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Anchored foams and annular homology

ROSTISLAV AKHMECHET
MIKHAIL KHOVANOV

We describe equivariant SL(2) and SL(3) homology for links in the thickened an-
nulus via foam evaluation. The thickened annulus is replaced by 3—space with a
distinguished line in it. Generators of state spaces for annular webs are represented
by foams with boundary that may intersect the distinguished line; intersection points,
called anchor points, contribute additional terms, reminiscent of square roots of the
Hessian, to the foam evaluation. Both oriented and unoriented SL(3) foams are
treated.

57K18; 18N25, 57K16

1 Introduction

Asaeda—Przytycki—Sikora [2] homology of links in the thickened annulus has led to
a number of interesting developments — see the first author [1], Baldwin, Beliakova,
Grigsby, Licata, Putyra and Wehrli [3; 5; 11; 12; 13] and Roberts [35] — and extensions
of their work to SL(N) and GL(NV) link homology in the thickened annulus — see
Queffelec, Rose, Sartori and Wedrich [30; 31; 32].

GL(N) and SL(N) link homology theories are closely related to foam evaluation. This
connection was made the most transparent by the work of Robert and Wagner [34], who
wrote down a combinatorial formula for GL(V) closed foam evaluation that allows to
build GL(N) link homology from the ground up, bypassing categorical approaches to
the latter. A variation of their formula was used by Robert and the second author [18]
to evaluate unoriented SL(3) foams, giving a combinatorial approach to some of the
structures discovered by Kronheimer and Mrowka [23].

In this paper we extend foam evaluation framework to build equivariant SL(2) and
SL(3) state spaces for annular webs and, consequently, equivariant SL(2) and SL(3)
homology for links in the thickened annulus. Our construction complements earlier
work [30; 32] on the subject. The same approach allows us to define state spaces for
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3130 Rostislav Akhmechet and Mikhail Khovanov

unoriented SL(3) annular webs, extending the construction in [18]. As in [18], the
unoriented SL(3) theory yields state spaces and skein relations for planar webs but
does not extend to a link homology theory.

In the APS (Asaeda—Przytycki—Sikora) annular homology and its equivariant and
SL(N) generalizations, one first defines state spaces for annular SL(2) and SL(N)
webs, where annular SL(2) webs are just collections of embedded circles in an annulus.
See also Boerner [7; 8], where the APS theory is reformulated using embedded surfaces.

Our idea is to think of an open thickened annulus as the complement to a line L in R3,
chosen for convenience to be the z—axis. An annular SL(N) web I is then placed into
the x y—plane with (0, 0) removed. To define its state space (I"), we consider SL(N)
foams F in the half-space R* bounded by the x y—plane such that I is the boundary
of F. These foams may intersect the z—axis, and we refer to the intersection points as
anchor points and to such foams as anchored foams. Anchor points additionally carry
a label from 1 to N, and we modify foam evaluation by adding a new type of factors
associated to anchor points.

We treat N = 2 and N = 3 cases, with modified evaluations given by formulas (2)
and (77), respectively; also see (35) for the unoriented SL(3) anchored foam evaluation.

Anchored foam evaluation take values in the ring of polynomials rather than the ring
of symmetric polynomials. One starts with an admissible coloring ¢ of facets of a
foam F, as usual. An anchor point labeled i lying on a facet of color j contributes
i \/m to the evaluation (F, ¢), where, in the SL(3) case as an example,

S(x) = (x —x1)(x —x2)(x — x3)

is the polynomial of degree three with roots x, X, and x3. The full evaluation (F) is
given by summing over (F, c¢) for all admissible colorings c¢. We check integrality of
these evaluations, with {F') a polynomial in x{, X, and x3, in the SL(3) case.

Given evaluations of anchored closed foams, one can form state spaces for annular webs.
We show that this modified evaluation, with anchor points contributing &;_; \/m,
perfectly matches the structure of state spaces of annular homology, in SL(2) and
SL(3) cases. The construction also allows us to define unoriented SL(3) homology for
annular trivalent graphs, extending [18] to the annular framework.

With state spaces at hand, it is straightforward to define annular SL(2) and SL(3) link
homology, by analogy with [1; 2; 4; 14] in the SL(2) setting, with [18] in the unoriented
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SL(3) setting, and with [15; 28; 34] in the oriented SL(3) setting. State spaces and
link homology carry additional gradings coming from intersection points of foams
with the z—axis. We show that the result matches equivariant SL.(2) homology [1]
of the first author. A simple modification of the construction (truncating the ground
ring by sending the x; to 0 upon evaluation) gives a foam approach to the original
APS homology. We expect that the nonequivariant variant of our SL(3) construction
recovers the N = 3 case of the homology in [30]. It seems that the equivariant annular
SL(3) homology, as described in the present paper, is new.

Section 2 describes SL(2) homology via anchored foams. The evaluation is defined in
Section 2.1, which also contains the skein relations for anchored SL(2) foams. The
state spaces are studied in Section 2.2. The state space of n circles in the annulus is a
free module of rank 2" over the ground ring R, of polynomials in two variables; see
Theorem 2.11. The numbers of contractible and essential circles control the bigraded
rank. This section also discusses categories of anchored and annular cobordisms.
Annular cobordisms between annular SL(2) webs are disjoint from the z—axis, while
anchored cobordism may intersect it.

Theorem 2.20 identifies the annular cobordism functor with that constructed in [1].
Consequently, equivariant annular SL(2) link homology [1] can be rederived via an-
chored foams. To obtain the original APS homology, one can use anchored foam
evaluation, combined with the homomorphism R, — Z taking oy and a5 to 0 to get
state spaces and cobordism maps in the APS theory.

Section 3 constructs the state spaces for the annular unoriented SL(3) foam theory,
extending the construction of [18]. We start with the evaluation (Section 3.1), fol-
lowed by skein relations on annular foams (Section 3.2) and properties of state spaces
(Section 3.3). Section 3.4 describes similarities between anchor points contributions
and Lee’s theory, given by inverting the discriminant in the ground ring. Similar to the
planar case [18], we don’t know a way to describe the state space of an annular web
when regions of valency at most four, allowing an inductive simplification, are absent.

In Section 4 we describe annular equivariant SL(3) link homology, based on anchored
(annular) oriented SL(3) foams. This homology extends Mackaay—Vaz [28] equivariant
SL(3) homology of links in R3; also see Clark [10], the second author [15], Morrison
and Nieh [29], and Robert [33] for the nonequivariant homology in R3. We start with
a review of oriented SL(3) foams in Section 4.1 and then follow a similar route to that
of the earlier sections.
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3132 Rostislav Akhmechet and Mikhail Khovanov

Our constructions of annular equivariant link homology via foam evaluation requires
working with U(1)*N —equivariant homology rather than U(N') or GL(N )—equivariant
homology. In these G—equivariant theories homology of the empty link is Hg(p, Z),
the G—equivariant cohomology of a point. For U(1)*¥ that cohomology consists of
polynomials in N variables (denoted here by o1 and «; for N =2, and x{ x, and x3
for N = 3), which is a larger ring than its subring of symmetric polynomials, which is
the corresponding equivariant cohomology of a point for U(N) and GL(N). Having
a larger background ring gives additional freedom and allows a “symmetry breaking”
between these polynomial variables, necessary in our case as clear from the evaluation
(also see Remark 2.1 below).

Working with that larger ring and U(1)*V
nomenon. It was used by T Sano [37] in resolving the minus sign ambiguity in the

—equivariant cohomology is a recent phe-

functorial extension of Khovanov homology to link cobordisms, bypassing earlier
constructions that required additional decorations of links and cobordisms (see [19]
for more references and a short discussion). We expect this symmetry breaking of the
ground ring generators to find more applications to link homology in the future.

A recent paper of R Lipshitz and S Sarkar [25] contains an application of annular
equivariant link homology. The authors use maps associated to moving a strand across
the puncture. These maps come for free from the anchored foam perspective of the
present paper; see [25, Remark 3.2].

Unoriented SL(3) homology for planar graphs (webs) is closely related to the 4—color
theorem and Kronheimer—Mrowka instanton homology for 3—orbifolds [18; 23]. This
homology of webs remains a mysterious structure which has only been computed
for reducible webs (see Boozer [9] for a computational approach to homology of the
dodecahedron and other nonreducible webs). In the annular case, nonreducible webs
have fewer vertices, with the smallest such web shown in Figure 10, and annular
homology may shed light on and aid in understanding unoriented SL(3) homology of
nonreducible webs and related structures.

We expect that our construction admits a generalization to SL(N ) homology for all N
via an extension of the Robert—Wagner formula [34] to the anchored case.

Acknowledgments Khovanov was partially supported by NSF grant DMS-1807425
while working on the paper. Akhmechet was supported by the Jefferson Scholars
Foundation. He would like to thank his advisor Slava Krushkal for encouraging him to
pursue this project.
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2 SL(2) anchored homology

2.1 Anchored surfaces and their evaluations

Consider the integral polynomial ring Ry = Z[oy, ot3] in two variables o1, ap. Define
a grading on R, by setting

(1 deg(or1) = deg(az) = 2.

Denote by t the nontrivial involution of {1, 2}. It is given by t(i) =3 —i fori € {1, 2}.
Also denote by t the induced involution of R, which permutes oy and o5, so that
t(aj) = gy = a3—;. Let R be the r—invariant subring of Ry, which consists of
symmetric polynomials in «; and «,. The subring R is itself a polynomial ring,
R = Z[E, E,], where E{ and E, are elementary symmetric polynomials in o
and >,

E1=O[1+062, E2=0€10€2.

Degrees of £y and E, are 2 and 4, respectively.

Let L C R3 denote the z—axis, L = (0,0) x R. Let S C R? be a closed, smoothly
embedded surface which intersects L transversely. The surface S may be decorated
by dots, disjoint from L, that can otherwise float freely on components of S. The
intersection points S N L are called anchor points. Fix a labeling £, which is a map
from the set of anchor points to {1, 2},

¢:SNL—{1,2}.

Order the anchor points by 1, ..., 2k, read from bottom to top, so that the labeling ¢
consists of a choice £(j) € {1, 2} for each 1 < j < 2k. We will define an evaluation

(S) € Ra
for S with the fixed labeling £, which is omitted from the notation.

Let Comp(S) denote the set of connected components of S. A coloring of S is a
function c¢: Comp(S) — {1, 2}, and we denote by adm(S) the set of colorings of S.
The surface S has 2/ €©mP()! colorings. Fix a coloring ¢. For i = 1,2, let d;(c) denote
the number of dots on components colored i. Let S, denote the union of the 2—colored
components. For 1 < j <2k, let ¢(j) denote the color of the j™ anchor point, induced
by ¢, which may in general be different from the fixed label £(j). Define

di(c) da(c) 772k 1/2
2) (S c):(—l)x(sz)/z"‘l1 o " ([T=1 (et — i)

(@1 — )2
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Note that x(S,) is even since S, is a closed surface in R3. Let us explain the square
root in the above equation.

Each component S’ of S can be made disjoint from L via a homotopy. Since the mod 2
intersection number is preserved under homotopy, it follows that S’ intersects L at an
even number of points py,..., pa,, which can be ordered as encountered along L,
from bottom to top. Suppose S’ is colored by ¢(S’) = j, and moreover S’ contains an
anchor point labeled j. Then the product ]_[12':" 1(@e(j) —ag(jy) = 0, since it contains a
term «;j —j = 0, and the entire evaluation (S, ¢) = 0. Thus, the evaluation (2) is only
nonzero when the anchor points on a component S’ colored ; are all labeled by the
complementary color 7(j). In this case, each component contributes an even number
of factors of either vy — aty or oy — g to the product ]_[jzf1 (ae(j) — @g(j))> and we
define the square root to be (aq — o)™ or (a —a1)™, respectively. If S’ has no anchor
points, this term is 1 and can be removed from the product.

Note that the evaluation is the product of evaluations of individual components,

(3) (S.oo=" [ (8"e(s).

S’€Comp (S)

Thus, if S” is colored 1 by ¢’ = ¢(S”), has 2k anchor points all labeled 2 and carries d
dots, then

(4) (S',¢") = a (@) — )k X512,

If S’ is colored 2 by ¢’ = ¢(S’), has 2k anchor points all labeled 1 and carries d dots,
then

(5) (S'.¢') = (~1)XSV 2o (¢ —ay) KX = g 0y — ey 12,

Otherwise, if one of the anchor points has the same label as the color of S’, the
evaluation (S’,¢’) =0 and (S, ¢) = 0.

Define the evaluation of S by

(6) ()= (S.c).

c

where the sum is over all colorings of S. Note that if S N L = &, then (S) agrees with
the evaluation in [19; 34]. Also note that (S) = 0 if a component of S has two anchor
points with different labels 1, 2.
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We have
(7) (s)y="T1 "
S’eComp S
that is, evaluation of S is the product of evaluations over connected components of S.

We can rewrite (S) as follows. First, suppose S is connected, carrying d dots, with
2k > 0 anchor points. For i = 1, 2, let ¢; denote the coloring of S by i. Define

ad (a1 —agry) - (o1 — agan))) /2

(1 — ) K)]2 |

®) (S.c1) =

(S.cy) = (1)) af (@2 —agy) -+ (@2 —agapy) /2

(0] — 0tp)X(5)/2
Again, square roots in the above equations are taken in the natural way. If S has
oppositely labeled anchor points then both (8) and (9) are zero. If all anchor points are
labeled 1, then (8) is zero, whereas (9) is equal to

©)

d k
_x(s)y2 %2 (@2 —a)
(SaCZ) - ( 1) (al —OCZ)X(S)/Z.

On the other hand, if all anchor points are labeled by 2 then (9) is zero and (8) equals
ad () —ay)*
(@1 — )X/
Then for connected S with anchor points,
(S)=(S,c1) +(S.c2),
where at most one of the summands (S, ¢;) is nonzero.

Clearly the evaluation is multiplicative under disjoint union. That is, if S =S .- -L1.Sy,
then
(S)=(S1) -+ (Sn).

Remark 2.1 Unlike closed foam evaluations appearing elsewhere [16; 18; 19; 34;
36], our evaluation does not in general produce a symmetric function. The following
examples illustrate this.

Example 2.2 Let S be a sphere intersecting L in two points with labels i and j and
carrying d dots. If i # j, then each coloring ¢ yields (S, ¢) = 0. If both anchor points
are labeled 1, then only coloring .S by 2 contributes to the sum, and we have

d

aj (ar —ap)

(S)=(S.cr) =—2——" =0f.
o1 — 0

Algebraic € Geometric Topology, Volume 23 (2023)
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On the other hand, if both anchor points are labeled 2, then
(S)=(S.c1) =af.

This is summarized pictorially by

(10)

Both signs are positive since k + x(S2)/2 =1+ 1= 2 is even.
Note that these evaluations are not symmetric in ¢ and .

Example 2.3 More generally, let S be a genus g surface with d dots and 2k anchor
points. If & = 0 (that is, if S is disjoint from L) then the evaluation is
(S) oc?’ + (—l)g_lozg

(e —ap)'E

On the other hand, if k > 0, then

ad(ar —a)k el if (1) = =£2k) =1,
(11) (S) = ad (o) —ax)kTE=1 if4(1) = = L(2k) = 2,
0 otherwise.

Proposition 2.4 For any anchored surface S C R* with d dots and 2k anchor points,
its evaluation (S') is a homogeneous polynomial in «; and «; of degree

—x(S) +2d + 2k.

