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We continue our work on the linear theory for equations with conical singularities. We derive interior

Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical

singularities along a divisor of simple normal crossings. As an application, we prove the short-time

existence of the conical Kähler±Ricci flow with conical singularities along a divisor with simple normal

crossings.
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1. Introduction

This is a continuation of our paper [20]. Regularity of solutions of complex Monge±Ampère equations is

a central problem in complex geometry. Complex Monge±Ampère equations with singular and degenerate

data can be applied to study compactness and moduli problems of canonical Kähler metrics in Kähler

geometry. In [43], Yau considered special cases of complex singular Monge±Ampère equations as

generalizations of his solution to the Calabi conjecture. Conical singularities along complex hypersurfaces

of a Kähler manifold are among the mildest singularities in Kähler geometry, and they have been

extensively studied, especially in the case of Riemann surfaces [28; 41]. The study of such Kähler metrics

with conical singularities has many geometric applications, for example, the Chern number inequality

in various settings [38; 39]. Recently, Donaldson [14] initiated the program of studying analytic and

geometric properties of Kähler metrics with conical singularities along a smooth complex hypersurface on

a Kähler manifold. This is an essential step in the solution of the Yau±Tian±Donaldson conjecture relating

existence of Kähler±Einstein metrics and algebraic K-stability on Fano manifolds [7; 8; 9; 40]. In [14],

the Schauder estimate for linear Laplace equations with the conical background metric is established using

classical potential theory. This is crucial for the openness of the continuity method to find a desirable
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(conical) Kähler±Einstein metric. Donaldson’s Schauder estimate is generalized to the parabolic case [5]

with a similar classical approach. There is also an alternative approach for the conical Schauder estimates

using microlocal analysis [23]. Various global and local estimates and regularity are also derived in the

conical setting [1; 6; 11; 12; 13; 15; 19; 24; 29; 32; 44; 45].

The Schauder estimates play an important role in linear PDE theory. Apart from the classical potential

theory, various proofs have been established by different analytic techniques. In fact, the blow-up or

perturbation techniques developed in [36; 42] (also see [2; 3; 33; 34]) are much more flexible and sharper

than the classical method. The authors combined the perturbation method in [20] and geometric gradient

estimates to establish sharp Schauder estimates for Laplace equations and heat equations on C
n with a

background flat Kähler metric of conical singularities along the smooth hyperplane {z1 = 0} and derived

explicit and optimal dependence on conical parameters.

In algebraic geometry, one often has to consider pairs (X, D) with X an algebraic variety of complex

dimension n and the boundary divisor D a complex hypersurface of X . After possible log resolution,

one can always assume the divisor D is a union of smooth hypersurfaces with simple normal crossings.

The suitable category of Kähler metrics associated to (X, D) is the family of Kähler metrics on X with

conical singularities along D. In order to study canonical Kähler metrics on pairs and related moduli

problems, we are obliged to study regularity and asymptotics for complex Monge±Ampère equation

with prescribed conical singularities of normal crossings. However, the linear theory is still missing

and has been open for a while. The goal of this paper is to extend our result [20] and establish the

sharp Schauder estimates for linear equations with background Kähler metric of conical singularities

along divisors of simple normal crossings. We can apply and extend many techniques developed in [20];

however, new estimates and techniques have to be developed because, in the case of conical singularities

along a single smooth divisor, the difficult estimate in the conical direction can sometimes be bypassed

and reduced to estimates in the regular directions, while such treatment does not work in the case of

simple normal crossings. One is forced to treat regions near high codimensional singularities directly

with new and more delicate estimates beyond the scope of [20]. More crucially, the estimates in the

mixed normal directions (see Section 3D) relies on those in Lemma 3.3, which is new compared to the

case of a smooth divisor [20]. This enables us to compare the difference of mixed normal derivatives

at two different points. Readers who are interested only in the case of smooth divisors are advised to

omit Section 3D.

The standard local models for such conical Kähler metrics are described below.

Let β = (β1, . . . , βp) ∈ (0, 1)p, p ≤ n, and let ωβ (or gβ) be the standard cone metric on C
p × C

n−p

with cone singularity along S =
⋃p

i=1 Si , where Si = {zi = 0}, that is,

ωβ =
p∑

j=1

β2
j

√
−1 dz j ∧ dz̄ j

|z j |2(1−β j )
+

n∑

j=p+1

√
−1 dz j ∧ dz̄ j . (1-1)

We shall use s2p+1, . . . , s2n to denote the real coordinates of C
n−p =R

2n−2p such that, for j = p+1, . . . , n,

z j = s2 j−1 +
√

−1s2 j .
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In this paper we will study the conical Laplacian equation with the background metric gβ on C
n

1βu = f in Bβ(0, 1)\S, (1-2)

where Bβ(0, 1) is the unit ball with respect to gβ centered at 0. The Laplacian 1β is defined as

1βu =
∑

j,k

g
j k̄

β

∂2u

∂z j∂ z̄k

=
p∑

j=1

β−1
j |z j |2(1−β j )

∂2u

∂z j∂ z̄ j

+
n∑

j=p+1

∂2u

∂z j∂ z̄ j

.

We always assume

f ∈ C0(Bβ(0, 1)) and u ∈ C0(Bβ(0, 1)) ∩ C2(Bβ(0, 1)\S).

Throughout this paper, given a continuous function f , we write

ω(r) := ω f (r) = sup
z,w∈Bβ (0,1)

dβ (z,w)<r

| f (z) − f (w)|

for the oscillation of f with respect to gβ in the ball Bβ(0, 1). It is clear that ω(2r) ≤ 2ω(r) for any r < 1
2
.

We say a continuous function f is Dini continuous if
∫ 1

0
ω(r)/r dr < ∞.

Definition 1.1. We will write the (weighted) polar coordinates of z j for 1 ≤ j ≤ p as

r j = |z j |β j , θ j = arg z j .

We define D′ to be one of the first-order operators {∂/∂s2p+1, . . . , ∂/∂s2n}, and N j to be one of the

operators {∂/∂r j , (β jr j )
−1(∂/∂θ j )} which as vector fields are transversal to S j .

Our first main result is the Hölder estimates of the solution u to (1-2).

Theorem 1.2. Suppose β ∈
(

1
2
, 1

)p
and f ∈ C0(Bβ(0, 1)) is Dini continuous with respect to gβ . Let

u ∈ C0(Bβ(0, 1))∩C2(Bβ(0, 1)\S) be the solution to (1-2). Then there exists C = C(n, β) > 0 such that,

for any two points p, q ∈ Bβ

(
0, 1

2

)
\S,

|(D′)2u(p) − (D′)2u(q)| +
p∑

j=1

∣∣∣∣|z j |2(1−β j )
∂2u

∂z j∂ z̄ j

(p) − |z j |2(1−β j )
∂2u

∂z j∂ z̄ j

(q)

∣∣∣∣

≤ C

(
d∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d

∫ 1

d

ω(r)

r2
dr

)
, (1-3)

for any 1 ≤ j ≤ p,

|N j D′u(p) − N j D′u(q)| ≤ C

(
d1/β j −1∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d1/β j −1

∫ 1

d

ω(r)

r1/β j
dr

)
, (1-4)

and, for any 1 ≤ j, k ≤ p with j ̸= k,

|N j Nku(p)−N j Nku(q)|≤C

(
d1/βmax−1∥u∥L∞(Bβ (0,1))+

∫ d

0

ω(r)

r
dr +d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
, (1-5)

where d = dβ(p, q) > 0 is the gβ-distance of p and q and βmax = max{β1, . . . , βp} ∈
(

1
2
, 1

)
.
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Remarks 1.3. (1) The number βmax on the right-hand side of (1-5) can be replaced by max{β j , βk}.
(2) We assume β ∈

(
1
2
, 1

)p
for the purposes of exposition and simplification of the statements of

Theorems 1.2 and 1.7. When some of the angles β j lie in
(
0, 1

2

]
, the pointwise Hölder estimates in

Theorem 1.2 are adjusted as follows: in (1-4), if β j ∈
(
0, 1

2

]
, we replace the right-hand side by the

right-hand side of (1-3); in (1-5), if both β j and βk ∈
(
0, 1

2

]
, we also replace the right-hand side by that

of (1-3); if at least one of the β j , βk is bigger than 1
2
, (1-5) remains unchanged. The inequalities in

Theorem 1.7 can be adjusted similarly. The proofs of these estimates are contained in the proof of the

case when β j ∈
(

1
2
, 1

)
by using the corresponding estimates in (2-3).

An immediate corollary of Theorem 1.2 is a precise form of Schauder estimates for (1-2).

Corollary 1.4. Given β ∈ (0, 1)p and f ∈ C
0,α
β (Bβ(0, 1)) for some 0 < α < min{1, 1/βmax − 1}, if

u ∈ C0(Bβ(0, 1)) ∩ C2(Bβ(0, 1)\S) solves (1-2), then u ∈ C
2,α
β (Bβ(0, 1)). Moreover, for any compact

subset K ⋐ Bβ(0, 1), there exists a constant C = C(n, β, K ) > 0 such that the following estimate holds

(see Definition 2.1 for the notations):

∥u∥
C

2,α
β

(K )
≤ C

(
∥u∥C0(Bβ (0,1)) +

∥ f ∥
C

0,α
β

(Bβ (0,1))

α
(
min

{
1

βmax
− 1, 1

}
− α

)
)

. (1-6)

Remark 1.5. A scaling-invariant version of the Schauder estimate (1-6) is that, for any 0 < r < 1, there

exists a constant C = C(n, β, α) > 0 such that (see Definition 2.4 for the notations)

∥u∥∗
C

2,α
β

(Bβ (0,r))
≤ C(∥u∥C0(Bβ (0,r)) + ∥ f ∥(2)

C
0,α
β

(Bβ (0,r))
), (1-7)

which follows from a standard rescaling argument by scaling r to 1.

Let g be a C
0,α
β -conical Kähler metric on Bβ(0, 1) (see Definition 3.31). By definition g is equivalent

to gβ . We consider the equation

1gu = f in Bβ(0, 1) and u = ϕ on ∂ Bβ(0, 1) (1-8)

for some ϕ ∈ C0(∂ Bβ(0, 1)). The following theorem is the generalization of Corollary 1.4 for nonflat

background conical Kähler metrics, which is useful for applications of global geometric complex Monge±

Ampère equations.

Theorem 1.6. For any given β ∈ (0, 1)p, f ∈ C
0,α
β (Bβ(0, 1)) and ϕ ∈ C0(∂ Bβ(0, 1)), there is a unique

solution u ∈ C
2,α
β (Bβ(0, 1)) ∩ C0(Bβ(0, 1)) to (1-8). Moreover, for any compact subset K ⋐ Bβ(0, 1),

there exists C = C(n, β, α, g, K ) > 0 such that

∥u∥
C

2,α
β

(K )
≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥

C
0,α
β

(Bβ (0,1))
).

Theorem 1.6 can immediately be applied to study complex Monge±Ampère equations with prescribed

conical singularities along divisors of simple normal crossings, and most of the geometric and analytic

results for canonical Kähler metrics with conical singularities along a smooth divisor can be generalized

to the case of simple normal crossings.
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We now turn to the parabolic Schauder estimates for the solution u ∈ C
0(Qβ) ∩ C

2(Q#
β) to the equation

∂u

∂t
= 1gβ

u + f (1-9)

for a Dini continuous function f in Qβ , where for convenience of notation we write

Qβ := Bβ(0, 1) × (0, 1] and Q
#
β := Bβ(0, 1)\S × (0, 1].

Our second main theorem is the following pointwise estimate.

Theorem 1.7. Suppose β ∈
(

1
2
, 1

)p
and u is the solution to (1-9). Then there exists a computable constant

C = C(n, β)> 0 such that, for any Q p = (p, tp), Qq = (q, tq)∈ Bβ

(
0, 1

2

)
\S×(t̂, 1] ( for some t̂ ∈ (0, 1)),

|(D′)2u(Q p) − (D′)2u(Qq)|

+
p∑

j=1

∣∣∣∣|z j |2(1−β j )
∂2u

∂z j∂ z̄ j

(Q p) − |z j |2(1−β j )
∂2u

∂z j∂ z̄ j

(Qq)

∣∣∣∣ +
∣∣∣∣
∂u

∂t
(Q p) − ∂u

∂t
(Qq)

∣∣∣∣

≤ C

(
d

t̂ 3/2
∥u∥L∞(Bβ (0,1)) + t̂ −1

∫ d

0

ω(r)

r
dr + d

t̂ 3/2

∫ 1

d

ω(r)

r2
dr

)
,

and, for any 1 ≤ j ≤ p,

|N j D′u(Q p) − N j D′u(Qq)| ≤ C

(
d1/β j −1

t̂ 3/2
∥u∥L∞(Bβ (0,1)) + t̂ −1

∫ d

0

ω(r)

r
dr + d1/β j −1

t̂ 3/2

∫ 1

d

ω(r)

r1/β j
dr

)
,

and, for any 1 ≤ j, k ≤ p with j ̸= k,

|N j Nku(Q p)−N j Nku(Qq)|≤C

(
d1/βmax−1

t̂ 3/2
∥u∥L∞(Bβ (0,1))+t̂ −1

∫ d

0

ω(r)

r
dr+d1/βmax−1

t̂ 3/2

∫ 1

d

ω(r)

r1/βmax
dr

)
,

where d = dP,β(Q p, Qq) > 0 is the parabolic gβ-distance of Q p and Qq , βmax = max{β1, . . . , βp},
and ω(r) is the oscillation of f in Qβ under the parabolic distance dP,β (see Section 2A2).

If f ∈ C
α,α/2

β (Qβ) for some α ∈ (0, min(1/βmax −1, 1)), then we have the following precise estimates

as the parabolic analogue of Corollary 1.4.

Corollary 1.8. Suppose β ∈ (0, 1)p and u ∈ C
0(Qβ)∩C

2(Q#
β) satisfies (1-9). Then there exists a constant

C = C(n, β) > 0 such that (see Definition 2.6 for the notations)

∥u∥
C

2+α,(α+2)/2

β
(Bβ (0,1/2)×(1/2,1]) ≤ C

(
∥u∥C 0(Qβ ) +

∥ f ∥
C

α,α/2

β
(Qβ )

α
(
min

{
1

βmax
− 1, 1

}
− α

)
)

.

For general nonflat C
α,α/2

β -conical Kähler metrics g, we consider the linear parabolic equation

∂u

∂t
= 1gu + f in Qβ, u = ϕ on ∂PQβ . (1-10)

We then have the following parabolic Schauder estimates as an analogue of Theorem 1.6.
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Theorem 1.9. Given β ∈ (0, 1)p, f ∈ C
α,α/2

β (Qβ) and ϕ ∈ C
0(∂PQβ), there exists a unique solution

u ∈ C
2+α,(α+2)/2

β (Bβ(0, 1) × (0, 1]) ∩ C
0(Qβ) to the Dirichlet boundary value problem (1-10). For any

compact subset K ⋐ Bβ(0, 1) and ε0 > 0, there exists C = C(n, β, α, K , ε0, g) > 0 such that the following

interior Schauder estimate holds:

∥u∥
C

2+α,(2+α)/2

β
(K×[ε0,1]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2

β
(Qβ )

).

Furthermore, if we assume u|t=0 = u0 ∈ C
2,α
β (Bβ(0, 1)), then u ∈ C

2+α,(α+2)/2

β (Bβ(0, 1) × [0, 1]), and

there exists a constant C = C(n, β, α, g, K ) > 0 such that

∥u∥
C

2+α,(α+2)/2

β
(K×[0,1]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2

β
(Qβ )

+ ∥u0∥C
2,α
β

(Bβ (0,1))
).

As an application of Theorem 1.9, we derive the short-time existence of the conical Kähler±Ricci flow

with background metric being conical along divisors with simple normal crossings.

Let (X, D) be a compact Kähler manifold, where D =
∑

j D j is a finite union of smooth divisors {D j }
and D has only simple normal crossings. Let ω0 be a C

0,α′

β (X)-conical Kähler metric with cone angle 2πβ

along D (see Definition 2.8), let ω̂t be a family of conical metrics with bounded norm ∥ω̂∥
C

α′,α′/2

β

, and

let ω̂0 = ω0. We consider the complex Monge±Ampère flow

∂ϕ

∂t
= log

(
(ω̂t +

√
−1∂∂̄ϕ)n

ωn
0

)
+ f and ϕ|t=0 = 0 (1-11)

for some f ∈ C
α′,α′/2

β (X × [0, 1]).

Theorem 1.10. Given α ∈ (0, α′), there exists T = T (n, ω̂, f, α′, α) > 0 such that (1-11) admits a unique

solution ϕ ∈ C
2+α,(2+α)/2

β (X × [0, T ]).

An immediate corollary of Theorem 1.10 is the short-time existence for the conical Kähler±Ricci flow

∂ω

∂t
= − Ric(ω) +

∑

j

(1 − β j )[D j ], ω|t=0 = ω0, (1-12)

where Ric(ω) is the unique extension of the Ricci curvature of ω from X \ D to X , and [D j ] denotes the

current of integration over the component D j . In addition we assume ω0 is a C
0,α′

β (X, D)-conical Kähler

metric such that

ωn
0 = �∏

j (|s j |2h j
)1−β j

, (1-13)

where s j and h j are holomorphic sections and hermitian metrics, respectively, of the line bundle associated

to D j , and � is a smooth volume form.

Corollary 1.11. For any given α ∈ (0, α′), there exists a constant T = T (n, ω0, α, α′) > 0 such that the

conical Kähler±Ricci flow (1-12) admits a unique solution ω = ωt , where ω ∈ C
α,α/2

β (X × [0, T ]) and,

for each t ∈ [0, T ], ωt is still a conical metric with cone angle 2πβ along D.

Furthermore, ω is smooth in X\D × (0, T ] and the (normalized) Ricci potentials of ω, by which we

mean log(ωn/ωn
0), are still in C

2+α,(2+α)/2

β (X × [0, T ]).
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The short-time existence of the conical Kähler±Ricci flow with singularities along a smooth divisor is

derived in [5] by adapting the elliptic potential techniques of Donaldson [14]. Corollary 1.11 treats the

general case of conical singularities with simple normal crossings. There have been many results in the

analytic aspects of the conical Ricci flow [5; 6; 15; 16; 24; 30; 43]. In [31], the conical Ricci flow on

Riemann surfaces is completely classified with jumping conical structure in the limit. Such phenomena is

also expected in higher dimension, but it requires much deeper and delicate technical advances both in

analysis and geometry.

2. Preliminaries

We explain the notations and give some preliminary tools which will be used later in this section.

2A. Notations. To distinguish the elliptic from parabolic norms, we will use C to denote the norms in

the elliptic case and C to denote the norms in the parabolic case.

We always assume the Hölder component α appearing in C
0,α
β or C

α,α/2

β (or other Hölder norms) is in

(0, min{β−1
max − 1, 1}).

2A1. Elliptic case. We will denote dβ(x, y) to be the distance between two points x, y ∈ C
n under the

metric gβ . Bβ(x, r) will be the metric ball under the metric induced by gβ with radius r and center x . It

is well known that (Cn\S, gβ) is geodesically convex, i.e., any two points x, y ∈ C
n\S can be joined by

a gβ-minimal geodesic γ which is disjoint from S.

Definition 2.1. We define the gβ-Hölder norm of functions u ∈ C0(Bβ(0, r)) for some α ∈ (0, 1) as

∥u∥
C

0,α
β

(Bβ (0,r))
:= ∥u∥C0(Bβ (0,r)) + [u]

C
0,α
β

(Bβ (0,r))
,

where the seminorm is defined as

[u]
C

0,α
β

(Bβ (0,r))
:= sup

x ̸=y∈Bβ (0,r)

|u(x) − u(y)|
dβ(x, y)α

.

We denote by C
0,α
β (Bβ(0, r)) the subspace of all continuous functions u such that ∥u∥

C
0,α
β

< ∞.

Definition 2.2. The C
2,α
β -norm of a function u on Bβ(0, r) =: Bβ is defined as

∥u∥
C

2,α
β

(Bβ )
:= ∥u∥C0(Bβ ) + ∥∇gβ

u∥C0(Bβ ,gβ ) +
p∑

j=1

∥N j D′u∥
C

0,α
β

(Bβ )

+ ∥(D′)2u∥
C

0,α
β

(Bβ )
+

∑

1≤ j ̸=k≤p

∥N j Nku∥
C

0,α
β

(Bβ )
+

p∑

j=1

∥∥∥∥|z j |2(1−β j )
∂2u

∂z j∂ z̄ j

∥∥∥∥
C

0,α
β

(Bβ )

.

We denote by C
2,α
β (Bβ(0, r)) the subspace of all continuous functions u such that ∥u∥

C
2,α
β

< ∞.

Remark 2.3. These spaces are generalizations of those defined in [20] and are slight variations of those

introduced in [14; 23].
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Let us compare the Schauder estimates in [14; 23; 20] in the special case when p = 1, i.e., the conical

singularities are supported on C
n−1. The Hölder space of [14] is defined using a collection of differential

operators as components of
√

−1∂∂̄ . The collection of differential operators in our definition for C
0,α
β

(see [20]) is given by

{
∂

∂r
, r−1 ∂

∂θ
, D′,

∂2

∂r2
+ r−1 ∂

∂r
+ (βr)−2 ∂2

∂θ2
,

∂

∂r
D′, r−1 ∂

∂θ
D′

}
,

while those defined in [23] for the Hölder space D0,α
ω gives the collection

{
∂

∂r
, r−1 ∂

∂θ
, D′,

∂2

∂r2
+ r−1 ∂

∂r
+ (βr)−2 ∂2

∂θ2
,

∂

∂r
D′, r−1 ∂

∂θ
D′,

∂2

∂r∂θ

}
. (2-1)

Here the operators D′ are given in Definition 1.1. There seems to a typo in the original definition of (2-1)

in [23, p. 104, (16)], where the factor r−1 is missing in the operator r−1∂/∂θ D′ (see [32, p. 57]). It was

pointed out by the referee that this typo does not affect Proposition 3.3 in [23] since the correct operator

was used in the proof. The space D0,α
ω is introduced in [23] as an alternative definition for the Hölder

space of [14] as a consequence of the Schauder estimates in [23, Proposition 3.3]. The Schauder estimates

in [23] are stronger than those established in [14] by Donaldson and later in [20] by the authors because

of the additional operator ∂2/∂r∂θ in (2-1). This also implies that the two Hölder spaces from [14]

and [20] must coincide. For interested readers, we refer to the survey paper [32] for more details on the

characterization of the Hölder space of [14] in terms of the operators in (2-1).

