains a loop and has trivial homology, but additional computations

are needed to identify the state space due to nonexactness of the complex.

An annular graph � � P is called reducible if its state space can be reduced to a sum

of those for the empty annular graph by recursively applying the relations in Figure 9

and relation in Proposition 3.20. It may make sense to also allow reductions to annular

graphs without Tait colorings (including graphs with loops), since such graphs have

trivial state spaces.

A reducible annular graph allows an identification of its state space with a suitable free

graded Rx–module by recursively applying the above state sum decompositions. As a
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special case, we have the following decomposition formula for collections of simple

closed curves in an annulus.

Proposition 3.23 Let � � P consist of n contractible circles and m noncontractible

circles. Then the state space h�i is a free R0
x–module of graded rank 3m.q2C1Cq�2/n.

In particular, for a reducible � , the graded rank of the free R0
x–module h�i can be

computed recursively.

Anchored foams and state spaces carry an additional .Z=2�Z=2/–grading as follows.

Recall that u1, u2 and u3 denote the nonzero elements of Z=2 � Z=2. For a foam V

with (possibly empty) boundary, define

adeg.V /D
X

p2p.V /

u`.p/:

We call adeg the annular degree. Clearly adeg is additive under disjoint union and

composition.

The annular degree extends to a .Z=2�Z=2/–grading on Fr.�/, for a web � � P , by

setting the ground ring R0
x to be concentrated in annular degree zero. Proposition 3.10

implies that hFi D 0 or adeg.hFi/D 0 for any closed foam F . It follows that .�;�/
preserves annular degree, so adeg descends to a .Z=2�Z=2/–grading on the state

space h�i. The annular grading is the unoriented version of the grading on state spaces

of annular oriented webs by the integral weight lattice of sl3 — see Section 4.4 — even

though the action of the latter is lacking on the equivariant annular state spaces.

In [18, Section 4] the authors consider localization of the unoriented SL.3/ theory given

by inverting the discriminant D D .x1 C x2/.x1 C x3/.x2 C x3/. This localization

results in a significant simplification of the theory, making it separable, so to speak. In

particular, a suitable 4–term sequence of web state spaces in [18, Section 4.3] is exact.

This localization easily extends to the annular case. The corresponding 4–term se-

quence is exact in the annular case as well. The ground ring for that theory is

R0
D

WD kŒx1;x2;x3;D
�1�, with k a characteristic two field. The analogue of [18,

Proposition 4.13] holds: the localized state space of an annular web � is a projective

R0
D

–module of rank equal to the number of Tait colorings of � . The latter is the number

of edge colorings of � into three colors such that at each vertex the colors are distinct.

Proof of this result in [18] easily adapts to the annular case, with the modification

that the region around the marked point can be inductively simplified, if necessary, by
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reducing to the other three terms in the exact sequence, until it has a single edge (a

loop around the marked point).

3.4 Remark on Lee’s theory

Recall the function

(52) f .x/D .x C x1/.x C x2/.x C x3/D x3 C E1x2 C E2x C E3

(in characteristic 2 signs do not matter) with coefficients in the ring Rx and roots in

R0
x � Rx . One can form the quotient ring A WD R0

x Œx�=.f .x//, naturally isomorphic

to the homology of a contractible circle in our theory. Let

(53) D D .x1 C x2/.x1 C x3/.x2 C x3/D E1E2 C E3

be the discriminant. Consider the localization

(54) R0
D

WD R0
x ŒD

�1�; AD WD R0
D

˝R0
x

A:

Introduce idempotents e1; e2; e3 2 AD,

(55) ei WD .x C xj /.x C xk/

.xi C xj /.xi C xk/
; fi; j ; kg D f1; 2; 3g:

We have

(56) 1 D e1 C e2 C e3; eiej D ıi;j ei :

These idempotents decompose the ring AD into the direct product

(57) AD Š R0
D

e1 � R0
D

e2 � R0
D

e3 Š R0
D

� R0
D

� R0
D
:

An idempotent ei can be visualized as floating on a facet of a foam F , in the localized

theory. These idempotents allow us to decompose an evaluation of a foam F with n

facets into 3n terms by summing over all ways to place each of these three idempotents

onto facets of F . Each term is straightforward to compute and equals zero unless the

idempotents define a Tait coloring (an admissible coloring) of F .

Idempotent ei bears a close relation to an anchor point labeled i . The anchor point

p on a facet f contributes the term
p

f 0.xc.f //D
p

.xc.f /C xj /.xc.f /C xk/ to the

evaluation hF; ci. The square of this term is either 0 (if i ¤ c.f /) or the denominator

of ei , if i D c.f /, for any coloring c of F .
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Comparing ei and an anchor point p labeled i , when coloring c associates color c.f /¤ i

to the facet f carrying ei or p, both evaluations are zero. When c.f /D i , the idempo-

tented dot ei contributes 1 to the evaluation, while the anchor point contributes
p

f 0.xi/.

The denominator of ei is f 0.xi/.

One can try to unify ei and anchor points p by considering anchor lines and circles L

in R
3 possibly intersecting a foam F . Intersection points (anchor points) carry labels

i 2 f1; 2; 3g and a circle anchor points labeled i is the idempotent ei . Then a “small”

circle intersecting a facet f at two points, both labeled i , can also be converted into ei .

Notice that once ei are allowed, integrality is lost and an evaluation of such a foam

may contain denominators which are products of xi C xj .

For a different generalization, instead of a single line L � R
3 consider a 1–manifold

L properly embedded in R
3, say a finite union of lines and circles, possibly knotted.

All anchor points (intersection points with L) on a foam F carry labels, with the usual

contribution to the evaluation, as in formula (36). The integrality Theorem 4.15 still

holds for such generalized evaluation. In particular, given k points on a plane, one

can define various state spaces for webs � embedded in the plane and disjoint from

these marked points. Also note that for k � 2 punctures, bipartite graphs are in general

not reducible, which makes it harder to understand corresponding state spaces in the

oriented SL.3/ case.

Remark 3.24 A handle next to but disjoint from an anchor line can be written as a

sum of three lower genus terms intersecting the line — see (46) — which follows from

the formula

m ı�.1/D .x1 C x2/.x1 C x3/C .x1 C x2/.x2 C x3/C .x1 C x3/.x2 C x3/

D f 0.x1/Cf 0.x2/Cf 0.x3/:

3.5 Unlabeled anchor points and bigon decomposition

Direct sum decompositions for webs � containing a bigon, triangle, or square face

which do not contain the puncture are given in Proposition 3.19. On the other hand,

Proposition 3.20 describes how to simplify a web containing an innermost noncon-

tractible circle. In order to have direct sum decompositions for more general regions

containing the puncture, we introduce additional types of intersections of the anchor

line L with a foam and modify the evaluation h�i.
In addition to anchor points, which carry labels in f1; 2; 3g as in Definition 3.2, we

allow finitely many transverse intersections of L with a foam F away from the singular
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ı �i

Figure 11: Left, a type 1 anchor point marked ı and carrying no label. Right,

a type 2 anchor point marked � with label i 2 f1; 2; 3g.

graph s.F /, and we do not require labels. We will call the usual (labeled) anchor

points type 2, and the new (unlabeled) anchor points type 1. In the figures, we denote

type 2 anchor points by an asterisk � as usual, along with a label in f1; 2; 3g, and type

1 anchor points will be indicated by a small unshaded circle ı. Figure 11 illustrates the

convention. Let p1.F / and p2.F / denote the set of type 1 and type 2 anchor points,

respectively (using the notation in Section 3.1, p.F / D p2.F /). The definition of

admissible coloring remains the same.