Proof If S does not intersect L, then this follows from Example 2.3. Suppose that S
intersects L. It suffices to verify the statement for connected surfaces. If S intersects L,
then the statement follows from (11), since k > 0. a

We recall the following notation from [19]. For i = 1, 2, we allow surfaces to carry
decorations (7) consisting of i inscribed in a small circle. They must be disjoint from
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L and are allowed to float freely along the connected component on which they appear.
We call these shifted dots. Diagrammatically, a shifted dot (i) is the difference between
a dot and «;:

Lemma 2.5 Let S be an anchored foam and let S U (i) denote the anchored foam
obtained by placing a shifted dot (i) on some component S’ of S. Then

(SUQ) = if S’ has an anchor point labeled (i),
(— 1)/ (a1 —a2)(S)  if all anchor points on S’ are labeled i.

Proof This is clear from the definitions. O

Lemma 2.5 is summarized diagrammatically by

o
(13) # (azal)ﬁ

Alternatively, the skein relations (13) may written compactly as

Lemma 2.6 The following local relations hold:

as) g: EE_EE

Algebraic € Geometric Topology, Volume 23 (2023)
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d» d»

NS4 NG
(17) = ! + 2
2

Proof The relation (15) is straightforward. Let us now verify (16), which is proved in
the same way as for nonanchored foams, see [19, Lemma 3.5]. Let S denote the surface
on the left, and let F' denote the surface obtained by surgering .S as shown on the right.
Denote by F’ (resp. F b the surface obtained from F by placing an additional dot on
the top (resp. bottom) depicted disk. Note that anchor points, as well as their labels, are
the same for F?, F b ,and F. Colorings of F, F ! and F b are in a canonical bijection.
There are four local models for a coloring of F, illustrated in Figure 1.

Let ¢ be a coloring of F of the type shown in Figure 1(c), with the corresponding
coloring of F! and F b still denoted by c¢. We have

(F',c)=a1(F,c), (F’.c)=ay(F,c),

hence (F?,c)+ (Fb,¢)— E{(F,c) = 0. A similar calculation holds for a coloring ¢
of Figure 1(d) type.

There is a natural bijection between colorings of S and colorings of F' of Figures 1(a)
and 1(b) types. Let ¢ be a coloring of F' of Figure 1(a) type, and continue to denote by

DA
DA
L d
> A

(a) (b) (c) (d)

Figure 1: Local models for colorings of F. Shaded indicates color 1 and
solid white indicates color 2.
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() (b) (© (d)

Figure 2: Local models for colorings of F’. Shaded indicates color 1 and
solid white indicates color 2.

¢ the corresponding coloring of S. Then

X(F)=x(S)+2, x(F2(c)) = x(S2(c)),
(Fl.e)=ai(F.c),  (FP.c)=ai(F.c),
so we have
(F', )+ (FP.¢) = E|(F,c) = (a1 —a2)(F.c) = (S,c).
Finally, if ¢ is a coloring of F' of the Figure 1(b) type, then
X(F)=x(S)+2, (F',c) = ay(F.c),

X(F2(c)) = x(S2(c)) +2, (FP,¢) = ay(F,c),
which yields
(S.c)

o] — o

(F',c)+(Fb c) = Ei(F,c) = (@a—a1)(F,c) = (a2 — 1) =(S.c).

We now address (17), where anchor points are present. Let S denote the surface on the
left-hand side of the equality. Let F! and F? denote the two anchored foams obtained
by surgery on S in which the new anchor points are both labeled 1 or 2, respectively,
so that (17) reads (S) = (F!) + (F?). For each i = 1,2 there are four local models
for a coloring of F?, shown in Figure 2. Colorings ¢ in Figures 2(c) and 2(d) evaluate
to zero for bothi =1, 2,

and they don’t correspond to any colorings of S. There is a natural bijection between
colorings of S and colorings of F’ of the types in Figures 2(a) and 2(b).

Let ¢ be a coloring of S in which the depicted region of S in (17) is colored 1, with
the corresponding colorings of F! and F? still denoted by c. We have immediately
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that (F!,c) = 0. On the other hand,

X(F?) = x(S)+2, x(F5(c)) = x(S2(c)),

and F? has two additional anchor points compared to S, both labeled 2 and their
regions colored 1. Therefore,

(S, ¢)
a1 — Uy

(Fl.c)+ (F?¢) = (F?,¢) = (@) — ) =(S.¢).

Now let ¢ be a coloring of S in which the depicted region of (17) is colored 2, and
continue to denote by c the corresponding colorings of F! and F2. Then (F?,¢) = 0.
Since

X(FD) = x($)+2,  x(F;(c) = x(52(c)) +2,

and F! contains two more anchor points labeled 1 and colored 2 than S does, we
obtain

9%}

{S.c)

01—y

(F'.¢) +(F?,¢)=(F',¢) = —(ay — ;) =(S,c¢).

Relation (S) = (F!) 4 (F?) in (17) follows. i

Equation (16) can also be written using shifted dots:

(18)

(19)

Proof This can be seen by applying the neck-cutting relation (16) near the depicted
contractible circle and evaluating the resulting anchored sphere according to (10). O
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2.2 State spaces

Following [6; 19], we can apply the universal construction to the evaluation described
above. Let P = R2\ (0,0) denote the punctured plane. Given a collection C of
disjoint simple closed curves in P, let Fr(C) denote the free R,—module with a basis
consisting of properly embedded compact surfaces S C R? x (—oo, 0] with S = C
and which are transverse to the ray L_ := (0, 0) x (—o0, 0]. The intersection S N L_
is a 0—submanifold of L_ and consists of finitely many points. Moreover, each such
surface S must carry a labeling, a map

C=0g:SNL_—{1,2}

from the set of its intersection points with the ray L_ (its anchor points) to {1, 2}.
For a basis element S € Fr(C), let S € R? x [0, 00) denote its reflection through
the plane R2. Labels of anchor points do not change upon reflection. For two basis
elements S, S’ € Fr(C), denote by SS’ the closed anchored surface obtained by gluing
S to S’ along their common boundary C.

Define a bilinear form
(20) (—,—):Fr(C) xFr(C) — Ry

by setting (S, S’) = (SS’). A direct computation shows that the form is symmetric,

since for a closed surface 7' the evaluation satisfies (T') = (T).
Define the state space of C, denoted by (C), to be the quotient of Fr(C) by the kernel
{x € Fr(C) | (x,y)=0forall y e Fr(C)}

of this bilinear form. For a basis element S € Fr(C), we will write [S] to denote its
equivalence class in (C).

Equip the ground ring R, with a bigrading by placing «; and &5 in bidegree (2, 0). We
extend this bigrading (qdeg, adeg) to Fr(C) as follows. For a basis element S € Fr(C)
with d dots and m anchor points, set the quantum grading qdeg(S) € Z to be

(21 qdeg(S) = —x(S) +2d + m.

Note that if S is a closed surface, then (S) € R, is a homogeneous polynomial of
degree qdeg(S), following the degree convention (1).

Algebraic € Geometric Topology, Volume 23 (2023)
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label 1 label 2

i odd 1 -1
I even —1 1

Table 1: The contribution of the " anchor point on S to adeg(S).

Next, let £(1),...,£(m) denote the labels of the anchor points of S, ordered from
bottom to top, and define the annular grading adeg(.S) € Z by setting

m
(22) adeg(S) = Y "(—1)"H®.

i=1
In other words, if the /™ anchor point p; is labeled 1, then it contributes 1 to adeg
if i is odd and —1 if i is even. Likewise, if p; has label 2 then it contributes —1 if i

is odd and 1 if 7 is even; see also Table 1. Multiplication by o or o, increases the
(qdeg, adeg)-bidegree by (2, 0).

Example 2.8 Let C consist of two noncontractible circles. The bidegree (qdeg, adeg)
of the four anchored surfaces in Fr(C) whose underlying surface consists of two disks
each intersecting L_ once are recorded in Figure 3.

Lemma 2.9 Let S be an anchored surface. Then (S) = 0 or adeg(S) = 0.
Proof If some component of S has anchor points with different labels then (S) = 0.

Assume that all anchor points on any component of S are labeled identically. We also
assume that S intersects L, otherwise adeg(S) = 0 is immediate. As usual, order the

anchor points pyq,..., py from bottom to top.
1 2 1 2
(0,0) 0,-2) 0.2 (0,0)

Figure 3: The (qdeg, adeg)-bidegrees of some anchored surfaces whose
boundary consists of two noncontractible circles.
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Take a generic half-plane P in R3 containing the anchor line L, so that P N S consists
of finitely many arcs (with boundary on L) and circles (disjoint from L). For any arc a
in P NS with boundary da = {p;, pj}, necessarily i and j have opposite parities. To
see this, any anchor point between p; and p; is one boundary point of an arc in P N S,
and the other boundary point of this arc must also be between p; and p;, which shows
that the number of anchor points between p; and p; is even. Moreover, £(p;) = £(p;)
by assumption. Therefore the total contribution of the anchor points p; and p; to
adeg(.S) is zero. Summing over all arcs in P N .S yields the statement of the lemma. O

The subspace ker((—, —)) C Fr(C) respects this bigrading on Fr(C). Consequently,
the bigrading descends to the state space (C).

Note that the relations (16) and (17) are bihomogeneous. Let S € Fr(C) be a basis
element of the form S = S U S, where Sy, S, € Fr(C) are anchored surfaces with
S5 closed. Then in (C),

(23) [S]1=(S2)[S1],  (S2) € Ra.

Moreover, the relation (23) is bihomogeneous. That it is homogeneous with respect
to qdeg follows from the fact that (S,) € Ry is a polynomial of degree qdeg(S,).
Lemma 2.9 ensures that adeg(S;) = adeg({S,)) = 0, so adeg(S) = adeg(S1).

Given a bigraded module M = P ; ;)ez2 Mi,;j over a commutative domain such that
each M; ; has finite rank, define its graded rank to be

grank(M) = Z rank(M,',j)qiaj.
iﬁj
Lemma 2.10 Let C C P be a single circle. Then the state space (C) is a free Ry,—
module of rank 2. Moreover,

1 if C is contractible,

q+q
k({(C)) =
grank((C')) {a +a~! if C is noncontractible.

Proof We consider two cases. If C is contractible, then by applying the neck-cutting
relation (16) near C and evaluating closed anchored surfaces as in (23), we see that
(C) is spanned by the two elements S and S, shown in Figure 4. Bidegrees of S and
S, are (—1,0) and (1, 0), respectively. Computing the matrix of the bilinear form (20)

SS SS.\ _ (0 1
S.s S.s.)  \1 E, )’

which is invertible; thus S and S, constitute a basis for (C).

for these elements yields
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SRk

S

Figure 4: Basis elements for the state space of a single circle C. The first two
surfaces form a basis if C is contractible, and the last two form a basis if C
is noncontractible.

Now suppose C is noncontractible. Applying the neck-cutting relation (17) near C and
evaluating closed anchored surfaces shows that the two elements .S; and S, depicted
in Figure 4 span (C). Bidegrees of S and .S, are (0, 1) and (0, —1), respectively. The
matrix of the bilinear form is

S1S1 8182\ (10
S,81 S»S,) \o 1)’
hence S and S, are linearly independent and constitute a basis of (C). a

Theorem 2.11 Let C C P consist of n contractible circles and m noncontractible
circles. Then the state space (C) is a free Ry—module of rank 2" . Moreover,

grank((C)) = (¢ +¢~ )@ +a~")™.

Proof Consider a 2"t —clement set B(C) of basis vectors of Fr(C) consisting of
surfaces S satisfying:

e Each component of § is a disk.

e Each disk in S with contractible boundary is disjoint from L_ and carries either
zero or one dot.

e Each disk in S with noncontractible boundary intersects L _ exactly once, and
its intersection point may be labeled by either 1 or 2.

That B(C) spans (S) follows from applying the two neck-cutting relations (16) and
(17) near the circles in C and evaluating closed anchored surfaces. Linear independence
of B(C) and the statement regarding graded rank follow from the computations in
Lemma 2.10. O
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Elements of the basis B(C) constructed above are standard generators. For such a
3 € B(C) with d dots and anchor points labeled {1, ..., {;,, we have

m
(24) qdeg(Z) = —n+2d, adeg($) =Y (~1)"T¢0)

i=1
Let Cy,C; C P be two collections of disjoint circles in the punctured plane. An
anchored cobordism from Cy to Cp is a smoothly and properly embedded compact
surface S C R? x [0, 1] with boundary 3S = Cy U Cj, such that C; C R? x {i} for
i =0, 1. Moreover, S is required to intersect the arc Lo 17:= (0, 0) x[0, 1] transversely
and come equipped with a labeling of these intersection points (called anchor points),
which is a map

t=1"Lg:S N Lio,11 > {1,2}

from the set of its anchor points to {1, 2}. Anchored cobordisms are allowed to carry
dots which can float on components but cannot jump to a different component.

We compose anchored cobordisms in the usual manner. For anchored cobordisms
S1:Co— Cq and Sy: C; — (s, let §,51: Cy — C, denote the anchored cobordism
obtained by gluing along the common boundary C; and rescaling. Labels of anchor
points of S,.5; are inherited from labels of S1 and S5.

As above, if an anchored cobordism S from Cy to C; has m anchor points and carries
d dots, define

qdeg(S) = —x(S) + 2d + m.
Let £(1),...,£(m) denote the labels of anchor points of S, ordered from bottom to
top, and let n be the number of noncontractible circles in Cy. Set

m

adeg(S) = (=1)" 3} (=10

i=1
Remark 2.12 If Cy = @, then S is a basis element of Fr(C;), and moreover the
two degrees qdeg(.S), adeg(S) defined above for anchored cobordisms agree with the
definitions in (21) and (22) for elements of Fr(C;).
An anchored cobordism S from Cy to C; induces an Ry-linear map
S:Fr(Cy) — Fr(Cy)
defined on the basis by gluing along the common boundary Cy. The definition of state

spaces via universal construction immediately implies that we have an induced map

(25) (S):(Co) = (C1).
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type A type B type C type D

Figure 5: Elementary saddles involving noncontractible circles.

Lemma 2.13 Let S1: Cy — C; and S, : C;y — C, be anchored cobordisms. Then
qdeg(S2S1) = qdeg(S2) +qdeg(S1), adeg(S2S1) = adeg(S>) + adeg(S1).

In particular, {(S1): (Co) — (C1) is a map of bidegree (qdeg(S1), adeg(S1)).

Proof The first equality involving qdeg is straightforward. Let » and m denote the
number of noncontractible circles in Cy and C; respectively, and let k denote the
number of anchor points of S;. We have

adeg(S>S1) = adeg(S)) + (—=1)" T * adeg(S>).

Note n + m + k is even, since it is equal to the number of anchor points of the closed
surface obtained by gluing disks to all boundary circles of Sy.

The final statement concerning the bidegree of (S;) follows from interpreting generators
of (Cy) as anchored cobordisms & — Cy, as in Remark 2.12. O

Definition 2.14 An annular cobordism is an anchored cobordism S C R? x [0, 1]
which is disjoint from the arc Lo 1} = (0,0) x[0, 1]. An elementary annular cobordism
is one with a single nondegenerate critical point with respect to the height function
R2 x [0, 1] — [0, 1].