For a given set � ⊂ Bβ(0, 1), we define the following weighted (semi)norms.

Definition 2.4. Suppose σ ∈ R is a given real number and u is a C
2,α
β -function in �. We will write

dx = dβ(x, ∂�) for any x ∈ �. We define the weighted (semi)norms

[u](σ )

C
0,α
β

(�)
= sup

x ̸=y∈�

min(dx , dy)
σ+α |u(x) − u(y)|

dβ(x, y)α
,

∥u∥(σ )

C0(�)
= sup

x∈�

dσ
x |u(x)|, [u](σ )

C1
β
(�)

= sup
x∈�\S

dσ+1
x

(∑

j

|N j u|(x) + |D′u|(x)

)
,

[u](σ )

C2
β
(�)

= sup
x∈�\S

dσ+2
x |T u(x)|, [u](σ )

C
2,α
β

(�)
= sup

x ̸=y∈�\S
min(dx , dy)

σ+2+α |T u(x) − T u(y)|
dβ(x, y)α

,

∥u∥(σ )

C
2,α
β

(�)
= ∥u∥(σ )

C0(�)
+ [u](σ )

C1
β
(�)

+ [u](σ )

C2
β
(�)

+ [u](σ )

C
2,α
β

(�)
,

where T is the collection of operators of second-order

{
|z j |2(1−β j )

∂2

∂z j∂ z̄ j

, N j Nk ( j ̸= k), N j D′, (D′)2

}
. (2-2)

When σ = 0, we write the norms above as [ · ]∗ or ∥ · ∥∗ for simplicity of notation.

2A2. Parabolic case. We define Qβ = Qβ(0, 1) = Bβ(0, 1) × (0, 1] to be a parabolic cylinder and

∂PQβ = (Bβ(0, 1) × {0}) ∪ (∂ Bβ(0, 1) × (0, 1])
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to be the parabolic boundary of the cylinder Qβ . We write SP = S × [0, 1] for the singular set and

Q#
β = Qβ\SP for the complement of SP . For any two space-time points Qi = (pi , ti ), we define their

parabolic distance dP,β(Q1, Q2) as

dP,β(Q1, Q2) = max{
√

|t1 − t2|, dβ(p1, p2)}.

Definition 2.5. We define the gβ-Hölder norm of functions u ∈ C
0(Qβ) for some α ∈ (0, 1) as

∥u∥
C

α,α/2

β
(Qβ )

:= ∥u∥C 0(Qβ ) + [u]
C

α,α/2

β
(Qβ )

,

where the seminorm is

[u]
C

α,α/2

β
(Qβ )

:= sup
Q1 ̸=Q2∈Qβ

|u(Q1) − u(Q2)|
dP,β(Q1, Q2)α

.

We denote by C
α,α/2

β (Qβ) the subspace of all continuous functions u such that ∥u∥
C

α,α/2

β
(Qβ )

< ∞.

Definition 2.6. The C
2+α,(α+2)/2

β -norm of a function u on Qβ is defined as

∥u∥
C

2+α,(α+2)/2

β
(Qβ )

:= ∥u∥C 0(Qβ ) + ∥∇gβ
u∥C 0(Qβ ,gβ ) + ∥T u∥

C
α,α/2

β
(Qβ )

,

where T is the collection of all the second-order operators in (2-2) with the first-order operator ∂/∂t .

For a given set � ⊂ Qβ we define the following weighted (semi)norms.

Definition 2.7. Suppose σ ∈ R is a real number and u is a C
2+α,(α+2)/2

β -function in �. We will write

dP,Q = dP,β(Q, ∂P�) for any Q ∈ �. We define the weighted (semi)norms

[u](σ )

C
α,α/2

β
(�)

= sup
Q1 ̸=Q2∈�

min(dP,Q1
, dP,Q2

)σ+α |u(Q1) − u(Q2)|
dP,β(Q1, Q2)α

, ∥u∥(σ )

C 0(�)
= sup

Q∈�

dσ
P,Q |u(Q)|,

[u](σ )

C
1
β
(�)

= sup
Q∈�\SP

dσ+1
P,Q

(∑

j

|N j u|(Q) + |D′u|(Q)

)
, [u](σ )

C
2,1
β

(�)
= sup

Q∈�\SP

dσ+2
P,Q |T u(Q)|,

[u](σ )

C
2+α,(α+2)/2

β
(�)

= sup
Q1 ̸=Q2∈�\SP

min(dP,Q1
, dP,Q2

)σ+2+α |T u(Q1) − T u(Q2)|
dP,β(Q1, Q2)α

,

∥u∥(σ )

C
2+α,(α+2)/2

β
(�)

= ∥u∥(σ )

C 0(�)
+ [u](σ )

C
1
β
(�)

+ [u](σ )

C
2,1
β

(�)
+ [u](σ )

C
2+α,(α+2)/2

β
(�)

.

When σ = 0, we write the norms above as [ · ]∗ or ∥ · ∥∗ for simplicity of notation.

2A3. Compact Kähler manifolds. Let (X, D) be a compact Kähler manifold with a divisor D =
∑

j D j

with simple normal crossings, i.e., on an open coordinate chart (U, z j ) of any x ∈ D, D ∩ U is given by

{z1 · · · z p = 0} and D j ∩U = {z j = 0} for any component D j of D. We fix a finite cover {Ua, za, j } of D.

Definition 2.8. A (singular) Kähler metric ω is called a conical metric with cone angle 2πβ along D

if ω is equivalent to ωβ locally on any coordinate chart Ua under the coordinates {za, j }, where ωβ is the

standard cone metric (1-1) with cone angle 2πβ j along {za, j = 0}, and ω is a smooth Kähler metric in

the usual sense on X\
⋃

a Ua .

A conical metric ω is in C
0,α
β (X, D) if ω is in C

0,α
β (Ua) for each a and ω is smooth in the usual sense

on X\
⋃

a Ua . Similarly we can define the C
α,α/2

β -conical Kähler metrics on X × [0, 1].
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Definition 2.9. A continuous function u ∈ C0(X) is said to be in C
0,α
β (X, D) if u is in C

0,α
β (Ua) locally on

each Ua and u is C0,α-continuous in the usual sense on X\
⋃

a Ua . We define the C
0,α
β (X, D)-norm of u

∥u∥
C

0,α
β

(X,D)
:= ∥u∥C0,α(X\

⋃
a Ua,ω) +

∑

a

∥u∥
C

0,α
β

(Ua)
.

The C
0,α
β (X, D)-norm depends on the choice of finite covers, and another cover yields a different but

equivalent norm. The space C
0,α
β (X, D) is clearly independent of the choice of finite covers.

The other spaces and norms like C
2,α
β (X, D), C

α,α/2

β (X × [0, 1], D), etc., can be defined similarly.

2B. A useful lemma. We will frequently use the following elementary estimates from [20]. We write

BC(0, r) for the Euclidean ball in C with center 0 and radius r > 0.

Lemma 2.10 (Lemma 2.2 in [20]). Given r ∈ (0, 1], suppose v ∈ C0(BC(0, r)) ∩ C2(BC(0, r)\{0})
satisfies

|z|2(1−β1)
∂2v

∂z∂ z̄
= F in BC(0, r)\{0}

for some F ∈ L∞(BC(0, r)). Then we have the following pointwise estimate for any z ∈ BC

(
0, 9

10
r
)
\{0}:

∣∣∣∣
∂v

∂z
(z)

∣∣∣∣ ≤ C
∥v∥L∞

r
+ C∥F∥L∞ ·





r2β1−1 if β1 ∈
(

1
2
, 1

)
,

|z|2β1−1 if β1 ∈
(
0, 1

2

)
,∣∣∣log

( |z|
2r

)∣∣∣ if β1 = 1
2
,

(2-3)

where the L∞-norms are taken in BC(0, r) and C > 0 is a uniform constant depending only on the

angle β1.

Finally we remark that the idea of the proof of the estimates in Theorems 1.2 and 1.7 is the same for

general 2 ≤ p ≤ n. To explain the argument more clearly, we prove the theorems assuming p = 2, i.e.,

the cone metric of ωβ is singular along the two components S1 and S2.

3. Elliptic estimates

In this section, we will prove Theorems 1.2 and 1.6, the Schauder estimates for the Laplace equation (1-2).

To begin with, we first observe the simple C0-estimate based on the maximum principle.

Suppose u ∈ C2(Bβ(0, 1)\S) ∩ C0(Bβ(0, 1)) satisfies the equation
{
1βu = 0 in Bβ(0, 1)\S,

u = ϕ on ∂ Bβ(0, 1)
(3-1)

for some ϕ ∈ C0(∂ Bβ(0, 1)), then we have the following lemma.

Lemma 3.1. We have the maximum principle

inf
∂ Bβ (0,1)

ϕ ≤ inf
Bβ (0,1)

u ≤ sup
Bβ (0,1)

u ≤ sup
∂ Bβ (0,1)

ϕ. (3-2)

Proof. Consider the functions ũϵ = u ± ϵ(log |z1|2 + log |z2|2) for any ϵ > 0. By the proof of Lemma 2.1

in [20], (3-2) is established. □
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The next step is to show (3-1) is solvable for suitable boundary values.

3A. Conical harmonic functions.

3A1. Smooth approximating metrics. Let ϵ ∈ (0, 1) be a given small positive number and define a smooth

approximating Kähler metric gϵ on Bβ(0, 1) as

gϵ = β2
1

√
−1 dz1 ∧ dz̄1

(|z1|2 + ϵ)1−β1
+ β2

2

√
−1 dz2 ∧ dz̄2

(|z2|2 + ϵ)1−β2
+

n∑

j=3

√
−1 dz j ∧ dz̄ j . (3-3)

The gϵ are product metrics on C × C × C
n−2. It is clear that their Ricci curvatures satisfy

Ric(gϵ) =
√

−1∂∂̄ log((|z1|2 + ϵ)1−β1(|z2|2 + ϵ)1−β2) ≥ 0.

Let uϵ ∈ C2(Bβ(0, 1)) be the solution to the equation

1gϵ
uϵ = 0 in Bβ(0, 1) and uϵ = ϕ on ∂ Bβ(0, 1) (3-4)

with a given ϕ ∈ C0(∂ Bβ(0, 1)). Note that the metric balls Bβ(0, 1) and Bgϵ
(0, 1) are uniformly close

when ϵ is sufficiently small, so for the following estimates we will work on Bβ(0, 1).

Let uϵ be the harmonic function for 1ϵ = 1gϵ
as in (3-4), which we may assume without loss of

generality is positive by replacing uϵ by uϵ − inf uϵ if necessary. We will study the Cheng±Yau-type

gradient estimate of uϵ and the estimate of 11,ϵuϵ := (|z1|2 + ϵ)1−β1(∂2uϵ/∂z1∂ z̄1). Let us recall Cheng±

Yau’s gradient estimate first.

In Sections 3A2±3A5, for convenience of notation, we will omit the subscript ϵ in gϵ and uϵ in the

proofs of the lemmas.

3A2. Cheng±Yau gradient estimate revisited. We assume uϵ > 0, as otherwise we could consider the func-

tion uϵ +δ for some δ > 0 and then let δ → 0. We fix a metric ball Bgϵ
(p, R) ⊂ Bβ(0, 1) centered at some

point p ∈ Bβ(0, 1). Since Ric(gϵ)≥ 0, the Cheng±Yau gradient estimate holds for 1gϵ
-harmonic functions.

Lemma 3.2 [10]. Let uϵ ∈ C2(B(p, R)) be a positive 1gϵ
-harmonic function. There exists a uniform

constant C = C(n) > 0 such that (the metric balls are taken under the metric gϵ)

sup
x∈B(p,3R/4)

|∇uϵ|gϵ
(x) ≤ C(n)

oscB(p,R) uϵ

R
. (3-5)

As we mentioned above, we will omit the ϵ in the subscript of uϵ and gϵ . The proof of the lemma is

standard [10]. For completeness and to motivate the proofs of Lemmas 3.3 and 3.4, we sketch a proof.

Defining f = log u, it can be calculated that

1 f = 1u

u
− |∇u|2

u2
= −|∇ f |2. (3-6)

Then by Bochner’s formula we have

1|∇ f |2 = |∇∇ f |2 + |∇∇ f |2 + 2 Re⟨∇ f, ∇1 f ⟩ + Ric(∇ f, ∇ f )

≥ |∇∇ f |2 − 2 Re⟨∇ f, ∇|∇ f |2⟩. (3-7)
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Let φ : [0, 1] → [0, 1] be a standard cut-off function such that φ|[0,3/4] = 1, φ[5/6,1] = 0 and 0 < φ < 1

otherwise. Let r(x) = dgϵ
(p, x) be the distance function to p under the metric g = gϵ . By abusing

notation, we also write φ(x) = φ(r(x)/R). It can be calculated by Laplacian comparison and the Bochner

formula (3-7) that, at the (positive) maximum point pmax of H := φ2|∇ f |2,

2

n
H 2 − 4|φ′|

R
H 3/2 − 8(φ′)2

R2
H + 2H

R2
((2n − 1)φφ′ + φφ′′ + (φ′)2) ≤ 0.

Therefore, for any x ∈ B
(

p, 3
4

R
)
,

|∇u|2
u2

(x) = |∇ f (x)|2 = H(x) ≤ H(pmax) ≤ C(n)

R2
. (3-8)

3A3. Laplacian estimate in singular directions. We will prove the estimates of

1 j,ϵuϵ := (|z j |2 + ϵ)1−β j
∂uϵ

∂z j∂ z̄ j

for a 1gϵ
-harmonic function uϵ .

Lemma 3.3. Under the same assumptions as in Lemma 3.2, along the ªbadº directions z1 and z2, we

have that 11,ϵuϵ and 12,ϵuϵ satisfy the estimates

sup
x∈B(p,R/2)

(|11,ϵuϵ |(x) + |12,ϵuϵ |(x)) ≤ C(n)
oscB(p,R) uϵ

R2
. (3-9)

As in the proof of Cheng±Yau gradient estimates, we will work on the function f = fϵ = log u, and

we only need to prove the estimate for 11,ϵuϵ . We write 11,ϵ f := (|z1|2 + ϵ)1−β1(∂2 f/∂z1∂ z̄1).

As above, we will omit the subscript ϵ in 11,ϵ f . We first observe that

111gϵ
f = 1gϵ

11 f. (3-10)

Equation (3-10) can be checked from the definitions using the property that gϵ is a product metric. Indeed

111gϵ
f = (|z1|2 + ϵ)1−β1

∂2

∂z1∂ z̄1

(
(|z1|2 + ϵ)1−β1

∂2 f

∂z1∂ z̄1

+ (|z2|2 + ϵ)1−β2
∂2 f

∂z2∂ z̄2

+
∑

j

∂2 f

∂z j∂ z̄ j

)

= (|z1|2 + ϵ)1−β1
∂2

∂z1∂ z̄1

11 f + (|z2|2 + ϵ)1−β2
∂2

∂z2∂ z̄2

11 f +
n∑

j=3

∂2

∂z j∂ z̄ j

11 f = 1gϵ
11 f.

On the other hand, note that 1gϵ
f = 1g f = −|∇ f |2 by (3-6). Choosing a normal frame {e1, . . . , en} at

some point x such that dg(x) = 0 and 11 f = f11̄, we calculate

11|∇ f |2 = ( f j f j̄ )11̄ = f j1 f j̄ 1̄ + f j 1̄ f j̄1 + f j11̄ f j̄ + f j f j̄11̄

= f j1 f j̄ 1̄ + f j 1̄ f j̄1 + f j f1̄1 j̄ + f j̄ ( f11̄ j + fm R1m̄ j 1̄)

= |∇1∇ f |2 + |∇1∇ f |2 + 2 Re⟨∇ f, ∇11 f ⟩ + fm f j̄ R11̄ j m̄

≥ (11 f )2 + 2 Re⟨∇ f, ∇11 f ⟩. (3-11)



SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 769

Then

1(−11 f ) = −111 f = 11|∇ f |2 ≥ (11 f )2 + 2 Re⟨∇ f, ∇11 f ⟩.

Let ϕ : [0, 1] → [0, 1] be a standard cut-off function such that ϕ|[0,1/2] = 1 and ϕ|[2/3,1] = 0. We also

define ϕ(x) = ϕ(r(x)/R). Then consider the function G := ϕ2 · (−11 f ). We calculate

1G = 1(ϕ2(−11 f ))

= ϕ21(−11 f ) + 2 Re⟨∇ϕ2, ∇(−11 f )⟩ + (−11 f )1ϕ2

≥ ϕ2((11 f )2 + 2 Re⟨∇ f, ∇11 f ⟩) + 2 Re⟨∇ϕ2, ∇(−11 f )⟩ + (−11 f )1ϕ2. (3-12)

We want to estimate the upper bound of G. If the maximum value of G = ϕ2(−11 f ) is negative, we

are done. So we assume the maximum of G on B(p, R) is positive, which is achieved at some point

pmax ∈ B
(

p, 2
3

R
)
. Hence, at pmax we have (−11 f ) > 0. By Laplacian comparison, 1r ≤ (2n − 1)/r ,

and we get, at pmax,

1ϕ2 ≥ 2

R2
((2n − 1)ϕϕ′ + ϕϕ′′ + (ϕ′)2). (3-13)

Thus, at pmax, the last term on the right-hand side of (3-12) is greater than or equal to

(−11 f )
2

R2
((2n − 1)ϕϕ′ + ϕϕ′′ + (ϕ′)2).

Substituting this into (3-12), it follows that, at pmax, we have 1G ≤ 0 and ∇11 f = −2ϕ−111 f ∇ϕ,

and hence

0 ≥ 1G

≥ ϕ2(11 f )2+2ϕ2 Re⟨∇ f, ∇11 f ⟩+4ϕ Re⟨∇ϕ, ∇(−11 f )⟩+(−11 f )
2

R2
((2n−1)ϕϕ′+ϕϕ′′+(ϕ′)2)

≥ ϕ2(11 f )2−4ϕ|11 f ||∇ f ||∇ϕ|+811 f |∇ϕ|2+(−11 f )
2

R2
((2n−1)ϕϕ′+ϕϕ′′+(ϕ′)2)

= G2

ϕ2
−4ϕ−1G|∇ f ||∇ϕ|−8G

|∇ϕ|2
ϕ2

+ 2G

R2ϕ2
((2n−1)ϕϕ′+ϕϕ′′+(ϕ′)2)

≥ G2

ϕ2
−4

|ϕ′||∇ f |
Rϕ

G−8
|ϕ′|2
R2ϕ2

G+ 2G

R2ϕ2
((2n−1)ϕϕ′+ϕϕ′′+(ϕ′)2).

(3-14)

Therefore, at pmax ∈ B
(

p, 2
3

R
)
,

G2 − 4
ϕ|ϕ′∇ f |

R
G − 8

|ϕ′|2
R2

G + 2G

R2
((2n − 1)ϕϕ′ + ϕϕ′′ + (ϕ′)2) ≤ 0,

and combining (3-8) and the fact that ϕ, ϕ′, ϕ′′ are all uniformly bounded, we can get, at pmax,

G2 ≤ C(n)R−2G =⇒ G(pmax) ≤ C(n)

R2
.

Then, for any x ∈ B
(

p, 1
2

R
)
, where ϕ = 1, we have

−11 f (x) = G(x) ≤ G(pmax) ≤ C(n)

R2
.
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Moreover, recall that f = log u and −11 f = −11u/u + |∇1 f |2, therefore it follows that

sup
x∈B(p,R/2)

(
−11u

u
(x)

)
≤ C(n)

R2
. (3-15)

This in particular implies that

sup
x∈B(p,R/2)

(−11u(x)) ≤ C(n)
oscB(p,R/2) u

R2
≤ C(n)

oscB(p,R) u

R2
. (3-16)

On the other hand, consider the function û = maxB(p,R) u − u, which is still a positive gϵ-harmonic

function with 1gû = 1gϵ
û = 0. Applying (3-15) to the function û, we get

sup
x∈B(p,R/2)

(
11u(x)

maxB(p,R) u − u(x)

)
= sup

x∈B(p,R/2)

(
−11û

û
(x)

)
≤ C(n)

R2
, (3-17)

which yields

sup
x∈B(p,R/2)

11u(x) ≤ C(n)
oscB(p,R) u

R2
. (3-18)

Combining (3-18) and (3-16), we get

sup
x∈B(p,R/2)

|11u|(x) ≤ C(n)
oscB(p,R) u

R2
. (3-19)

3A4. Mixed derivatives estimates. In this subsection we will estimate the mixed derivatives

|∇1∇2 f |2 = ∂2 f

∂z1∂z2

∂2 f

∂z1∂z2

g11̄g22̄ and |∇1∇2̄ f |2 = ∂2 f

∂z1∂ z̄2

∂2 f

∂z1∂ z̄2

g11̄g22̄,

where as before f = log u and u is a positive harmonic function of 1gϵ
. Here for simplicity, we omit

the subscript ϵ in uϵ , fϵ and gϵ . Observing that since gϵ = g is a product metric with the nonzero

components gkk̄ depending only on zk , it follows that the curvature tensor

Ri j̄ kl̄ = −
∂2gi j̄

∂zk∂ z̄l

+ g pq̄ ∂gi q̄

∂zk

∂gp j̄

∂ z̄l

vanishes unless i = j = k = l ∈ {1, 2} and also Ri ī i ī ≥ 0 for all i = 1, . . . , n.

We fix some notation: we will write f12 = ∇1∇2 f (in fact this is just the ordinary derivative of f with

respect to g, since g is a product metric), | f12|2g = |∇1∇2 f |2g, etc.