We modify the evaluation in the presence of type 1 points as follows. Let c 2 adm.F /.

For p 2 p1.F / lying on some facet f 2 f .F /, let c.p/ WD c.f / denote the coloring

of the facet on which p lies. Also recall that for i 2 f1; 2; 3g, we write i 0; i 00 and j ; k

to denote the two complementary elements, so f1; 2; 3g D fi; j ; kg D fi; i 0; i 00g.

Define

zQı.F; c/D
Y

p2p1.F /

p

xc.p/0 C xc.p/00 ;(58)

Pı.F; c/D P .F; c/ � zQı.F; c/;(59)

hF; ciı D Pı.F; c/

Q.F; c/
;(60)

hFiı D
X

c2adm.F /

hF; ciı;(61)

where P .F; c/ and Q.F; c/ are as defined in (36) and (37). In other words, a type 1

point p on an i–colored facet contributes a factor of
p

xj C xk to the evaluation hF; ciı.

Remark 3.25 Type 1 intersection points are related to the triangle decoration from

[18, Section 4.1]. Precisely, the contribution of a type 1 point p to the square root in

(58) equals the inverse of placing a triangle decoration on the facet where p lies. See

relation (62), as well as Remark 3.4 for a related discussion.
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Note that a type 1 intersection point contributes half the degree of a type 2 point to the

degree of the evaluation and, thus, to the degree of a cobordism represented by a foam

with boundary.

Example 3.26 Consider a 2–sphere F carrying d dots and intersecting L in two type 1

anchor points,

� d

ı

ı

For 1 � i � 3, let ci 2 adm.F / color F by i . Then

hF; ciiı D
xd

i .xj C xk/

.xi C xj /.xi C xk/
;

hFiı D hF; c1iı C hF; c2iı C hF; c3iı

D
xd

1
.x2 C x3/

2 C xd
2
.x1 C x3/

2 C xd
3
.x1 C x2/

2

.x1 C x2/.x1 C x3/.x2 C x3/

D
xd

1
.x2

2
C x2

3
/C xd

2
.x2

1
C x2

3
/C xd

3
.x2

1
C x2

2
/

.x1 C x2/.x1 C x3/.x2 C x3/
:

Thus, hFiı D 0 if d D 0; 2, and hFiı D 1 if d D 1. For d � 3, the last expression above

equals the ratio of the antisymmetrizer with exponent .d; 2; 0/ and antisymmetrizer

with exponent .2; 1; 0/ (up to adding signs, which does not matter in characteristic 2).

Thus hFiı equals the Schur function s�.x1;x2;x3/ for the partition �D .d � 2; 1; 0/

when d � 3.

Example 3.27 Consider a 2–sphere F carrying d dots and intersecting L in one type 1

anchor point and one type 2 anchor point,

� d

�

ı

i
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Then F has one admissible coloring, and

hFiı D
xd

i

p

.xi C xj /.xi C xk/.xj C xk/

.xi C xj /.xi C xk/
D

xd
i

p
xj C xk

p

.xi C xj /.xi C xk/
:

From Example 3.27 we see that the evaluation hFiı in general has denominators and

square roots, so we can only conclude that

hFiı 2 zRı WD kŒx1;x2;x3; .x1 C x2/
�1=2; .x2 C x3/

�1=2; .x1 C x3/
�1=2�:

Note that zRı is a subring of zR00
x; see Section 3.1 and diagram (34).

We use zRı as the ground ring of the theory. Evaluations of closed anchored foams F

with two types of anchor points belong to this ring. We define the state space h�iı

of a trivalent graph � � P using this evaluation and following the general recipe

of Section 3.3. The state space is a graded zRı–module, but, due to the presence of

invertible elements .xi C xj /
1=2 of degree 1, grading carries little information, and for

many purposes one can downsize and consider the degree zero part h�i0
ı of the state

space, which is a module over the degree 0 subring zR0
ı of zRı.

This theory is functorial and foams with top and bottom boundary and anchor points of

those two different types induce maps between the corresponding state spaces. Various

direct sum decompositions that hold for the unoriented SL.3/ theory h�i hold for this

theory as well.

We also have local relations involving type 1 intersection points.

Lemma 3.28 The following local relations3 hold for the theory h�iı:

ı

ı
�D E1 C(62)

ı

ı

ı

ı
D C(63)

3To clarify relation (63): the first term on the right-hand side of the equality has a type 1 anchor point on

each of two front-facing half-bubbles, while the second term has a type 1 anchor point on each of the two

back-facing half-bubbles.
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D
ı

ı
(64)

ı

ı

D 0(65)

Proof Relation (62) is straightforward and left to the reader. Let us verify relation (63).

Denote by F the foam on the left-hand side of the equality, and denote by F1 and F2 the

two foams on the right-hand side. There is a natural identification adm.F1/D adm.F2/.

Let c 2 adm.F1/ be a coloring in which the front two half-bubble facets are differ-

ently colored, say the top front half-bubble is colored j , the bottom front half-bubble

is colored k, and the remaining “big” facet is colored i . Continue to denote by

c 2 adm.F2/ the corresponding coloring of F2. The top type 1 intersection point of

F1 contributes
p

xi C xk to hF1; ci and the bottom type 1 intersection point of F1

contributes
p

xi C xj , while the contributions of these points to hF2; ci are reversed.

Thus in characteristic two we have

hF1; ci C hF2; ci D 0:

Next, the admissible colorings of F are in natural bijection with the admissible colorings

of F1 (and of F2) in which the front half-bubbles of F1 are colored the same. Let

c 2 adm.F /, and let c0 2 adm.F1/ Š adm.F2/ denote the corresponding colorings.

Suppose that c0 colors the front half-bubbles of F1 by j , the “big” facet by i , and the

back half-bubbles by k. Then

hF1; c0i D xi C xk

xj C xk

hF; ci and hF2; c0i D xi C xj

xj C xk

hF; ci;

from which we obtain

hF; ci D hF1; c0i C hF2; c0i;

which completes the proof of relation (63).
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We now address the relation (64). Let G denote the foam on the left-hand side of the

equation, and let G0 denote the foam on the right-hand side. Let c 2 adm.G/, and

assume c colors the “big” facet of G by i , the front bubble by j , and the back bubble

by k. Let c0 2 adm.G/ denote the coloring which is identical to c except the front

and back bubbles are colored by k and j , respectively. Let c00 2 adm.G0/ denote the

coloring of G0 in which the depicted facet is colored i , and the remaining facets are

colored according to c (equivalently, c0). We claim that

hG; ci C hG; c0i D hG0; c00i;

which completes the proof. To verify the above equality, observe that

hG; ci D xi C xk

xj C xk

hG0; c00i and hG; c0i D xi C xj

xj C xk

hG0; c00i:

The proof of relation (65) is similar and left to the reader.

The previous lemma allows us to simplify the state space h�iı assigned to a web � �P

with a bigon region containing the puncture.

Proposition 3.29 The two maps shown in Figure 12 are mutually inverse isomorphisms

between state spaces of graphs in the theory h�iı.

Proof This follows from the relations in Lemma 3.28.