Elementary annular cobordisms consist of a union of a product cobordism with a
cup, cap, or saddle. Every annular cobordism may be obtained by composing finitely
many elementary ones. Cup and cap annular cobordisms always have contractible
boundary. There are four types of elementary annular saddles involving at least one
noncontractible circle, illustrated in Figure 5. In the next four examples we write down
the maps assigned to these four cobordisms in the standard bases of state spaces, as
defined in the proof of Theorem 2.11. We also use the notation of shifted dots from (12).
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Example 2.15 (Figure 5, type A map) The calculation for this map follows at once
from the skein relation (14):

SEE LR
G0-G GG

Example 2.16 (Figure 5, type B map) This calculation follows easily from the skein

relation (19):
2

1

2

Example 2.17 (Figure 5, type C map) A convenient way to perform this calculation
is to use neck-cutting with shifted dots (18) near the contractible circle and then simplify
using the relations (13):

X Xy X Yy
- .
1 1 2 2
Example 2.18 (Figure 5, type D map) The neck-cutting relation (17) is helpful here.
For the dotted cup we also use (14) to simplify further:

Y
@%M
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Recall the involution t of Ry that transposes «; and «;, and extend it to an antilinear
involution, also denoted 7, of the free Ry—module Fr(C) as follows. Involution
on Fr(C) sends a surface S to the same surface with the labeling ¢ of anchor points
reversed and acts on linear combinations by

‘L’(Z A,—Si) = T()T(S).
l
For a closed surface S we have, by direct computation, {(7(S)) = 7({S)), showing
compatibility of the two involutions. If .S, in addition, carries shifted dots, involution
reverses their labels, so that 7((1)) = (2) and 7((2)) = (0. Involution 7 descends to an
involution, also denoted t, on (C). Annular degree is negated under t: adeg(z(S)) =
—adeg(.S) for an anchored cobordism S.

2.3 Annular link homology

Let ACob denote the category whose objects consist of collections of finitely many
disjoint simple closed curves in the punctured plane P. A morphism from Cy to Cy
in ACob is an anchored cobordism from Cy to Cy, up to ambient isotopy fixing the
boundary pointwise and mapping Lo, 1] to itself. Let ACob’ denote the subcategory
of ACob with the same objects as ACob but whose morphisms are isotopy classes
of annular cobordisms, disjoint from the anchor line L. The composition of annular
cobordisms is again annular.

Let Ry—ggmod denote the category of bigraded Ry,—modules and homogeneous maps
(of any bidegree) between them. We have a functor

(—): ACob — Ry—ggmod,

which sends a collection of circles C C P to the state space (C) and sends an anchored
cobordism S from Cy to C; to the map (S): (Co) — (Cq) as in (25). By Lemma 2.13,
(S} is a map of bidegree (qdeg(.S), adeg(.S)). We can restrict to the category of annular
cobordisms to get a functor

(=) : ACob’ — Ry—ggmod,

which assigns to an annular cobordism S a map (S)’ = (S) of bidegree (qdeg(S), 0).
The restriction (—)” does not change the state space assigned to a collection of circles
CcCP.
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On the other hand, a functor
Go : ACob’ — Ry—ggmod
was introduced in [1]. We briefly recall G, below.
Consider the algebra
Ay = Ro[X]/(X —a1)(X —a2)).

It is a free Ry,—module with basis {1, X'}. The trace €4: Aq — Ry given by 1 +— 0 and
X + 1 makes A4 into a Frobenius algebra, which defines a (14-1)-dimensional TQFT,
a functor F from the category of dotted cobordisms to the category of Ry—modules.
A dot on a cobordism is interpreted as multiplication by X € A,. Define a grading
on A, by setting

(26) qdeg(l) = —1, qdeg(X)=1.

With this grading, a cobordism S with d dots is assigned by F, a map of degree
—x(S) + 2d. Alternatively, the TQFT F, is the result of applying the universal
construction to the closed surface evaluation (6) when restricted to surfaces disjoint
from L and collections of contractible circles in P. See [19] for further details about
the Frobenius pair (Ry, Ag).

Let C C P be a collection of n contractible and m noncontractible circles. Define the
bigraded Ry—module G, (C) as follows. As an R,—module, we set

Ga(C) = Fo(C) = AZTHM.
Define the annular grading, denoted adeg, on Fy (C) as follows.

Every tensor factor Ay corresponding to a contractible circle is concentrated in annular
degree zero. Order the noncontractible circles in C from outermost (furthest from the
puncture) to innermost. Introduce the notation

(27) =1 vi=X-a;, vy=1, vi=X-a.

Both {vg, v1} = {1, X —a;} and {vy, v|} = {1, X —a,} constitute an Ry—basis for A4.
Set

(28) adeg(vo) = adeg(vy) = —1, adeg(v;) = adeg(v}) = 1.

The annular grading on noncontractible circle is defined by assigning the homogeneous
basis {vo, vy} or {vy, v} } to the corresponding tensor factor of A in an alternating
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/
1 X Vo Vg v, U

qdeg’ | —1 1 0 0 0 0
adeg 0o 0 -1 1 -1 1

Table 2: The (qdeg’, adeg)-bidegrees of relevant elements, where {1, X'}
is a basis for a contractible circle and {vo,v:} and {vj, v|} are bases for
noncontractible circles.

manner with respect to nesting in P, with the convention that the outermost circle is
assigned {vg, vy }.

It is convenient to distinguish between the modules assigned to different types of circles
in P. Let V, and V,, denote the Ry—modules A, with bases {vo,v;} and {vg, v}},
respectively. The notation 4, will be reserved for the module assigned to a contractible
circle, with basis {1, X'}.

The Ry—module Gy (C) also carries a quantum grading qdeg inherited from (26). Define
a modified quantum grading qdeg’ on G (C) by

(29) qdeg’ = qdeg — adeg.

We will consider G, (C) as a bigraded Ry-module with bigrading (qdeg’, adeg). Bide-
grees are recorded in Table 2.

Remark 2.19 The modified quantum grading qdeg’ appears elsewhere in the literature
and is more natural in the context of annular link homology. In [12] this grading was
denoted j’. Similarly, the annular link homology defined in [5] carries the modified
quantum grading.

We now define G, on annular cobordisms. For an annular cobordism S € R? x [0, 1],
if the boundary of S is contractible in P then G, (S) = Fo(S), where Fy is the TQFT
corresponding to the Frobenius algebra A, as above. Formulas for the maps assigned by
G, to the four elementary cobordisms in Figure 5 are recorded below. If other essential
circles are present, then due to parity the formulas may be slightly different from those
below. To obtain the full set of formulas, one interchanges vy <> vg, V] < v’l, and
) < Ay

(A)
Vo ® Aqg —> Vg,
(30) o o o
Vo®1—vy, 1V ®lI>v, V19®X P ajvy, VX H—ayvy,

Algebraic € Geometric Topology, Volume 23 (2023)



Anchored foams and annular homology 3151

Vo ® V) 8, 4,

(3D
Vo®Vy >0, v ®uy> X —ap, VRV X —ay, v;®V] 0,
©
Vo —= Vo ® Ay,
(32) o o o
Vo Vo ® (X —ay), v v QX —ay),
(D) /
Ay —=> VoV,
(33) o o o

/ / / /
l=>vo®v] +v1 vy, X >a1vg®v; + o201 ® vy

Theorem 2.20 The functors (—)": ACob’ — Ry—ggmod and Gy : ACob’ — R, —ggmod
are naturally isomorphic via bidegree-preserving maps.

Proof Let C C P be a collection of circles. We will define an R,—linear, bidegree
preserving isomorphism ®¢ : (C) — G, (C) and show that it is natural with respect to
annular cobordisms.

Let n and m denote the number of contractible and noncontractible circles in C,
respectively. Fix an ordering 1, ..., n of the contractible circles in C. The R,—module
G (C) is free with basis given by elements of the form

V1Q RV ®z1 Q-+ Q zZy,

where each y; is in {1, X'}, specifying a basis element of the i contractible circle, and
each z; is in either {vg, v1 } or {v;, v/}, depending on nesting, specifying basis elements
of the noncontractible circles. The ordering of factors z; ® - - - ® z,, corresponding to
noncontractible circles is from outermost to innermost as usual, so that the first factor
z; labels the outermost noncontractible circle.

We now define the isomorphism ®¢: (C) — G, (C). Recall the standard basis B =
B(C) for (C) defined in the proof of Theorem 2.11. For ¥ € B with anchor points
labeled ¢4, ..., £, read from bottom to top, set

Pc(X)=11Q Q®21® R Zm,

where y; = 1 if the corresponding cup in ¥ is undotted and y; = X if the corresponding
cup in X is dotted. The generators z; of noncontractible circles are determined using

the rule
vy if jisoddand {; =1,

vo if jisoddand {; =2,
vy, if jisevenand{; =1,
v] if jisevenand {; = 2.
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NTZAANVAANTEAN 74

1 1 2 2
1®v; ® v X ®v ®v; 1 ® v ® vy X ®vo ® vy

1 1 2 2
1®v; ®v) X®v v 1 ®vo ® V] X ®vo®v]

Figure 6: An example of the isomorphism ®¢ when C consists of one
contractible circle and two noncontractible circles. Basis elements X of (C)
are drawn with the corresponding basis element ®¢(X) € G, (C) written
underneath.

See Figure 6 for an example of the assignment ®¢c when » = 1 and m = 2. By
comparing the bidegree formula (24) for ¥ with the bidegree of ®¢ (%) (see Table 2),
we see that @ is a bidegree-preserving isomorphism. Recall that we use the modified
quantum grading (29) for G, (C).

Now let §': C; — C, be an annular cobordism. To complete the proof, we check that
the square

(Cr) & Ga(C1)

()| . Jgus)
C

(Ca) —25 Go(Cy)

commutes. If all the boundary circles of S are contractible, then commutativity
of the square is straightforward. Otherwise, if S has at least one noncontractible
boundary circle, it suffices to consider the case where S is one of the elementary
annular cobordisms depicted in Figure 5. Formulas for these maps were recorded in
Examples 2.15-2.18. Comparing with the formulas (30)—(33) completes the proof. O

Let A := S! x [0, 1] denote the annulus. For an oriented link L C A x [0, 1] in the
thickened annulus, a generic projection of L onto A x {0} yields a link diagram D in
the interior of A. Identifying the interior of A with the punctured plane P, we may
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form the cube of resolutions of D in the usual way, for instance as described in [4,
Section 2], with all smoothings drawn in P. The result is a commutative cube in the
category ACob’. Introducing signs to make the cube anticommutative, taking direct
sums along diagonals, adding homological and quantum grading shifts, and applying
the functor (—)": ACob’ — Ry—ggmod, one obtains a chain complex C (D) of bigraded
Ry—modules. Diagrams representing isotopic annular links are related by Reidemeister
moves away from the puncture. By standard arguments [4; 14], the chain homotopy
class of C(D) is an invariant of the annular link L. We write H(L) to denote the
homology of C(D), for any diagram D of L. Theorem 2.20 implies that the resulting
annular homology is isomorphic to that of [1].

Example 2.21 As an explicit example, let o denote the positive crossing generator of
the 2—strand braid group, and let L, denote the annular link obtained as the annular
closure of 0", Consider the complex C(n):

0_p 0_3 U 0_» U 0_1

e} — - —— e} —— fer} —— teo}
)

The right-most term is in homological degree zero and the quantum grading shifts ¢;
are given by co =n and ¢; =n + 2i — 1 for 1 <i < n. The right-most differential d_,
is the saddle cobordism, and for —n < i < —2 the differentials are

W U
MM
L\
M

The above schematic depiction of d; is interpreted as follows: each 0d; is an Ry—linear

if 7 is even,
/

E,q if i is odd.
)

combination of surfaces, each of which is given by the product cobordism on the
depicted planar tangle, with a dot on a component of the surface if the corresponding
tangle component is dotted. One can show that the chain complex C(L,) is chain
homotopy equivalent to the annular closure of C(n).

Note that the annular closure of chain groups of C(#) in negative homological degree
are each a contractible circle, contributing a free module with basis 1 and X (represented
by the surfaces S and S, in Figure 4). In homological degree zero the result is two
essential circles. We also see that, upon taking the annular closure, that d; = 0 for i
even, and that d; fori <—3 oddis givenby d; (1) =2X —E; and 0;(X) = E{ X —2E>,
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Figure 7: Local model of a prefoam near singular points. Left, seam points
where three facets meet. Right, a seam vertex where six facets meet. The
singular graph s(F) is drawn bold.

which is injective. The differential d_; is the map in Example 2.18, which is also
injective. Therefore, in homological degree i < 0,
0 if 7 1s odd,
: Roy{n—2i —2,0} @ Ryi{n—2i,0 . .
H'(L,) = ain =21 1 ® Rain =21, 0; ifi <0andi is even,
(=E1,2),(=2E;, Ey))
Raf{n, =2} @ Raf{n, 2} ® (Rain, 0}/{ax —ay)) ifi =0,

where the curly brackets {j, k} denote an upwards (qdeg, adeg) shift of (j, k), and the

angled brackets denote the Ry—submodule generated by the enclosed elements.

3 Unoriented SL(3) anchored homology of planar annular
webs

We recall definitions and notations from [18], including that of (unoriented) SL(3)
foams and refer the reader to [18, Section 2.1] for more details.

Definition 3.1 A (closed) SL(3) prefoam is a compact 2—dimensional CW complex
equipped with a PL—structure such that each point has an open neighborhood that is
either an open disk, the product of a tripod and an open interval (Figure 7, left), or the
cone over the 1—skeleton of a tetrahedron (Figure 7, right). Points of the first type are
called regular, those of the second are called seam points, and those of the third are
called seam vertices. A (closed) SL(3) foam is a closed SL(3) prefoam together with a
PL embedding into R3.

We will simply write prefoam and foam in place of closed SL(3) (pre)foam. For a
prefoam F, denote by v(F) the set of seam vertices and by s(F’) the set of seam points
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NG
A

Figure 8: The local model for a preadmissible coloring near a seam point.

and seam vertices. The subspace s(F) is a 4—valent graph which may contain closed
loops. Connected components of s(F) \ v(F) are called seams.

The subspace F \ s(F) is a (not necessarily compact) surface, and a connected compo-
nent of F'\ s(F) will be called a facet of F. The (finite) set of facets of F is denoted
by f(F). Facets of prefoams may be decorated by a finite number of dots, which are
allowed to float freely on their facets but may not cross seams or enter seam vertices.

A coloring of a prefoam F is a map
c: f(F)—{1,2,3}.

That is, a coloring assigns 1, 2 or 3 to each facet of F. A coloring is called preadmissible
if the three facets meeting at each seam of F have distinct colors; see Figure 8. For a
preadmissible coloring ¢ and 1 <i, j <3 withi # j, let Fjj(c) denote the union of
facets colored i or j. The preadmissibility condition guarantees that each F;;(c) is a
closed surface; see [18, Proposition 2.2].

A coloring ¢ is called admissible if each Fjj(c) is orientable. For a foam F (that is, a
prefoam embedded in R3), every preadmissible coloring is admissible, since F; j(c) is
a closed surface in R3.

3.1 Unoriented anchored SL(3) foams and their evaluations

Fix a field k of characteristic 2. In this section the following commutative rings will be
used:

o R/ =k[x;,x2,x3] is the ring of polynomials in three variables.

e Ry =k[E;, E,, E3] the subring of R/, that consists of symmetric polynomials
in X1, X3 and x3, with generators E; being elementary symmetric polynomials:

E1 = X1 + X3 + X3, EZZXIXZ + X1X3 + X2Xx3, E3 = X1X2X3.

o R =R [(x;+x2)7, (x2+x3)7L, (x1 +x3)"!]is a localization of R/, given
by inverting x; + xj, for 1 <i < j < 3.
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. ﬁ; =k[,/X1. /X2, /X3] is the extension of R/, obtained by introducing square
roots of x1, x, and x3.

- Rl= k[V/X1, /X2, /X3, (x1 +x2) 71 (x2 4 x3) 71, (1 +x3) '] is a localiza-
tion of R/, given by inverting x; + xj, for | <i < j <3.