Let us first recall that (3-11) implies

1(−11 f − 12 f )

=
n∑

k=1

(g11̄gkk̄ f1k f1̄k̄ + g11̄gkk̄ f1k̄ f1̄k + g22̄gkk̄ f2k f2̄k̄ + g22̄gkk̄ f2k̄ fk2̄)

− 2 Re⟨∇ f, ∇(−11 f − 12 f )⟩ + f1 f1̄g11̄g11̄ R11̄11̄ + f2 f2̄g22̄g22̄ R22̄22̄

≥
n∑

k=1

(|∇1∇k f |2 + |∇1∇k̄ f |2 + |∇2∇k f |2 + |∇2∇k̄ f |2) − 2 Re⟨∇ f, ∇(−11 f − 12 f )⟩. (3-20)
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Next we calculate 1|∇1∇2 f |2. For convenience of notation we will write f 12 = f1̄2̄g11̄g22̄, and hence

|∇1∇2 f |2 = f12 f 12. We calculate

1|∇1∇2 f |2 = gkl̄( f12 f 12)kl̄ = gkk̄( f12 f 12)kk̄ (since g is a product metric)

= gkk̄( f12kk̄ f 12 + f12k f 12
,k̄ + f12k̄ f 12

,k + f12 f 12
,kk̄ ). (3-21)

The first term on the right-hand side of (3-21) is (by Ricci identities and switching the indices)

gkk̄ f 12( fk1k̄2 + gmm̄ fm1 Rkm̄2k̄ + gmm̄ fkm R1m̄2k̄)

= gkk̄ f 12( fkk̄12 + gmm̄ fm2 Rkm̄1k̄ + gmm̄ fm Rkm̄1k̄ + gmm̄ fm1 Rkm̄2k̄ + gmm̄ fkm R1m̄2k̄)

= gkk̄ f 12( fkk̄12 + gmm̄ fm2 Rkm̄1k̄ + gmm̄ fm1 Rkm̄2k̄)

= gkk̄ f 12 fkk̄12 + g11̄g11̄ f 12 f21 R11̄11̄ + g22̄g22̄ f 12 f12 R22̄22̄, (3-22)

and the last term on the right-hand side of (3-21) is the conjugate of the first term; hence we get

1|∇1∇2 f |2 = 2 Re( f 12(1 f )12) + 2 f 12 f12(g
11̄g11̄ R11̄11̄ + g22̄g22̄ R22̄22̄)

+gkk̄ f12k f 12
,k̄ + gkk̄ f12k̄ f 12

,k . (3-23)

Recall from (3-6) that 1 f = −|∇ f |2; hence the first term on the right-hand side of (3-23) is

2 Re( f 12(1 f )12) = 2 Re( f 12(−|∇ f |2)12)

= −2 Re( f 12gkk̄( fk12 fk̄ + fk1 fk̄2 + fk2 fk̄1 + fk fk̄12))

= −2 Re( f 12gkk̄( f12k fk̄ + fk1 fk̄2 + fk2 fk̄1 + fk f12k̄ − fk fm R1m̄2k gmm̄))

= −4 Re⟨∇ f, ∇|∇1∇2 f |2⟩ − 2 Re( f 12gkk̄ fk1 f2k̄ + f 12gkk̄ fk2 fk̄1). (3-24)

Combining (3-24) and (3-23), we get

1|∇1∇2 f |2 ≥ −4 Re⟨∇ f, ∇|∇1∇2 f |2⟩ +
∑

k

( f12k f 12k + f12k̄ f 12k̄)

− 2
∑

k

(|∇1∇2 f ||∇1∇k f ||∇2∇k̄ f | + |∇1∇2 f ||∇2∇k f ||∇1∇k̄ f |). (3-25)

On the other hand, by Kato’s inequality we have

1|∇1∇2 f |2 = 2|∇1∇2 f |1|∇1∇2 f | + 2
∣∣∇|∇1∇2 f |

∣∣2

≤ 2|∇1∇2 f |1|∇1∇2 f | +
∑

k

|∇k∇1∇2 f |2 + |∇k̄∇1∇2 f |2

= 2|∇1∇2 f |1|∇1∇2 f | +
∑

k

f12k f 12k + f12k̄ f 12k̄ . (3-26)

Combining (3-25) and (3-26), it follows that

1|∇1∇2 f | ≥ −2 Re⟨∇ f, ∇|∇1∇2 f |⟩ −
∑

k

(|∇1∇k f ||∇2∇k̄ f | + |∇2∇k f ||∇1∇k̄ f |). (3-27)
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Combining (3-20) and (3-27) and applying the Cauchy±Schwarz inequality, we have

1(|∇1∇2 f | + 2(−11 f − 12 f )) ≥ −2 Re⟨∇ f, ∇(|∇1∇2 f | + 2(−11 f − 12 f ))⟩

+
n∑

k=1

(|∇1∇k f |2 + |∇1∇k̄ f |2 + |∇2∇k f |2 + |∇2∇k̄ f |2). (3-28)

Note that the sum on the right-hand side of (3-27) is (recall under our notation |∇1∇1̄ f |2 = (11 f )2)

greater than or equal to

|∇1∇2 f |2 + |− 11 f |2 + |− 12 f |2 ≥ 1
12

(|∇1∇2 f | + 2(−11 f − 12 f ))2,

so we get the equation

1(|∇1∇2 f | + 2(−11 f − 12 f )) ≥ −2 Re⟨∇ f, ∇(|∇1∇2 f | + 2(−11 f − 12 f ))⟩
+ 1

12
(|∇1∇2 f | + 2(−11 f − 12 f ))2. (3-29)

Write

Q = η2(|∇1∇2 f | + 2(−11 f − 12 f )) =: η2 Q1,

where η(x) = η̃(r(x)/R) and η̃ is a cut-off function such that η̃|[0,1/3] = 1 and η̃|[1/2,1] = 0. The following

arguments are similar to the previous two cases. We calculate

1Q = η21Q1 + 2 Re⟨∇η2, ∇Q1⟩ + Q11η2

≥ −2η2 Re⟨∇ f, ∇Q1⟩ + 2 Re⟨∇η2, ∇Q1⟩ + 1
12

η2 Q2
1 + Q11η2. (3-30)

Apply the maximum principle to Q, and if max Q ≤ 0, we are done. So we may assume that max Q > 0

and that it is attained at pmax; thus at pmax, we have Q1 > 0, 1Q ≤ 0, ∇Q1 = −2η−1 Q1∇η and

Q11η2 ≥ Q1

2

R2
((2n − 1)ηη′ + ηη′′ + (η′)2).

So, at pmax,

0 ≥ 1Q ≥ 4ηQ1 Re⟨∇ f, ∇η⟩ − 8Q1|∇η|2 + η2 Q2
1

12
+ Q1

2

R2
((2n − 1)ηη′ + ηη′′ + (η′)2)

= Q2

12η2
+ 4Qη−1 Re⟨∇ f, ∇η⟩ − 8Q

η2

(η′)2

R2
+ 2Q

R2η2
((2n − 1)ηη′ + ηη′′ + (η′)2)

≥ 1

η2

(
Q2

12
− 40|∇ f |

R
Q − 800

R2
Q − 100n

R2
Q

)
, (3-31)

where we choose η such that |η′|, |η′′| ≤ 10, for example. Therefore, at pmax ∈ B
(

p, 1
2

R
)
, we have

Q2

12
− Q

(
40|∇ f |

R
+ 800

R2
+ 100n

R2

)
≤ 0 =⇒ Q(pmax) ≤ C(n)

R2
,

since supB(p,R/2) |∇ f | ≤ C(n)R−1 from the previous estimates. Then, for any x ∈ B
(

p, 1
3

R
)
, we have

Q1(x) = η2(x)Q1(x) = Q(x) ≤ Q(pmax) ≤ C(n)

R2
.
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Thus it follows that

|∇1∇2 f |(x) ≤ Q1(x) + 2(11 f (x) + 12 f (x)) ≤ C(n)

R2
+ 2(11 f (x) + 12 f (x)).

On the other hand, from |∇1∇2 f | = |(∇1∇2u/u) − (∇1u/u)(∇2u/u)|, we get

|∇1∇2u|(x) ≤ |∇1∇2 f (x)|u(x) + u(x)
|∇1u(x)|

u

|∇2u(x)|
u

≤ C(n)
u(x)

R2
+ 211u(x) + 212u(x) + u(x)

|∇1u(x)|
u

|∇2u(x)|
u

≤ C(n)
oscB(p,R) u

R2
. (3-32)

Therefore we obtain

sup
B(p,R/3)

|∇1∇2u| ≤ C(n)
oscB(p,R) u

R2
. (3-33)

By exactly the same argument we get similar estimates for |∇1∇2̄u| and |∇1∇ku| + |∇1∇k̄u| for k ̸= 1.

Hence we have proved the following lemma.

Lemma 3.4. There exists a constant C(n) > 0 such that, for the solution uϵ to (3-4),

sup
Bgϵ (0,R/2)

(|∇i∇ j uϵ |gϵ
+ |∇i∇ j̄ uϵ |gϵ

) ≤ C(n)
oscBgϵ (0,R) uϵ

R2

for all i, j = 1, 2, . . . , n.

3A5. Convergence of uϵ . In this subsection, we will show that the Dirichlet problem (3-1) admits a

unique solution for any ϕ ∈ C0(∂ Bβ(0, 1)). Here we will write Bβ = Bβ(0, 1) for simplicity of notation.

Proposition 3.5. For any ϕ ∈ C0(∂ Bβ), the Dirichlet boundary value problem (3-1) admits a unique

solution u ∈ C2(Bβ\S)∩C0(Bβ). Moreover, u satisfies the estimates in Lemmas 3.2±3.4 with uϵ replaced

by u and the metric balls replaced by those under the metric gβ , which we will refer to as ªderivatives

estimatesº throughout this section.

Proof. Given the estimates of uϵ as in Lemmas 3.2±3.4, we can derive the uniform local C2,α estimates

of uϵ on any compact subsets of Bβ(0, 1)\S.

The C0 estimates of uϵ follow immediately from the maximum principle (see Lemma 3.1).

Take any compact subsets K ⋐ K ′ ⋐ Bβ(0, 1). By Lemmas 3.2 and 3.3, we have

sup
K ′

(
|z1|1−β1

∣∣∣∣
∂uϵ

∂z1

∣∣∣∣ + |z2|1−β2

∣∣∣∣
∂uϵ

∂z2

∣∣∣∣ +
∣∣∣∣
∂uϵ

∂s j

∣∣∣∣
)

≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)
, (3-34)

sup
K ′

(
|z1|1−β1

∣∣∣∣
∂2uϵ

∂sk∂z1

∣∣∣∣ + |z2|1−β2

∣∣∣∣
∂2uϵ

∂sk∂z2

∣∣∣∣ +
∣∣∣∣

∂2uϵ

∂sk∂s j

∣∣∣∣
)

≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)2
, (3-35)

and the third-order estimates

sup
K ′

(
|z1|1−β1

∣∣∣∣
∂3uϵ

∂z1∂sk∂sl

∣∣∣∣ + |z2|1−β2

∣∣∣∣
∂3uϵ

∂z2∂sk∂sl

∣∣∣∣ +
∣∣∣∣

∂3uϵ

∂s j∂sk∂sl

∣∣∣∣
)

≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)3
. (3-36)
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Moreover, applying the gradient estimate to the 1gϵ
-harmonic function 11,ϵuϵ , we get

sup
K ′

(
|z1|1−β1

∣∣∣∣
∂

∂z1

11,ϵuϵ

∣∣∣∣ + |z2|1−β2

∣∣∣∣
∂

∂z2

11,ϵuϵ

∣∣∣∣ +
∣∣∣∣

∂

∂s j

11,ϵuϵ

∣∣∣∣
)

≤ C(n)
∥uϵ∥∞

d(K ′, ∂ Bβ)3
.

From (3-34)±(3-36), we see that the functions uϵ have uniform C3-estimates in the ªtangential directionsº

on any compact subset of Bβ(0, 1). Moreover, for any fixed small constant δ > 0, let Tδ(S) be the tubular

neighborhood of S. We consider the equation

1ϵuϵ = (|z1|2 + ϵ)1−β1
∂2uϵ

∂z1∂ z̄1

+ (|z2|2 + ϵ)1−β2
∂2uϵ

∂z2∂ z̄2

+
2n∑

j=5

∂2uϵ

∂s2
j

= 0 on K ′\Tδ/2(S),

which is strictly elliptic (with ellipticity depending only on δ > 0). Hence by standard elliptic Schauder

theory, we also have C2,α-estimates of uϵ in the ªtransversal directionsº (i.e., normal to S) and the mixed

directions on the compact subset K\Tδ(S). By taking δ → 0 and K → Bβ , and using a diagonal argument,

up to a subsequence, the uϵ converge in C
2,α
loc (Bβ\S) to a function u ∈ C2,α(Bβ\S). Clearly, u satisfies

the equation 1βu = 0 on Bβ\S, and the estimates (3-34)±(3-36) hold for u outside S, which implies

that u can be continuously extended through S and defines a continuous function in Bβ(0, 1). It remains

to check the boundary value of u.

Claim: u = ϕ on ∂ Bβ(0, 1). It remains to show the limit function u of uϵ satisfies the boundary condition

u = ϕ on ∂ Bβ(0, 1), which will be proved by constructing suitable barriers as we did in [20].

The metric ball Bβ(0, 1) is given by

Bβ(0, 1) =
{

z ∈ C
n

∣∣∣ dβ(0, z)2 := |z1|2β1 + |z2|2β2 +
2n∑

j=5

s2
j < 1

}
.

Bβ(0, 1) ⊂ BCn (0, 1), and their boundaries only intersect at S1 ∩S2, where z1 = z2 = 0. Fix any point

q ∈ ∂ Bβ(0, 1) and consider the cases q ∈ S1 ∩S2 and q ̸∈ S1 ∩S2.

Case 1: q ∈ S1 ∩S2, i.e., z1(q) = z2(q) = 0. Consider the point

q ′ = −q ∈ ∂ Bβ(0, 1) ∩ ∂ BCn (0, 1).

Since q is the unique farthest point from q ′ on ∂ Bβ(0, 1) under the Euclidean distance, the function

9q(z) := dCn (z, q ′)2 − 4 satisfies 9q(q) = 0 and 9q(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. By the continuity

of ϕ for any δ > 0, there is a small neighborhood V of q such that ϕ(q) − δ < ϕ(z) < ϕ(q) + δ for

all z ∈ ∂ Bβ(0, 1)∩ V , and, on ∂ Bβ(0, 1)\V , we have that 9q is bounded above by a negative constant.

Hence we can define

ϕq(z) := ϕ(q) − δ + A9q(z) < ϕ(z)

for all z ∈ ∂ Bβ(0, 1) if A is chosen large enough. The function ϕq is 1gϵ
-subharmonic; hence by the

maximum principle we have uϵ(z) ≥ ϕq(z) for all z ∈ Bβ(0, 1). Letting ϵ → 0 we get u(z) ≥ ϕq(z), taking

z → q we have lim infz→q u(z) ≥ ϕ(q)− δ, and since δ > 0 is arbitrary we have lim infz→q u(z) ≥ ϕ(q).

By considering the barrier function ϕ(q) + δ − A9q(z) and using a similar argument it is not hard to

see that lim supz→q u(z) ≤ ϕ(q); hence limz→q u(z) = ϕ(q) and u is continuous up to q ∈ ∂ Bβ(0, 1).
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Case 2: q ∈ ∂ Bβ(0, 1)\S1 ∩S2. We first consider the case when z1(q) ̸= 0 and z2(q) ̸= 0. The boundary

∂ Bβ(0, 1) is smooth near q, and hence satisfies the exterior sphere condition. We choose an exterior

Euclidean ball BCn (q̃, rq) which is tangential to ∂ Bβ(0, 1) (only) at q , i.e., under the Euclidean distance,

q is the unique closest point to q̃ on ∂ Bβ(0, 1). So the function

G(z) = 1

|z − q̃|2n−2
− 1

r2n−2
q

(3-37)

satisfies G(q) = 0 and G(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. We calculate

1gϵ
G = (|z1|2 + ϵ)−β1+1 ∂2G

∂z1∂ z̄1

+ (|z2|2 + ϵ)−β2+1 ∂2G

∂z2∂ z̄2

+
n∑

k=3

∂2G

∂zk∂ z̄k

= ((|z1|2 + ϵ)−β1+1 − 1)
∂2G

∂z1∂ z̄1

+ ((|z2|2 + ϵ)−β2+1 − 1)
∂2G

∂z2∂ z̄2

=
2∑

k=1

(−n + 1)
(|zk |2 + ϵ)−βk+1 − 1

|z − q̃|2n

(
−n|zk − q̃k |2

|z − q̃|2 + 1

)
≥ −C(q, rq).

The function

9q(z) = A(dβ(z, 0)2 − 1) + G(z)

is 1gϵ
-subharmonic for A ≫ 1, and 9q(q) = 0 and 9q(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}. We are in the

same situation as Case 1, so by the same argument as above, we can show the continuity of u at such a

boundary point q .

In the case when z1(q) ̸= 0 and z2(q) = 0, the boundary ∂ Bβ(0, 1) is not smooth at q and we cannot

apply the exterior sphere condition to construct the barrier. Instead we use the geometry of the metric

ball Bβ(0, 1). Consider the standard cone metric

gβ1
= β2

1

dz1 ⊗ dz̄1

|z1|2(1−β1)
+

n∑

k=2

dzk ⊗ dz̄k

with cone singularity only along S1 = {z1 = 0}. We observe that the metric ball Bβ(0, 1) is strictly

contained in Bgβ1
(0, 1), and the boundaries of these balls are tangential at the points with vanishing

z2-coordinate. Thus q ∈ ∂ Bβ(0, 1)∩∂ Bgβ1
(0, 1) and ∂ Bgβ1

(0, 1) is smooth at q , so there exists an exterior

sphere for ∂ Bgβ1
(0, 1) at q . We define a similar function G(z) as in (3-37), and, by the strict inclusion of

the metric balls Bβ(0, 1) ⊂ Bgβ1
(0, 1), it follows that G(q) = 0 and G(z) < 0 for all z ∈ ∂ Bβ(0, 1)\{q}.

The remaining argument is the same as before. □

Remark 3.6. For any constant c ∈ R, the Dirichlet boundary value problem

1gβ
u = c in Bβ(0, 1)\S and u = ϕ on ∂ Bβ(0, 1)

admits a solution u ∈ C2(Bβ\S)∩ C0(Bβ) for any given ϕ ∈ C0(∂ Bβ). This follows from the solution ũ

of (3-1) with boundary value ϕ̃ = ϕ− 1
2
c(n−2)−1

∑2n
j=5 s2

j . Then the function u = ũ + 1
2
c(n−2)−1

∑
j s2

j

solves the equation above.
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For later application, we prove the existence of solutions for a more general right-hand side of the

Laplace equation with the standard background metric. This result is not needed to prove Theorem 1.2.

Proposition 3.7. For any given ϕ ∈ C0(∂ Bβ(0, 1)) and f ∈ C
0,α
β (Bβ(0, 1)), the Dirichlet boundary value

problem {
1gβ

v = f in Bβ(0, 1)\S,

v = ϕ on ∂ Bβ(0, 1)
(3-38)

admits a unique solution v ∈ C2(Bβ(0, 1)\S) ∩ C0(Bβ(0, 1)).

By Theorem 1.2, the solution v to (3-38) belongs to C
2,α
β (Bβ(0, 1)) ∩ C0(Bβ(0, 1)).

Proof. The proof is similar to that of Proposition 3.5. As before, let gϵ be the approximating metrics (3-3)

of gβ which are smooth metrics on Bβ(0, 1). By standard elliptic theory we can solve the equations
{
1gϵ

vϵ = f in Bβ(0, 1),

vϵ = ϕ on ∂ Bβ(0, 1).
(3-39)

For any compact subset K ⋐ Bβ(0, 1) and small δ > 0, we have a uniform C2,α′
-bound of vϵ on K\Tδ(S)

for some α′ < α. Thus vϵ converges in the C2,α′
-norm to a function v on K\Tδ(S) as ϵ → 0. By a

standard diagonal argument, letting K → Bβ(0, 1) and δ → 0, we can achieve

vϵ

C
2,α′
loc (Bβ (0,1)\S)

−−−−−−−−−→ v ∈ C
2,α′

loc (Bβ(0, 1)\S) as ϵ → 0.

Clearly v satisfies (3-38) in Bβ(0, 1)\S. It only remains to show the boundary value of v coincides with ϕ

and v is globally continuous in Bβ(0, 1).

Global continuity: v ∈ C0(Bβ(0, 1)). It suffices to show v is continuous at any p ∈ S ∩ Bβ(0, 1). Fix

such a point p and take R0 > 0 small enough that BCn (p, 10R0) ∩ ∂ Bβ(0, 1) = ∅. We observe that
1
2
gCn ≤ gϵ ≤ gβ , so for any r ∈

(
0, 1

2

)
,

Bgβ
(p, r) ⊂ Bgϵ

(p, r) ⊂ BCn (p, 2r). (3-40)

In particular, the balls Bgϵ
(p, 5R0) are also disjoint with ∂ Bβ(0, 1).

Since Ric(gϵ) ≥ 0, we have the following Sobolev inequality [25]: there exists a constant C = C(n) > 0

such that, for any h ∈ C1
0(Bgϵ

(p, r)),

(∫

Bgϵ (p,r)

h2n/(n−1)ωn
ϵ

)(n−1)/n

≤ C

(
r2n

Volgϵ
(Bgϵ

(p, r))

)1/n ∫

Bgϵ (p,r)

|∇h|2gϵ
ωn

ϵ . (3-41)

It can be checked by straightforward calculations that Volgϵ
(Bgϵ

(p, 1)) ≥ c0(n) > 0 for some constant c0

independent of ϵ. Then Bishop’s volume comparison yields, for any r ∈ (0, 1),

C1(n)r2n ≥ Volgϵ
(Bgϵ

(p, r)) ≥ c1(n)r2n.