4 Oriented SL.3/ anchored homology

In this section we recall oriented SL.3/ foams, which were introduced in [15] in the

context of sl.3/ link homology. An equivariant analogue was defined in [28]; see

also [10; 26; 27; 29; 33] for various aspects of SL.3/ foams and link homology. In

Section 4.1 we define an evaluation of oriented SL.3/ foams via colorings in the style

of Robert and Wagner [34] and show in Theorem 4.26 that our evaluation agrees with

that of [28]. In Section 4.2 we deform the evaluation in the presence of the anchor

line L. In Theorem 4.15 we show that our evaluation is always a polynomial.

To avoid introducing new notation, in this section we will reuse the notation for various

rings from Section 3:

� R0
x D ZŒx1;x2;x3� is the ring of polynomials in three variables.

� Rx DZŒE1;E2;E3� is the subring of R0
x that consists of symmetric polynomials

in x1, x2 and x3, with generators Ei being the elementary symmetric polynomials

E1 D x1 C x2 C x3; E2 D x1x2 C x1x3 C x2x3; E3 D x1x2x3:
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Figure 12: Isomorphisms which simplify a bigon region containing the punc-

ture, for the theory h�iı. In the top map, the top foam has a type 1 point on

the front half-bubble, and the bottom foam has a type 1 point on the back

half-bubble. In the bottom map, the first foam has a type 1 point on the front

half-bubble, and the second foam has a type 1 point on the back half-bubble.

� R00
x D R0

x Œ.x1 � x2/
�1; .x2 � x3/

�1; .x1 � x3/
�1� is a localization of R0

x given

by inverting xi � xj , for 1 � i < j � 3.

� zR0
x D R0

x Œ
p

x1 � x3;
p

x2 � x3;
p

x1 � x3 � is the extension of R0
x obtained by

introducing square roots of
p

xi � xj , for 1 � i < j � 3.

� zR00
x D zR0

x Œ.x1 � x2/
�1; .x2 � x3/

�1; .x1 � x3/
�1� is a suitable localization of

the ring zR0
x .

All five of these rings are graded by setting deg.x1/D deg.x2/D deg.x3/D 2. Inclu-

sions of the above rings are summarized in the following diagram:

(66)

zR0
x � zR00

x

[ [
Rx � R0

x � R00
x
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4.1 Oriented SL.3/ foams and their evaluations

We begin by recalling the definition of oriented SL.3/ foams from [15, Section 3.2].

Definition 4.1 A (closed) oriented SL.3/ prefoam F consists of the following data:

� An orientable surface F 0 with connected components F1; : : : ;Fk and a partition

of the boundary components of F 0 into triples. The underlying CW structure

of F is obtained by identifying the three circles in each triple. The image of

the three circles in each triple becomes a single circle in F , called a singular

circle. The image of the surfaces Fi are called facets. Three facets meet at each

singular circle.

� For each singular circle Z, we fix a cyclic ordering of the three facets meeting

at Z. There are two possible choices of cyclic ordering for each Z.

� Each facet may carry some number of dots, which are allowed to float freely

along the facet but cannot cross singular circles.

A oriented SL.3/ foam is a prefoam as above equipped with an embedding into R
3,

along with an orientation on each facet such that any two of the three facets meeting

at each singular circle are incompatibly oriented, as shown in Figure 13, left. Each

singular circle Z acquires an induced orientation; see Figure 13, middle. This induced

orientation on Z specifies a cyclic ordering of the three facets meeting at Z by following

the left-hand rule — Figure 13, right — and we require this to match the cyclic ordering

specified by the prefoam F .

Note that unlike unoriented foams considered in Section 3, the oriented SL.3/ prefoams

in the present section do not contain singular vertices. When there is no risk of confusion

Figure 13: Left: orientations of three facets meeting at a singular circle.

Middle: the induced orientation of a singular circle. Right: the induced cyclic

ordering.
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between the foams introduced in the Definition 4.1 and those of Section 3, in this

section we will simply write (pre)foam rather than oriented SL.3/ (pre)foam.

For a prefoam F , let ‚.F / denote the set of its singular circles and �.F /D j‚.F /j
the number of singular circles. Each Z 2‚.F / has a neighborhood homeomorphic to

the product of a circle S
1 and a tripod. Let f .F / denote the set of facets of F . We

use the definitions of preadmissible and admissible colorings of prefoams and foams

from Section 3 in the present situation. For a prefoam F , adm.F / denotes the set of

admissible colorings of F . Note that if F is a foam, every preadmissible coloring is

also admissible.

Fix a prefoam F and an admissible coloring c 2 adm.F /. For 1 � i ¤ j � 3, bicolored

surfaces Fij .c/ consist of all facets colored i or j ; each Fij .c/ is a closed, orientable

surface. For 1 � i � 3, let Fi.c/ be the surface consisting of all facets of F which are

colored i by c; the surface Fi.c/ is orientable and has �.F / boundary components.

Denote by Fi.c/ the closed surface obtained by gluing disks along boundary components

of Fi.c/. We have

(67)
�.Fi.c//D �.Fi.c//C �.F /; 1 � i � 3;

�.Fij .c//D �.Fi.c//C�.Fj .c//; 1 � i < j � 3:

The three facets meeting at each singular circle are colored by i , j and k, whereas

before we used i , j and k to denote the three elements of f1; 2; 3g. We now define

quantities �Û.c/ and �Û
ij .c/ associated with the set of singular circles ‚.F / and the

admissible coloring c.

Definition 4.2 Let F be a prefoam with admissible coloring c, and let 1 � i < j � 3.

A singular circle Z 2‚.F / is positive with respect to .i; j / if the cyclic ordering of

the colors of the three facets meeting at Z is .i k j /. If F is a foam, then an equivalent

formulation is as follows: when looking along the orientation of Z with the facet

colored k, as in Figure 14, the i–colored facet is to the left of the j –colored facet.

Otherwise, we say Z is negative with respect to .i; j /. See Figure 14, left, for a pictorial

definition. Let �C
ij .c/ (resp. ��

ij .c/) denote the number of positive (resp. negative) circles

with respect to .i; j /. We have

�C
ij .F; c/C �

�
ij .F; c/D �.F /:

We say that a singular circle Z is positive with respect to c if the colors of the three

facets meeting at Z are .1 2 3/ in the cyclic ordering, and otherwise Z is negative;
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i j

k

1 3

2

1 2

3

Figure 14: Left: a positive .i; j /–circle, where i < j . Middle: a positive

singular circle. Right: a negative singular circle.

see Figure 14, middle and right. Let �C.F; c/ (resp. ��.F; c/) denote the number of

positive (resp. negative) circles in F with respect to c. We have

(68) �C.F; c/C ��.F; c/D �.F /:

We will often omit F from the notation and simply write � , �Û
ij .c/, and �Û.c/.

We now define the evaluations hF; ci and hFi. For a prefoam F , c 2 adm.F /, and

1 � i � 3, let di.c/ denote the number of dots on facets colored i . Define

P .F; c/D
3

Y

iD1

x
di .c/
i ;(69)

Q.F; c/D
Y

1�i<j�3

.xi � xj /
�.Fij .c//=2;(70)

s.F; c/D
3

X

iD1

i�.Fi.c//=2 C
X

1�i<j�3

�C
ij .c/:(71)

Set

hF; ci D .�1/s.F;c/
P .F; c/

Q.F; c/
;(72)

hFi D
X

c2adm.F /

hF; ci:(73)

A priori, the evaluations hF; ci and hFi lie in the ring R00
x; see diagram (66).