All five of these rings are graded by setting deg(x;) = 2 for i = 1,2, 3. Inclusions of
the above rings are summarized in the following diagram:
R, c R
(34) U U
Ry C R, C R}

We follow the notation established in [18] for these rings with the additional subscript
x to distinguish from the notation in Section 2.

Definition 3.2 An anchored SL(3) foam F is an SL(3) foam F’ C R? that may
intersect the line L at finitely many points away from the singular graph s(F’) of F’.
Thus each intersection point belongs to some facet f of F’, and intersection of facets
with L are required to be transverse. Denote by p(F) = F N L the set of intersection
points (anchor points) of F. Intersection points carry labels in {1, 2, 3}; that is, F
comes equipped with a fixed map

L:p(F)—{1,2,3}.

It is convenient to order anchor points pq, ..., py from bottom to top, with labels
f,' =E(pi),l' = 1,...,m.

We now refine the notion of admissible coloring of a foam to that of admissible coloring
of an anchored foam F. Consider an anchored foam F with the underlying foam F’. A
coloring ¢ € adm(F”) induces a coloring of anchor points in F’, by assigning to each
point the color of its facet. We say that ¢ is admissible if that’s exactly the labeling
of anchor points of F, that is, £(p) = ¢(f') for each anchor point p in a facet f, and
then set c(p) = £(p).

In this way, the set of admissible colorings of F’ is in a bijection with the set of
admissible colorings of anchored foams F that become F’ upon forgetting the labeling
of anchor points:
adm(F') = ]_[ adm(F).
F
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Various constructions with SL(3) foams in [18] extend directly to anchored foams.
In particular, bicolored surfaces Fj;(c) are well defined, associated to an admissible
coloring ¢. We will also call an admissible coloring simply a coloring. We will use 7,
j and k to denote the three elements of {1, 2, 3}, not necessarily in that order.

We refine [18, Definition 2.9] for anchored foams.

Definition 3.3 Let F be an anchored foam, ¢ € adm(F') be an admissible coloring,
and X a connected component of F;;(c) which is disjoint from L. Define a coloring ¢’
of F which swaps the colors 7 and j on facets of X, and leaves all other facets colored
according to ¢. We say that ¢ and ¢’ are related by an i j—Kempe move along %. Note
that since ¥ has no anchor points, ¢’ is still an admissible coloring of F.

Kempe moves can be done on components X of Fj;(c) that intersect L as well, but
the resulting anchored foam Fy is different from F due to carrying different labels on
anchor points on X.

For k € {1,2,3}, denote by k’ and k" its two complementary elements, so that
{k, k', k"} ={1,2,3}. Let F be an anchored foam with labeling £. Let ¢ € adm(F)
be an admissible coloring. For an anchor point p € p(F) lying on a facet f € f(F),
we set c(p) = c(f) = L£(p); that is, ¢(p) is the color of the facet, according to ¢, on
which p lies, which equals £(p) since ¢ is admissible. For 1 <i < 3, let d;(c) denote
the number of dots on facets colored i. For 1 <i # j <3, let F;;(c) be the union of
facets of F colored i or j. The space Fj;(c) is a closed surface in R3 and hence has
even Euler characteristic. Set

P(F,c)
(35) (F.c) = :
O(F,¢)
where
: d;(c) 1/2
(36) P(F, C) = 1_[ xi, €, ( 1_[ (xc(p) +x4(p)/)(xc(p) —|—xe(p)/,)) ,
i=1 pep(F)
37 OF.o)= [] Git+xprFue/z
1<i<j<3

The product of the two terms under the square root, for a given anchor point p, is equal

to
(x1 +x2)(x1 +x3) if c(p) =1,

(x2 +x1)(x2 +x3) if c(p) =2,
(x3 +x1)(x3 +x2) if c(p)=3.
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Remark 3.4 This product is the inverse of the square decoration [ in [18, Section 4.1].
The square decoration was used to study a separable version of the unoriented SL(3)
theory, with the discriminant D = (x; 4+ x,)(x1 + x3)(x2 + x3) inverted, which is a
version of the Lee theory. Here, we use the defect line L rather than freely floating
square dots in [18, Section 4.1] in the opposite way, to add factors to the evaluation
rather than divide by terms in the discriminant.

Remark 3.5 If ¢ is an admissible coloring of the underlying foam F’ of F but not of
the anchored foam F, then the evaluation (35) is still defined and equal to zero;

(38) (F,c)=0, ce€admF'\admF.

This holds since, for some p € p(F), its color c¢(p) differs from its label £( p), so that
Xc¢(p) + Xe(p) = 0 appears under the square root in (36) and P(F,c¢) = 0. Thus,

(Xe(p) T Xe(py) (Xe(p) +Xepyr)  if c(p) =4L(p),

(Xc(p) +Xe(py) Xe(p) TXe(p)y") = {0 otherwise.

Define the evaluation of F to be
(39) (Fy= > (F.c).
c€adm(F)

Alternatively, we can sum over the larger set of ¢ € adm(F’), due to (38).

Let us explain the square root in (36). The equality /x +y = \/x + ./y holds in a
commutative ring of characteristic 2, so (F,¢) is in the ring ﬁ;; see (34). We will
show in Proposition 3.11 that, in fact, no square roots appear, so that (F,c) € RY.
Likewise, in Proposition 3.12 we show that (F) € R/,..

The evaluation (39) is multiplicative with respect to disjoint union and does not depend
on a particular embedding of F into M = (R3, L) as long as anchor points on F and
their labels are specified.

If an anchored foam F is a disjoint union of anchored foams Fy U --- Ll Fy, then

(F) = (F1)-- (F).
If F is disjoint from L, then (F) is equal to the evaluation in [18, Section 2.3].
Example 3.6 Let F be a 2-sphere S with two anchor points and d dots. Its evaluation

is zero unless both points have the same label i € {1,2, 3}, in which case there is
only admissible coloring ¢ which colors F by i. Let j,k € {1,2,3} denote the
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complementary elements to i. The surfaces Fj;(c) and Fji(c) are 2—spheres, while
Fji(c) = @. Then the evaluation is
) = Gt P )y

(Xi +x;)(xi + xg) '

Example 3.7 More generally, let F be a genus g surface carrying d dots and 2n > 0
anchor points. It evaluates to zero unless all points are labeled by the same i € {1, 2, 3}.
In this case, letting j, k € {1, 2, 3} be the complementary elements to 7, the evaluation
is

x4 X)) (xi 4 X))

= x4 ; . . n+g—1
((xi ) (i 4 xp)) 18 =i (Cxi + xj) (xi 4 xp)" T8

(F)

Example 3.8 Consider the theta foam F whose facets each intersect L once, with
anchor points labeled 7, j, k € {1, 2, 3} and facets carrying d, d, and d3 dots,

In an admissible coloring of the underlying foam, the three facets must have distinct
colors, so (F) =0if i, j and k are not distinct. If 7, j and k are distinct, then there is
one admissible coloring ¢ which colors the top, middle, and bottom facets, respectively,
by i, j and k. The surfaces Fj;(c), Fix(c), Fj(c) are 2—spheres, and the evaluation is

dy dy d
(F) =x;"'x;2x;°.

Remark 3.9 Note that the evaluation of an anchored foam is in general not a symmetric

function in X1, x, and x3, whereas in [18] the evaluation is always an element of R.

Let us call a sequence £ € {1, 2, 3}'" preadmissible if the following holds. Let u, u;
and u3 be three nonzero elements of the abelian group Z/2 x Z /2. Sequence £ is
preadmissible if and only if

m
(40) D ugy =0€Z/2xZ/2.

i=1
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Proposition 3.10 If an anchored foam F has an admissible coloring, the sequence {
of its anchor points is preadmissible.

Proof Consider a generic intersection of F with a half-plane in R3 bounding L. This
intersection is a trivalent graph I in the half-plane. Coloring ¢ of F induces a coloring
¢ of edges of " such that around each trivalent vertex of I" the colors of the three
edges are distinct (Tait coloring). On the boundary points (one-valent vertices) of I"
the coloring is given by labeling £. The sum on the left hand side of (40) is zero since
it can alternatively be written as the sum of triples of vectors uy 4+ u, + u3 = 0 over
all trivalent vertices of I". Each inner edge of I', that bounds two trivalent vertices,
contributes u; + u; = 0 to the sum, where i is the color of the edge. An edge with
one or both endpoints on the boundary contributes the sum of the u; over its boundary
points. a

For an anchored foam F and 1 <i < 3, let an(i) denote the number of anchor points
of F with label i (the dependence on F is omitted).

Proposition 3.11 For an anchored foam F and an admissible coloring ¢, we have
(F,c) e RY.

Proof Recall the rings R’ and IA& defined in (34). It’s clear that (F, ¢) belongs to
the larger ring ﬁ;

The expression in (35) under the square root is equal to
(x; + xz)an(l)-l—an(Z) (x2 + xa})an(Z)-i-an(?a)(X1 + x3)an(1)+an(3)‘

For 1 <i < j < 3, the integer an(i) + an(j) is even since it is equal to the number
of intersection points of the closed surface Fjj(c) with L; see also Proposition 3.10.
Consequently, taking the square root produces integral exponent of x; + x;, implying
that (F,c) is in R’. O

Using the above notation, the square root term in (36) is equal to

(41) O(F. )= [] (xi+xye@FtmO)iz,
1<i<j<3

so formula (35) can be rewritten as

3
(42) (F,c) = H xlfii (© 1_[ (xi + xj)(an(i)+an(j)—X(th ©N)/2

i=1 1<i<j<3
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Proposition 3.12 For an anchored foam F, we have (F) € R, = k[x1, x2, x3].

Proof The proof of Theorem 2.17 in [18] extends with minor changes to this case.
Note that the evaluation is no longer a symmetric function. We must show that positive
powers of x; + x; for 1 <i < j <3, do not appear in the denominator of (F). Let
us specialize to i = 1 and j = 2. Denominators x; + X, in the evaluations (F, ¢)
may appear only from the components of Fi;(c) that are 2—spheres. If a 2—sphere
does not intersect L, the proof in [18] works in this case as well. Suppose a 2—sphere
component X of Fy;(c) intersects L in an(1) points colored 1 and an(2) points colored 2
(necessarily in the corresponding facets of F' carrying those colors under c¢). These
points contribute

(xl _i_xz)an(l)-i-am(z)(x1 +x3)an(1)(x2 +x3)an(2)

to the expression under the square root, and an(1) 4+ an(2) > 2, allowing to cancel the
denominator term x; 4 X, that X contributes. Summing over all admissible colorings
and otherwise following the arguments in [18, Theorem 2.17] implies the result. O

Remark 3.13 Contributions of anchor points to the evaluation ( F, ¢) can be interpreted
as follows. Consider polynomial f(x) = (x —x;)(x —x2)(x — x3) € R/ [x]. Then

f1(x) = (x —x2)(x —x3) + (x —x1)(x —x3) + (x —x1) (X — X2)
and
f(x1) = (x1 —x2)(x1 —x3),

S (x2) = (x2 — x1)(x2 — x3),

S(x3) = (x3 —x1)(x3 — x2).
Contribution of an anchor point p with a label i = £(p) to the evaluations (F,¢)
and (F) is then 4/ f7(x;), the square root of the derivative of f at the root x; of the

polynomial f. In characteristic two, signs do not matter, but this observation hints how
to extend the evaluation to characteristic 0.

Since the labels i, ..., iy of anchor points are fixed in a given F, these marked points
contribute the same term,

m 1/2
VPTer =TT )
=1
and we have ’

(43) (F.e)=V['lLap-(F'.c). (F)=f'lLaF-(F'),
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where F’ is the foam F viewed as a regular foam with anchored points and their labels
ignored. When coloring ¢ of F is not compatible with labels of anchor points, though,
we should define / f/|LnF = 0 to match the formula (F, ¢) = 0.

Also notice that, switching to characteristic 0 and from the matrix factorization view-
point [20], f(x) = w’(x) is the derivative of the potential

4 3 2
w(x):%x —%Elx +%E2x — E;3x,

so the contributions of anchor points are given by square roots of the second derivative
v w’(x;) at critical points of w, analogous to the square root of the Hessian factor that
appears, for example, in the steepest descent method formulas.

3.2 Skein relations

In this subsection we record several local relations satisfied by the evaluation of anchored
SL(3) foams. We start with the following proposition concerning the relations in [18,
Section 2.5], which should be understood as occurring away from the anchor line L.

Proposition 3.14 The twelve local relations in [18, Propositions 2.22-2.33] hold.
Proof The arguments in [18] apply without modification. O
We will use shifted dots in this section, as in (12). For 1 <i < 3, we allow anchored

foams to carry decorations of the form (7) = ¢ + x; on a facet. They are required to
be disjoint from L, float freely on their facets, but cannot move past seams or seam

For an anchored foam F carrying (7) on some facet f € f(F), any coloring ¢ € adm(F)

vertices:

which colors f by i evaluates to zero, (F, c¢) = 0. An anchor point labeled i has the

VO®=O @

on the facet on which it lies (recall our conventions that {1,2,3}={i, j, k} ={i,i’,i"}).

same effect as placing

See also (47) and the discussion in Section 3.4.

We also have relations involving the anchor line.
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Lemma 3.15 The following local relations hold:

(44)

(45)
3
3

(47)

i
i Nk /7 J

In the last two equations, {7, j, k} = {1, 2, 3}.

Proof Let us verify (44); the other four relations are easier to check and the proof is
left to the reader. Denote by F the anchored foam on the left-hand side, and by G, G2
and G3 the three foams on the right-hand side, with the superscript corresponding to the
labels of the depicted anchor points. For 1 <i < 3, let adm; (F) be the set of admissible
colorings of F in which the depicted tube is colored by i. Admissible colorings of G*
must color the two disks by i, so there is a natural bijection adm; (F) 2 adm(G?).

For ¢ € adm; (F), let ¢/ € adm(G?) denote the corresponding coloring. We will show
that

(F.c)=(G".c").
which completes the proof.
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The anchored foam G’ carries two more anchor points, both labeled 7, than F does,
while the dot placement for G? and F is the same, so

P(G,c") = (xi +xj)(xi + xx) P(F, ¢),
where {7, j, k} = {1,2, 3}. On the other hand,

X(GH(EN = x(Fij ()42, x(G (N =x(Fix(D+2,  x(Gi () = x(Fjx(c)),
which yields
0(G,¢') = (xi + X)) (xi + xx) Q(F, ¢).

Thus (F,c) = (Q, ¢’} as desired. Summing over all admissible colorings of F we get

(F) =(G) +(G?) +(G?).
completing the proof. O

3.3 State spaces

We generalize the notion of webs and cobordisms between them from [18, Section 3.1]
in the presence of the anchor line L.

Definition 3.16 A web is a trivalent graph " which is PL-embedded into the punctured
plane P = R?\ {(0,0)}. We allow webs to have closed loops with no vertices. A
anchored foam with boundary V is obtained by intersecting a closed anchored foam
F C R3 carrying no dots with a thickened plane R? x [0, 1] such that F N (P x {i}) for
i =0, 1is aweb (in particular, F is disjoint from the two points (0, 0, 0) and (0, 0, 1)).
A connected component of the complement of singular points in F N (R? x [0, 1]) is
called a facet. Each facet may be decorated by finitely many dots which can float freely
along the facet but cannot intersect the anchor line or cross singular points.

Foams with boundary are considered equivalent if there is an orientation-preserving
homeomorphism of R? x [0, 1] taking one to the other which fixes the boundary of
R2 x [0, 1] pointwise and maps the line segment Lio,17:={(0,0)} x [0, 1] to itself.