Thus the Sobolev inequality (3-41) is reduced to

(∫

Bgϵ (p,r)

h2n/(n−1)ωn
ϵ

)(n−1)/n

≤ C

∫

Bgϵ (p,r)

|∇h|2gϵ
ωn

ϵ for all h ∈ C1
0(Bgϵ

(p, r)). (3-42)
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With (3-42) at hand, we can apply the same proof of the standard De Giorgi±Nash±Moser theory (see the

proof of Corollary 4.18 in [22]) to derive the uniform Hölder continuity of vϵ at p, i.e., there exists a

constant C = C(n, β, R0) > 0 such that

oscBβ (p,r) vϵ ≤ oscBgϵ (p,r) vϵ ≤ Crα′′
for all r ∈ (0, R0)

for some α′′ = α′′(n, β, R0) ∈ (0, 1), where in the first inequality we use the relation (3-40). Letting ϵ → 0

we see the continuity of v at p.

Boundary value: v = ϕ on ∂ Bβ(0, 1). The proof is almost identical to that of Proposition 3.5. For

example, the function ϕq(z) = ϕ(q) − δ + A9q(z) defined in Case 1 in the proof of Proposition 3.5

satisfies 1gϵ
ϕq(z) ≥ maxX f if A > 0 is taken large enough. Then from 1gϵ

(ϕq − vϵ) ≥ 0 in Bβ and

ϕq −ϕ ≤ 0 on ∂ Bβ , applying the maximum principle we get ϕq ≤ vϵ in Bβ(0, 1). The remaining arguments

are the same as in Proposition 3.5. Case 2 can be dealt with similarly. □

Remark 3.8. Let H 1
0 (Bβ(0, 1), gβ) be the completion of the space of C1

0(Bβ(0, 1))-functions under the

norm

∥∇u∥L2(gβ ) =
(∫

Bβ (0,1)

|∇u|2gβ
ωn

β

)1/2

.

For any h ∈ C1
0(Bβ(0, 1)), letting ϵ → 0 in (3-42), we get

(∫

Bβ (p,r)

|h|2n/n−1ωn
β

)(n−1)/n

≤ C

∫

Bβ (p,r)

|∇h|2gβ
ωn

β (3-43)

for the same constant C in (3-42). That is, the Sobolev inequality also holds for the conical metric ωβ .

3B. Tangential and Laplacian estimates. In this section, we will prove the Hölder continuity of 1ku for

k = 1, 2 and (D′)2u for the solution u to (1-2). The arguments of [20] can be adopted here. We recall

that we assume β1, β2 ∈
(

1
2
, 1

)
. We fix some notations first.

For a given point p ̸∈ S, we define rp = dgβ
(p,S), the gβ-distance of p to the singular set S. For

simplicity of notation we will fix τ = 1
2

and an integer kp ∈ Z+ to be the smallest integer such that τ kp < rp,

and ki,p ∈ Z+ the smallest integer ki,p such that τ ki,p < dβ(p,Si ) for i = 1, 2. So kp = max{k1,p, k2,p}.
We write p1 ∈ S1 and p2 ∈ S2 for the projections of p to S1 and S2, respectively.

For j = 1, 2, we will write

1 j u := |z j |2(1−β j )
∂2u

∂z j∂ z̄ j

.

We will consider a family of conical Laplace equations with different choices of k ∈ Z
+.

(i) If k ≥ kp, the geodesic balls Bβ(p, τ k) are disjoint from S and have smooth boundaries. We note

that gβ is smooth on such balls. By standard theory we can solve the following Dirichlet problem for

uk ∈ C∞(Bβ(p, τ k)) ∩ C0(Bβ(p, τ k)):
{
1βuk = f (p) in Bβ(p, τ k),

uk = u on ∂ Bβ(p, τ k).
(3-44)
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(ii) Without loss of generality, we assume dβ(p,S1) ≤ dβ(p,S2), i.e., k1,p ≥ k2,p. We now solve the

following Dirichlet problem for uk ∈ C2(Bβ(p1, 2τ k)\S1) ∩ C0(Bβ(p1, 2τ k)) for k2,p + 2 ≤ k < k1,p:
{
1βuk = f (p) in Bβ(p1, 2τ k)\S1,

uk = u on ∂ Bβ(p1, 2τ k).
(3-45)

By similar arguments to those in the proof of Proposition 3.5 and Remark 3.6, such uk exists.

(iii) For 2 ≤ k ≤ k2,p + 1, let uk ∈ C2(Bβ(p1,2, 2τ k)\S) ∩ C0(Bβ(p1,2, 2τ k)) solve the equation

{
1βuk = f (p) in Bβ(p1,2, 2τ k),

uk = u on ∂ Bβ(p1,2, 2τ k),
(3-46)

whose existence follows from Remark 3.6. Here p1,2 = (0; 0; s(p)) ∈ S1 ∩S2 is the projection of p1 to S2.

We remark that we may take f (p) = 0 by considering ũ = u − 1
2

f (p)(n −2)−1|s −s(p)|2. If the estimate

holds for ũ, it also holds for u. So from now on we assume f (p) = 0.

Lemma 3.9. Let uk be the solutions to (3-44)±(3-46). There exists a constant C = C(n) > 0 such that,

for all k ∈ Z+, we have the estimates

∥uk − u∥
L∞(B̂k(p))

≤ C(n)τ 2kω(τ k), (3-47)

where we define B̂k(p) as

B̂k(p) :=





Bβ(p, τ k) if k ≥ kp,

Bβ(p1, 2τ k) if k2,p + 2 ≤ k < k1,p,

Bβ(p1,2, 2τ k) if 2 ≤ k ≤ k2,p + 1

(3-48)

for different choices of k ∈ Z+.

We will also define λB̂k(p) to be the ball concentric with B̂k(p) with radius scaled by λ ∈ (0, 1).

This lemma follows straightforwardly from Lemma 3.1 and the definition of ω(r), so we omit the

proof. By the triangle inequality, we get the estimates

∥uk − uk+1∥L∞(B̂k/2)
≤ C(n)τ 2kω(τ k). (3-49)

Since uk − uk+1 are gβ-harmonic functions on 1
2

B̂k , applying the gradient and Laplacian estimates

(3-5) and (3-9) for harmonic functions, we get the following lemma.

Lemma 3.10. There exists a constant C(n) > 0 such that, for all k ∈ Z+,

∥D′uk − D′uk+1∥L∞(B̂k/3)
≤ C(n)τ kω(τ k) (3-50)

and

sup
(B̂k/3)\S

( 2∑

i=1

|1i (uk − uk+1)| + |(D′)2uk − (D′)2uk+1|
)

≤ C(n)ω(τ k), (3-51)

where we recall that D′ denotes the first-order operators ∂/∂si for i = 5, . . . , 2n.

The following lemma can be proved by looking at the Taylor expansion of uk at p for k ≫ 1 as in

Lemma 2.8 of [20].
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Lemma 3.11. For i = 1, 2, we have the limits

lim
k→∞

D′uk(p) = D′u(p), lim
k→∞

(D′)2uk(p) = (D′)2u(p), lim
k→∞

1i uk(p) = 1i u(p). (3-52)

Combining Lemmas 3.10 and 3.11, we obtain estimates on the second-order (tangential) derivatives.

Proposition 3.12. There exists a constant C = C(n, β) > 0 such that

sup
Bβ (0,1/2)\S

|(D′)2u| + |1i u| ≤ C

(
∥u∥L∞(Bβ (0,1)) +

∫ 1

0

ω(r)

r
dr + | f (0)|

)
. (3-53)

Proof. From the triangle inequality we have, for any given z ∈ Bβ

(
0, 1

2

)
\S,

|(D′)2u(z)| ≤
∞∑

k=2

|(D′)2uk(z) − (D′)2uk+1(z)| + |(D′)2u2(z)|

≤ C(n)

∞∑

k=2

ω(τ k) + C(n) oscBβ (0,1) u0 ≤ C(n, β)

(
∥u∥L∞ +

∫ 1

0

ω(r)

r
dr + | f (0)|

)
.

The estimates for 1i u can be proved similarly. □

For any other given point q ∈ Bβ

(
0, 1

2

)
\S, we can solve a similar Dirichlet boundary problems as uk

with the metric balls centered at q , and we obtain a family of functions vk such that

1βvk = f (q) in B̃k(q), vk = u on ∂ B̃k(q), (3-54)

where B̃k(q) are metrics balls centered at q given by

B̃k(q) = B̃k :=





Bβ(q, τ k) if k ≥ kq ,

Bβ(qi , 2τ k) if k j,q + 2 ≤ k < kq (here ki,q = max(k1,q , k2,q) and j ̸= i),

Bβ(qi, j , 2τ k) if k ≤ k j,q + 1.

Similar estimates as in Lemmas 3.9±3.11 also hold for vk within the balls B̃k(q).

We are now ready to state the main result in this subsection on the continuity of second-order derivatives.

Proposition 3.13. Let d = dβ(p, q) < 1
16

. There exists a constant C = C(n) > 0 such that if u solves the

conical Laplace equation (1-2), then the following holds for i = 1, 2:

|1i u(p) − 1i u(q)| + |(D′)2u(p) − (D′)2u(q)| ≤ C

(
d∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d

∫ 1

d

ω(r)

r2
dr

)
.

Proof. We only prove the estimate for (D′)2u; the estimates for 1i u can be dealt with in the same way.

We may assume rp = min(rp, rq). We fix ℓ ∈ Z such that τ ℓ is comparable to d; more precisely, take

τ ℓ+4 ≤ d < τ ℓ+3 or τ ℓ+1 ≤ 8d ≤ τ ℓ.

We calculate by the triangle inequality

|(D′)2u(p) − (D′)2u(q)| ≤ |(D′)2u(p) − (D′)2uℓ(p)| + |(D′)2uℓ(p) − (D′)2uℓ(q)|
+ |(D′)2uℓ(q) − (D′)2vℓ(q)| + |(D′)2vℓ(q) − (D′)2u(q)|

=: I1 + I2 + I3 + I4.
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We will estimate I1±I4 one by one.

I1 and I4: By (3-51) and (3-52), we have

I1 = |(D′)2u(p) − (D′)2uℓ(p)| ≤ C(n)

∞∑

k=ℓ

ω(τ k),

and a similar estimate holds for I4 as well:

I4 = |(D′)2u(q) − (D′)2vℓ(q)| ≤ C(n)

∞∑

k=ℓ

ω(τ k).

I3: By the choice of ℓ, it is not hard to see that 2
3

B̃ℓ(q) ⊂ B̂ℓ(p). In particular, uℓ and vℓ are both defined

on 2
3

B̃ℓ(q) and satisfy the equations

1βuℓ = f (p) and 1βvℓ = f (q),

respectively, on this ball. From (3-47) for uℓ and from a similar estimate for vℓ, we get

∥uℓ − vℓ∥L∞(2B̃ℓ(q)/3) ≤ Cτ 2ℓω(τ ℓ).

Consider the function

U := uℓ − vℓ − f (p) − f (q)

2(n − 2)
|s − s(q̃)|2, (3-55)

where q̃ is the center of the ball B̃ℓ(q). U is gβ-harmonic in 2
3

B̃ℓ(q) and satisfies the estimate

∥U∥L∞(2B̃/3ℓ(q)) ≤ Cτ 2ℓω(τ ℓ) + Cτ 2ℓω(d) ≤ C(n)τ 2ℓω(τ ℓ).

The derivatives estimates imply that

|(D′)2U (q)| ≤ Cτ−2ℓ∥U∥L∞(2B̃/3ℓ(q)) ≤ C(n)ω(τ ℓ).

Hence

I3 = |(D′)2uℓ(q) − (D′)2vℓ(q)| ≤ C(n)ω(τ ℓ).

I2: This is a little more complicated than the previous estimates. We define hk = uk−1 −uk for k ≤ ℓ. We

observe that hk is gβ-harmonic on B̂k(p) and by (3-47) satisfies the L∞-estimate ∥hk∥B̂k(p)
≤ Cτ 2kω(τ k)

and the derivatives estimates ∥(D′)2hk∥L∞(2B̂k(p)/3)
ω(τ k). On the other hand, the function (D′)2hk is

also gβ-harmonic on 2
3

B̂k(p), so the gradient estimate implies that

∥∇gβ
(D′)2hk∥L∞((B̂k(p)/2)\S)

≤ Cτ−kω(τ k). (3-56)

Integrating this along the minimal gβ-geodesic γ connecting p and q and noting that γ avoids S since

(Cn\S, gβ) is strictly geodesically convex, we get

|(D′)2hk(p) − (D′)2hk(q)| ≤ d · ∥∇gβ
(D′)2hk∥L∞((B̂k(p)/2)\S)

≤ dCτ−kω(τ k).

By the triangle inequality, for each k ≤ ℓ,

I2 = |(D′)2uℓ(p) − (D′)2uℓ(q)| ≤ |(D′)2u2(p) − (D′)2u2(q)| + dC

ℓ∑

k=2

τ−kω(τ k). (3-57)
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Observe that p, q ∈ B̂2(p) and the function (D′)2u2 is gβ-harmonic on B̂2(p). From (3-47) and derivatives

estimates we have

∥(D′)2u2∥L∞(2B̂2(p)/3)
≤ C∥u2∥L∞(B̂2(p))

≤ C(∥u∥L∞ + ω(τ 2)).

Again by the gradient estimate we have

∥∇gβ
(D′)2u2∥L∞(B̂2(p)/2)

≤ C(∥u∥L∞ + ω(τ 2)).

Integrating along the minimal geodesic γ we arrive at

|(D′)2u2(p) − (D′)2u2(q)| ≤ dC(∥u∥L∞ + ω(τ 2)).

Combining this with (3-57), we obtain

I2 ≤ Cd

(
∥u∥L∞(Bβ (0,1)) +

ℓ∑

k=2

τ−kω(τ k)

)
.

Combing the estimates for I1±I4, we get

|(D′)2u(p) − (D′)2u(q)| ≤ C

(
d

(
∥u∥L∞(Bβ (0,1)) +

ℓ∑

k=2

τ−kω(τ k)

)
+

∞∑

k=ℓ

ω(τ k)

)
.

Proposition 3.13 now follows from this and the fact that ω(r) is monotonically increasing. □

3C. Mixed normal-tangential estimates along the directions S. Throughout this section, we fix two

points p, q ∈ Bβ

(
0, 1

2

)
\S and assume rp ≤ rq . Recall that we defined the weighted ªpolar coordinatesº

(ri , θi ) for (z1, z2):

ρi = |zi |, ri = ρ
βi

i , θi = arg zi , i = 1, 2.

Under these coordinates,

1i u = |zi |2(1−βi )
∂2u

∂zi∂ z̄i

= ∂2u

∂r2
i

+ 1

ri

∂u

∂ri

+ 1

β2
i r2

i

∂2u

∂θ2
i

. (3-58)

Let uk and vk be the solutions to (3-44)±(3-46) on B̂k(p) and B̃k(q), respectively. Recalling that uk −uk+1

satisfies (3-49) and applying gradient estimates to the gβ-harmonic function uk − uk+1, we get the bound

of ∥∇gβ
(uk − uk+1)∥L∞(B̂k(p)/3)

, which in particular implies that, for i = 1, 2,

∥∥∥∥|zi |1−βi

(
∂uk

∂zi

− ∂uk+1

∂zi

)∥∥∥∥
L∞(B̂k(p)/3)

≤ Cτ kω(τ k). (3-59)

Similarly, D′uk − D′uk+1 is also gβ-harmonic on 1
2

B̂k(p), and applying gradient estimates to this function

we get, for i = 1, 2, ∥∥∥∥|zi |1−βi

(
∂ D′uk

∂zi

− ∂ D′uk+1

∂zi

)∥∥∥∥
L∞(B̂k(p)/3)

≤ Cω(τ k). (3-60)

The next lemma can be proved in the same way as Lemma 2.10 of [20] since p ̸∈ S; we omit the proof.
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Lemma 3.14. For i = 1, 2, we have the limits

lim
k→∞

∂uk

∂ri

(p) = ∂u

∂ri

(p), lim
k→∞

∂uk

ri∂θi

(p) = ∂u

ri∂θi

(p)

and

lim
k→∞

∂ D′uk

∂ri

(p) = ∂ D′u

∂ri

(p), lim
k→∞

∂ D′uk

ri∂θi

(p) = ∂ D′u

ri∂θi

(p). (3-61)

Similar formulas also hold for vk at the point q.

We are going to estimate the quantities

J :=
∣∣∣∣
∂ D′u

∂ri

(p) − ∂ D′u

∂ri

(q)

∣∣∣∣ and K :=
∣∣∣∣
∂ D′u

ri∂θi

(p) − ∂ D′u

ri∂θi

(q)

∣∣∣∣, i = 1, 2.

Note that J, K correspond to |N j D′u(p) − N j D′u(q)| in Theorem 1.2. We will estimate the case for

i = 1 and J , since the other cases are completely the same. By the triangle inequality we have

J ≤
∣∣∣∣
∂ D′u

∂ri

(p) − ∂ D′uℓ

∂ri

(p)

∣∣∣∣ +
∣∣∣∣
∂ D′uℓ

∂ri

(p) − ∂ D′uℓ

∂ri

(q)

∣∣∣∣

+
∣∣∣∣
∂ D′uℓ

∂ri

(q) − ∂ D′vℓ

∂ri

(q)

∣∣∣∣ +
∣∣∣∣
∂ D′vℓ

∂ri

(q) − ∂ D′u

∂ri

(q)

∣∣∣∣
=: J1 + J2 + J3 + J4.

Lemma 3.15. There exists a constant C(n) > 0 such that J1, J3 and J4 satisfy

J1 + J4 ≤ C

∞∑

k=ℓ

ω(τ k), J3 ≤ Cω(τ ℓ).

Proof. The estimates for J1 and J4 can be proved similarly to those of I1 and I4 in Section 3B, using

(3-60) and (3-61). J3 can be estimated in a similar way to I3 in Section 3B, using (3-60). We omit the

details. □

To estimate J2, as in Section 3B we define hk := uk−1 − uk for 2 ≤ k ≤ ℓ which is gβ-harmonic on

B̂k(p) and satisfies the L∞-estimate ∥hk∥L∞(B̂k(p))
≤ Cτ 2kω(τ k) by (3-60). We rewrite (3-56) as

∥(D′)3hk∥L∞((B̂k(p)/2)\S)
+

2∑

i=1

∥∥∥∥|zi |1−βi
∂

∂zi

(D′)2hk

∥∥∥∥
L∞((B̂k(p)/2)\S)

≤ Cτ−kω(τ k). (3-62)

Lemma 3.16. There exists a constant C = C(n, β) > 0 such that, for any z ∈ 1
4

B̂k(p)\S, the following

pointwise estimate holds for all k ≤ min(ℓ, kp):
∣∣∣∣
∂ D′hk

∂r1

(z)

∣∣∣∣ +
∣∣∣∣
∂ D′hk

r1∂θ1

(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−1τ−k(1/β1−1)ω(τ k).

Proof. We define a function F as

|z1|2(1−β1)
∂2 D′hk

∂z1∂ z̄1

= −|z2|2(1−β2)
∂2 D′hk

∂z2∂ z̄2

−
2n∑

j=5

∂2 D′hk

∂s2
j

=: F. (3-63)
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The Laplacian estimates (3-9) and derivatives estimates applied to the gβ-harmonic function D′hk imply

that F satisfies

∥F∥
L∞(B̂k(p)/2)

≤ C(n)τ−kω(τ k). (3-64)

For any k ≤ min(ℓ, kp) and x ∈ S1 ∩ 1
4

B̂k(p), we have that Bβ(x, τ k) ⊂ 1
3

B̂k(p). The intersection of

Bβ(x, τ k) with the complex plane C passing through x and orthogonal to the hyperplane S1 lies in a

metric ball of radius τ k under the standard cone metric ĝβ1
on C. We view (3-63) as defined on the ball

B̂ := BC(x, (τ k)1/β1) ⊂ C. The estimate (2-3) applied to the function D′hk gives rise to

sup
BC(x,(τ k)1/β1/2)\{x}

∣∣∣∣
∂ D′hk

∂z1

∣∣∣∣ ≤ C
∥D′hk∥L∞(B̂)

(τ k)1/β1
+ C∥F∥

L∞(B̂)
(τ k)2−1/β1 .

Therefore, on BC

(
x, 1

2
(τ k)1/β1

)
\{x},

∣∣∣∣
∂ D′hk

∂r1

(z)

∣∣∣∣ +
∣∣∣∣
∂ D′hk

r1∂θ1

(z)

∣∣∣∣ ≤ 1

β1

r
1/β1−1

1

∣∣∣∣
∂ D′hk

∂z1

(z)

∣∣∣∣ ≤ Cr
1/β1−1

1 τ k(1−1/β1)ω(τ k). (3-65)

On other hand, since BC

(
x, 1

2
(τ k)1/β1

)
= Bĝβ1

(x, 2−β1τ k),

1
4

B̂k(p) ⊂
⋃

x∈S1∩B̂k/4

BC

(
x, 1

2
(τ k)1/β1

)
. (3-66)

Equation (3-65) implies the desired estimate on the balls 1
4

B̂k(p). □

Remark 3.17. By similar arguments we also get the following estimates for any k ≤ min(ℓ, kp) and

z ∈ 1
4

B̂k(p)\S1: ∣∣∣∣
∂(D′)2hk

∂r1

(z)

∣∣∣∣ +
∣∣∣∣
∂(D′)2hk

r1∂θ1

(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−1τ−k/β1ω(τ k). (3-67)

Lemma 3.18. There exists a constant C =C(n, β)>0 such that, for all k ≤min(kp, ℓ) and z ∈ 1
4

B̂k(p)\S,

the following pointwise estimates hold:
∣∣∣∣
∂2 D′hk

r2
1∂θ2

1

(z)

∣∣∣∣ +
∣∣∣∣

∂2 D′hk

r1∂r1∂θ1

(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−2τ−k(1/β1−1)ω(τ k), (3-68)

∣∣∣∣
∂2 D′hk

∂r2
1

(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−2τ−k(1/β1−1)ω(τ k). (3-69)

Proof. Applying the gradient estimate to the gβ-harmonic function D′hk , we get
∥∥∥∥
∂ D′hk

r1∂θ1

∥∥∥∥
L∞(B̂k(p)/2)

≤ ∥∇gβ
D′hk∥L∞(B̂k(p)/2)

≤ Cω(τ k).