In what follows, we use the symbol � to mean equality modulo 2. Note that

(74)

3
X

iD1

i�.Fi.c//=2 � �.F1.c//C�.F3.c//

2
;

Algebraic & Geometric Topology, Volume 23 (2023)



3182 Rostislav Akhmechet and Mikhail Khovanov

since �.F2.c// is even. Moreover, from (67) we obtain

(75)

3
X

iD1

i�.Fi.c//=2 � � C
3

X

iD1

i�.Fi.c//=2:

Lemma 4.3 For a prefoam F and c 2 adm.F /,
X

1�i<j�3

�C
ij .c/� �C.c/:

It follows that

(76) s.F; c/�
3

X

iD1

i�.Fi.c//=2 C ��.c/:

Proof Let Z 2‚.F /. Observe that if Z is positive with respect to c, then it contributes

only to �C
13
.c/. Likewise, if Z is negative then it contributes to both �C

12
.c/ and �C

23
.c/

but not to �C
13
.c/, which verifies the first equality. The second equality follows from

(75) and (68).

Example 4.4 Let F be a 2–sphere S
2 with d dots. For 1 � i � 3, let ci 2 adm.F /

color F by i . We have

hFi D hF; c1i C hF; c2i C hF; c3i

D �
xd

1

.x1 � x2/.x1 � x3/
C

xd
2

.x1 � x2/.x2 � x3/
�

xd
3

.x1 � x3/.x2 � x3/

D
�xd

1
.x2 � x3/C xd

2
.x1 � x3/� xd

3
.x1 � x2/

.x1 � x2/.x2 � x3/.x1 � x3/

D �s.d�2;0;0/.x1;x2;x3/D �hd�2.x1;x2;x3/D �
X

iCjCkDd�2

xi
1x

j
2
xk

3 ;

where s.d�2;0;0/.x1;x2;x3/ is the Schur function of the partition .d � 2; 0; 0/, and

hd�2.x1;x2;x3/ is the complete symmetric function of degree d � 2. In particular

hFi D 0 if d D 0 or d D 1, and hFi D �1 if d D 2.

Example 4.5 Let F be the theta foam

�

�

�

d1

d2

d3
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Given any c 2 adm.F /, each capped-off surface Fi.c/ and each bicolored surface

Fij .c/ is a 2–sphere. In particular,

s.F; c/� �C.c/:

For � 2 S3, let c.�/ 2 adm.F / denote the coloring which colors the top facet by �.1/,

the middle facet by �.2/, and the bottom facet by �.3/. We have

hFi D
X

�2S3

hF; c.�/i D
P

�2S3
.�1/�

C.c.�//x
d1

�.1/
x

d2

�.2/
x

d3

�.3/

.x1 � x2/.x1 � x3/.x2 � x3/
;

and moreover

�C.c.�//� j� j;
where j� j is the length of � .

Therefore if d1 � d2 � d3,

hFi D s.d1�2;d2�1;d3/.x1;x2;x3/;

the Schur function with partition .d1 � 2; d2 � 1; d3/. In particular, hFi D 0 if d1, d2

and d3 are not distinct. If d1, d2 and d3 are distinct and d1 C d2 C d3 � 3, then up to

cyclic permutation there are two choices:

� �

� D 1,

�

�� D �1.

The symmetric group S3 naturally acts on adm.F / and on the five rings in the dia-

gram (66). The following lemma is analogous to [34, Lemma 2.16].

Lemma 4.6 Let F be a prefoam , c 2 adm.F /, and � 2 S3. Then

�.hF; ci/D hF; �.c/i:

Proof We may assume that � is a transposition .i i C 1/ for i D 1; 2. We have

�.P .F; c//D P .F; �.c//; �.Q.F; c//D .�1/�.Fi.iC1/.c//=2Q.F; �.c//:

Let k 2 f1; 2; 3g n fi; i C 1g. Note that a singular circle Z is positive with respect to c

if and only if Z is negative with respect to �.c/, so

�C.c/C �C.�.c//D � D ��.c/C ��.�.c//:
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Moreover,

Fi.c/D FiC1.�.c//; FiC1.c/D Fi.�.c//; Fk.c/D Fk.�.c//:

Therefore

s.F; c/� s.F; �.c//D �.FiC1.c//��.Fi.c//

2
C ��.c/� ��.�.c//

� �.FiC1.c//��.Fi.c//

2
C �

� �.FiC1.c//C�.Fi.c//

2

�
�.Fi.iC1/.c//

2
:

Corollary 4.7 The evaluation hFi is a symmetric rational function.

Later we will prove that hFi is in fact a polynomial; see Corollary 4.16.

Lemma 4.8 Let i 2 f1; 2g, let F be a prefoam , and let c 2 adm.F / be an admissible

coloring. Suppose c0 2 adm.F / is obtained from c by a .1; 2/–Kempe move along a

surface  � F12.c/. Then

s.F; c/� s.F; c0/C 1
2
�. /:

Proof Note that this is analogous to [34, Lemma 2.19]. Letting �. / denote the

number of seam circles on  , we have

��.c/C ��.c0/� �. /� �.F1.c/\ /:
Note also that

�.F1.c//��.F1.c
0//D �.F1.c/\ /��.F2.c/\ /;

�.F2.c//��.F2.c
0//D �.F2.c/\ /��.F1.c/\ /:

We compute

s.F; c/� s.F; c0/� �.F1.c//��.F1.c
0//

2
C

2
�

�.F2.c//��.F2.c
0//

�

2
C �. /

� �.F2.c/\ /��.F1.c/\ /
2

C�.F1.c/\ /

� 1
2
�. /:

4.2 Oriented anchored SL.3/ foams and their evaluations

Definition 4.9 An oriented anchored SL.3/ foam F is an oriented foam F 0 � R
3

that may intersect the anchor line L at finitely many points away from the singular
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circles of F 0, so that each intersection point belongs to some facet of F 0, and moreover

these intersections are required to be transverse. Denote by p.F /D F 0 \ L the set of

intersection points (anchor points) of F . The anchor points carry labels in f1; 2; 3g;

that is, F comes equipped with a fixed map

` W p.F /! f1; 2; 3g:

Fix an anchored foam F and an admissible coloring c of the underlying foam F 0.

Each anchor point p 2 p.F / lying on a facet f inherits a color c.p/ WD c.f /. As

in Section 3, we say that c is an admissible coloring of the anchored foam F if for

each p 2 p.F /, the color of p equals the label of p, that is, c.p/D `.p/. Denote by

adm.F / the set of admissible colorings of F .

For i 2 f1; 2; 3g, let i 0 and i 00 denote the complementary elements, so that fi; i 0; i 00g D
f1; 2; 3g. Define the evaluations

hF; ci D .�1/s.F;c/
P .F; c/

Q.F; c/

�

Y

p2p.F /

.�1/c.p/�1.xc.p/� x`.p/0/.xc.p/� x`.p/00/

�1=2

;(77)

hFi D
X

c2adm.F /

hF; ci;(78)

where P .F; c/, Q.F; c/ and s.F; c/ are as defined in (69), (70) and (71), respectively.