For a foam with boundary V, let
p(V)=VNLpny

denote its intersection points with the anchor line, called anchor points. Each anchor
point is required to carry a label in {1, 2, 3}.
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We view V as a cobordism from the web 9oV := V N (R? x {0}) to the web 9, V :=
V N (R? x{1}). A closed foam is then a cobordism from the empty web to itself. We
will often refer to foams with boundary simply as foams when the meaning is clear
from context. Composition WV of foams V and W with d; V = doW is defined in
the natural way. We obtain a category AFoam of webs and anchored foams.

The category AFoam has a contravariant involution @ which is the identity on webs and
which sends a foam to its reflection about R? x {%}, preserving the labels of anchor
points. As for closed foams, denote by s(V') and v(V') the singular graph and singular
vertices, respectively, of a foam with boundary V. Define the degree of V to be

(49) deg(V) = 2(ld(V)| + [ p(V)| = x(V)) = x(s(V)),
where d (V) is the set of dots on V.

The definition of admissible colorings extends naturally to anchored foams with bound-
ary. An admissible coloring induces a Tait coloring on the boundary webs. If a foam
with boundary V' has an admissible coloring ¢, then by [18, Remark 2.8],

(50)  deg(V) =2[d(V)|+2|p(V)| = (x(V12(c)) + x(V13(c)) + x(V23(c)))-

It follows that for a closed foam F, its evaluation (F) € R/, is a homogeneous polyno-
mial of degree deg(F).

Lemma 3.17 For composable foams V and W,

deg(WV) = deg(W) + deg(V).
Proof This follows from [18, Proposition 3.1] and [ p(W V)| = |p(W)| + |p(V)]|. O

We now define state spaces for webs via universal construction and the evaluation
formula (39). For a web T, let
Fr(T")

denote the free R’,—module generated by all anchored foams V' from the empty web
to I'. Define a bilinear form

(=, —):Fr(T') x Fr(T') — R,

by (V, W) = (w(V)W). This bilinear form is symmetric since (F) = (w(F)) for any
closed anchored foam F. Define the state space (I") := Fr(I") /ker((—, —)) to be the
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Q ~ o2 Do T{-2} O x — I} & — {-1}
a contractible circle a bigon face
~_ N
=~ ® =
N
a square face a triangle face

Figure 9: Direct sum decompositions from [18, Section 3.3], where the
depicted regions do not contain the puncture.

quotient of Fr(I") by the kernel
ker((—,—)) ={x € Fr(I') | (x, y) =0 for all y € Fr(I")}

of the bilinear form. Note that (—, —) is degree-preserving, so its kernel and the state
space (I') are graded R’,—modules.

An anchored foam V': Iy — I naturally induces a map
(V): (To) = (In)

of degree deg(V), defined by sending the equivalence class of a basis element U € Fr([)
to the class of the composition V' U. This is functorial with respect to composition of
anchored foams, (W V') = (W)(V') for composable anchored foams with boundary V
and W.

Remark 3.18 For a web I' and basis elements V7, V5 € Fr(I"), an admissible coloring
of the closed foam w(V;)V; induces a Tait coloring of I'. Thus (I') = 0 if " has no
Tait colorings; see also [18, Proposition 3.16].

Proposition 3.19 The local' isomorphisms in [18, Propositions 3.12-3.15], also
shown in Figure 9, hold.

Proof Proposition 3.14 guarantees that the explicit isomorphisms defined in [18] hold
in the anchored setting as well. O

I'Here local means that the webs involved in the isomorphisms are identical outside of a disk which is
disjoint from the puncture, and in this disk they are related as in the figures accompanying the statements
of the propositions.

Algebraic € Geometric Topology, Volume 23 (2023)



Anchored foams and annular homology 3167

Proposition 3.20 Let I' C P be a web with a noncontractible circle C which bounds
adisk in R?2\ T, and let T' = T"\ C be the web obtained by removing C. Then there
is an isomorphism

given by the maps

X @ X ¢ X

T

Proof This follows from Example 3.6 and the relation (44). Note that there are no
grading shifts in the three copies of (I'/). ad

It is an interesting and nontrivial problem to identify the state spaces (I'). In the
construction in [18] without the anchor line, state spaces can be simplified using
the relations in [18, Section 3.3]; see Figure 9. In particular, bipartite webs always
contain a contractible circle, bigon, or square, so the state space in the bipartite case
is a free module of graded rank equal to the Kuperberg bracket [24], normalized as
in [15]; see also [18, Propositions 3.17 and 4.15]. The simplest web which cannot be
simplified using the relations in Figure 9 and for which the state space is unknown
is the dodecahedral graph, as explored in [9; 17], and, on the gauge theory side,
in [21; 22; 23].

One may also ask to identify state spaces in the presence of the anchor line and the
modified evaluation considered in this paper. Propositions 3.19 and 3.20 give some
ways to simplify state spaces. In general, we are not able to decompose the bigon,
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square, and triangle regions in Figure 9 if they contain the puncture. An extended
evaluation, obtained by introducing additional types of intersection points of L with
a foam, is discussed in Section 3.5. The following lemma addresses reducibility of
smallest webs.

Lemma 3.21 Let I' C R? be a connected, planar, trivalent graph with no edges
connecting a vertex to itself. 2

(1) If T is bipartite, then I' has at least two bounded faces with at most four edges
each.

(2) If at most one of the bounded faces of I' has fewer than five edges, then I' has at
least eight vertices.

Proof Let v, e, and f denote the number of vertices, edges, and faces (including the

unbounded face) of T, respectively. Label the faces 1,..., f,and for 1 <i < f, let r;
denote the number of edges that form the boundary of the i" face. We have

f
(51) > ri=2e =73,

i=1

where the second equality holds since I is trivalent.

We first prove statement (1). Since I is bipartite, each r; is even. Suppose for the sake
of contradiction that at most one bounded face of I" has four or fewer edges. Then (51)
implies
f

> > 6(f-2),

i=1
s0 12 > 6 f — 3v. On the other hand, an Euler characteristic computation gives

12=6(f—e+v)=6f—3v,
which is a contradiction.
Let us now address statement (2). From (51) we obtain
3v=5(f—-2)+4=5f—-6

since, by assumption, there are f —2 faces with at least five edges each, and the remain-
ing two faces each have at least two edges. This together with an Euler characteristic
computation gives f > 6, and it follows that v > 8. a

2 A graph with such an edge has trivial state space; see Remark 3.18.
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Figure 10: The simplest nonreducible web in the punctured plane.

Corollary 3.22 Let I" C P be a bipartite web. Then (I") is a free R’.—module of rank
equal to the number of Tait colorings of T".

Proof By statement (1) of Lemma 3.21, any such web has either an innermost
noncontractible circle or a region, not containing the puncture, which either bounds
a closed loop, or is a bigon or square face. Thus state space can be reduced using
Propositions 3.19 and 3.20. Since the resulting web remains bipartite we can continue
the procedure until the state space is reduced to a direct sum of empty webs, each
of which is free of rank 1. On the other hand, the number of Tait colorings can be
computed using the same relations. O

It is natural to ask what is the simplest web for which the state space cannot be reduced
using Propositions 3.19 and 3.20. By statement (2) of Lemma 3.21, such a web has
at least eight vertices. The web shown in Figure 10 has precisely eight vertices and
cannot be simplified using our local relations. We have not identified the state space
of this web, but it can be approached via the 4—periodic (and, in general, nonexact)
complex described in [18, Section 4.3]. It can be applied along any of the four edges of
Figure 10 web near either the marked or the infinite point. One of the other three webs
in the complex contains a loop and has trivial homology, but additional computations
are needed to identify the state space due to nonexactness of the complex.

An annular graph I C P is called reducible if its state space can be reduced to a sum
of those for the empty annular graph by recursively applying the relations in Figure 9
and relation in Proposition 3.20. It may make sense to also allow reductions to annular
graphs without Tait colorings (including graphs with loops), since such graphs have
trivial state spaces.

A reducible annular graph allows an identification of its state space with a suitable free
graded R,—module by recursively applying the above state sum decompositions. As a
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special case, we have the following decomposition formula for collections of simple
closed curves in an annulus.

Proposition 3.23 Let I" C P consist of n contractible circles and m noncontractible
circles. Then the state space (I") is a free R’,—module of graded rank 3™ (> +1+g72)".

In particular, for a reducible T, the graded rank of the free R’.—module (I") can be
computed recursively.

Anchored foams and state spaces carry an additional (Z/2xZ/2)—grading as follows.
Recall that ©1, u, and u3 denote the nonzero elements of Z/2 x Z /2. For a foam V
with (possibly empty) boundary, define

adeg(V) = Z Ug(p)-
pep(V)
We call adeg the annular degree. Clearly adeg is additive under disjoint union and
composition.

The annular degree extends to a (Z/2xZ/2)—grading on Fr(I"), for a web I C P, by
setting the ground ring R to be concentrated in annular degree zero. Proposition 3.10
implies that (F) = 0 or adeg({F)) = 0 for any closed foam F'. It follows that (—, —)
preserves annular degree, so adeg descends to a (Z/2xZ/2)—grading on the state
space (I'). The annular grading is the unoriented version of the grading on state spaces
of annular oriented webs by the integral weight lattice of sl; — see Section 4.4 — even
though the action of the latter is lacking on the equivariant annular state spaces.

In [18, Section 4] the authors consider localization of the unoriented SL(3) theory given
by inverting the discriminant D = (x{ 4+ x3)(x; + x3)(x2 4+ x3). This localization
results in a significant simplification of the theory, making it separable, so to speak. In
particular, a suitable 4—term sequence of web state spaces in [18, Section 4.3] is exact.

This localization easily extends to the annular case. The corresponding 4—term se-
quence is exact in the annular case as well. The ground ring for that theory is
R’D = k[x1, x2, x3, D“l], with k a characteristic two field. The analogue of [18,
Proposition 4.13] holds: the localized state space of an annular web I' is a projective
R’;-module of rank equal to the number of Tait colorings of I". The latter is the number
of edge colorings of I' into three colors such that at each vertex the colors are distinct.
Proof of this result in [18] easily adapts to the annular case, with the modification
that the region around the marked point can be inductively simplified, if necessary, by
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reducing to the other three terms in the exact sequence, until it has a single edge (a
loop around the marked point).

3.4 Remark on Lee’s theory

Recall the function
(52) S =(x+x)(x +x2)(x +x3) =x° + Eyx? + E;x + E3

(in characteristic 2 signs do not matter) with coefficients in the ring R, and roots in
R, D Rx. One can form the quotient ring 4 := R’ .[x]/(f(x)), naturally isomorphic
to the homology of a contractible circle in our theory. Let

(53) D= (x1+x2)(x1 +x3)(x2 +x3) = E1 E; + E3
be the discriminant. Consider the localization

(54) Rp:=R\[D7'], Ap:=Rp®p, A.
Introduce idempotents e, e;, e3 € Ap,

_ (x +xj)(x + Xk)

(55) e;j 1= , i, j. ky=1{1,2,3}.
CT (i xj) (i + xg)

We have

(56) l=e;+ey+es, eiej=0;je;.

These idempotents decompose the ring Ap into the direct product
(57) Ap = Riyeq x Rphey x Riyes = Ry x Ry x Ry,

An idempotent e; can be visualized as floating on a facet of a foam F, in the localized
theory. These idempotents allow us to decompose an evaluation of a foam F with n
facets into 3” terms by summing over all ways to place each of these three idempotents
onto facets of F. Each term is straightforward to compute and equals zero unless the
idempotents define a Tait coloring (an admissible coloring) of F.

Idempotent e; bears a close relation to an anchor point labeled i. The anchor point

p on a facet f contributes the term / f7(x¢(r)) = /(Xe(f) + X)) (Xe() + Xk) to the
evaluation (F, ¢). The square of this term is either 0 (if i # ¢(f)) or the denominator

of e;, if i = c(f), for any coloring ¢ of F.
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Comparing e¢; and an anchor point p labeled i, when coloring ¢ associates color ¢( f) #i
to the facet f carrying e; or p, both evaluations are zero. When ¢( f) = i, the idempo-
tented dot e; contributes 1 to the evaluation, while the anchor point contributes \/m .
The denominator of e; is f/(x;).

One can try to unify e; and anchor points p by considering anchor lines and circles L
in R3 possibly intersecting a foam F. Intersection points (anchor points) carry labels
i €{1,2,3} and a circle anchor points labeled 7 is the idempotent ¢;. Then a “small”
circle intersecting a facet f at two points, both labeled 7, can also be converted into e;.
Notice that once ¢; are allowed, integrality is lost and an evaluation of such a foam
may contain denominators which are products of x; + x;.

For a different generalization, instead of a single line L C R? consider a 1-manifold
L properly embedded in R3, say a finite union of lines and circles, possibly knotted.
All anchor points (intersection points with L) on a foam F carry labels, with the usual
contribution to the evaluation, as in formula (36). The integrality Theorem 4.15 still
holds for such generalized evaluation. In particular, given k points on a plane, one
can define various state spaces for webs I' embedded in the plane and disjoint from
these marked points. Also note that for k£ > 2 punctures, bipartite graphs are in general
not reducible, which makes it harder to understand corresponding state spaces in the
oriented SL.(3) case.

Remark 3.24 A handle next to but disjoint from an anchor line can be written as a
sum of three lower genus terms intersecting the line — see (46) — which follows from
the formula

mo A(l) = (x1 +x2)(x1 +x3) + (X1 +x2)(x2 + x3) + (X1 +x3)(x2 + x3)
= f(x1) + f'(x2) + f(x3).

3.5 Unlabeled anchor points and bigon decomposition

Direct sum decompositions for webs I" containing a bigon, triangle, or square face
which do not contain the puncture are given in Proposition 3.19. On the other hand,
Proposition 3.20 describes how to simplify a web containing an innermost noncon-
tractible circle. In order to have direct sum decompositions for more general regions
containing the puncture, we introduce additional types of intersections of the anchor
line L with a foam and modify the evaluation {—).

In addition to anchor points, which carry labels in {1, 2, 3} as in Definition 3.2, we
allow finitely many transverse intersections of L with a foam F' away from the singular
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Figure 11: Left, a type 1 anchor point marked o and carrying no label. Right,
a type 2 anchor point marked * with label i € {1, 2, 3}.

graph s(F), and we do not require labels. We will call the usual (labeled) anchor
points fype 2, and the new (unlabeled) anchor points type 1. In the figures, we denote
type 2 anchor points by an asterisk * as usual, along with a label in {1, 2, 3}, and type
1 anchor points will be indicated by a small unshaded circle o. Figure 11 illustrates the
convention. Let p;(F) and p,(F) denote the set of type 1 and type 2 anchor points,
respectively (using the notation in Section 3.1, p(F) = p,(F)). The definition of
admissible coloring remains the same.

We modify the evaluation in the presence of type 1 points as follows. Let ¢ € adm(F).
For p € p;(F) lying on some facet f € f(F), let ¢c(p) := c(f) denote the coloring
of the facet on which p lies. Also recall that for i € {1,2, 3}, we write i’,i” and j, k
to denote the two complementary elements, so {1,2,3} ={i, j,k} ={i,i’,i"}.

Define
(58) Oo(F.o)= [] VXe(y +Xe(ry-
pep1(F)
(59) Po(F,c) = P(F,c)- Qo(F,0),
_ Po(F,c)
(60) (F,c)o= OF.0)
(61) (Flo=Y_ (F.c)o,
c€adm(F)

where P(F,c) and Q(F,¢) are as defined in (36) and (37). In other words, a type 1
point p on an i —colored facet contributes a factor of /X + X to the evaluation (F, ¢)o.