The function ∂θ1
D′hk is also a continuous gβ-harmonic function, so the derivatives estimates implies, on

1
3

B̂k(p)\S,

|F1| ≤
∣∣∣∣|z2|2(1−β2)

∂2(∂θ1
D′hk)

∂z2∂ z̄2

∣∣∣∣ +
∣∣∣∣
∂2(∂θ1

D′hk)

∂s2
j

∣∣∣∣ ≤ Cτ−kω(τ k),
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where F1 is defined as

|z1|2(1−β1)
∂2(∂θ1

D′hk)

∂z1∂ z̄1

= −|z2|2(1−β2)
∂2(∂θ1

D′hk)

∂z2∂ z̄2

−
2n∑

j=5

∂2(∂θ1
D′hk)

∂s2
j

=: F1. (3-70)

We apply similar arguments as in the proof of Lemma 3.16. For any x ∈ S1 ∩ 1
4

B̂k(p), we view (3-70) as

defined on the C-ball BC(x, (τ k)1/β1), and by the estimate (2-3) we have, on BC(x, (τ k)1/β1/2)\{x},
∣∣∣∣
∂(∂θ1

D′hk)

∂z1

∣∣∣∣ ≤ C
∥∂θ1

D′hk∥L∞(B̂C)

(τ k)1/β1
+ C∥F1∥L∞(B̂C)

(τ k)2−1/β1 .

Equivalently, this means that, on BC(x, (τ k)1/β1/2)\{x},
∣∣∣∣
∂2 D′hk

∂r1∂θ1

∣∣∣∣ +
∣∣∣∣
∂2 D′hk

r1∂θ2
1

∣∣∣∣ ≤ r
1/β1−1

1

∣∣∣∣
∂(∂θ1

D′hk)

∂z1

∣∣∣∣ ≤ Cr
1/β1−1

1 τ k(1−1/β1)ω(τ k).

Again by the inclusion (3-66), we get (3-68). The estimate (3-69) follows from Lemma 3.16, (3-68),

(3-64) and the equation (from (3-63))

∂2 D′hk

∂r2
1

= 1

r1

∂ D′hk

∂r1

− 1

β2
1r2

1

∂2 D′hk

∂θ2
1

+ F. □

Lemma 3.19. There exists a constant C(n, β) > 0 such that, for k ≤ min(k2,p, ℓ), the following pointwise

estimates hold for any z ∈ 1
4

B̂k(p)\S:

∣∣∣∣
∂

∂r2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ C(n, β)r
1/β1−1

1 r
1/β2−1

2 τ−k(−1+1/β1+1/β2)ω(τ k). (3-71)

Proof. By the Laplacian estimate in (3-9) for the harmonic function D′hk on 1
2

B̂k(p), we have

sup
B̂k(p)/2.2

(|11 D′hk | + |12 D′hk |) ≤ C(n)τ−2k osc
B̂k(p)/2

(D′hk) ≤ C(n)τ−kω(τ k). (3-72)

Since 11(D′hk) is also gβ-harmonic, the Laplacian estimates (3-9) imply

sup
B̂k(p)/2.4

(|1111 D′hk | + |1211 D′hk |) ≤ C(n)τ−2k osc
B̂k(p)/2.2

11 D′hk ≤ Cτ−3kω(τ k). (3-73)

Now from the equation 1β(11 D′hk) = 0, we get

|z1|2(1−β1)
∂2

∂z1∂ z̄1

11 D′hk = −1211 D′hk −
∑

j

∂2

∂s2
j

11 D′hk =: F2. (3-74)

From (3-73) and the Laplacian estimates (3-9), we see that sup
B̂k(p)/2.4

|F2| ≤ Cτ−3kω(τ k). Using similar

arguments, by considering x ∈ 1
3

B̂k(p)∩S1, we obtain from (3-74) that, on B̂ := BC(x, (τ k)1/β1/2)\{x},
∣∣∣∣

∂

∂z1

11 D′hk

∣∣∣∣ ≤ C
∥11 D′hk∥L∞(B̂)

(τ k)1/β1
+ C∥F2∥L∞(B̂)

(τ k)2−1/β1 ≤ Cτ−k(1+1/β1)ω(τ k).
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This implies that, for any z ∈ 1
3

B̂k(p)\S,
∣∣∣∣

∂

∂r1

11 D′hk(z)

∣∣∣∣ +
∣∣∣∣

∂

r1∂θ1

11 D′hk(z)

∣∣∣∣ ≤ Cr
1/β1−1

1 τ−k(1+1/β1)ω(τ k). (3-75)

Now taking ∂/∂r1 on both sides of 1β D′hk = 0, we get

|z2|2(1−β2)
∂2

∂z2∂ z̄2

(
∂ D′hk

∂r1

)
= − ∂

∂r1

(11 D′hk) −
∑

j

∂2

∂s2
j

(
∂ D′hk

∂r1

)
=: F3. (3-76)

From (3-75), for any z ∈ 1
3

B̂k\S, we have |F3|(z) ≤ Cr
1/β1−1

1 τ−k(1+1/β1)ω(τ k). By a similar argument,

for any y ∈ 1
3.2

B̂k(p)∩S2, we apply estimate (2-3) to ∂ D′hk/∂r1 and get, on A1 := BC

(
y, 1

2
(τ k)1/β2

)
\{y} Ð

the punctured ball in the complex plane C of (Euclidean) radius 1
2
(τ k)1/β2 and orthogonal to S2 passing

through y Ð that ∣∣∣∣
∂

∂z2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ C

∥∥ ∂ D′hk

∂r1

∥∥
L∞(A1)

(τ k)1/β2
+ C∥F3∥L∞(A1)(τ

k)2−1/β2

≤ Cr
1/β1−1

1 τ−k(1/β1+1/β2−1)ω(τ k).

(3-77)

Varying y ∈ 1
3.2

B̂k(p) ∩S2 we get, for any z ∈ 1
4

B̂k\S, that the following pointwise estimate holds:
∣∣∣∣

∂

∂r2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂ D′hk

∂r1

)
(z)

∣∣∣∣ ≤ Cr
1/β1−1

1 r
1/β2−1

2 τ−k(1/β1+1/β2−1)ω(τ k). □

Lemma 3.20. Let d = dβ(p, q). There exists a constant C(n, β) such that, for all k ≤ ℓ,
∣∣∣∣
∂ D′hk

∂r1

(p) − ∂ D′hk

∂r1

(q)

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k), (3-78)

∣∣∣∣
∂ D′hk

r1∂θ1

(p) − ∂ D′hk

r1∂θ1

(q)

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k). (3-79)

Proof. We will consider the different cases rp = min(rp, rq) ≤ 2d and rp = min(rp, rq) > 2d.

Case 1: rp ≤ 2d. In this case, it is clear by the choice of ℓ that rp ≈ τ kp ≤ 2d ≤ τ ℓ+2, so kp ≥ ℓ + 2.

From our assumption when solving (3-45), rp = dβ(p,S1), i.e., r1(p) = rp ≤ 2d. By the triangle

inequality we have r1(q) ≤ 3d . We also remark that, for k ≤ ℓ, we have τ k ≥ τ ℓ > 8d . In particular, the

geodesics considered below all lie inside the balls 1
4

B̂k(p), and the estimates in Lemmas 3.16±3.19 hold

for points on these geodesics.

Let the coordinates of the points p and q be given by

p = (r1(p), θ1(p); r2(p), θ2(p); s(p)) and q = (r1(q), θ1(q); r2(q), θ2(q); s(q)).

Let γ : [0, d] → Bβ(0, q)\S be the unique gβ-geodesic connecting p and q. We know the curve γ is

disjoint from S, and we write

γ (t) = (r1(t), θ1(t); r2(t), θ2(t); s(t))

for the coordinates of γ (t) for t ∈ [0, d]. By definition we have, for all t ∈ [0, d],

|γ ′(t)|2gβ
= (r ′

1(t))
2 + β2

1r1(t)
2(θ ′

1(t))
2 + (r ′

2(t))
2 + β2

2r2(t)
2(θ ′

2(t))
2 + |s ′(t)|2 = 1.
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So |s(p) − s(q)| ≤ d and |ri (p) − ri (q)| ≤ d for i = 1, 2. We define

q ′ := (r1(q), θ1(q); r2(p), θ2(p); s(p)) and p′ := (r1(p), θ1(q); r2(p), θ2(p); s(p)), (3-80)

the points with coordinates related to p and q . Let γ1 be the gβ-geodesic connecting q and q ′, γ2 be the

gβ-geodesic joining q ′ to p′, and γ3 be the gβ-geodesic joining p′ to p.

By the triangle inequality, we have
∣∣∣∣
∂ D′hk

∂r1

(p) − ∂ D′hk

∂r1

(q)

∣∣∣∣

≤
∣∣∣∣
∂ D′hk

∂r1

(p) − ∂ D′hk

∂r1

(p′)

∣∣∣∣ +
∣∣∣∣
∂ D′hk

∂r1

(p′) − ∂ D′hk

∂r1

(q ′)

∣∣∣∣ +
∣∣∣∣
∂ D′hk

∂r1

(q ′) − ∂ D′hk

∂r1

(q)

∣∣∣∣

=: J ′
1 + J ′

2 + J ′
3.

Integrating along γ3, on which the points have fixed r1-coordinate r1(p), we get (by (3-68))

J ′
1 =

∣∣∣∣
∫

γ3

∂

∂θ1

(
∂ D′hk

∂r1

)
dθ1

∣∣∣∣ ≤ C(n, β)r1(p)1/β1−1τ−k(1/β1−1)ω(τ k). (3-81)

Integrating along γ2, we get (by (3-69))

J ′
2 =

∣∣∣∣
∫

γ2

∂

∂r1

(
∂ D′hk

∂r1

)
dr1

∣∣∣∣ ≤ C(n, β)τ−k(1/β1−1)ω(τ k)

∣∣∣∣
∫ r1(q)

r1(p)

t1/β1−2 dt

∣∣∣∣

= C(n, β)τ−k(1/β1−1)ω(τ k)|r1(p)1/β1−1 − r1(q)1/β1−1|
≤ C(n, β)τ−k(1/β1−1)ω(τ k)|r1(p) − r1(q)|1/β1−1

≤ C(n, β)τ−k(1/β1−1)ω(τ k)d1/β1−1. (3-82)

To deal with J ′
3, we need to consider different choices of k ≤ ℓ.

Case 1a: k2,p +1 ≤ k ≤ ℓ. In this case, the balls B̂k(p) are centered at p1 ∈ S1 (recall p1 is the projection

of p to S1; hence p and p1 have the same (r2, θ2; s)-coordinates). We have τ−k ≤ 8−1d−1 by the choice

of ℓ. The balls B̂k(p) are disjoint from S2, so we can introduce the smooth coordinates w2 = z
β2

2 , and

under the coordinates (r1, θ1; w2, z3, . . . , zn), the metric gβ becomes the smooth cone metric with conical

singularity only along S1 with angle 2πβ1. Therefore we can derive the following estimate as in (3-62):

sup
(B̂k(p)/2)\S1

∣∣∣∣
∂(D′)2hk

∂r1

∣∣∣∣ +
∣∣∣∣

∂

∂r1

(
∂ D′hk

∂w2

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-83)

Since q and q ′ have the same (r1, θ1)-coordinates and gβ is a product metric, γ1 is in fact a straight

line segment (under the coordinates (w2, z3, . . . , zn)) in the hyperplane with fixed (r1, θ1)-coordinates.

Integrating over γ1, we get

J ′
3 ≤

∫

γ1

∣∣∣∣
∂

∂w2

(
∂ D′hk

∂r1

)∣∣∣∣ +
∑

j

∣∣∣∣
∂

∂s j

(
∂ D′hk

∂r1

)∣∣∣∣ ≤ Cτ−kω(τ k)dβ(q, q ′) ≤ Cτ−kω(τ k)d

≤ C(n, β)τ−k(1/β1−1)ω(τ k)d1/β1−1.
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Case 1b: k ≤ k2,p. In this case, the balls B̂k(p) are centered at p1,2 ∈ S1 ∩ S2 and τ k ≥ r2(p). By the

triangle inequality, r2(q) ≤ d + r2(p) ≤ 9
8
τ k . We choose the points

q̃ = (r1(q), θ1(q); r2(p), θ2(p); s(q)) and q̂ = (r1(q), θ1(q); r2(q), θ2(p); s(q)). (3-84)

Let γ̃1 be the gβ-geodesic joining q ′ to q̃ , γ̃ the gβ-geodesic joining q̃ to q̂ , and γ̂ the gβ-geodesic joining

q̂ to q . The curves γ̃1, γ̃ and γ̂ all lie in the hyperplane with constant (r1, θ1)-coordinates (r1(q), θ1(q)).

Then by the triangle inequality we have

J ′
3 ≤

∣∣∣∣
∂ D′hk

∂r1

(q ′)− ∂ D′hk

∂r1

(q̃)

∣∣∣∣+
∣∣∣∣
∂ D′hk

∂r1

(q̃)− ∂ D′hk

∂r1

(q̂)

∣∣∣∣+
∣∣∣∣
∂ D′hk

∂r1

(q̂)− ∂ D′hk

∂r1

(q)

∣∣∣∣ =: J ′′
1 + J ′′

2 + J ′′
3 .

We will use frequently the inequalities r1(q) ≤ 3d and max(r2(q), r2(p)) ≤ 2τ k in the estimates below.

Integrating along γ̂ we get (by (3-71))

J ′′
3 ≤

∣∣∣∣
∫

γ̂

∂

∂θ2

(
∂ D′hk

∂r1

)
dθ2

∣∣∣∣ ≤ Cr1(q)1/β1−1r2(q)1/β2τ−k(−1+1/β1+1/β2)ω(τ k)

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Integrating along γ̃ we get (again by (3-71))

J ′′
2 ≤

∣∣∣∣
∫

γ̃

∂

∂r2

(
∂ D′hk

∂r1

)
dr2

∣∣∣∣ ≤ Cr1(q)1/β1−1τ−k(−1+1/β1+1/β2)ω(τ k)

∣∣∣∣
∫ r2(p)

r2(q)

t1/β2−1 dt

∣∣∣∣

≤ Cr1(q)1/β1−1τ−k(−1+1/β1+1/β2)ω(τ k) max(r2(q), r2(p))1/β2−1d

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Integrating along γ̃1 we get (by (3-67))

J ′′
1 ≤

∣∣∣∣
∫

γ̃1

∂

∂s j

(
∂ D′hk

∂r1

)
dt

∣∣∣∣ ≤ Cr1(q)1/β1−1τ−k/β1ω(τ k)d ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the three inequalities above, we get, in the case k ≤ k2,p,

J ′
3 ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the estimates on J ′
1, J ′

2 and J ′
3, we finish the proof of (3-78) in the case rp ≤ 2d.

Case 2a: rp > 2d and ℓ ≤ kp. In this case τ kp ≈ rp > 2d ≥ τ ℓ+3. From the triangle inequality we get

dβ(γ (t),S) ≥ d. In particular, the r1 and r2 coordinates of γ (t) are both bigger than d. In this case

k ≤ ℓ ≤ kp, and Lemmas 3.16±3.19 hold for the points in γ . So r1(γ (t)) ≤ r1(p)+d ≤ 2τ k . We calculate

the gradient of ∂ D′hk/∂r1 along γ :

∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣
2

=
∣∣∣∣

∂

∂r1

(
∂ D′hk

∂r1

)∣∣∣∣
2

+
∣∣∣∣

∂

β1r1∂θ1

(
∂ D′hk

∂r1

)∣∣∣∣
2

+
∣∣∣∣

∂

∂r2

(
∂ D′hk

∂r1

)∣∣∣∣
2

+
∣∣∣∣

∂

β2r2∂θ2

(
∂ D′hk

∂r1

)∣∣∣∣
2

+
∑

j

∣∣∣∣
∂

∂s j

(
∂ D′hk

∂r1

)∣∣∣∣
2

.
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(1) When k2,p + 1 ≤ k ≤ ℓ we have by (3-83) that

sup
(B̂k/2)\S1

∣∣∣∣
∂

∂r2

(
∂ D′hk

∂r1

)∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂ D′hk

∂r1

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-85)

Thus by Lemma 3.18, (3-67) and (3-85), along γ we have
∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−2τ−k(1/β1−1) + τ−k)

Integrating along γ we get
∣∣∣∣
∂ D′hk

∂r1

(p) − ∂ D′hk

∂r1

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−1τ−k(1/β1−1) + dτ−k)

≤ Cω(τ k)d1/β1−1τ−k(1/β1−1).

(2) When k ≤ k2,p, we have r2(γ (t)) ≤ r2(p)+d ≤ τ k +d ≤ 9
8
τ k and similar estimates hold for r1(γ (t))

too. Then by Lemma 3.18, Lemma 3.19 and (3-67) along γ the following estimate holds
∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣(γ (t)) ≤ Cω(τ k)(d1/β1−2τ−k(1/β1−1) + τ−k)

Integrating along γ we get
∣∣∣∣
∂ D′hk

∂r1

(p) − ∂ D′hk

∂r1

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂ D′hk

∂r1

∣∣∣∣ ≤ Cω(τ k)(d1/β1−1τ−k(1/β1−1) + dτ−k)

≤ Cω(τ k)d1/β1−1τ−k(1/β1−1).

This finishes the proof of the lemma in this case.

Case 2b: rp > 2d but ℓ ≥ kp + 1. When k ≤ kp, the estimate (3-78) follows in the same way as the case

above. Hence it suffices to consider the case when kp +1 ≤ k ≤ ℓ. In this case the balls B̂k(p)= Bβ(p, τ k)

and it can be seen by triangle inequality that the geodesic γ ⊂ 1
3

B̂k(p)\S. Since the metric balls B̂k(p)

are disjoint with S we can use the smooth coordinates w1 = z
β1

1 and w2 = z
β2

2 as before, and everything

becomes smooth under these coordinates in B̂k(p).

The estimate (3-79) can be shown by the same argument, so we skip the details. □

Iteratively applying (3-78) for k ≤ ℓ, we get

J2 =
∣∣∣∣
∂ D′uℓ

∂r1

(p) − ∂ D′uℓ

∂r1

(q)

∣∣∣∣ ≤
∣∣∣∣
∂ D′u2

∂r1

(p) − ∂ D′u2

∂r1

(q)

∣∣∣∣ + Cd1/β1−1

ℓ∑

k=3

τ−k(1/β1−1)ω(τ k)

≤ Cd1/β1−1

(
∥u∥C0 +

ℓ∑

k=2

τ−k(1/β1−1)ω(τ k)

)
,

where the inequality ∣∣∣∣
∂ D′u2

∂r1

(p) − ∂ D′u2

∂r1

(q)

∣∣∣∣ ≤ Cd1/β1−1∥u∥C0

can be proved by the same argument as in proving (3-78).

Combining the estimates for J1, J2, J3, J4 we finish the proof of (1-4).
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We remark that in solving (3-45) we assume r1(p) ≤ r2(p), so we need also to deal with the following

case, whose proof is more or less parallel to that of Lemma 3.20, so we just point out the differences and

sketch the proof.

Lemma 3.21. Let d = dβ(p, q) > 0. There exists a constant C(n, β) > 0 such that, for all k ≤ ℓ,

∣∣∣∣
∂ D′hk

∂r2

(p) − ∂ D′hk

∂r2

(q)

∣∣∣∣ ≤ Cd1/β2−1τ−k(1/β2−1)ω(τ k), (3-86)

∣∣∣∣
∂ D′hk

r2∂θ2

(p) − ∂ D′hk

r2∂θ2

(q)

∣∣∣∣ ≤ Cd1/β2−1τ−k(1/β2−1)ω(τ k). (3-87)

Proof. We consider the cases when k ≤ k1,p and k1,p + 1 ≤ k ≤ ℓ.

Case 1: k1,p +1 ≤ k ≤ ℓ. The balls B̂k(p) are disjoint with S2, so we can introduce the complex coordinate

w2 = z
β2

2 on these balls as before. Let t1 and t2 be the real and imaginary parts of w2, respectively. The

derivatives estimates imply that

∥∂w2
D′hk∥L∞(B̂k(p)/2)

≤ Cω(τ k) and ∥∂2
w2

D′hk∥L∞(B̂k(p)/2)
≤ Cτ−kω(τ k),

where ∂2
w2

denotes the full second-order derivatives in the {t1, t2}-directions. Also

∥∥∥∥
∂

∂r1

(
∂ D′hk

∂w2

)∥∥∥∥
L∞(B̂k(p)/2)

+
∥∥∥∥

∂

r1∂θ1

(
∂ D′hk

∂w2

)∥∥∥∥
L∞(B̂k(p)/2)

≤ Cτ−kω(τ k).

Since
∂

∂r2

= w2

β2r2

∂

∂w2

+ w̄2

β2r2

∂

∂w̄2

, (3-88)

we have

∂

∂w2

(
∂ D′hk

∂r2

)
= 1

r2

∂ D′hk

∂w2

− |w2|2

2r3
2

∂ D′hk

∂w2

− w̄2 · w̄2

2r3
2

∂ D′hk

∂w̄2

+ w2

r2

∂2
w2

D′hk,

and we have, on 1
2

B̂k(p), ∣∣∣∣
∂

∂w2

(
∂ D′hk

∂r2

)∣∣∣∣ ≤ C

r2

ω(τ k) + Cτ−kω(τ k)

and ∥∥∥∥
∂

∂r1

(
∂ D′hk

∂r2

)∥∥∥∥
L∞(B̂k(p)/2)

+
∥∥∥∥

∂

r1∂θ1

(
∂ D′hk

∂r2

)∥∥∥∥
L∞(B̂k(p)/2)

≤ Cτ−kω(τ k).

Therefore,

∣∣∣∣∇gβ

∂ D′hk

∂r2

∣∣∣∣
2

=
∣∣∣∣
∂2 D′hk

∂r1∂r2

∣∣∣∣
2

+
∣∣∣∣

∂2

r1∂θ1∂r2

∣∣∣∣
2

+
∣∣∣∣
∂2 D′hk

∂w2∂r2

∣∣∣∣
2

+
∑

j

∣∣∣∣
∂2 D′hk

∂s j∂r2

∣∣∣∣
2

≤ C(τ−kω(τ k))2+C
1

r2
2

ω(τ k)2.