Let us explain the square root in (77). We have c.p/D `.p/ for every anchor point

p 2 p.F /. If p is labeled i , then it contributes

.�1/i�1.xi � xj /.xi � xk/

to the product under the square root. More concretely, the product of the two terms

under the square root, for a fixed anchor point p, is equal to

.x1 � x2/.x1 � x3/ if c.p/D 1;

.x1 � x2/.x2 � x3/ if c.p/D 2;

.x1 � x3/.x2 � x3/ if c.p/D 3:

Let an.i/ be the number of anchor points p with c.p/D i . Then for 1 � i < j � 3 the

sum an.i/C an.j / is even, which follows from Proposition 3.10.

We define the square root as the product

(79) zQ.F; c/ WD
Y

1�i<j�3

.xi � xj /
.an.i/Can.j//=2
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and rewrite formula (77) as

hF; ci WD .�1/s.F;c/
P .F; c/ zQ.F; c/

Q.F; c/

D .�1/s.F;c/P .F; c/
Y

1�i<j�3

.xi � xj /
.an.i/Can.j/��.Fij .c///=2:

Note that zQ.F; c/ depends only on the labels of anchor points and not on the color-

ing c, as long as c respects labels of anchor points (otherwise, the evaluation is 0).

Consequently, it can also be denoted by zQ.F /. Alternatively, it may be useful to allow

more general colorings c, with zQ.F; c/ D 0 for c not compatible with the labels of

anchor points.

Recall diagram (66) and the surrounding discussion for notations of various rings. The

above formula implies the following proposition.

Proposition 4.10 The evaluation hF; ci is an element of R00
x .

Remark 4.11 As discussed in Remark 3.5, if c is an admissible coloring of the

underlying foam F 0 but not of the anchored foam F , then the evaluation (77) is still

well-defined and equal to zero. Even if we don’t restrict the notion of admissible

colorings of an anchored foam to those which color anchor points according to their

labels, additional terms in the evaluation will each be 0, not contributing anything.

Example 4.12 Let F be a 2–sphere S
2 carrying d dots and intersecting L twice. Then

hFi D 0 unless both anchor points are labeled by i 2 f1; 2; 3g. In this case, there is one

admissible coloring c which colors F by i . We see that s.F; c/� i , and the evaluation

is

hFi D .�1/ixd
i :

Example 4.13 Consider the theta foam F whose facets each intersect L exactly once,

�

�

�

d1

d2

d3

�

�

�

i

j

k
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There is one admissible coloring c, and we have

hFi D hF; ci D
(

x
d1

i x
d2

j x
d3

k
if .i; j ; k/D .1; 3; 2/ or a cyclic permutation;

�x
d1

i x
d2

j x
d3

k
if .i; j ; k/D .1; 2; 3/ or a cyclic permutation:

The symmetric group S3 acts on all five of the rings in diagram (66). Recall also that

S3 acts on the set of admissible colorings of an unanchored foam (ie those considered

in Section 4.1). However, for an anchored foam F , c 2 adm.F /, and � 2 S3, the

coloring �.c/ is in general not admissible for F .

Consider instead the anchored foam �.F / defined as follows. The underlying foam

of �.F / agrees with the underlying foam of F . If anchor points of F are labeled by

` W p.F /! f1; 2; 3g, then the anchor points of �.F / are labeled by �.l/ W p 7! �.`.p//.

Note that � provides a bijection adm.F /Š adm.�.F // via c 7! �.c/. The following

lemma says that the evaluations hFi and h�.F /i differ by a sign, and moreover the

sign depends only on � and on labels of anchor points of F .

Lemma 4.14 For an anchored foam F , c 2 adm.F /, and � 2 S3, we have

�.hF; ci/D .�1/".F;�/h�.F /; �.c/i;
where

(80) ".F; �/D
X

1�i<j�3
�.i/>�.j/

an.i/C an.j /

2
:

It follows that

�.hFi/D .�1/".F;�/h�.F /i:

Proof By Lemma 4.6,

�

�

.�1/s.F;c/
P .F; c/

Q.F; c/

�

D .�1/s.�.F /;�.c//
P .�.F /; �.c//

Q.�.F /; �.c//
:

It is clear that

�. zQ.F //D .�1/".F;�/ zQ.�.F //;

and the first equality follows. For the second equality, we have

�.hFi/D
X

c2adm.F /

�.hF; ci/

D .�1/".F;�/
X

c2adm.F /

h�.F /; �.c/i

D .�1/".F;�/h�.F /i:
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For 1 � i ¤ j � 3, consider the ring

R00
ij WD R0

x Œ.xi � xk/
�1; .xj � xk/

�1�:

Each R00
ij is a subring of R00

x . A permutation � 2 S3 sends R00
ij isomorphically onto

R00
�.i/�.j/

.

We are now ready for the main result of this section.

Theorem 4.15 The evaluation hFi of an anchored foam is an element of R0
x , the

polynomial ring in variables x1, x2 and x3.

Proof The proof is similar to that of [18, Theorem 2.17] and [34, Proposition 2.18].

By Lemma 4.14, it suffices to show that hFi 2 R00
12

for any anchored foam F . This is

because we may take a permutation � 2 S3 sending 1 to i and 2 to j , and consider the

anchored foam ��1.F /. Then h��1.F /i 2 R00
12

implies that

ÛhFi D Ûh�.��1.F //i D Û�.h��1.F /i/ 2 R00
ij ;

where the first equality comes from Lemma 4.14. It follows that

hFi 2 R00
12 \ R00

23 \ R00
13 D R0

x :

Let us show that hFi 2 R00
12

. Partition adm.F / into equivalence classes as follows.

For c 2 adm.F /, the class Cc containing c consists of colorings obtained from c by

performing a sequence of .1; 2/ Kempe moves along surfaces in F12.c/ which are

disjoint from L. If F12.c/ has n connected components, k � 0 of which are disjoint

from L, then Cc consists of 2k elements. We will show that

X

c02Cc

hF; c0i 2 R00
12;

which will conclude the proof.

Write  WD F12.c/ as a disjoint union

 D 0 [ 1 [ � � � [ k ;

where each  a, for a D 1; : : : ; k, is connected and disjoint from L, and where each

component of  0 intersects L. For i D 1; 2 and a D 1; : : : ; k, let ti.a/ denote the
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number of dots on i–colored facets (according to c) of  a, and let t3 denote the number

of dots on 3–colored facets (according to c) of F . We claim that

(81)
X

c02Cc

hF; c0i D

x
t3
3

�
Qk

aD1

�

x
t1.a/

1
x

t2.a/

2
C.�1/�. a/=2x

t1.a/

2
x

t2.a/

1
..x1�x3/=.x2�x3//

`†a
.c/=2

�

� zQ.F /
.x1�x2/�. /=2.x1�x3/�.F13.c//=2.x2�x3/�.F23.c//=2

;

where

� ` a
.c/ 2 2Z is an even integer such that

�.F13.c
0//D �.F13.c//� ` a

.c/; �.F23.c
0//D �.F23.c//C ` a

.c/

for the coloring c0 2 Cc which is obtained from c by a .1; 2/ Kempe move

along  a. See [18, Lemma 2.12(3)] for details regarding this integer.

� zQ.F / is the contribution from the anchor points of F ; see (79).

To verify the claimed equality, expand the product to obtain 2k terms, each of which

corresponds to one of the 2k colorings in Cc . That the sign is correct follows from

Lemma 4.8.