Remark 3.25 Type 1 intersection points are related to the triangle decoration from
[18, Section 4.1]. Precisely, the contribution of a type 1 point p to the square root in
(58) equals the inverse of placing a triangle decoration on the facet where p lies. See
relation (62), as well as Remark 3.4 for a related discussion.
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Note that a type 1 intersection point contributes half the degree of a type 2 point to the
degree of the evaluation and, thus, to the degree of a cobordism represented by a foam
with boundary.

Example 3.26 Consider a 2—-sphere F' carrying d dots and intersecting L in two type 1
anchor points,

For 1 <i <3, let ¢; € adm(F) color F by i. Then
_ xld(xj + Xk)
) (X X))
(Flo=(F.c1)o+ (F.c2)o + (F.c3)o
xf(xz + X3)2 + xg(xl + X3)2 + xgi(xl + x2)2
(1 +x2)(x1 + x3)(x2 + x3)

X xD +xd P+ XD+ x (P +xD)

- (1 + x2) (1 + x3)(x2 + X3)
Thus, (F)o=0ifd =0,2,and (F)o =1if d = 1. For d > 3, the last expression above
equals the ratio of the antisymmetrizer with exponent (d, 2, 0) and antisymmetrizer
with exponent (2, 1, 0) (up to adding signs, which does not matter in characteristic 2).

Thus (F), equals the Schur function s) (x1, x2, x3) for the partition A = (d — 2, 1,0)
when d > 3.

(F’ Cl'>0

Example 3.27 Consider a 2—sphere F carrying d dots and intersecting L in one type 1
anchor point and one type 2 anchor point,
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Then F has one admissible coloring, and

xS G x| xE U
B (i +x5)(xi +xx) N \/(xi-i-Xj)(xi‘i‘xk)‘

(F)o

From Example 3.27 we see that the evaluation (F'), in general has denominators and
square roots, so we can only conclude that

(F)o € Ro:=K[x1, X2, X3, (x1 +x2) 72, (x + x3) 72, (x1 + x3)7'/2].
Note that R is a subring of ﬁ;, see Section 3.1 and diagram (34).

We use R, as the ground ring of the theory. Evaluations of closed anchored foams F
with two types of anchor points belong to this ring. We define the state space (I')o
of a trivalent graph I' C P using this evaluation and following the general recipe
of Section 3.3. The state space is a graded Ro—module, but, due to the presence of

invertible elements (x; + x j)l/ 2

of degree 1, grading carries little information, and for
many purposes one can downsize and consider the degree zero part (I')? of the state

space, which is a module over the degree 0 subring ﬁg of Ro.

This theory is functorial and foams with top and bottom boundary and anchor points of
those two different types induce maps between the corresponding state spaces. Various
direct sum decompositions that hold for the unoriented SL(3) theory (—) hold for this
theory as well.

We also have local relations involving type 1 intersection points.

Lemma 3.28 The following local relations’ hold for the theory (—)o:

(62)

(63)

- |

NisE
A

3To clarify relation (63): the first term on the right-hand side of the equality has a type 1 anchor point on
each of two front-facing half-bubbles, while the second term has a type 1 anchor point on each of the two
back-facing half-bubbles.
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(64)

(65)

Proof Relation (62) is straightforward and left to the reader. Let us verify relation (63).
Denote by F the foam on the left-hand side of the equality, and denote by F! and F? the
two foams on the right-hand side. There is a natural identification adm(F ') = adm(F?).

Let ¢ € adm(F!) be a coloring in which the front two half-bubble facets are differ-
ently colored, say the top front half-bubble is colored j, the bottom front half-bubble
is colored k, and the remaining “big” facet is colored i. Continue to denote by
¢ € adm(F?) the corresponding coloring of F2. The top type 1 intersection point of
F1 contributes /x; + xx to (F1, ¢) and the bottom type 1 intersection point of F'!
contributes ,/X; + x;, while the contributions of these points to (F 2 ¢) are reversed.
Thus in characteristic two we have

(F',¢)+ (F?,¢) =0.

Next, the admissible colorings of F' are in natural bijection with the admissible colorings
of F! (and of F?) in which the front half-bubbles of F! are colored the same. Let
¢ € adm(F), and let ¢’ € adm(F') = adm(F?) denote the corresponding colorings.
Suppose that ¢’ colors the front half-bubbles of F! by j, the “big” facet by i, and the
back half-bubbles by k. Then

= xi+xk(F,c) and (Fz,c/) = XX

(F'.¢)
Xj + Xk Xj + Xk

(F,c),

from which we obtain
(F.c)=(F'.¢")+ (F?,¢),

which completes the proof of relation (63).
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We now address the relation (64). Let G denote the foam on the left-hand side of the
equation, and let G’ denote the foam on the right-hand side. Let ¢ € adm(G), and
assume ¢ colors the “big” facet of G by i, the front bubble by j, and the back bubble
by k. Let ¢’ € adm(G) denote the coloring which is identical to ¢ except the front
and back bubbles are colored by k and j, respectively. Let ¢’ € adm(G’) denote the
coloring of G’ in which the depicted facet is colored i, and the remaining facets are
colored according to ¢ (equivalently, ¢’). We claim that

(G,c)+ (G, "y = (G, "),

which completes the proof. To verify the above equality, observe that

(G, c) = Xi + Xg (G,,C”) and (G,C’) _ m(G’,C”).
Xj + X Xj + Xk
The proof of relation (65) is similar and left to the reader. a

The previous lemma allows us to simplify the state space (I"), assigned to a web I' C P
with a bigon region containing the puncture.

Proposition 3.29 The two maps shown in Figure 12 are mutually inverse isomorphisms
between state spaces of graphs in the theory (—)o.

Proof This follows from the relations in Lemma 3.28. O

4 Oriented SL(3) anchored homology

In this section we recall oriented SL(3) foams, which were introduced in [15] in the
context of sl(3) link homology. An equivariant analogue was defined in [28]; see
also [10; 26; 27; 29; 33] for various aspects of SL(3) foams and link homology. In
Section 4.1 we define an evaluation of oriented SL(3) foams via colorings in the style
of Robert and Wagner [34] and show in Theorem 4.26 that our evaluation agrees with
that of [28]. In Section 4.2 we deform the evaluation in the presence of the anchor
line L. In Theorem 4.15 we show that our evaluation is always a polynomial.

To avoid introducing new notation, in this section we will reuse the notation for various
rings from Section 3:

e R/ =Z[xy,x,,x3]is the ring of polynomials in three variables.

e Ry =Z[E,, E,, E3]is the subring of R’, that consists of symmetric polynomials
in x1, X, and x3, with generators E; being the elementary symmetric polynomials

Ei=x1+xy+x3, E)=x1x+x1X3+x2x3, E3=x1XxX3.
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X

Figure 12: Isomorphisms which simplify a bigon region containing the punc-
ture, for the theory (—),. In the top map, the top foam has a type 1 point on
the front half-bubble, and the bottom foam has a type 1 point on the back
half-bubble. In the bottom map, the first foam has a type 1 point on the front
half-bubble, and the second foam has a type 1 point on the back half-bubble.

o R =R/ [(x;—x2)71, (x2—x3)71, (x; —x3)"!]is a localization of R/, given
by inverting x; —x;, for 1 <i < j <3.

. ﬁ; = R/ [/X1 — X3, /X2 — X3, /X1 —x3] is the extension of R/, obtained by
introducing square roots of . /x; — x;, for 1 <i < j <3.

« Rl = ﬁ;i[(xl —x2)7 1, (x2 —x3)7 1, (x1 —x3)7!] is a suitable localization of
the ring R/,.

All five of these rings are graded by setting deg(x;) = deg(x,) = deg(x3) = 2. Inclu-
sions of the above rings are summarized in the following diagram:

R R

X
(66) U U
Ry C R, C R},

X
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4.1 Oriented SL(3) foams and their evaluations

We begin by recalling the definition of oriented SL(3) foams from [15, Section 3.2].

Definition 4.1 A (closed) oriented SL.(3) prefoam F consists of the following data:

* An orientable surface F’ with connected components Fi, ..., Fj and a partition
of the boundary components of F’ into triples. The underlying CW structure
of F is obtained by identifying the three circles in each triple. The image of
the three circles in each triple becomes a single circle in F, called a singular
circle. The image of the surfaces F; are called facets. Three facets meet at each
singular circle.

¢ For each singular circle Z, we fix a cyclic ordering of the three facets meeting
at Z. There are two possible choices of cyclic ordering for each Z.

e Each facet may carry some number of dots, which are allowed to float freely
along the facet but cannot cross singular circles.

A oriented SL(3) foam is a prefoam as above equipped with an embedding into R3,
along with an orientation on each facet such that any two of the three facets meeting
at each singular circle are incompatibly oriented, as shown in Figure 13, left. Each
singular circle Z acquires an induced orientation; see Figure 13, middle. This induced
orientation on Z specifies a cyclic ordering of the three facets meeting at Z by following
the left-hand rule — Figure 13, right— and we require this to match the cyclic ordering
specified by the prefoam F.

Note that unlike unoriented foams considered in Section 3, the oriented SL(3) prefoams
in the present section do not contain singular vertices. When there is no risk of confusion

0 O N\

Figure 13: Left: orientations of three facets meeting at a singular circle.
Middle: the induced orientation of a singular circle. Right: the induced cyclic
ordering.
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between the foams introduced in the Definition 4.1 and those of Section 3, in this
section we will simply write (pre)foam rather than oriented SL(3) (pre)foam.

For a prefoam F, let ®(F) denote the set of its singular circles and 8(F) = |O(F)|
the number of singular circles. Each Z € ®(F) has a neighborhood homeomorphic to
the product of a circle S and a tripod. Let f(F) denote the set of facets of F. We
use the definitions of preadmissible and admissible colorings of prefoams and foams
from Section 3 in the present situation. For a prefoam F, adm(F) denotes the set of
admissible colorings of F. Note that if F' is a foam, every preadmissible coloring is
also admissible.

Fix a prefoam F and an admissible coloring ¢ € adm(F). For 1 <i # j < 3, bicolored
surfaces Fjj(c) consist of all facets colored i or j; each Fjj(c) is a closed, orientable
surface. For 1 <j < 3, let Fj(c) be the surface consisting of all facets of F' which are
colored i by c; the surface Fj(c) is orientable and has 6(F) boundary components.
Denote by F;(c) the closed surface obtained by gluing disks along boundary components
of Fj(c). We have

X(Fi(c)) = x(Fi(c)) + 0(F), 1<i=<3,
x(Fij(c)) = x(Fi(c)) + x(Fj(c)). 1=i<j=3.

The three facets meeting at each singular circle are colored by i, j and k, whereas

(67)

before we used i, j and k to denote the three elements of {1,2,3}. We now define
quantities 0% (¢) and Ql.jj: (c) associated with the set of singular circles ®(F') and the
admissible coloring c.

Definition 4.2 Let F be a prefoam with admissible coloring ¢, and let 1 <i < j < 3.
A singular circle Z € ©(F) is positive with respect to (i, j) if the cyclic ordering of
the colors of the three facets meeting at Z is (i k j). If F is a foam, then an equivalent
formulation is as follows: when looking along the orientation of Z with the facet
colored k, as in Figure 14, the i—colored facet is to the left of the j—colored facet.
Otherwise, we say Z is negative with respect to (i, j). See Figure 14, left, for a pictorial
definition. Let 917; (c) (resp. 9; (c)) denote the number of positive (resp. negative) circles
with respect to (i, j). We have

GiJ]T(F, ¢) + 6;;(F.c) = 0(F).

We say that a singular circle Z is positive with respect to ¢ if the colors of the three
facets meeting at Z are (1 2 3) in the cyclic ordering, and otherwise Z is negative;
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Figure 14: Left: a positive (i, j)—circle, where i < j. Middle: a positive
singular circle. Right: a negative singular circle.

see Figure 14, middle and right. Let 07 (F, ¢) (resp. 8~ (F, ¢)) denote the number of
positive (resp. negative) circles in F with respect to c. We have

(68) O (F,c)4+ 67 (F.c) =06(F).

We will often omit F from the notation and simply write 6, Gijj: (c), and 8% (c).

We now define the evaluations (F, ¢) and (F). For a prefoam F, ¢ € adm(F), and
1 <i <3, let d;(c) denote the number of dots on facets colored i. Define

3
(69) P(F,c)= 1_[ xl_di(c)’

i=1
(70) O(F.o)= ] (x; — xj)XFii (€)/2,

1<i<j<3

3 —
(71) s(F,c)=Zix(F,~(c))/2+ Z 0% (0).
Set i=1 1<i<j<3

P(F,c)
72 F.c) = (—1)sF0) ’
(72) (F.c)=(=1) 0.0
(73) (Fy= Y (F.c).
c€adm(F)

A priori, the evaluations (F, ¢) and (F) lie in the ring R’; see diagram (66).

In what follows, we use the symbol = to mean equality modulo 2. Note that

X(F1(0)) + x(F3(¢))
3 :

3
(74) > ix(Fi(e))/2=

i=1
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since x(F»(c)) is even. Moreover, from (67) we obtain

3 3
(75) D ix(Fi(e)/2=0+) ix(Fi(c)/2.

i=1 i=1
Lemma 4.3 For a prefoam F and ¢ € adm(F),

> 6 e =6%(0).

1<i<j<3

It follows that

3
(76) s(F.c) =) ix(Fi(c))/2+67(c).
i=1
Proof Let Z € ©(F). Observe thatif Z is positive with respect to ¢, then it contributes
only to 91+3 (c). Likewise, if Z is negative then it contributes to both 91+2 (¢) and 92+3 (c)

but not to 91+3(c), which verifies the first equality. The second equality follows from
(75) and (68). m|

Example 4.4 Let F be a 2—sphere S? with d dots. For 1 <i <3, let ¢; € adm(F)
color F by i. We have

(F) = (F.c1) + (F,c2) + (F, c3)

d d d
X ) X3

(v —x2)(xg —x3) - (X1 —x2)(x2—x3) (%1 —x3)(x2 —x3)
B —x% (xy —x3) + x4 (1 — x3) —x¥ (1 — x2)
B (x1 —x2)(x2 —x3)(x1 —Xx3)

-y
= —Sd-2,0,0(X1.X2.%3) = —hg_a(x1.x2.x3) =— > xixjx}.
i+j+k=d-2

where $(7-2,0,0)(X1, X2, Xx3) is the Schur function of the partition (d — 2,0, 0), and
hg_>(x1, X2, x3) is the complete symmetric function of degree d — 2. In particular
(FY=0ifd=0o0ord=1,and (F)=—1ifd =2.

Example 4.5 Let F be the theta foam
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Given any ¢ € adm(F), each capped-off surface F;j(c) and each bicolored surface
Fij(c) is a 2—sphere. In particular,
s(F,c)=0%(c).
For o € S3, let ¢(0) € adm(F) denote the coloring which colors the top facet by o (1),
the middle facet by o(2), and the bottom facet by o(3). We have
+ d d d
20653 (— 1)9 (C(U))XO%I)XU%Z)XU%S)
(1 —x2)(x1 —x3)(x2 — x3)

(F)= > (F.c(0)) =

ocEeS3

’

and moreover
07 (c(0)) =0,
where |o| is the length of 0.

Therefore if dy > dy > d3,

<F> = S(dl—z,dz—l,d3)(x1 » X2, X3),

the Schur function with partition (d; — 2, d, — 1, d3). In particular, {(F) =0 if dy, d,
and d3 are not distinct. If dy, d, and d3 are distinct and d; + d, + d3 < 3, then up to
cyclic permutation there are two choices:

The symmetric group S3 naturally acts on adm(F) and on the five rings in the dia-
gram (66). The following lemma is analogous to [34, Lemma 2.16].