In this case we know that r1(p) ≈ τ kp ≥ 2τ k ≥ τ ℓ > 8d, so along γ

r2(γ (t)) ≥ r2(p) − d ≥ r1(p) − d ≥ 7
4
τ k .
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Integrating along γ we get
∣∣∣∣
∂ D′hk

∂r2

(p) − ∂ D′hk

∂r2

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂ D′hk

∂r2

∣∣∣∣ ≤ Cτ−kω(τ k)d ≤ Cτ−k(1/β2−1)ω(τ k)d1/β2−1.

Case 2: k ≤ k1,p. This case is the same as in the proof of (3-78), replacing r1 by r2 and β1 by β2. We

omit the details.

We can prove (3-87) similarly. □

3D. Mixed normal directions. In this section, we deal with Hölder continuity of the four mixed derivatives

∂2u

∂r1∂r2

,
∂2u

r1∂θ1∂r2

,
∂2u

r2∂r1∂θ2

,
∂2u

r1r2∂θ1∂θ2

, (3-89)

which by our previous notation correspond to N1 N2u. Since the proof for each of them is more or less

the same, we will only prove Hölder continuity for ∂2u/∂r1∂r2. The following holds at p and q by the

same reasoning of Lemma 3.11:

lim
k→∞

∂2uk

∂r1∂r2

(p) = ∂2u

∂r1∂r2

(p), lim
k→∞

∂2vk

∂r1∂r2

(q) = ∂2u

∂r1∂r2

(q).

By the triangle inequality,
∣∣∣∣

∂2u

∂r1∂r2

(p) − ∂2u

∂r1∂r2

(q)

∣∣∣∣ ≤
∣∣∣∣

∂2u

∂r1∂r2

(p) − ∂2uℓ

∂r1∂r2

(p)

∣∣∣∣ +
∣∣∣∣

∂2uℓ

∂r1∂r2

(p) − ∂2uℓ

∂r1∂r2

(q)

∣∣∣∣

+
∣∣∣∣

∂2uℓ

∂r1∂r2

(q) − ∂2vℓ

∂r1∂r2

(q)

∣∣∣∣ +
∣∣∣∣

∂2vℓ

∂r1∂r2

(q) − ∂2u

∂r1∂r2

(q)

∣∣∣∣

=: L1 + L2 + L3 + L4.

Lemma 3.22. We have the estimate

L1 + L4 ≤
∞∑

k=ℓ

ω(τ k).

Proof. We consider the cases when k ≥ kp + 1 and ℓ ≤ k ≤ kp.

Case 1: k ≥ kp + 1. In this case the balls B̂k(p) are disjoint from S and we can introduce the smooth

coordinates w1 = z
β1

1 and w2 = z
β2

2 . Under the coordinates {w1, w2, z3, . . . , zn}, the cone metric gβ

becomes the standard Euclidean metric gCn and the metric balls B̂k(p) become the standard Euclidean

balls with the same radius and center p. Since the gβ-harmonic functions uk − uk+1 satisfy (3-49), by

standard gradient estimates for Euclidean harmonic functions, we get

sup
B̂k(p)/2.1

∣∣∣∣Dw1
Dw2

(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k),

where we use Dwi
to denote either ∂/∂wi or ∂/∂w̄i for simplicity. From (3-88) and a similar formula

for ∂/∂r1, we get

sup
B̂k(p)/2.1

∣∣∣∣
∂2

∂r1∂r2

(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k). (3-90)
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Case 2a: ℓ ≥ k2,p + 1 and ℓ ≤ kp = k1,p. For all ℓ ≤ k, the balls B̂k(p) are disjoint from S2 and centered

at p1. We can still use w2 = z
β2

2 as the smooth coordinate. The cone metric gβ becomes smooth in the

w2-variable, and we can apply the standard gradient estimate to the gβ-harmonic function Dw2
(uk −uk−1)

to get

sup
B̂k(p)/2.2

∣∣∣∣
∂

∂r1

Dw2
(uk − uk−1)

∣∣∣∣ +
∣∣∣∣

∂

r1∂θ1

Dw2
(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k).

Again by (3-88), we get

sup
B̂k(p)/2.2

∣∣∣∣
∂2

∂r1∂r2

(uk − uk−1)

∣∣∣∣ +
∣∣∣∣

∂2

r1∂θ1∂r2

(uk − uk−1)

∣∣∣∣ ≤ Cω(τ k). (3-91)

Case 2b: ℓ ≤ k2,p and k ≥ k2,p + 1. This case can be dealt with similarly as above.

Case 2c: ℓ ≤ k ≤ k2,p. In this case r2(p) ≈ τ k2,p ≤ τ k ≤ τ ℓ ≈ 8d. Now the balls B̂k(p) are centered at

p1,2 ∈ S1 ∩S2. We can proceed as in the proof of Lemma 3.19, with the harmonic functions uk − uk−1

replacing the D′hk in that lemma to prove that, for any z ∈ 1
3

B̂k(p)\S,

∣∣∣∣
∂2

∂r1∂r2

(uk − uk−1)

∣∣∣∣(z) +
∣∣∣∣

∂2

r2∂θ2∂r1

(uk − uk−1)

∣∣∣∣(z)

≤ C(n, β)r1(z)
1/β1−1r2(z)

1/β2−1τ−k(−2+1/β1+1/β2)ω(τ k).

In particular, the estimate in each case holds at p, and from r1(p) ≤ r2(p) ≤ τ k we obtain

∣∣∣∣
∂2

∂r1∂r2

(uk − uk−1)

∣∣∣∣(p) +
∣∣∣∣

∂2

r2∂θ2∂r1

(uk − uk−1)

∣∣∣∣(p) ≤ Cω(τ k). (3-92)

Combining each case above, by (3-90)±(3-92), we get, for all k ≥ ℓ,

∣∣∣∣
∂2u

∂r1∂r2

(uk − uk−1)

∣∣∣∣(p) ≤ C(n, β)ω(τ k).

Therefore, by the triangle inequality,

L1 ≤
∞∑

k=ℓ+1

∣∣∣∣
∂2u

∂r1∂r2

(uk − uk−1)

∣∣∣∣(p) ≤ C(n, β)

∞∑

k=ℓ+1

ω(τ k).

The estimate for L4 can be dealt with similarly by studying the derivatives of vk at q . □

Lemma 3.23. L3 ≤ C(n, β)ω(τ ℓ).

Proof. As in the proof of Lemma 3.22, we consider the cases ℓ ≥ k1,p +1, k1,p ≥ ℓ ≥ k2,p and ℓ ≤ k2,p −1.

Case 1: ℓ ≥ k1,p + 1. Here the ball B̂ℓ(p) is equal to Bβ(p, τ ℓ), the function U defined in (3-55) is

gβ-harmonic in 1
2

B̂ℓ(p), and sup
B̂ℓ(p)/2

|U | ≤ Cω2ℓω(τ ℓ). Since the ball 1
2

B̂ℓ(p) is disjoint from S, we

have that w1 and w2 are well defined on 1
2

B̂ℓ(p), and thus we have the derivatives estimates

sup
B̂ℓ(p)/3

∣∣∣∣
∂2U

∂r1∂r2

∣∣∣∣ ≤ sup
B̂ℓ(p)/3

∣∣∣∣Dw1
Dw2

U

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).



792 BIN GUO AND JIAN SONG

In particular, at q ∈ 1
3

B̂ℓ(p),

L3 =
∣∣∣∣

∂2uℓ

∂r1∂r2

(q) − ∂2vℓ

∂r1∂r2

(q)

∣∣∣∣ =
∣∣∣∣

∂2U

∂r1∂r2

(q)

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

Case 2: k1,p ≥ ℓ ≥ k2,p. Here the ball B̂ℓ(p) is equal to Bβ(p1, 2τ ℓ), the function U defined in (3-55) is

gβ-harmonic and well defined in a ball

Bq := Bβ

(
q, 1

10
τ ℓ

)
⊂ 1

2.2
B̂ℓ(p),

and sup
B̂ℓ(p)/2

|U | ≤ Cω2ℓω(τ ℓ). Since 1
2

B̂ℓ(p) is disjoint from S2, we have that w2 is well defined on
1

2.2
B̂ℓ(p), and thus we have the derivatives estimates

sup
Bq/2

∣∣∣∣
∂2U

∂r1∂r2

∣∣∣∣ ≤ sup
Bq/2

∣∣∣∣
∂

∂r1

Dw2
U

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

In particular, at q ∈ 1
2

Bq , we have

L3 =
∣∣∣∣

∂2uℓ

∂r1∂r2

(q) − ∂2vℓ

∂r1∂r2

(q)

∣∣∣∣ =
∣∣∣∣

∂2U

∂r1∂r2

(q)

∣∣∣∣ ≤ C(n, β)ω(τ ℓ).

Case 3: ℓ ≤ k2,p − 1. Here r2(p) ≈ τ k2,p ≤ τ ℓ+1 < 8d, so

r2(q) ≤ r2(p) + d ≤ 5
8
τ ℓ and r1(q) ≤ d + r1(p) ≤ d + r2(p) ≤ 5

8
τ ℓ.

Therefore the ball B̃ℓ(q) is centered at either q1, q2 or q1,2 ∈ S1 ∩S2, with radius 2τ ℓ. It follows that the

function U defined in (3-55) is well defined on the ball 1
1.8

B̂ℓ(p).

By the same strategy as in the proof of Lemma 3.19, with the harmonic function D′hk in that lemma

replaced by U on the metric ball 1
1.8

B̂ℓ(p), we can prove that, for any z ∈ 1
2

B̂ℓ(p)\S,

∣∣∣∣
∂2U

∂r1∂r2

(z)

∣∣∣∣ ≤ C(n, β)r
1/β1−1

1 r
1/β2−1

2 τ−ℓ(−2+1/β1+1/β2)ω(τ ℓ).

Applying this inequality at q , we get

L3 =
∣∣∣∣
∂2(uℓ − vℓ)

∂r1∂r2

(q)

∣∣∣∣ ≤ C(n, β)r1(q)1/β1−1r2(q)1/β2−1τ−ℓ(−2+1/β1+1/β2)ω(τ ℓ) ≤ C(n, β)ω(τ ℓ).

In sum, in all cases L3 ≤ C(n, β)ω(τ ℓ). □

Lemma 3.24. There exists a constant C = C(n, β) > 0 such that, for all k ≤ ℓ and z ∈ 1
3

B̂k(p)\S,

∣∣∣∣
∂

∂θ1

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣ +
∣∣∣∣
(

∂3hk

r1∂θ2
1 ∂r2

)∣∣∣∣

≤ C ·
{

r
1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],
r

1/β1−1

1 r
1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.
(3-93)
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Proof. The proof is parallel to that of Lemma 3.19. The function ∂hk/∂θ1 is gβ-harmonic on B̂k(p), and

by the Laplacian estimates (3-9), we have

sup
B̂k(p)/1.2

(∣∣∣∣11

∂hk

∂θ1

∣∣∣∣ +
∣∣∣∣12

∂hk

∂θ1

∣∣∣∣
)

≤ C(n, β)ω(τ k).

The function 12(∂hk/∂θ1) is also gβ-harmonic, so the Laplacian estimates (3-9) imply

sup
B̂k(p)/1.4

(∣∣∣∣1112

∂hk

∂θ1

∣∣∣∣ +
∣∣∣∣1212

∂hk

∂θ1

∣∣∣∣ +
∣∣∣∣(D′)212

∂hk

∂θ1

∣∣∣∣
)

≤ Cτ−2k

(
osc

B̂k(p)/1.2
12

∂hk

∂θ1

)
≤ Cτ−2kω(τ k).

We consider

|z2|2(1−β2)
∂2

∂z2∂ z̄2

(
12

∂hk

∂θ1

)
= −1112

∂hk

∂θ1

−
∑

j

∂2

∂s2
j

12

∂hk

∂θ1

=: F5, (3-94)

where the function F5 satisfies sup
B̂k(p)/1.4

|F5| ≤ Cτ−2kω(τ k).

Case 1: k2,p +1 ≤ k ≤ min(ℓ, kp). Here we introduce the smooth coordinate w2 = z
β2

2 in the ball 1
1.5

B̂k(p)

as before. Since this ball is disjoint from S2, under the coordinates (r1, θ1; w2, z3, . . . , zn) we can use

the usual standard gradient estimate to the gβ-harmonic function 12(∂hk/∂θ1) to obtain

sup
B̂k(p)/2

∣∣∣∣
∂

∂r2

(
12

∂hk

∂θ1

)∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
12

∂hk

∂θ1

)∣∣∣∣ ≤ Cτ−kω(τ k). (3-95)

Case 2: k ≤ k2,p. Here the ball B̂k(p) is centered at p1,2. We apply the usual estimate (2-3) to the function

12(∂hk/∂θ1), the solution to (3-94), on any C-ball A2 := BC(y, (τ k)1/β2) for any y ∈ S2 ∩ 1
1.6

B̂k(p),

where A2 denotes the Euclidean ball in the complex plane orthogonal to S2 and passing through y. Then,

for any z ∈ BC(y, (τ k)1/β2/2)\{y},
∣∣∣∣

∂

∂z2

(
12

∂hk

∂θ1

)
(z)

∣∣∣∣ ≤ C

∥∥12
∂hk

∂θ1

∥∥
L∞(A2)

τ k/β2
+ C∥F5∥L∞(A2)(τ

k)2−1/β2 ≤ Cτ−k/β2ω(τ k).

This implies that, on 1
2

B̂k(p)\S,

∣∣∣∣
∂

∂r2

(
12

∂hk

∂θ1

)∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
12

∂hk

∂θ1

)∣∣∣∣ ≤ Cr
1/β2−1

2 τ−k/β2ω(τ k). (3-96)

Taking ∂/∂r2 on both sides of 1β(∂hk/∂θ1) = 0, we get

|z1|2(1−β1)
∂2

∂z1∂ z̄1

(
∂2hk

∂r2∂θ1

)
= − ∂

∂r2

(
12

∂hk

∂θ1

)
−

∑

j

∂2

∂s2
j

=: F6. (3-97)

It is not hard to see from (3-95), (3-96) and standard derivatives estimates that, on 1
1.8

B̂k(p)\S,

• in Case 1 when k2,p + 1 ≤ k ≤ min(ℓ, kp), we have |F6| ≤ Cτ−kω(τ k),

• in Case 2 when k ≤ k2,p, we have |F6| ≤ Cr
1/β2−1

2 τ−k/β2ω(τ k).
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Then by applying estimate (2-3) to the function ∂2hk/∂r2∂θ1 on any C-ball A3 := BC(x, (τ k)1/β1) for

any x ∈ 1
1.8

B̂k(p) ∩S1, we get that, on BC(x, (τ k)1/β1/2)\{x},
∣∣∣∣

∂

∂r1

(
∂2hk

∂r2∂θ1

)∣∣∣∣ +
∣∣∣∣

∂

r1∂θ1

(
∂2hk

∂r2∂θ1

)∣∣∣∣

≤ Cr
1/β1−1

1

∥∥ ∂2hk

∂r2∂θ1

∥∥
L∞(A3)

τ k/β1
+ Cr

1/β1−1

1 ∥F6∥L∞(A3)τ
k(2−1/β1)

≤ C ·
{

r
1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],
r

1/β1−1

1 r
1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

Therefore this estimate holds on 1
3

B̂k(p)\S. □

Lemma 3.25. For any k ≤ ℓ and any point z ∈ 1
3

B̂k(p)\S,

∣∣∣∣
∂2hk

∂r1∂r2

(z)

∣∣∣∣ ≤ C ·
{

r
1/β1−1

1 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],
r

1/β1−1

1 r
1/β2−1

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

∣∣∣∣
∂2 D′hk

∂r1∂r2

(z)

∣∣∣∣ ≤ C ·
{

r
1/β1−1

1 τ−k/β1ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],
r

1/β1−1

1 r
1/β2−1

2 τ−k(−1+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

(3-98)

Proof. This follows from almost the same argument as in the proof of Lemma 3.24, by studying the

harmonic functions hk and D′hk instead of ∂hk/∂θ1. □

Lemma 3.26. For any k ≤ ℓ and any z ∈ 1
3

B̂k(p)\S,

∣∣∣∣
∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣(z)

≤Cω(τ k)·
{
τ−k + r1(z)

1/β1−2τ−k(1/β1−1) if k ∈ [k2,p + 1, min(ℓ, kp)],
r2(z)

1/β2−1τ−k/β2 + r1(z)
1/β1−2r2(z)

1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.

Proof. By the Laplacian estimates (3-9) we have

sup
(B̂k(p)/1.2)\S

|11hk | + |12hk | ≤ C(n, β)ω(τ k). (3-99)

Applying again the Laplacian estimates (3-9) to the gβ-harmonic function 11hk , we have

sup
B̂k(p)/1.4

(|1111hk | + |1211hk | + |(D′)211hk |) ≤ C(n)τ−2kω(τ k).

We consider the equation

|z2|2−2β2
∂2

∂z2∂ z̄2

11hk = −1111hk −
∑

j

∂2

∂s2
j

11hk =: F7. (3-100)

From the estimates above, ∥F7∥L∞(B̂k(p)/1.8)
≤ Cτ−2kω(τ k).
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Case 1: k2,p + 1 ≤ k ≤ min(ℓ, kp). Here we directly apply the gradient estimate to 11hk to get

sup
(B̂k(p)/1.5)\S

∣∣∣∣
∂

∂r2

11hk

∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

11hk

∣∣∣∣ ≤ Cτ−kω(τ k). (3-101)

Case 2: k ≤ k2,p. Here the balls B̂k(p) are centered at p1,2, and we can apply the usual C-ball type

estimate to get that, for any z ∈ 1
2

B̂k(p)\S,

∣∣∣∣
∂

∂r2

11hk

∣∣∣∣(z) +
∣∣∣∣

∂

r2∂θ2

11hk

∣∣∣∣ ≤ Cr2(z)
1/β2−1 ∥11hk∥L∞

τ k/β2
+ Cr2(z)

1/β2−1∥F7∥L∞τ k(2−1/β2)

≤ Cr2(z)
1/β2−1τ−k/β2ω(τ k).

Recall that
∂

∂r1

(
∂2hk

∂r1∂r2

)
= ∂

∂r2

11hk − 1

r1

∂2hk

∂r1∂r2

− 1

β2
1r2

1

∂3hk

∂θ2
1 ∂r2

,

from which we derive that, for any z ∈ 1
2

B̂k(p)\S,
∣∣∣∣

∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣(z)

≤Cω(τ k)

{
τ−k+r1(z)

1/β1−2τ−k(1/β1−1) if k ∈ [k2,p+1,min(ℓ,kp)],
r2(z)

1/β2−1τ−k/β2+r1(z)
1/β1−2r2(z)

1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
□

Lemma 3.27. There exists a constant C = C(n, β) > 0 such that, for all k ≤ ℓ and z ∈ 1
3

B̂k(p)\S,
∣∣∣∣

∂

∂θ2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣ +
∣∣∣∣
(

∂3hk

r2∂θ2
2 ∂r1

)
(z)

∣∣∣∣

≤ Cω(τ k)

{
r

1/β1−1

1 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],
r

1/β1−1

1 r
1/β2−1

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
(3-102)

Proof. It follows from the Laplacian estimates (3-9) that

sup
B̂k(p)/1.2

(∣∣∣∣11

∂hk

∂θ2

∣∣∣∣ +
∣∣∣∣12

∂hk

∂θ2

∣∣∣∣
)

≤ C(n)ω(τ k).

Again by (3-9), we have

sup
B̂k(p)/1.4

(∣∣∣∣1111

∂hk

∂θ2

∣∣∣∣ +
∣∣∣∣1211

∂hk

∂θ2

∣∣∣∣ +
∣∣∣∣(D′)211

∂hk

∂θ2

∣∣∣∣
)

≤ Cτ−2kω(ωk).

We look at the equation

|z1|2(1−β1)
∂2

∂z1∂ z̄1

(
11

∂hk

∂θ2

)
= −1211

∂hk

∂θ2

−
∑

j

∂2

∂s2
j

(
11

∂hk

∂θ2

)
=: F8

and note that

sup
B̂k(p)/1.4

|F8| ≤ Cτ−2kω(τ k).
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As we did before, by estimate (2-3) it follows that, for any z ∈ 1
2

B̂k(p)\S (remember here k ≤ min(ℓ, kp)),

∣∣∣∣
∂

∂r1

11

∂hk

∂θ2

∣∣∣∣(z) +
∣∣∣∣

∂

r1∂θ1

11

∂hk

∂θ2

∣∣∣∣(z) ≤ Cr1(z)
1/β1−1

∥∥11
∂hk

∂θ2

∥∥
L∞

τ k/β1
+ Cr1(z)

1/β1−1∥F8∥L∞τ k(2−1/β1)

≤ Cr1(z)
1/β1−1τ−k/β1ω(τ k).

Taking ∂/∂r1 on both sides of the equation 1β(∂hk/∂θ2) = 0, we get

|z2|2(1−β2)
∂2

∂z2∂ z̄2

(
∂2hk

∂r1∂θ2

)
= − ∂

∂r1

(
11

∂hk

∂θ2

)
−

∑

j

∂

∂r1

(
∂2

∂s2
j

∂hk

∂θ2

)
=: F9. (3-103)

Here |F9(z)| ≤ Cr1(z)
1/β1−1τ−k/β1ω(τ k) for any z ∈ 1

2
B̂k(p)\S. Therefore, by the usual C-ball argument,

• when k ≤ k2,p, for any z ∈ 1
3

B̂k(p)\S, we have

∣∣∣∣
∂

∂r2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ ≤ Cr2(z)
1/β2−1r1(z)

1/β1−1τ k(2−1/β1−1/β2)ω(τ k),

• when k2,p + 1 ≤ k ≤ min(ℓ, kp), we have

∣∣∣∣
∂

∂r2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂2hk

∂r1∂θ2

)
(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−1τ k(1−1/β1)ω(τ k). □

Lemma 3.28. For any k ≤ ℓ and any z ∈ 1
3

B̂k(p)\S,
∣∣∣∣

∂

∂r2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣

≤Cω(τ k)

{
r1(z)

1/β1−1τ−k/β1 +r
1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p+1,min(ℓ, kp)],

r1(z)
1/β1−1τ−k/β1 +r

1/β1−1

1 r
1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
(3-104)

Proof. We first observe that

∂

∂r2

(
∂2hk

∂r1∂r2

)
= ∂

∂r1

12hk − 1

r2

∂2hk

∂r1∂r2

− 1

β2
2r2

2

∂2

∂θ2
2

(
∂hk

∂r1

)
.