Finally, we argue that .x1 � x2/
�. /=2 divides the numerator of (81). Positive contri-

butions to �. / come from 2–sphere components of  . Each  a which is a 2–sphere

contributes one to the exponent �. /=2. On the other hand, the corresponding factor

in the product in the numerator of (81) is divisible by x1 � x2. The remaining positive

contributions to �. /=2 come from 2–sphere components of  0. Such a component

 0 contains at least two anchor points, each labeled 1 or 2, so the contribution from

 0 can be canceled with terms in zQ.F /.

Corollary 4.16 If F is a prefoam or a foam which is disjoint from L, then hFi 2 Rx ,

the ring of symmetric polynomials in x1, x2 and x3.

Proof This follows from Lemma 4.14 and Theorem 4.15.

4.3 Skein relations

In this section we record several local relations involving oriented anchored SL.3/

foams.

Lemma 4.17 The following local relations hold for anchored foams. Seam lines are

drawn in bold in relation (85) to clarify the picture:

� � � D E1 � E2 C E3� � �(82)
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� � �

� � �

C C
�

�

CD � C E1 � E2(83)

�

�

D �(84)

� D C(85)

Proof Proofs of these four relations are similar to Propositions 2.33, 2.22, 2.23 and

2.24 in [18], respectively, with the caveat that we must keep track of the sign (71).

Moreover, S3 symmetry is used in [18] to simplify the calculations. Anchor points

and their labels are the same for the foams depicted in each of these four relations, so

Lemma 4.14 implies that we may use S3 symmetry in a similar manner.

We verify relation (83) and leave the remaining three relations to the reader. Let F

denote the foam appearing on the left-hand side of the equality. The six foams on

the right-hand side are identical except for placement of dots. We denote them by

G1; : : : ;G6, so that the relation reads

hFi D �.hG1i C hG2i C hG3i/C E1.hG4i C hG5i/� E2hG6i:

Admissible colorings of G1; : : : ;G6 are in canonical bijection. For c 2 adm.G1/, let

hG; ci WD �.hG1; ci C hG2; ci C hG3; ci/C E1.hG4; ci C hG5; ci/� E2hG6; ci:

There are two types of colorings of G1: those which color the two depicted disks the

same, and those which color them differently. Those of the first type are in canonical

bijection with colorings of F .

Suppose c 2 adm.G1/ colors both disks the same color, say i , and denote by c 2
adm.G2/ Š � � � Š adm.G6/ and c0 2 adm.F / the corresponding colorings. We will
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show that hF; c0i D hG; ci. We may assume i D 1. Then

hG1; ci D hG2; ci D hG3; ci D x2
1hG6; ci; hG4; ci D hG5; ci D x1hG6; ci;

which yields

hG; ci D �3x2
1hG6; ci C 2E1x1hG6; ci � E2hG6; ci D �.x1 � x2/.x1 � x3/hG6; ci:

To compare this with hF; c0i, observe that

�.F1.c
0//C 2 D �.G6

1.c//; �.F2.c
0//D �.G6

2.c//; �.F3.c
0//D �.G6

3.c//;

which implies s.F; c0/� s.G; c/C 1. Moreover,

�.F12.c
0//C2D�.G6

12.c//; �.F13.c
0//C2D�.G6

13.c//; �.F23.c
0//D�.G6

23.c//:

Therefore,

hG6; ci D � hF; c0i
.x1 � x2/.x1 � x3/

;

which verifies hF; c0i D hG; ci.

To complete the proof, suppose that c colors the top depicted disk by i and the bottom

disk by j , with i ¤ j . We have

hG1; ci D x2
i hG6; ci; hG2; ci D xixj hG6; ci; hG3; ci D x2

j hG3; ci;
hG4; ci D xihG6; ci; hG5; ci D xj hG6; ci:

Therefore hG; ci D 0, which concludes the proof.

Lemma 4.18 Let F be an anchored foam. Denote by Fn;m the anchored foam obtained

from F by adding a bubble (disjoint from L) to some facet in F , with the two new facets

carrying n and m dots respectively, such that the facet with n dots directly precedes the

facet with m dots in the cyclic ordering. Let Fn denote the foam obtained from F by

adding n dots to the same facet ,

� n

� m

� n

Fn Fn;m

Then

hFn;ni D 0; hF1;0i D �hF0;1i D hFi; hF2;0i D �hF0;2i D E1hFi � hF1i:
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Remark 4.19 The relations in Lemmas 4.17 and 4.18 also hold for prefoams.

Similar to the SL.2/ and unoriented SL.3/ setting, for oriented SL.3/ foams we allow

shifted dots i D � � xi (1 � i � 3/ on a facet:

i D � xi�

They must be disjoint from L and are allowed to float freely on their facets but cannot

cross seam lines.

Lemma 4.20 The following local relations hold :

�

�

1

1
�

�

�

2

2

�

�

3

3
D C �(86)

�

�

i

i

j

kD .�1/i�1(87)

.xj � xk/
�

i
�

�

k

j

�

�

j

k

D C(88)

In the last equation we assume j < k.

Proof We verify (86) and leave the remaining relations to the reader. The argument

is similar to that of relation (44) in Lemma 3.15, so we will be brief. Let F denote

the foam on the left-hand side, and let G1, G2 and G3 denote the three foams on the

right-hand side, with superscript corresponding to labels of the anchor points. For

1 � i � 3, let admi.F / consist of all admissible colorings of F which color the depicted

tube by i . There is a natural bijection admi.F /Š adm.Gi/.

Given c 2 admi.F /, let c0 2 adm.Gi/ denote the corresponding coloring. Arguing as

in the proof of Lemma 3.15, we obtain

hF; ci D ÛhGi ; c0i:
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Figure 15: The orientations at each trivalent vertex of an oriented SL.3/ web

must be either all outgoing or all incoming.

It remains to show that the above sign is equal to .�1/i . We have

�.Fj .c//D �.Gi
j .c

0//; �.Fk.c//D �.G
j

k
.c0//; �.Fi.c//D �.Gi

i .c
0//� 2;

�Û.F; c/D �Û.Gi ; c0/;

so s.F; c/� s.Gi ; c0/C i as needed.

4.4 State spaces

In this section we define state spaces associated to oriented SL.3/ webs. Much of this

is analogous to notions in Section 3.3.

Definition 4.21 An oriented SL.3/ web is a planar trivalent graph � � P in the

punctured plane, which may have closed loops with no vertices. Moreover, edges and

loops of � carry orientations such that each vertex is either a source or a sink, as shown

in Figure 15. In this section we will simply write web rather than oriented SL.3/ web.

The definition of an anchored foam with boundary in the oriented setting is analogous

to that of Definition 3.16. The singular graph of a foam with boundary V is a union of

finitely many arcs (with boundary in R
2 �f0; 1g) and circles (disjoint from R

2 �f0; 1g).

Intersection points of V with LŒ0;1� (anchor points) must be disjoint from the singular

graph and carry labels in f1; 2; 3g. Facets of V are required to carry orientations

satisfying the convention in Figure 13, left, near singular points. As usual, we will use

the left-hand rule to specify these orientations and cyclic orderings by orienting each

singular circle and arc, as shown in Figure 13, middle and right.

As in Section 3.3, let @iV WD V \ .R2 � f0g/ for i D 0; 1. The orientation of facets of

V induces an orientation on @0V and @1V via the convention in Figure 16. We view

V as a cobordism from the oriented web @0V to the oriented web @1V . Composition

W V of foams V and W with @1V D @0W is defined in the natural way.