Lemma 4.6 Let F be a prefoam, ¢ € adm(F'), and o € S3. Then
o((F,c)) = (F,0(c)).
Proof We may assume that o is a transposition (i i + 1) fori = 1, 2. We have
6(P(F.0) = P(F.0(c)). 0(Q(F.c) = (=T 2 9(F, o(c)).

Let k € {1,2,3}\ {i,i + 1}. Note that a singular circle Z is positive with respect to ¢
if and only if Z is negative with respect to o (c), so

6T (c)+ 60T (0(c)=60=0"(c)+ 6 (5(c)).
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Moreover,

Fi(c) = Fit1(0(c)),  Fit1(c) = Fi(o(c)), Fi(c) = Fy(o(c)).
Therefore
S(F.0)—s(Foten = EERO I gm0y gm0
_ X(Fi+1(C))2_ x(Fi(c)) i
_ X(UFig1(0) + x(Fi())
2
_ X(Fia+1(©))
= > .

Corollary 4.7 The evaluation (F) is a symmetric rational function.

Later we will prove that (F) is in fact a polynomial; see Corollary 4.16.

Lemma 4.8 Leti € {l1,2}, let F be a prefoam, and let ¢ € adm(F) be an admissible
coloring. Suppose ¢’ € adm(F) is obtained from ¢ by a (1,2)—Kempe move along a
surface ¥ C Fy5(c). Then

s(F,c) =s(F.c')+ 1x(2).

Proof Note that this is analogous to [34, Lemma 2.19]. Letting 6(X) denote the
number of seam circles on X, we have

0 () + 0 () =0(2) = x(Fi(c)NX).
Note also that
X(F1(c)) = x(F1(c") = x(F1(c) N ) — x(F2(c) N 3),
X(F2(0)) = x(F2(c")) = x(F2(c) N 2) = x(F1(c) N X).
We compute
X(F1(0) = x(Fi(¢") | 2(x(F2(0)) = x(F2(c"))
2 + 2

K(F2(c)N ) - KON L pens)

%X(Z). m]

4.2 Oriented anchored SL(3) foams and their evaluations

s(F,c)—s(F,c) =

+0(X)

Definition 4.9 An oriented anchored SL(3) foam F is an oriented foam F’ C R3
that may intersect the anchor line L at finitely many points away from the singular
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circles of F’, so that each intersection point belongs to some facet of F’, and moreover
these intersections are required to be transverse. Denote by p(F) = F' N L the set of
intersection points (anchor points) of F. The anchor points carry labels in {1, 2, 3};
that is, F' comes equipped with a fixed map

L:p(F)—{1,2,3}.

Fix an anchored foam F and an admissible coloring ¢ of the underlying foam F’.
Each anchor point p € p(F) lying on a facet f inherits a color ¢(p) := c¢(f). As
in Section 3, we say that ¢ is an admissible coloring of the anchored foam F if for
each p € p(F), the color of p equals the label of p, that is, ¢(p) = £(p). Denote by
adm(F) the set of admissible colorings of F'.

For i € {1,2,3},let i’ and i” denote the complementary elements, so that {i,i’,i"”} =
{1,2,3}. Define the evaluations

P(F. 1/2
(77)  (F.c) =(—1)S(F’C)%( I1 (—1)C(p)_1(xc(p)—Xe(p)/)(xc(p)—xe(p)”)) ,
T pep(F)

(78)  (F)= Y (F.)

c€adm(F)

where P(F,c), Q(F,c) and s(F, c¢) are as defined in (69), (70) and (71), respectively.

Let us explain the square root in (77). We have c(p) = £(p) for every anchor point
p € p(F). If pislabeled i, then it contributes

(=) o — x) (i — xx)

to the product under the square root. More concretely, the product of the two terms
under the square root, for a fixed anchor point p, is equal to

(x1 —x2)(x1 —x3) if c(p)=1,
(x1 —x2)(x2—x3) if e(p) =2,
(x1 —x3)(x2—x3) if c(p)=3.

Let an(i) be the number of anchor points p with ¢(p) =i. Thenfor 1 <i < j <3 the
sum an(i) 4+ an(j) is even, which follows from Proposition 3.10.

We define the square root as the product

(79) Q(F, c) = l_[ (x;i — xj)(2111(1')-|-an(j))/2

1<i<j<3
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and rewrite formula (77) as

pira PO )

(F,c):= (-1
Q(F,¢)
= (=1)*FIP(F,¢) 1_[ (xi _xj)(aﬂ(i)+aﬂ(j)_X(Fij /2
1<i<j<3

Note that Q(F , ¢) depends only on the labels of anchor points and not on the color-
ing ¢, as long as c¢ respects labels of anchor points (otherwise, the evaluation is 0).
Consequently, it can also be denoted by Q(F ). Alternatively, it may be useful to allow
more general colorings ¢, with Q(F ,¢) = 0 for ¢ not compatible with the labels of
anchor points.

Recall diagram (66) and the surrounding discussion for notations of various rings. The
above formula implies the following proposition.

Proposition 4.10 The evaluation (F, c) is an element of R’}..

Remark 4.11 As discussed in Remark 3.5, if ¢ is an admissible coloring of the
underlying foam F’ but not of the anchored foam F, then the evaluation (77) is still
well-defined and equal to zero. Even if we don’t restrict the notion of admissible
colorings of an anchored foam to those which color anchor points according to their
labels, additional terms in the evaluation will each be 0, not contributing anything.

Example 4.12 Let F be a 2—sphere S? carrying d dots and intersecting L twice. Then
(F) = 0 unless both anchor points are labeled by i € {1, 2, 3}. In this case, there is one
admissible coloring ¢ which colors F by i. We see that s(F, ¢) =i, and the evaluation
is

(F) = (=1)'x{.

Example 4.13 Consider the theta foam F whose facets each intersect L exactly once,
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There is one admissible coloring ¢, and we have
xlfi lx‘.izx,‘i’3 if (i, j,k) = (1,3,2) or a cyclic permutation,

(F)=(F,C)={ di’ d>- ds

=X Xy if (i, j, k) = (1,2,3) or a cyclic permutation.

The symmetric group S3 acts on all five of the rings in diagram (66). Recall also that
S3 acts on the set of admissible colorings of an unanchored foam (ie those considered
in Section 4.1). However, for an anchored foam F, ¢ € adm(F), and o € S3, the
coloring o (c) is in general not admissible for F.

Consider instead the anchored foam o (F') defined as follows. The underlying foam
of o (F) agrees with the underlying foam of F'. If anchor points of F are labeled by
£: p(F)—{1,2,3}, then the anchor points of o (F) are labeled by o(/): p — o (£(p)).
Note that o provides a bijection adm(F') = adm(o (F)) via ¢ — o (c). The following
lemma says that the evaluations (F) and (o (F')) differ by a sign, and moreover the
sign depends only on ¢ and on labels of anchor points of F.

Lemma 4.14 For an anchored foam F, ¢ € adm(F), and o € S3, we have

o((F,c)) = (=1)*F g (F),0(c)),

where
an(i) 4+ an(j)
80 F,o0)= _—
(80) e(F.o)= 5
l<i<j=<3
o()>0o(j)

It follows that
o((F)) = (~=1)*F (g (F)).

Proof By Lemma 4.6,
U((_I)S(F,c) P(F, C)) _ (—1)5 @0 P(o(F).0())
O(F.c) Q(o(F),0(c))
It is clear that _ _
0(0(F) = (=1)*FI 0 (0 (F)),
and the first equality follows. For the second equality, we have

c((F))= Y o((F.c)

c€adm(F)

=(=D)*FD 3" (o (F).0(c))

cc€adm(F)
= (=1)*FD (5 (F)). O
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For 1 <i # j <3, consider the ring
R = Ril(xi —x0) ™", (5 —x) 7]

Each R;’J is a subring of R’.. A permutation o € S5 sends R;’J isomorphically onto
R/l
oo (j)

We are now ready for the main result of this section.

Theorem 4.15 The evaluation (F) of an anchored foam is an element of R'., the
polynomial ring in variables x1, x, and x3.

Proof The proof is similar to that of [18, Theorem 2.17] and [34, Proposition 2.18].
By Lemma 4.14, it suffices to show that (F) € R’l’ , for any anchored foam F'. This is
because we may take a permutation o € S3 sending 1 to i and 2 to j, and consider the
anchored foam o~ ! (F). Then (o~ !(F)) € R/, implies that

+(F) = £(o (0™ (F))) = o ({0~ (F))) € R}},

where the first equality comes from Lemma 4.14. It follows that
(F)ye R{,NRS;NRY; =R.

Let us show that (F) € RY,. Partition adm(F) into equivalence classes as follows.
For ¢ € adm(F), the class C, containing ¢ consists of colorings obtained from ¢ by
performing a sequence of (1,2) Kempe moves along surfaces in Fj,(c) which are
disjoint from L. If Fy,(c) has n connected components, k > 0 of which are disjoint
from L, then C, consists of 2k elements. We will show that

> (F.c)eRY,,

c’eCe
which will conclude the proof.
Write X := Fi,(c) as a disjoint union
=Y UX|U---UZy,
where each X4, fora = 1,..., k, is connected and disjoint from L, and where each

component of ¥’ intersects L. Fori = 1,2 and a = 1,...,k, let t;(a) denote the
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number of dots on 7 —colored facets (according to ¢) of 3, and let 73 denote the number
of dots on 3—colored facets (according to ¢) of F. We claim that
@) Y (F.c)=

c’eCe

1 Ty (6717 O DR O (11 =) (6 —03) 20 O/2)- O (F)
(Xl xZ)X(E)/Z(xl X3)X(F13(C))/2(X2 x3)X(F23(5))/2

where

e {x,(c) € 2Z is an even integer such that

X(Fi3(c) = x(F13(c)) —Lx,(c),  x(Fa3(c") = x(F23(c)) + Lx,(c)
for the coloring ¢’ € C, which is obtained from ¢ by a (1,2) Kempe move
along ¥,. See [18, Lemma 2.12(3)] for details regarding this integer.

. Q(F ) is the contribution from the anchor points of F; see (79).

To verify the claimed equality, expand the product to obtain 2k terms, each of which
corresponds to one of the 2k colorings in C,. That the sign is correct follows from
Lemma 4.8.

Finally, we argue that (x; — x2)X(®)/2 divides the numerator of (81). Positive contri-
butions to x(X) come from 2—sphere components of 3. Each X, which is a 2—sphere
contributes one to the exponent x(X)/2. On the other hand, the corresponding factor
in the product in the numerator of (81) is divisible by x; — x,. The remaining positive
contributions to x(X)/2 come from 2-sphere components of ¥’. Such a component
¥y contains at least two anchor points, each labeled 1 or 2, so the contribution from
¥y can be canceled with terms in Q(F ). a

Corollary 4.16 If F is a prefoam or a foam which is disjoint from L, then (F) € Ry,
the ring of symmetric polynomials in x1, X, and x3.

Proof This follows from Lemma 4.14 and Theorem 4.15. O
4.3 Skein relations

In this section we record several local relations involving oriented anchored SL(3)
foams.

Lemma 4.17 The following local relations hold for anchored foams. Seam lines are
drawn in bold in relation (85) to clarify the picture:

) ﬁ= EE_E5+E5
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(83)

(84)

D T

/
-

N

Proof Proofs of these four relations are similar to Propositions 2.33, 2.22, 2.23 and
2.24 in [18], respectively, with the caveat that we must keep track of the sign (71).
Moreover, S3 symmetry is used in [18] to simplify the calculations. Anchor points
and their labels are the same for the foams depicted in each of these four relations, so
Lemma 4.14 implies that we may use 3 symmetry in a similar manner.

We verify relation (83) and leave the remaining three relations to the reader. Let F
denote the foam appearing on the left-hand side of the equality. The six foams on
the right-hand side are identical except for placement of dots. We denote them by
G, ..., GY, so that the relation reads

(F) =—=((G") +(G*) +(G*) + E1((G*) + (G?)) — E2(G®).
Admissible colorings of G, ..., G are in canonical bijection. For ¢ € adm(G!), let
(G,c):i=—=((GL,e) + (G2, c) + (G, e)) + E1((G*. ¢) + (G?,¢)) — E5(G®, ¢).

There are two types of colorings of G!: those which color the two depicted disks the
same, and those which color them differently. Those of the first type are in canonical
bijection with colorings of F.

Suppose ¢ € adm(G!) colors both disks the same color, say i, and denote by ¢ €
adm(G?) = --- = adm(G®) and ¢’ € adm(F) the corresponding colorings. We will
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show that (F, ¢’y = (G, c¢). We may assume i = 1. Then
(G'.c) =(G? ¢) = (G?,¢) =x}(G%,¢c), (G* c)=(G’ ¢c)=x1(G c),

which yields
(G, c) = =3x7(G% ) +2E1x1(G®, ¢) = E2(G®, ¢) = —(x1 — x2)(x1 = x3){G®, ).
To compare this with (F, ¢’), observe that

X(F1() +2=x(G7(©),  x(F2(ch) = x(G3()),  x(F3(c) = x(G3(c)),
which implies s(F, ¢’) = s(G, ¢) + 1. Moreover,
X(Fia(¢N+2=x(G5 (), x(Fi3(€)+2=x(G33(0),  x(Fas(c") = x(G35(c)).
Therefore, (F.c')

(v —x2)(xg —x3)

(GS.c) =
which verifies (F, ¢’) = (G, ¢).

To complete the proof, suppose that ¢ colors the top depicted disk by i and the bottom
disk by j, with i # j. We have
(G'.c) =x7(G® ), (G? ) =xixj(G® ¢c), (G.c)=x7(G?¢),
(G*,¢) =x;(G®,¢), (G°,c)= Xj(GG,C>.

Therefore (G, ¢) = 0, which concludes the proof. |

Lemma 4.18 Let F be an anchored foam. Denote by F, ,, the anchored foam obtained
from F by adding a bubble (disjoint from L) to some facet in F, with the two new facets
carrying n and m dots respectively, such that the facet with n dots directly precedes the
facet with m dots in the cyclic ordering. Let I, denote the foam obtained from F by
adding n dots to the same facet,

*n

Fy
Then

(Fan) =0, (Fi10) =—(Fo,1) =(F), (F2,0)=—(Fo2)= E((F)—(F1).
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Remark 4.19 The relations in Lemmas 4.17 and 4.18 also hold for prefoams.

Similar to the SL(2) and unoriented SL(3) setting, for oriented SL(3) foams we allow
shifted dots @ =e—Xx; (1 <i <3) on a facet:

They must be disjoint from L and are allowed to float freely on their facets but cannot

cross seam lines.

Lemma 4.20 The following local relations hold:

(86)

(87)

i
i Lk L J
(88) (XJXkW= }7+ }7
T "k

In the last equation we assume j < k.

Proof We verify (86) and leave the remaining relations to the reader. The argument
is similar to that of relation (44) in Lemma 3.15, so we will be brief. Let F' denote
the foam on the left-hand side, and let G!, G2 and G3 denote the three foams on the
right-hand side, with superscript corresponding to labels of the anchor points. For
1 <i <3, let adm; (F) consist of all admissible colorings of F' which color the depicted
tube by 7. There is a natural bijection adm; (F) = adm(G").

Given ¢ € adm; (F), let ¢’ € adm(G*) denote the corresponding coloring. Arguing as
in the proof of Lemma 3.15, we obtain

(F,c) = +(G",¢).
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Figure 15: The orientations at each trivalent vertex of an oriented SL(3) web
must be either all outgoing or all incoming.