It can be shown by the C-ball argument that, for any z ∈ 1
2

B̂k(p)\S,
∣∣∣∣

∂

∂r1

12hk(z)

∣∣∣∣ ≤ Cr1(z)
1/β1−1τ−k/β1ω(τ k).

From Lemma 3.25, we have, for any z ∈ 1
2

B̂k(p)\S,

∣∣∣∣
1

r2

∂2hk

∂r1∂r2

(z)

∣∣∣∣ ≤ C ·
{

r
1/β1−1

1 r−1
2 τ−k(−1+1/β1)ω(τ k) if k ∈ [k2,p + 1, min(ℓ, kp)],

r
1/β1−1

1 r
1/β2−2

2 τ−k(−2+1/β1+1/β2)ω(τ k) if k ≤ k2,p.

From Lemma 3.27, we have, for any z ∈ 1
2

B̂k(p)\S,

∣∣∣∣
1

r2
2

∂3hk

∂r1∂θ2
2

(z)

∣∣∣∣ ≤ Cω(τ k) ·
{

r
1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r
1/β1−1

1 r
1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
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Therefore, for any z ∈ 1
3

B̂k(p)\S, we have

∣∣∣∣
∂

∂r2

(
∂2hk

∂r1∂r2

)
(z)

∣∣∣∣

≤ Cω(τ k) ·
{

r1(z)
1/β1−1τ−k/β1 + r

1/β1−1

1 r−1
2 τ−k(−1+1/β1) if k ∈ [k2,p + 1, min(ℓ, kp)],

r1(z)
1/β1−1τ−k/β1 + r

1/β1−1

1 r
1/β2−2

2 τ−k(−2+1/β1+1/β2) if k ≤ k2,p.
□

It remains to estimate L2. For simplicity, we write hk := −uk + uk−1 as before, where we take k ≤ ℓ.

We will define βmax = max(β1, β2).

Lemma 3.29. Let d = dβ(p, q). There exists a constant C(n, β) > 0 such that, for all k ≤ ℓ,

∣∣∣∣
∂2hk

∂r1∂r2

(p) − ∂2hk

∂r1∂r2

(q)

∣∣∣∣ ≤ Cω(τ k)τ−k(1/β1−1)d1/β1−1

≤ Cω(τ k)τ−k(1/βmax−1)d1/βmax−1.

Proof. Case 1: First we assume that rp ≤ 2d , so that rq ≤ 3d and ℓ+2 ≤ kp. In particular, the balls B̂k(p)

are centered at either p1 ∈ S1 or 0, depending on whether k ≥ k2,p + 1 or k ≤ k2,p. As in the proof of

Lemma 3.20, let γ : [0, d] → Bβ(0, 1)\S be the gβ-geodesic connecting p and q, let the two points q ′

and p′ be defined as in (3-80), and let γ1, γ2, γ3 be the gβ-geodesics defined in that lemma. By the

triangle inequality we calculate

∣∣∣∣
∂2hk

∂r1∂r2

(p)− ∂2hk

∂r1∂r2

(q)

∣∣∣∣

≤
∣∣∣∣

∂2hk

∂r1∂r2

(p)− ∂2hk

∂r1∂r2

(p′)

∣∣∣∣+
∣∣∣∣

∂2hk

∂r1∂r2

(p′)− ∂2hk

∂r1∂r2

(q ′)

∣∣∣∣+
∣∣∣∣

∂2hk

∂r1∂r2

(q ′)− ∂2hk

∂r1∂r2

(q)

∣∣∣∣ =: L ′
1+L ′

2+L ′
3.

Integrating along γ3, where the coordinates (r1; r2, θ2; z3, . . . , zn) are the same as p, we get (by (3-93))

L ′
1 =

∣∣∣∣
∫

γ3

∂

∂θ1

(
∂2hk

∂r1∂r2

)
dθ1

∣∣∣∣ ≤ Cω(τ k)·
{

r1(p)1/β1−1τ−k(−1+1/β1) if k ∈ [k2,p+1,ℓ],
r1(p)1/β1−1r2(p)1/β2−1τ−k(−2+1/β1+1/β2) if k ≤ k2,p.

Integrating along γ2, where the coordinates (θ1; r2, θ2; z3, . . . , zn) are the same as p′ or q ′, we get by the

estimate in Lemma 3.26 that

L ′
2 =

∣∣∣∣
∫

γ2

∂

∂r1

(
∂2hk

∂r1∂r2

)
dr1

∣∣∣∣

≤ Cω(τ k) ·





τ−kd + τ−k(1/β1−1)|r1(p) − r1(q)|1/β1−1 if k ∈ [k2,p + 1, ℓ],
r2(p)1/β2−1τ−k/β2d

+ r2(p)1/β2−1τ−k(−2+1/β1+1/β2)|r1(p) − r1(q)|1/β1−1 if k ≤ k2,p

≤ Cω(τ k) ·
{
τ−kd + τ−k(1/β1−1)d1/β1−1 if k ∈ [k2,p + 1, ℓ],
r2(p)1/β2−1τ−k/β2d + r2(p)1/β2−1τ−k(−2+1/β1+1/β2)d1/β1−1 if k ≤ k2,p.

To deal with the term L ′
3, we consider two cases for k: ℓ ≥ k ≥ k2,p + 1 and k ≤ k2,p.
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Case 1a: k2,p +1 ≤ k ≤ ℓ. In this case the balls B̂k(p) are centered at p1 ∈ S1. Here τ−k ≤ τ−ℓ ≤ 8−1d−1

and τ k ≤ τ k2,p+1 ≤ 1
2
r2(p), so r2(q) ≥ −d + r2(p) ≥ τ k . The balls B̂k(p) are disjoint from S2, and we

can use the smooth coordinate w2 = z
β2

2 as before. The functions Dw2
D′hk are gβ-harmonic; hence by

the gradient estimate we have

sup
(B̂k(p)/1.2)\S1

|∇gβ
(Dw2

D′hk)| ≤ C(n)
∥Dw2

D′hk∥L∞(B̂k(p)/1.1)

τ k
≤ Cτ−kω(τ k).

From (3-88), we get

sup
(B̂k(p)/1.2)\S1

∣∣∣∣
∂2

∂r1∂r2

D′hk

∣∣∣∣ ≤ C(n)τ−kω(τ k). (3-105)

Recalling that r1(p) = rp ≤ 2d ≤ 1
2
τ k , the triangle inequality implies r1(q) ≤ 3d ≤ 1

2
τ k . The points in γ1

have fixed (r1, θ1)-coordinates (r1(q), θ1(q)), so integrating along γ1 we get (by (3-104) and (3-105))

L ′
3 ≤

∫

γ1

∣∣∣∣
∂

∂r2

(
∂2hk

∂r1∂r2

)∣∣∣∣ +
∣∣∣∣

∂

r2∂θ2

(
∂2hk

∂r1∂r2

)∣∣∣∣ +
∣∣∣∣D′

(
∂2hk

∂r1∂r2

)∣∣∣∣

≤ Cdω(τ k)(r1(q)1/β1−1τ−k/β1 + τ1(q)1/β1−1 min(r2(p), r2(q))−1τ−k(1/β1−1) + τ−k)

≤ Cτ−kω(τ k) · d ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Case 1b: k ≤ k2,p. In this case τ k ≥ τ k2,p ≥ r2(p) and τ k ≥ τ ℓ ≥ 8d. Thus r2(q) ≤ r2(p) + d ≤ 3
2
τ k .

We choose points q̃ and q̂ as in (3-84), and let γ̃1, γ̃ and γ̂ be gβ-geodesics defined as in the proof of

Lemma 3.20. Then we have

L ′
3 ≤

∣∣∣∣
∂2hk

∂r1∂r2

(q ′)− ∂2hk

∂r1∂r2

(q̃)

∣∣∣∣+
∣∣∣∣

∂2hk

∂r1∂r2

(q̃)− ∂2hk

∂r1∂r2

(q̂)

∣∣∣∣+
∣∣∣∣

∂2hk

∂r1∂r2

(q̂)− ∂2hk

∂r1∂r2

(q)

∣∣∣∣ =: L ′′
1 + L ′′

2 + L ′′
3.

We will estimate L ′′
1 , L ′′

2 and L ′′
3 term by term by integrating appropriate functions along the geodesics γ̃1,

γ̃ and γ̂ as follows: The points in γ̂ have fixed (r1, θ1; r2; s)-coordinates (r1(q), θ1(q); r2(q); s(q)), so

(by (3-102))

L ′′
3 =

∣∣∣∣
∫

γ̂

∂

∂θ2

(
∂2hk

∂r1∂r2

)
dθ2

∣∣∣∣ ≤ Cω(τ k)r1(q)1/β1−1r2(q)1/β2−1τ−k(−2+1/β1+1/β2)

≤ Cω(τ k)r1(q)1/β1−1τ−k(−1+1/β1) ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Integrating along γ̃ , where the points have constant r1-coordinate r1(q), we get (by (3-104))

L ′′
2 =

∣∣∣∣
∫

γ̃

∂

∂r2

(
∂2hk

∂r1∂r2

)
dr2

∣∣∣∣

≤ Cω(τ k)
(
r1(q)1/β1−1τ−k/β1 |r2(q) − r2(p)|

+ r1(q)1/β1−1τ−k(−2+1/β1+1/β2)|r2(q)1/β2−1 − r2(p)1/β2−1|
)

≤ Cω(τ k)(r1(q)1/β1−1τ−k/β1d + r1(q)1/β1−1τ−k(−2+1/β1+1/β2)d1/β2−1)

≤ Cω(τ k)r1(q)1/β1−1τ−k(−1+1/β1)

≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.
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Integrating along γ̃1, where the points have constant (r1, θ1; r2, θ2)-coordinates, we have (by (3-71))

L ′′
1 ≤

∫

γ̃1

∣∣∣∣D′
(

∂2hk

∂r1∂r2

)∣∣∣∣ ≤ Cr1(q)1/β1−1r2(p)1/β2−1τ−k(−1+1/β1+1/β2)d

≤ Cdτ−kω(τ k) ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining both cases, we conclude that

L ′
3 ≤ Cτ−k(1/β1−1)ω(τ k)d1/β1−1.

Then by the estimates above for L ′
1 and L ′

2, we finally get, for all k ≤ ℓ,

∣∣∣∣
∂2hk

∂r1∂r2

(p) − ∂2hk

∂r1∂r2

(q)

∣∣∣∣ ≤ Cω(τ k)τ−k(1/β1−1)d1/β1−1 ≤ Cω(τ k)τ−k(1/βmax−1)d1/βmax−1,

where in the last inequality we use the fact that τ−kd ≤ 1
8

< 1 when k ≤ ℓ. Hence we finish the proof of

Lemma 3.29 in the case rp ≤ 2d .

Now we deal with the remaining cases.

Case 2: Here we assume min(rp, rq) = rp ≥ 2d and ℓ ≤ kp. In this case τ kp ≈ rp ≥ 2d ≥ τ ℓ+3, so

ℓ+ 3 ≥ kp. It follows by the triangle inequality that dβ(γ (t),S) ≥ d , where γ is the gβ-geodesic joining

p to q as before. In particular, this implies that min(r1(γ (t)), r2(γ (t))) ≥ d.

Since ℓ ≤ kp, Lemmas 3.24±3.28 hold for all k ≤ ℓ and r1(p) ≈ τ kp ≤ τ ℓ, so

r1(γ (t)) ≤ d + r1(p) ≤ 9
8
τ ℓ ≤ 9

8
τ k .

We calculate the gradient of ∂2hk/∂r1∂r2 along the geodesic γ as

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣
2

(γ (t)) =
∣∣∣∣

∂

∂r1

(
∂2hk

∂r1∂r2

)∣∣∣∣
2

+
∣∣∣∣

1

β1r1∂θ1

(
∂2hk

∂r1∂r2

)∣∣∣∣
2

+
∣∣∣∣

∂

∂r2

(
∂2hk

∂r1∂r2

)∣∣∣∣
2

+
∣∣∣∣

∂

β2r2∂θ2

(
∂2hk

∂r1∂r2

)∣∣∣∣
2

+
∑

j

∣∣∣∣
∂

∂s j

(
∂2hk

∂r1∂r2

)∣∣∣∣
2

.

Case 2a: k2,p + 1 ≤ k ≤ ℓ. Here along γ we have

r2(γ (t)) ≥ r2(p) − d ≥ τ k − d ≥ 7
8
τ k .

Then by Lemmas 3.24±3.28, along γ we have

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

(γ (t))

∣∣∣∣ ≤ Cω(τ k)(τ−k + d1/β1−2τ−k(1/β1−1)).

Integrating this inequality along γ we get

∣∣∣∣
∂2hk

∂r1∂r2

(p) − ∂2hk

∂r1∂r2

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cω(τ k)(dτ−k + d1/β1−1τ−k(1/β1−1))

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).
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Case 2b: k ≤ k2,p. Here along γ we have

r2(γ (t)) ≤ r2(p) + d ≤ τ k + d ≤ 9
8
τ k .

Then by Lemmas 3.24±3.28, along γ we have

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cω(τ k)(τ−k + d1/β1−2τ−k(1/β1−1)).

Integrating this inequality along γ we again get

∣∣∣∣
∂2hk

∂r1∂r2

(p) − ∂2hk

∂r1∂r2

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Case 3: Here we assume min(rp, rq) = rp ≥ 2d but ℓ ≥ kp + 1. The case when k ≤ kp can be dealt with

by the same argument as in Case 2, so we omit it and only consider the case when kp + 1 ≤ k ≤ ℓ. Here

r2(p) ≥ r1(p) ≥ τ k ≥ τ ℓ > 8d , and hence

r1(γ (t)) ≥ 7
8
τ k and r2(γ (t)) ≥ 7

8
τ k

for any point γ (t) in the geodesic γ . By the triangle inequality it follows that γ ⊂ 1
3

B̂k(p) = Bβ

(
p, 1

3
τ k

)
.

As before, we can introduce smooth coordinates w1 = z
β1

1 and w2 = z
β2

2 , and gβ becomes the standard

smooth Euclidean metric gCn under these coordinates. Moreover, hk is the usual Euclidean harmonic

function 1gCn hk = 0 on B̂k(p). By the standard derivatives estimates we have

sup
B̂k(p)/2

(|D3
w1,w2

hk | + |D′(D2
w1,w2

)hk |) ≤ Cτ−kω(τ k).

From the equation

∂2hk

∂r1∂r2

= w1w2

r1r2

∂2hk

∂w1∂w2

+ w̄1w2

r1r2

∂2hk

∂w̄1∂w2

+ w1w̄2

r1r2

∂2hk

∂w1∂w̄2

+ w̄1w̄2

r1r2

∂2hk

∂w̄1∂w̄2

we see that, for i = 1, 2,

sup
B̂k(p)/2

∣∣∣∣
∂

∂wi

(
∂2hk

∂r1∂r2

)∣∣∣∣ ≤ C

ri

ω(τ k) + Cτ−kω(τ k) and sup
B̂k(p)/2

∣∣∣∣D′
(

∂2hk

∂r1∂r2

)∣∣∣∣ ≤ Cτ−kω(τ k).

From this we see that

sup
γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ sup
γ

(
Cτ−kω(τ k) + C

r1

ω(τ k) + C

r2

ω(τ k)

)
≤ Cτ−kω(τ k).

Integrating along γ we get

∣∣∣∣
∂2hk

∂r1∂r2

(p) − ∂2hk

∂r1∂r2

(q)

∣∣∣∣ ≤
∫

γ

∣∣∣∣∇gβ

∂2hk

∂r1∂r2

∣∣∣∣ ≤ Cdτ−kω(τ k)

≤ Cd1/β1−1τ−k(1/β1−1)ω(τ k).

Combining the estimates in all three cases, we finish the proof of Lemma 3.29. □
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By Lemma 3.29,

L2 =
∣∣∣∣

∂2uℓ

∂r1∂r2

(p) − ∂2uℓ

∂r1∂r2

(q)

∣∣∣∣

≤
∣∣∣∣

∂2u2

∂r1∂r2

(p) − ∂2u2

∂r1∂r2

(q)

∣∣∣∣ + Cd1/βmax−1

ℓ∑

k=3

τ−k(1/βmax−1)ω(τ k). (3-106)

To finish the proof, it suffices to estimate the first term on the right-hand side of the above equation.

Recall that we assume u2 is a gβ-harmonic function defined on the ball B̂2(p), which is centered at

p1,2 ∈ S1 ∩S2 and has radius 2τ 2. We also know u2 satisfies the L∞-estimate by the maximum principle:

there exists some C = C(n) > 0 such that

∥u2∥L∞(B̂k(p))
≤ C(∥u∥L∞(Bβ (0,1)) + ω(τ 2)). (3-107)

Recall that the proofs of the estimates in Lemmas 3.24±3.28 in the case when k ≤ k2,p work for any

gβ-harmonic functions defined on suitable balls, and we can repeat the arguments there replacing the

L∞-estimate of hk , namely ∥hk∥L∞ ≤ Cτ 2kω(τ k), by the L∞-estimate of u2 given in (3-107) to get

similar estimates as in those lemmas. We will omit the details. Given these estimates, we can repeat the

proof of Lemma 3.29 to prove the estimates
∣∣∣∣

∂2u2

∂r1∂r2

(p) − ∂2u2

∂r1∂r2

(q)

∣∣∣∣ ≤ Cd1/βmax−1(∥u∥L∞(Bβ (0,1)) + ω(τ 2)).

This inequality, combined with (3-106), gives the final estimate of the L2 term, that is

L2 ≤ Cd1/βmax−1∥u∥L∞(Bβ (0,1)) + Cd1/βmax−1

ℓ∑

k=2

τ−k(1/βmax−1)ω(τ k). (3-108)

By Lemmas 3.22 and 3.23 and the estimate (3-108) for L2, we are ready to prove the following estimate;

see (1-5).

Proposition 3.30. For given p, q ∈ Bβ

(
0, 1

2

)
\S, there is a constant C = C(n, β) > 0 such that

∣∣∣∣
∂2u

∂r1∂r2

(p) − ∂2u

∂r1∂r2

(q)

∣∣∣∣ ≤ C

(
d1/βmax−1∥u∥L∞(Bβ (0,1)) +

∫ d

0

ω(r)

r
dr + d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
.

Proof. From Lemmas 3.22 and 3.23 and the estimate (3-108) for L2, we have

∣∣∣∣
∂2u

∂r1∂r2

(p)− ∂2u

∂r1∂r2

(q)

∣∣∣∣ ≤ C

(
d1/βmax−1∥u∥L∞(Bβ (0,1))+d1/βmax−1

ℓ∑

k=2

τ−k(1/βmax−1)ω(τ k)+
∞∑

k=ℓ

ω(τ k)

)

≤ C

(
d1/βmax−1∥u∥L∞(Bβ (0,1))+

∫ d

0

ω(r)

r
dr +d1/βmax−1

∫ 1

d

ω(r)

r1/βmax
dr

)
,

where the last inequality follows from the fact that ω(r) is monotonically increasing. □

Finally, we remark that the estimates for the other operators in (3-89) follow similarly; we omit the

proofs and state that the estimates are the same as the estimates for ∂2u/∂r1∂r2 in Proposition 3.30.
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3E. Nonflat conical Kähler metrics. In this section, we will consider the Schauder estimates for gen-

eral conical Kähler metrics on Bβ(0, 2) ⊂ C
n with cone angle 2πβ along the simple normal crossing

hypersurface S. Let ω be such a metric. By definition, there exists a constant C ≥ 1 such that

C−1ωβ ≤ ω ≤ Cωβ in Bβ(0, 2)\S, (3-109)

where ωβ is the standard flat conical metric as before. Since ω is closed and Bβ(0, 2) is simply connected,

we can write ω =
√

−1∂∂̄φ for some strictly plurisubharmonic function φ. By elliptic regularity, φ is

Hölder continuous under the Euclidean metric on Bβ(0, 2).

We fix α ∈ (0, min{1/βmax − 1, 1}).

Definition 3.31. We say ω = g is a C
0,α
β Kähler metric on Bβ(0, 2) if it satisfies (3-109) and the Kähler

potential φ of ω belongs to C
2,α
β (Bβ(0, 2)).

We are interested in studying the Laplacian equation

1gu = f in Bβ(0, 1), (3-110)

where f ∈ C
0,α
β (Bβ(0, 1)) and u ∈ C

2,α
β . We will prove the following scaling-invariant interior Schauder

estimates. The proof closely follows that of Theorem 6.6 in [18], so we mainly focus on the differences.

Proposition 3.32. There exists a constant C = C(n, β, ∥g∥∗
C

0,α
β

) > 0 such that, if u ∈ C
2,α
β (Bβ(0, 1))

satisfies (3-110), then

∥u∥∗
C

2,α
β

(Bβ (0,1))
≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥(2)

C
0,α
β

(Bβ (0,1))
). (3-111)

Proof. Given any points x0 ̸= y0 ∈ Bβ(0, 1), assume dx0
= min(dx0

, dy0
); recall dx = dβ(x, ∂ Bβ(0, 1)).

Let µ ∈
(
0, 1

4

)
be a small number to be determined later. Write d = µdx0

, and define B := Bβ(x0, d) and
1
2

B := Bβ

(
x0,

1
2
d
)
.

Case 1: dβ(x0, y0) < 1
2
d .