Denote by p.V /D V \ LŒ0;1� the set of anchor points of V and by jd.V /j the number

of dots. The degree of V is defined to be

(89) deg.V /D 2.jd.V /j C jp.V /j ��.V //C�.@V /:
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Figure 16: Our convention for the induced orientation on the webs @0V

(bottom) and @1V (top).

Degree is clearly additive under composition and is compatible with the grading on R0
x ,

in the sense that if V is a closed foam, then deg.V /D deg.hV i/.

As in Definition 2.14, by an annular foam we mean a foam (with boundary) which is

disjoint from L. The composition of two annular foams is again annular.

There is an involution ! defined by reflecting a foam with boundary through R
2�f1=2g.

We have @1V D @0.!.V // and @0V D @1.!.V // for any foam with boundary V . Given

a web � � P , let Fr.�/ denote the free R0
x–module generated by foams with boundary

V from the empty web to � (that is, @0V D ¿, @1V D �). Define a bilinear form

.�;�/ W Fr.�/� Fr.�/! R0
x

by .V;W /D !.V /W . This bilinear form is symmetric since hFi D h!.F /i for any

closed foam F . The state space h�i is the quotient of Fr.�/ by the kernel

ker..�;�//D fx 2 Fr.�/ j .x;y/D 0 for all y 2 Fr.�/g

of the bilinear form,

h�i WD Fr.�/=ker..�;�//:

The state space h�i inherits the grading from Fr.�/ since .�;�/ is degree-preserving.

A foam with boundary V from �0 to �1 naturally induces a map

hV iW h�0i ! h�1i

of degree deg.V /, defined by sending the equivalence class of a basis element U 2Fr.�0/

to the equivalence class of V U 2 Fr.�1/. This assignment is functorial with respect to

composition of foams, hW V i D hW ihV i for composable V and W .
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Š ¿f2g ˚ ¿ ˚ ¿f�2g

(a) A contractible circle.

Š ˚

(b) A square face.

f1g f�1gŠ ˚
(c) A bigon face.

Figure 17: Local relations for state spaces of oriented SL.3/ webs, where the

depicted regions do not contain the puncture.

Lemma 4.22 The three local isomorphisms shown in Figure 17 hold.

Proof The arguments for relations (a), (b), and (c) of the figure are analogous to

Propositions 7, 9, and 8, respectively, of [15]. The relevant relations are Lemmas 4.17

and 4.18.

Proposition 4.23 Let � � P be a web with a noncontractible circle C which bounds a

disk in R
2 n� , and let � 0 D � n C be the web obtained by removing C . Then there is

an isomorphism

h�i Š h� 0i ˚ h� 0i ˚ h� 0i
given by the following maps (orientation of the circle is omitted ):

�

�

�

�

˚

˚

�

�3

�

�

�2

�

�1

�

�

�
1

�

�
2

�

�
3

Proof This follows from Example 4.12 and the neck-cutting relation (86).
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Theorem 4.24 For any web � � P , the state space h�i is a free graded R0
x–module

of rank equal to the number of Tait colorings of � . Moreover , if � is contractible , then

the graded rank of h�i equals the Kuperberg polynomial [24] of � , normalized as in

[15, Section 2].

Proof Lemma 3.21(1) guarantees that we can reduce h�i to a direct sum of empty webs

by recursively applying the local isomorphisms in Lemma 4.22 and Proposition 4.23.

It is then clear that the rank equals the number of Tait colorings.

If � is contractible, h�i can be simplified using only the isomorphisms in Lemma 4.22.

Upon taking graded ranks, these isomorphisms recover the recursive relations for

computing the Kuperberg polynomial.

Theorem 4.24 does not address the graded rank of state spaces of noncontractible webs.

These may be computed recursively. As a special case, if � consists of n contractible

and m noncontractible circles, then h�i is free of graded rank 3m.q2 C 1 C q�2/n.

Given a web � � P , we can forget the puncture and the anchor line L and apply the

universal construction to the evaluation (73). Precisely, let Fr.�/forget denote the free

Rx–module generated by all foams with boundary � (forgetting the anchor line). By

Corollary 4.16, we can define the bilinear form .�;�/ W Fr.�/forget � Fr.�/forget ! Rx

and the corresponding state space h�iforget in the usual way. Thus we obtain state

spaces for webs in R
2, functorial with respect to foams in R

2 � Œ0; 1�. These state

spaces and maps induced by foams are graded via (89), where jp.V /j D 0.

Proposition 4.25 For a contractible web � � P , there is a degree-preserving isomor-

phism

h�i Š h�iforget;

natural with respect to foams with contractible boundary and which are disjoint from L.

Proof This follows from Theorem 4.24.

On the other hand, Mackaay and Vaz [28] define an evaluation h�iMV for oriented

SL.3/ prefoams and use it to define an equivariant (also called universal) version of

the sl.3/ link homology introduced in [15]. They work over the ground ring ZŒa; b; c�

and associate a state space h�iMV to each web � � R
2 via the universal construction

applied to their prefoam evaluation h�iMV. To compare with our situation, identify

ZŒa; b; c� with the ring Rx D ZŒE1;E2;E3� of symmetric functions in x1, x2 and x3

via a ring isomorphism ' defined by '.a/D E1, '.b/D �E2 and '.c/D E3.
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�i

s.p/D 1

�i

s.p/D �1

Figure 18: The oriented intersection number between a facet and L.

Theorem 4.26 For any closed prefoam F ,

hFi D '.hFiMV/:

It follows that there are isomorphisms h�iforget Š h�iMV ˝ZŒa;b;c� Rx for any web

� � R
2, natural with respect to maps induced by foams with boundary.

Proof The evaluation h�iMV is defined by applying the local relations (3D), (CN),

(S), and .‚/ in [28, Section 2.1] to reduce any foam to an element of ZŒa; b; c�. Under

the change of variables a 7! E1, b 7! �E2 and c 7! E3, these four relations hold for

our evaluation h�i by relation (82), relation (83), Example 4.4, and Example 4.5. The

statement follows.

As in the SL.2/ and unoriented SL.3/ setting considered earlier in the paper, we can

define an additional grading on oriented SL.3/ foams and state spaces. Define the

abelian group

(90) ƒD Zw1 ˚ Zw2 ˚ Zw3=.w1 Cw2 Cw3/;

on three generators and one relation. ƒ is a free abelian group of rank two.

Orient the anchor line L from bottom to top. For an anchored foam V with boundary

and p 2 p.V / an anchor point lying on some facet f , let s.p/ 2 fÛ1g denote the

oriented intersection number between f and L (s.p/ does not depend on the label

of p); see Figure 18 for the convention. Define the annular degree of V to be

(91) adeg.V /D
X

p2p.V /

s.p/w`.p/ 2ƒ:

Proposition 4.27 If F is a closed anchored foam with an admissible coloring c, then

adeg.F /D 0.

Proof The proof is similar to that of Proposition 3.10. The intersection of F with

a generic half-plane that bounds L is an oriented web � with boundary points on L.
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An admissible coloring c of F induces a Tait coloring of � . The boundary points

(one-valent vertices) of � are colored according to their label. The sum in (91) may be

rewritten as the sum of terms Û.w1 Cw2 Cw3/D 0 over all trivalent vertices of � ,

where the sign is C1 if all edges are incoming and �1 if all edges are outgoing. Each i–

colored inner edge e of � bounds two trivalent vertices and contributes Û.wi �wi/D 0

since e is oriented towards one of its boundary vertices and away from the other. The

remaining edges, with one or both endpoints on L, contribute precisely adeg.F /.