It remains to show that the above sign is equal to (—1)’. We have
X(Fi(©) = x(GUe)).  x(Fr(e) = x(GL()),  x(Fi(e)) = x(GL(c) -2,
0= (F,c) = 05(G', ),
s0 s(F,c) = s(G',¢") +1i as needed. ]
4.4 State spaces

In this section we define state spaces associated to oriented SL.(3) webs. Much of this
is analogous to notions in Section 3.3.

Definition 4.21 An oriented SL(3) web is a planar trivalent graph I' C P in the
punctured plane, which may have closed loops with no vertices. Moreover, edges and
loops of I' carry orientations such that each vertex is either a source or a sink, as shown
in Figure 15. In this section we will simply write web rather than oriented SL(3) web.

The definition of an anchored foam with boundary in the oriented setting is analogous
to that of Definition 3.16. The singular graph of a foam with boundary V is a union of
finitely many arcs (with boundary in R? x {0, 1}) and circles (disjoint from R? x {0, 1}).
Intersection points of V' with Lo 17 (anchor points) must be disjoint from the singular
graph and carry labels in {1,2,3}. Facets of V are required to carry orientations
satisfying the convention in Figure 13, left, near singular points. As usual, we will use
the left-hand rule to specify these orientations and cyclic orderings by orienting each
singular circle and arc, as shown in Figure 13, middle and right.

As in Section 3.3, let 9; V := V N (R? x {0}) for i = 0, 1. The orientation of facets of
V induces an orientation on dg V' and d; V via the convention in Figure 16. We view
V as a cobordism from the oriented web dg V' to the oriented web d; V. Composition
WV of foams V and W with 0; V = doW is defined in the natural way.

Denote by p(V) = V N L[ 1] the set of anchor points of V' and by |d(V')| the number
of dots. The degree of V is defined to be

(89) deg(V) =2(1d(V)| + |p(V)| = x (V) + x(@V).
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A

A

A
!

A

Figure 16: Our convention for the induced orientation on the webs do V'
(bottom) and 91 V' (top).

Degree is clearly additive under composition and is compatible with the grading on R/,

in the sense that if V' is a closed foam, then deg(V') = deg({V')).

As in Definition 2.14, by an annular foam we mean a foam (with boundary) which is
disjoint from L. The composition of two annular foams is again annular.

There is an involution w defined by reflecting a foam with boundary through R? x {1/2}.
We have 0; V = dg(w(V)) and oV = 91 (w(V)) for any foam with boundary V. Given
aweb I' C P, let Fr(I") denote the free R, —module generated by foams with boundary
V from the empty web to I (thatis, doV = @, 01V = I'). Define a bilinear form

(=, —):Fr(T') x Fr(T") — R,

by (V, W) = w(V)W. This bilinear form is symmetric since (F) = (w(F)) for any
closed foam F'. The state space (I') is the quotient of Fr(I") by the kernel

ker((—,—)) ={x € Fr(I") | (x, y) =0 for all y € Fr(I")}

of the bilinear form,

(T) := Fr(T")/ker((—, —)).

The state space (I') inherits the grading from Fr(I") since (—, —) is degree-preserving.
A foam with boundary V' from I to I naturally induces a map

(V):(Io) — (I)

of degree deg(V'), defined by sending the equivalence class of a basis element U € Fr(Ip)
to the equivalence class of VU € Fr(I7). This assignment is functorial with respect to
composition of foams, (W V) = (W)(V) for composable V and W.
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o
@ ~ oleoeo{-2 ® P

(a) A contractible circle. (b) A square face.

+©+ 5 e ) ® —— (-1}

(c) A bigon face.

I

Figure 17: Local relations for state spaces of oriented SL(3) webs, where the
depicted regions do not contain the puncture.

Lemma 4.22 The three local isomorphisms shown in Figure 17 hold.

Proof The arguments for relations (a), (b), and (c) of the figure are analogous to
Propositions 7, 9, and 8§, respectively, of [15]. The relevant relations are Lemmas 4.17
and 4.18. O

Proposition 4.23 Let ' C P be a web with a noncontractible circle C which bounds a
disk in R2\ T, and let " = T"\ C be the web obtained by removing C. Then there is

an isomorphism
() = (I') & (I') & (I"')

given by the following maps (orientation of the circle is omitted):
A
4
A

X
@
O :
@
1 2 3
Proof This follows from Example 4.12 and the neck-cutting relation (86). m|
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Theorem 4.24 For any web I' C P, the state space (I") is a free graded R’.—module
of rank equal to the number of Tait colorings of I". Moreover, if I is contractible, then
the graded rank of (I') equals the Kuperberg polynomial [24] of T", normalized as in
[15, Section 2].

Proof Lemma 3.21(1) guarantees that we can reduce (I") to a direct sum of empty webs
by recursively applying the local isomorphisms in Lemma 4.22 and Proposition 4.23.
It is then clear that the rank equals the number of Tait colorings.

If T is contractible, (I') can be simplified using only the isomorphisms in Lemma 4.22.
Upon taking graded ranks, these isomorphisms recover the recursive relations for
computing the Kuperberg polynomial. |

Theorem 4.24 does not address the graded rank of state spaces of noncontractible webs.
These may be computed recursively. As a special case, if I' consists of # contractible
and m noncontractible circles, then (I') is free of graded rank 3™ (g2 + 1 + ¢ —2)".

Given a web I' C P, we can forget the puncture and the anchor line L and apply the
universal construction to the evaluation (73). Precisely, let Fr(I")ree denote the free
R—module generated by all foams with boundary I' (forgetting the anchor line). By
Corollary 4.16, we can define the bilinear form (—, —) : Fr(I")forget X Fr(I")forget = Rx
and the corresponding state space (I")foreer in the usual way. Thus we obtain state
spaces for webs in R2, functorial with respect to foams in R? x [0, 1]. These state
spaces and maps induced by foams are graded via (89), where | p(V)| = 0.

Proposition 4.25 For a contractible web I' C P, there is a degree-preserving isomor-
phism

I

(F> (F>f0rget,

natural with respect to foams with contractible boundary and which are disjoint from L.
Proof This follows from Theorem 4.24. m|

On the other hand, Mackaay and Vaz [28] define an evaluation (—)yy for oriented
SL(3) prefoams and use it to define an equivariant (also called universal) version of
the s[(3) link homology introduced in [15]. They work over the ground ring Z[a, b, c]
and associate a state space (I')mv to each web I' C R? via the universal construction
applied to their prefoam evaluation (—)yy. To compare with our situation, identify
Zla,b, c] with the ring Ry = Z[Ey, E,, E3] of symmetric functions in x, x and x3
via a ring isomorphism ¢ defined by ¢(a) = Eq, ¢(b) = —E; and ¢(c) = Ej3.
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s(p) =1 s(p)=-1

Figure 18: The oriented intersection number between a facet and L.

Theorem 4.26 For any closed prefoam F,
(F) =¢o((F)mv).

It follows that there are isomorphisms (I")forget = (I')MV ®7[a,6,c] Rx for any web
I' € R2, natural with respect to maps induced by foams with boundary.

Proof The evaluation (—)yy is defined by applying the local relations (3D), (CN),
(S), and (®) in [28, Section 2.1] to reduce any foam to an element of Z[a, b, ¢]. Under
the change of variables a — E{, b — —FE, and ¢ — E3, these four relations hold for
our evaluation {—) by relation (82), relation (83), Example 4.4, and Example 4.5. The
statement follows. a

As in the SL(2) and unoriented SL(3) setting considered earlier in the paper, we can
define an additional grading on oriented SL.(3) foams and state spaces. Define the
abelian group

(90) A =Zw; & Zw,y & Zws/(wy + wy + w3),
on three generators and one relation. A is a free abelian group of rank two.

Orient the anchor line L from bottom to top. For an anchored foam V' with boundary
and p € p(V) an anchor point lying on some facet f, let s(p) € {£1} denote the
oriented intersection number between f and L (s(p) does not depend on the label
of p); see Figure 18 for the convention. Define the annular degree of V to be

(91) adeg(V)= > s(p)wy(p) € A.
pep(V)

Proposition 4.27 If F is a closed anchored foam with an admissible coloring ¢, then
adeg(F) = 0.

Proof The proof is similar to that of Proposition 3.10. The intersection of F with
a generic half-plane that bounds L is an oriented web I" with boundary points on L.
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An admissible coloring ¢ of F induces a Tait coloring of I'. The boundary points
(one-valent vertices) of I' are colored according to their label. The sum in (91) may be
rewritten as the sum of terms +(w; + w, 4+ w3) = 0 over all trivalent vertices of I,
where the sign is +1 if all edges are incoming and —1 if all edges are outgoing. Each i—
colored inner edge e of I" bounds two trivalent vertices and contributes =+ (w; —w;) =0
since e is oriented towards one of its boundary vertices and away from the other. The
remaining edges, with one or both endpoints on L, contribute precisely adeg(F). 0O

Let I’ C P be an (annular oriented) SL(3) web. An anchored foam F C R3 with
0F =T has a well-defined degree adeg(F) € A via (91). Furthermore, we equip the
coefficient ring R’ with a A—grading, with all elements of degree 0. This makes free
R’,—module Fr(T") into a A—graded module, and Proposition 4.27 implies that the
kernel of the bilinear form on Fr(I") is A—graded as well. Consequently, the grading
descends to a A—grading on the state space (I'). A foam V with boundary induces
amap (V): (—=doI") — (0; ") which changes adeg by adeg(V'). If V has no anchor
points, it induces an annular degree 0 map between the state spaces of its boundaries.
The state space of a contractible web is concentrated in annular degree zero.

A—grading on (I') is the analogue of grading on finite-dimensional SL(3) representa-
tions by the weight lattice. In fact, in the nonequivariant version of our construction,
where all the x; are set to 0 upon closed foam evaluation (and state spaces are defined
accordingly, over a ground field rather than the ring R’,), the state space (I") is naturally
an sl;—representation. We also refer the reader to Queffelec and Rose [30] for the
construction of sutured annular sl;—homology, with state spaces of annular webs
carrying an sl,—action. In the equivariant case, it is not clear how to define an sl;—
action or what’s the substitute for it.

Denote by AFoam,, the category whose objects consist of oriented SL(3) webs in P
and whose morphisms are R’ —linear combinations of anchored cobordisms between
webs. Morphism spaces in this category are triply graded via (qdeg, adeg). The state
space construction assembles into a functor

(—): AFoamy; — R’.—gzmod
landing in the category of triply graded R’.—modules.

This functor respects the trigradings on the hom spaces in the two categories. Restricting
to the subcategory of annular cobordisms and their linear combinations, the induced
maps have annular degree 0.
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o R
(L X

Figure 19: The 0- and 1-smoothings used to define the SL(3) chain complex.

4.5 Annular SL(3)-link homology

Let L C A x[0, 1] be a link in the thickened annulus. Projecting onto A x {0} = A
and identifying the interior of A with the punctured plane P, we obtain a link diagram
D C P. Following [15, Section 4; 28], form the cube of resolutions of D. Order
the crossings of D by 1,...,n and use the rule in Figure 19 to decorate each vertex
u € {0, 1}" by the corresponding web D, C P.

Introducing signs to make the cube anticommute, collapsing the cube to a chain
complex, adding internal and homological degree shifts, and applying the functor
(=): AFoam, — R/.—gzmod yields a chain complex C(D) of Z & A-graded R/ —
modules. In homological degree i, the complex is given by

C'D)= P (Du)f2my—n)—i}.
lul=i+n4

where 74 and n_ are the number of positive and negative crossings of D. The Z-
grading is given by deg— see (89) —and the A—grading given by adeg —see (91).
Degree shifts in the cube of resolutions are applied only to the Z—degree deg. Diagrams
in P representing isotopic annular links are related by Reidemeister moves away from
the puncture. Proofs of Reidemeister invariance in [28] are local, and all local relations
(away from the anchor line) on foams in [28] also hold for our evaluation (—) by (83),
Example 4.4, and Example 4.5. It follows that the chain homotopy class of C(D) is
an invariant of the annular link L. We define equivariant annular SL(3) homology as
cohomology groups H(C(D)).

Moreover, foams between webs appearing in the cube of resolutions are disjoint from L.
Thus the differential preserves annular degree throughout the complex. Consequently,
equivariant annular SL(3) link homology carries a homological grading as well as
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an internal Z @ A—grading (deg, adeg). Cohomology groups H(C(D)) are trigraded
R’.—modules.

Example 4.28 We conclude with an explicit calculation. Let o denote the positive
crossing generator of the 2—strand braid group, let L, denote the annular link obtained
as the annular closure of ¢”, and let C(L,) denote the corresponding chain complex.
Consider the complex C(n),

o, 9, 9, 9,
{en} {2} — {c1} — {co}

The right-most term is in homological degree zero and the quantum grading shifts ¢;

are co = 2n and ¢; =2n+ 2i — 1 for 1 <i < n. The right-most differential d_; is the
unzip cobordism, and for —n <i < —2 the differentials are

X - X if 7 is even,
XX if i is odd.

One can show that the chain complex C(Lj) is chain homotopy equivalent to the

annular closure of C(n).

Upon taking annular closures, the differential d; for even i is zero. Consider the
annular closure I' of the web appearing in negative homological degree. The state space
(T) is a free R\, —module of rank six, and we choose a basis {uy,d;, uy,d>,u3, ds}
shown in (92). Bidegrees of u; and d; are (—1, —w;) and (1, —w;), respectively (not
accounting for grading shifts):

S
YNy Y

92)

Uj d;
After taking the annular closure, the differential 9d;, for i < —3 odd, is given as the
difference of foams F — G, where F puts a dot on the right-most facet and G puts a
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dot on the middle facet of the depicted generators. We have

F(ui) = (xj + xp)u; —d;, F(di) = xjxpu;,
G(ui) =d;, G(d;i) = (xj + xp)d;i — xjxXpu;.

In particular, d; for i < —3 and i odd is injective.

Let us now compute the right-most differential, which is the annular closure of the
unzip cobordism. Let Iy denote the web consisting of two essential counterclockwise
oriented circles, which is the annular closure of the term in homological degree zero
in C(n). For 1 <1i, j <3, let g;jj: @ — I be the foam consisting of two cups, each
intersecting the anchor line once, with the anchor point of the inner cup labeled i and
the anchor point of the outer cup labeled j. By Proposition 4.23, {g;; }1<;,j<3 is a basis
for (I). After introducing the grading shift, the generator g;; is in quantum degree 2n
and in annular degree w; + w; = —wg. Let Z: " — I denote the unzip cobordism.
By applying the neck-cutting relation (86) near the two circles that constitute Iy, we
write d_; (#;) as a sum

0(w)= Y (=)"gy Uy,

1<s,t=<3

where t,; is a theta foam as in Example 4.13, with no dots, and anchor points labeled 7,
s and ¢ read from bottom to top. These theta foams evaluate to zero unless {7, s,7} =
{1, 2, 3}, and otherwise they evaluate to 1. Moreover, (ts;) = —({tss). Therefore,

0_1(ui) = £(gjk — &kj)-
A similar procedure yields d_(d;) = £(x; gjk — Xk &kj)-

Thus, in homological degree s < 0 and annular degree —w;, the homology of L is

given by
0 if 5 is odd,
R .{2n—2s—-2 R {2n—-2
H>Yi(Ly) = xi2n =25 =2} & Ry i2n — 25} if s <0 and s is even,
(Crj + Xk, =2), 2xj x5, —(xj + X))
(R /(xj — xp)){2n} if s =0.
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