Let � � P be an (annular oriented) SL.3/ web. An anchored foam F � R
3
� with

@F D � has a well-defined degree adeg.F / 2ƒ via (91). Furthermore, we equip the

coefficient ring R0
x with a ƒ–grading, with all elements of degree 0. This makes free

R0
x–module Fr.�/ into a ƒ–graded module, and Proposition 4.27 implies that the

kernel of the bilinear form on Fr.�/ is ƒ–graded as well. Consequently, the grading

descends to a ƒ–grading on the state space h�i. A foam V with boundary induces

a map hV iW h�@0�i ! h@1�i which changes adeg by adeg.V /. If V has no anchor

points, it induces an annular degree 0 map between the state spaces of its boundaries.

The state space of a contractible web is concentrated in annular degree zero.

ƒ–grading on h�i is the analogue of grading on finite-dimensional SL.3/ representa-

tions by the weight lattice. In fact, in the nonequivariant version of our construction,

where all the xi are set to 0 upon closed foam evaluation (and state spaces are defined

accordingly, over a ground field rather than the ring R0
x), the state space h�i is naturally

an sl3–representation. We also refer the reader to Queffelec and Rose [30] for the

construction of sutured annular sln–homology, with state spaces of annular webs

carrying an sln–action. In the equivariant case, it is not clear how to define an sl3–

action or what’s the substitute for it.

Denote by AFoamor the category whose objects consist of oriented SL.3/ webs in P

and whose morphisms are R0
x–linear combinations of anchored cobordisms between

webs. Morphism spaces in this category are triply graded via .qdeg; adeg/. The state

space construction assembles into a functor

h�iW AFoamor ! R0
x–g3mod

landing in the category of triply graded R0
x–modules.

This functor respects the trigradings on the hom spaces in the two categories. Restricting

to the subcategory of annular cobordisms and their linear combinations, the induced

maps have annular degree 0.
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1 0

0 1

Figure 19: The 0– and 1–smoothings used to define the SL.3/ chain complex.

4.5 Annular SL.3/–link homology

Let L � A � Œ0; 1� be a link in the thickened annulus. Projecting onto A � f0g D A

and identifying the interior of A with the punctured plane P , we obtain a link diagram

D � P . Following [15, Section 4; 28], form the cube of resolutions of D. Order

the crossings of D by 1; : : : ; n and use the rule in Figure 19 to decorate each vertex

u 2 f0; 1gn by the corresponding web Du � P .

Introducing signs to make the cube anticommute, collapsing the cube to a chain

complex, adding internal and homological degree shifts, and applying the functor

h�iW AFoamor ! R0
x–g3mod yields a chain complex C.D/ of Z ˚ƒ–graded R0

x–

modules. In homological degree i , the complex is given by

C i.D/D
M

jujDiCnC

hDuif2.nC � n�/� ig;

where nC and n� are the number of positive and negative crossings of D. The Z–

grading is given by deg — see (89) — and the ƒ–grading given by adeg — see (91).

Degree shifts in the cube of resolutions are applied only to the Z–degree deg. Diagrams

in P representing isotopic annular links are related by Reidemeister moves away from

the puncture. Proofs of Reidemeister invariance in [28] are local, and all local relations

(away from the anchor line) on foams in [28] also hold for our evaluation h�i by (83),

Example 4.4, and Example 4.5. It follows that the chain homotopy class of C.D/ is

an invariant of the annular link L. We define equivariant annular SL.3/ homology as

cohomology groups H.C.D//.

Moreover, foams between webs appearing in the cube of resolutions are disjoint from L.

Thus the differential preserves annular degree throughout the complex. Consequently,

equivariant annular SL.3/ link homology carries a homological grading as well as
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an internal Z ˚ƒ–grading .deg; adeg/. Cohomology groups H.C.D// are trigraded

R0
x–modules.

Example 4.28 We conclude with an explicit calculation. Let � denote the positive

crossing generator of the 2–strand braid group, let Ln denote the annular link obtained

as the annular closure of �n, and let C.Ln/ denote the corresponding chain complex.

Consider the complex C.n/,

@�1

fc0g
@�2

fc1g
@�3

fc2g� � �fcng
@�n

The right-most term is in homological degree zero and the quantum grading shifts ci

are c0 D 2n and ci D 2n C 2i � 1 for 1 � i � n. The right-most differential @�1 is the

unzip cobordism, and for �n � i � �2 the differentials are

@i D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�
�

if i is even;

�

�
�

if i is odd:

One can show that the chain complex C.Ln/ is chain homotopy equivalent to the

annular closure of C.n/.

Upon taking annular closures, the differential @i for even i is zero. Consider the

annular closure � of the web appearing in negative homological degree. The state space

h�i is a free R0
x–module of rank six, and we choose a basis fu1; di ;u2; d2;u3; d3g

shown in (92). Bidegrees of ui and di are .�1;�wi/ and .1;�wi/, respectively (not

accounting for grading shifts):

(92)

�

�
i

ui

�

�
i

�

di

After taking the annular closure, the differential @i , for i � �3 odd, is given as the

difference of foams F � G, where F puts a dot on the right-most facet and G puts a
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dot on the middle facet of the depicted generators. We have

F.ui/D .xj C xk/ui � di ; F.di/D xj xkui ;

G.ui/D di ; G.di/D .xj C xk/di � xj xkui :

In particular, @i for i � �3 and i odd is injective.

Let us now compute the right-most differential, which is the annular closure of the

unzip cobordism. Let �0 denote the web consisting of two essential counterclockwise

oriented circles, which is the annular closure of the term in homological degree zero

in C.n/. For 1 � i; j � 3, let gij W ¿ ! �0 be the foam consisting of two cups, each

intersecting the anchor line once, with the anchor point of the inner cup labeled i and

the anchor point of the outer cup labeled j . By Proposition 4.23, fgij g1�i;j�3 is a basis

for h�0i. After introducing the grading shift, the generator gij is in quantum degree 2n

and in annular degree wi Cwj D �wk . Let Z W � ! �0 denote the unzip cobordism.

By applying the neck-cutting relation (86) near the two circles that constitute �0, we

write @�1.ui/ as a sum

@�1.ui/D
X

1�s;t�3

.�1/sCtgst t �st ;

where �st is a theta foam as in Example 4.13, with no dots, and anchor points labeled i ,

s and t read from bottom to top. These theta foams evaluate to zero unless fi; s; tg D
f1; 2; 3g, and otherwise they evaluate to Û1. Moreover, h�st i D �h�tsi. Therefore,

@�1.ui/D Û.gjk � gkj /:

A similar procedure yields @�1.di/D Û.xj gjk � xkgkj /.

Thus, in homological degree s � 0 and annular degree �wi , the homology of Ln is

given by

H s;�wi .Ln/D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if s is odd;

R0
xf2n � 2s � 2g ˚ R0

xf2n � 2sg
h.xj C xk ;�2/; .2xj xk ;�.xj C xk//i

if s < 0 and s is even;

.R0
x=.xj � xk//f2ng if s D 0:
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