Case 1a: Bβ(x0, d)∩S =∅. We introduce smooth complex coordinates {w1 = z
β1

1 , w2 = z
β2

2 , z3, . . . , zn}
on Bβ(x0, d), under which gβ becomes the Euclidean metric and the components of g become Cα in

the usual sense. Equation (3-110) has Cα leading coefficients, and we can apply Theorem 6.6 in [18] to

conclude that (the following inequality is understood in the new coordinates)

[u]∗
C2,α(B)

≤ C(∥u∥C0(B) + ∥ f ∥(2)

C0,α(B)
). (3-112)

Recall that T denotes the second-order operators appearing in (2-2). Let D denote the ordinary first-order

operators in {w1, w2, z3, . . . , zn}. We calculate

|T u(x0)−T u(y0)| ≤ |D2u(x0)− D2u(y0)|+
dβ(x0, y0)

d
(|D2u(x0)|+|D2u(y0)|)

≤ 4dβ(x0, y0)
α

d2+α
[u]∗

C2,α(B)
+ 4dβ(x0, y0)

d3
[u]∗

C2(B)

≤ 8dβ(x0, y0)
α

d2+α
[u]∗

C2,α(B)
+C

dβ(x0, y0)
α

d2+α
∥u∥C0(B) (by the interpolation inequality).
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Then we get

d2+α
x0

|T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ C

µ2+α
∥ f ∥(2)

C
0,α
β

(B)
+ C

µ2+α
∥u∥C0(B). (3-113)

Case 1b: Bβ(x0, d) ∩ S ̸= ∅. Let x̂0 ∈ S be the nearest possible point x0 to S. We consider the ball

B̂ := Bβ(x̂0, 2d), which is contained in Bβ(0, 1) by the triangle inequality. As in [14], we introduce a

(nonholomorphic) basis of T ∗
1,0(C

n\S)

{ϵ j := dr j +
√

−1β jr j dθ j , dzk} j=1,2;k=3,...,n,

and the dual basis of T1,0(C
n\S)

{
γ j := ∂

∂r j

−
√

−1
1

β jr j

∂

∂θ j

,
∂

∂zk

}

j=1,2;k=3,...,n

.

We can write the (1, 1)-form ω in the basis {ϵ j ∧ ϵ̄k, ϵ j ∧ dz̄k, dzk ∧ ϵ̄ j , dz j ∧ dz̄k} as

ω = gϵ j ϵ̄k
ϵ j ∧ ϵ̄k + gϵ j k̄

ϵ j ∧ dz̄k + gkϵ̄ j
dzk ∧ ϵ̄ j + g j k̄ dz j ∧ dz̄k, (3-114)

where

gϵ j ϵ̄k
=

√
−1∂∂̄φ(γ j , γ̄k), gϵ j k̄

=
√

−1∂∂̄φ

(
γ j ,

∂

∂ z̄k

)
,

gkϵ̄ j
=

√
−1∂∂̄φ

(
∂

∂zk

, γ̄ j

)
, gk j̄ = ∂2

∂zk∂ z̄ j

φ.

(3-115)

We remark that all the second-order derivatives of φ appearing in (3-115) are linear combinations of

|z j |2−2β j (∂2/∂z j∂z j̄ )N j Nk ( j ̸= k), N j D′ and (D′)2, which are studied in Theorem 1.2. The standard

metric ωβ becomes the identity matrix under the basis above for (1, 1)-forms. If ω is C
0,α
β , all the

coefficients in the expression for ω in (3-114) are C
0,α
β -continuous, and the cross terms gϵ j ϵ̄k

( j ̸= k) and

gϵ j k̄
tend to zero when approaching the corresponding singular sets S j or Sk . Moreover, the limit of

g j k̄ dz j ∧ dz̄k when approaching S1 ∩ · · · ∩ Sp defines a Kähler metric on it. Rescaling or rotating the

coordinates if necessary we may assume at x̂0 ∈ S that gϵ j ϵ̄ j
(x̂0) = 1, g j k̄(x̂0) = δ jk and the cross terms

vanish at x̂0. Let ωβ be the standard cone metric under these new coordinates near x̂0. We can rewrite

(3-110) as

1gu(z) = 1gβ
u(z) + η(z) · i∂∂̄u(z) = f (z) for all z ̸∈ S

for some hermitian matrix η(z) = (η j k̄)n
j,k=1, η j k̄ = g j k̄(z)−g

j k̄

β . It is not hard to see the term η(z) · i∂∂̄u

can be written as

2∑

j,k=1

(gϵ j ϵ̄k (z) − δ jk)uϵ j ϵ̄ j
+ 2Re

∑

1≤ j≤2
3≤k≤n

gϵ j k̄uϵ j k̄
+

n∑

j,k=3

(g j k̄(z) − δ jk)u j k̄, (3-116)

where g with the upper indices denotes the inverse matrix of g. We consider the equivalent form of

(3-110) on B̂:

1gβ
u = f − η ·

√
−1∂∂̄u =: f̂ , u ∈ C0(B̂) ∩ C2(B̂\S).
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Observing that x0, y0 ∈ Bβ

(
x̂0,

3
2
d
)
, we can apply the scaled inequality (1-7) of Theorem 1.2 to conclude

that

d2+α |T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ C(∥u∥
C0(B̂)

+ ∥ f̂ ∥(2)

C
0,α
β

(B̂)
);

thus

d2+α
x0

|T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ C

µ2+α
(∥u∥

C0(B̂)
+ ∥ f̂ ∥(2)

C
0,α
β

(B̂)
). (3-117)

Case 2: dβ(x0, y0) ≥ 1
2
d.

d2+α
x0

|T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ 4d2+α
x0

|T u(x0)| + |T u(y0)|
dα

≤ 8

µα
[u]∗

C2
β
(Bβ (0,1))

. (3-118)

Combining (3-113), (3-117) and (3-118) we get

d2+α
x0

|T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ 8

µα
[u]∗

C2
β
(Bβ (0,1))

+ C

µ2+α
(∥u∥

C0(B̂)
+ ∥ f̂ ∥(2)

C
0,α
β

(B̂)
)

+ C

µ2+α
∥ f ∥(2)

C
0,α
β

(B)
+ C

µ2+α
∥u∥C0(B). (3-119)

By definition it is easy to see that (writing Bβ = Bβ(0, 1))

∥ f ∥(2)

C
0,α
β

(B)
≤ Cµ2∥ f ∥(2)

C0(Bβ )
+ Cµ2+α[ f ](2)

C
0,α
β

(Bβ )
≤ µ2∥ f ∥(2)

C
0,α
β

(Bβ )
.

We calculate

∥ f̂ ∥(2)

C
0,α
β

(B̂)
≤ ∥η∥(0)

C
0,α
β

(B̂)
∥T u∥(2)

C
0,α
β

(B̂)
+ ∥ f ∥(2)

C
0,α
β

(B̂)

≤ C0[g]∗
C

0,α
β

(Bβ )
µα(µ2[u]∗

C2
β
(Bβ )

+ µ2+α[u]∗
C

2,α
β

(Bβ )
) + µ2∥ f ∥(2)

C
0,α
β

(Bβ )

≤ C0[g]∗
C

0,α
β

(Bβ )
µα(C(µ)∥u∥C0(Bβ ) + 2µ2+α[u]∗

C
2,α
β

(Bβ )
) + µ2∥ f ∥(2)

C
0,α
β

(Bβ )
,

8

µα
[u]∗

C2
β
(Bβ )

≤ µα[u]∗
C

2,α
β

(Bβ )
+ C(µ)∥u∥C0(Bβ ).

If we choose µ > 0 small enough that µα(2C0[g]∗
C

0,α
β

(Bβ )
+ 1) ≤ 1

2
, then we get from (3-119) and the

inequalities above that

d2+α
x0

|T u(x0) − T u(y0)|
dβ(x0, y0)α

≤ 1
2
[u]∗

C
2,α
β

(Bβ )
+ C(µ)(∥u∥C0(Bβ ) + ∥ f ∥(2)

C
0,α
β

(Bβ )
).

Taking the supremum over x0 ̸= y0 ∈ Bβ(0, 1), we conclude from the inequality above that

[u]∗
C

2,α
β

(Bβ )
≤ C(∥u∥C0(Bβ ) + ∥ f ∥(2)

C
0,α
β

(Bβ )
).

Proposition 3.32 then follows from interpolation inequalities. □

Remark 3.33. It follows easily from the proof of Proposition 3.32 that estimate (3-111) also holds for

metric balls Bβ(p, R) ⊂ Bβ(0, 1) whose center p may not lie in S.
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Remark 3.34. The Schauder estimate was first established by Donaldson [14] for a background cone

metric with singularity along a smooth divisor assuming u ∈ C
2,α
β ; this latter assumption was removed by

Brendle [1] in the case β ∈
(
0, 1

2

)
and by Jeffres, Mazzeo and Rubinstein [23], requiring only a weak

solution. Jeffres, Mazzeo and Rubinstein [23] then extend the results to nonflat background metrics using

a perturbation argument. This is the first time a Schauder estimate for the linear conic equation in the

smooth divisor case appeared in the literature with a full proof.

An immediate corollary to Proposition 3.32 is the following interior Schauder estimate.

Corollary 3.35. Suppose u satisfies (3-110). For any compact subset K ⋐ Bβ(0, 1), there exists a constant

C = C(n, β, K , ∥g∥
C

0,α
β

(Bβ (0,1))
) > 0 such that

∥u∥
C

2,α
β

(K )
≤ C(∥u∥C0(Bβ (0,1)) + ∥ f ∥

C
0,α
β

(Bβ (0,1))
).

Next we will show that (3-110) admits a unique C
2,α
β -solution for any f ∈ C

0,α
β (Bβ(0, 1)) and boundary

value ϕ ∈ C0(∂ Bβ(0, 1)). We will follow the argument in Section 6.5 in [18]. In the following we write

Bβ = Bβ(0, 1) for simplicity.

Lemma 3.36. Let σ ∈ (0, 1) be a given number. Suppose u ∈ C
2,α
β (Bβ) solves (3-110), ∥u∥(−σ)

C0(Bβ )
< ∞

and ∥ f ∥(2−σ)

C
0,α
β

(Bβ )
< ∞. Then there exists a C = C(n, β, α, g, σ ) > 0 such that

∥u∥(−σ)

C
2,α
β

(Bβ )
≤ C(∥u∥(−σ)

C0(Bβ )
+ ∥ f ∥(2−σ)

C
0,α
β

(Bβ )
).

Proof. Given the estimates in Proposition 3.32, the proof is identical to that of Lemma 6.20 in [18]. We

omit the details. □

Lemma 3.37. Let u ∈ C2
β(Bβ) ∩ C0(Bβ) solve the equation 1gu = f and u ≡ 0 on ∂ Bβ . For any

σ ∈ (0, 1), there exists a constant C = C(n, β, σ, g) > 0 such that

∥u∥(−σ)

C0(Bβ )
= sup

x∈Bβ

d−σ
x |u(x)| ≤ C sup

x∈Bβ

d2−σ
x | f (x)| = C∥ f ∥(2−σ)

C0(Bβ )
,

where dx = dβ(x, ∂ Bβ) as before.

Proof. Consider the function w1 = (1 − d2
β)σ , where dβ(x) = dβ(x, 0). We calculate

1gw1 = σ(1 − d2
β)σ−2(−(1 − d2

β) trg gβ − (1 − σ)|∇d2
β |2g)

≤ σ(1 − d2
β)σ−2(−C−1(1 − d2

β) − 4C−1d2
β(1 − σ)) ≤ −c0σ(1 − d2

β)σ−2.

Take a large constant A > 1 such that, for w = Aw1,

1gw ≤ −(1 − dβ)σ−2 ≤ −| f |
N

in Bβ,

where

N = sup
x∈Bβ

d2−σ
x | f (x)| = sup

x∈Bβ

(1 − dβ(x))2−σ | f (x)|.

Hence 1g(Nw±u) ≤ 0, and from the definition of w we also have w|∂ Bβ
≡ 0. By the maximum principle

we obtain |u(x)| ≤ Nw ≤ C N (1 − dβ(x))σ = C Ndσ
x , and hence the lemma is proved. □



806 BIN GUO AND JIAN SONG

Proposition 3.38. Given any function f ∈ C
0,α
β (Bβ), the Dirichlet problem 1gu = f in Bβ and u ≡ 0 on

∂ Bβ admits a unique solution u ∈ C
2,α
β (Bβ) ∩ C0(Bβ).

Proof. The proof of this proposition is almost identical to that of Theorem 6.22 in [18]. For completeness,

we provide the detailed argument. Fix σ ∈ (0, 1) and define a family of operators 1t = t1g + (1− t)1gβ
.

It is straightforward to see that 1t is associated to some cone metric which also satisfies (3-109). We

study the Dirichlet problem

1t ut = f in Bβ, ut ≡ 0 on ∂ Bβ . (∗t )

Equation (∗0) admits a unique solution u0 ∈ C
2,α
β (Bβ) ∩ C0(Bβ) by Proposition 3.7. By Theorem 5.2

in [18], in order to apply the continuity method to solve (∗1), it suffices to show 1−1
t defines a bounded

linear operator between some Banach spaces. More precisely, define

B1 := {u ∈ C
2,α
β (Bβ) | ∥u∥(−σ)

C
2,α
β

(Bβ )
< ∞},

B2 := { f ∈ C
0,α
β (Bβ) | ∥ f ∥(2−σ)

C
0,α
β

(Bβ )
< ∞}.

By definition any u ∈ B1 is continuous on Bβ and u = 0 on ∂ Bβ . By Lemmas 3.36 and 3.37, we have

∥u∥B1
= ∥u∥(−σ)

C
2,α
β

(Bβ )
≤ C∥ f ∥(2−σ)

C
0,α
β

(Bβ )
= C∥1t u∥B2

,

for some constant C independent of t ∈ [0, 1]. Thus (∗1) admits a solution u ∈ B1. □

Corollary 3.39. For any given ϕ ∈ C0(∂ Bβ) and f ∈ C
0,α
β (Bβ), the Dirichlet problem

1gu = f in Bβ and u = ϕ on ∂ Bβ, (3-120)

admits a unique solution u ∈ C
2,α
β (Bβ) ∩ C0(Bβ).

Proof. We may extend ϕ continuously to Bβ and assume ϕ ∈ C0(Bβ). Take a sequence of functions

ϕk ∈ C
2,α
β (Bβ) ∩ C0(Bβ) which converges uniformly to ϕ on Bβ . The Dirichlet problem

1gvk = f − 1gϕk in Bβ and vk = 0 on ∂ Bβ

admits a unique solution vk ∈ C
2,α
β (Bβ) ∩ C0(Bβ). Thus the function uk := vk + ϕk ∈ C

2,α
β satisfies

1guk = f in Bβ and uk = ϕk on ∂ Bβ . By the maximum principle, uk is uniformly bounded in C0(Bβ).

Corollary 3.35 gives uniformly C
2,α
β (K )-bounds on any compact subset K ⋐ Bβ . Letting k → ∞ and

K → Bβ , by a diagonal argument and up to a subsequence, uk → u ∈ C
2,α
β (Bβ). On the other hand, from

1g(uk − ul) = 0, we see that {uk} is a Cauchy sequence in C0(Bβ); thus uk converges uniformly to u

on Bβ . Hence u ∈ C0(Bβ), and u satisfies (3-120). □

Corollary 3.40. Given f ∈ C
0,α
β (Bβ), suppose u is a weak solution to the equation 1gu = f in the sense

that ∫

Bβ

⟨∇u, ∇ϕ⟩ωn
g = −

∫

Bβ

f ϕωn
g for all ϕ ∈ H 1

0 (Bβ),

then u ∈ C
2,α
β (Bβ).
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Proof. We first observe that the Sobolev inequality (3-43) also holds for the metric g, since g is equivalent

to gβ . The metric space (Bβ, g) also has maximal volume growth/decay, so we can apply the same proof

of De Giorgi±Nash±Moser theory [22] to conclude that u is continuous in Bβ . The standard elliptic theory

implies that u ∈ C
2,α
loc (Bβ\S). For any r ∈ (0, 1), by Corollary 3.39, the Dirichlet problem 1gũ = f

in Bβ(0, r), ũ = u on ∂ Bβ(0, r) admits a unique solution ũ ∈ C
2,α
β (Bβ(0, r)) ∩ C0(Bβ(0, r)). Then

1g(u − ũ) = 0 in Bβ(0, r) and u − ũ = 0 on ∂ Bβ(0, r). By the maximum principle, we get u = ũ

in Bβ(0, r), so we conclude u ∈ C
2,α
β (Bβ(0, r)). Since r ∈ (0, 1) is arbitrary, we get u ∈ C

2,α
β (Bβ). □

Corollary 3.41. Let X be a compact Kähler manifold and D =
∑

j D j be a divisor with simple normal

crossings. Let g be a conical Kähler metric with cone angle 2πβ along D. Suppose u ∈ H 1(g) is a weak

solution to the equation 1gu = f in the sense that
∫

X

⟨∇u, ∇ϕ⟩ωn
g = −

∫

X

f ϕωn
g for all ϕ ∈ C1(X)

for some f ∈ C
0,α
β (X). Then u ∈ C

2,α
β (X)∩C0(X) and there exists a constant C = C(n, β, g, α) such that

∥u∥
C

2,α
β

(X)
≤ C(∥u∥C0(X) + ∥ f ∥

C
0,α
β

(X)
).

Proof. We choose finite covers of D, {Ba} and {B ′
a}, with B ′

a ⋐ Ba and centers in D. By assumption

u is a weak solution to 1gu = f in each Ba , so by Corollary 3.40 we conclude that u ∈ C
2,α
β (Ba) for

each Ba . On X\S, the metric g is smooth so standard elliptic theory implies that u ∈ C
2,α
loc (X\S). Since

{Ba} covers D, we have u ∈ C
2,α
β (X).

We can apply Corollary 3.35 to obtain that, for some constant C > 0,

∥u∥
C

2,α
β

(B ′
a)

≤ C(∥u∥C0(Ba) + ∥ f ∥Cα
β
(Ba)).

On X\
⋃

a{B ′
a} the metric g is smooth, so the usual Schauder estimates apply. We finish the proof of the

corollary using the definition of C
2,α
β (X); see Definition 2.9. □

Remark 3.42. Let (X, D, g) be as in Corollary 3.41. It is easy to see by the variational method that weak

solutions to 1gu = f always exist for any f ∈ L2(X, ωn
g) satisfying

∫
X

f ωn
g = 0.

4. Parabolic estimates

In this section, we will study the heat equation with background metric ωβ and prove the Schauder

estimates for solutions u ∈ C0(Qβ) ∩ C
2,1(Q#

β) to the equation

∂u

∂t
= 1gβ

u + f (4-1)

for a function f ∈ C
0(Qβ) with some better regularity.

4A. Conical heat equations. In this section, we will show that, for any ϕ ∈ C
0(∂PQβ), the Dirichlet

problem (4-2) admits a unique C
2,1(Q#

β) ∩ C
0(Qβ)-solution in Qβ . We first observe that a maximum

principle argument yields the uniqueness of the solution.
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Suppose u ∈ C
2,1(Q#

β) ∩ C
0(Qβ) solves the Dirichlet problem

{
∂u

∂t
= 1gβ

u in Qβ,

u = ϕ on ∂PQβ

(4-2)

for some given continuous function ϕ ∈ C
0(∂PQβ). As in Lemma 3.1, it follows from the maximum

principle that

inf
∂PQβ

u ≤ inf
Qβ

u ≤ sup
Qβ

u ≤ sup
∂PQβ

u. (4-3)

So the C
2,1(Q#

β) ∩ C
0(Qβ)-solution to (4-2) is unique, if it exists.

We prove the existence of solutions to (4-2). As before, we use an approximation argument. Let gϵ be

the smooth approximation metrics in Bβ from (3-3). Let uϵ be the C
2,1(Qβ) ∩ C

0(Qβ)-solution to

∂uϵ

∂t
= 1gϵ

uϵ in Qβ and uϵ = ϕ on ∂PQβ . (4-4)

4A1. Estimates of uϵ . We first recall the Li±Yau gradient estimates [26; 35] for positive solutions to the

heat equations.

Lemma 4.1. Let (M, g) be a complete manifold with Ric(g) ≥ 0 and B(p, R) be the geodesic ball

with center p ∈ M and radius R > 0. Let u be a positive solution to the heat equation ∂t u − 1gu = 0

on B(p, R). Then there exists C = C(n) > 0 such that, for all t > 0,

sup
B(p,2R/3)

(|∇u|2
u2

− 2u̇t

u

)
≤ C

R2
+ 2n

t
,

where u̇t = ∂u/∂t .

By considering the functions uϵ − inf uϵ and sup uϵ − uϵ , from Lemma 4.1, we see that there exists a

constant C = C(n) > 0 such that, for any R ∈ (0, 1) and t ∈ (0, R2),

sup
Bgϵ (0,2R/3)

|∇uϵ |2gϵ
≤ C

(
1

R2
+ 1

t

)
(oscR uϵ)

2, (4-5)

sup
Bgϵ (0,2R/3)

|1gϵ
uϵ | = sup

Bgϵ (0,2R/3)

∣∣∣∣
∂uϵ

∂t

∣∣∣∣ ≤ C

(
1

R2
+ 1

t

)
oscR uϵ, (4-6)

where oscR uϵ := oscBgϵ (0,R)×(0,R2) uϵ is the oscillation of uϵ in the cylinder Bgϵ
(0, R)× (0, R2). Replac-

ing uϵ by uϵ − inf uϵ , we may assume uϵ > 0 and define fϵ = log uϵ . Then we have

∂ fϵ

∂t
= 1gϵ

fϵ + |∇ fϵ|2.

Let ϕ(x) = ϕ(r(x)/R), where ϕ is a cut-off function equal to 1 on
[
0, 3

5

]
and 0 on

[
2
3
, ∞

)
satisfying the

inequalities |ϕ′′| ≤ 10 and (ϕ′)2 ≤ 10ϕ. Let r(x) be the distance function under gϵ to the center 0.

Lemma 4.2. There exists a constant C = C(n) > 0 such that, for any small ϵ > 0,

sup
Bgϵ (0,3R/5)

|1i uϵ | ≤ C

(
1

t
+ 1

R2

)
oscR uϵ for all t ∈ (0, R2),

where we write 1i uϵ := (|zi |2 + ϵ)1−βi (∂2uϵ/∂zi∂z ī ) for i = 1, . . . , p.
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Proof. We only prove the case when i = 1. We define F := tϕ(−11 fϵ − 2 ḟϵ), and we calculate
(

∂

∂t
− 1gϵ

)
(−11 fϵ − 2 ḟϵ) = −|∇2∇ fϵ |2 − |∇1∇ fϵ |2 − 2 Re⟨∇ fϵ, ∇(−11 fϵ − 2 ḟϵ)⟩ − R11̄ j k̄ fϵ, j̄ fϵ,k

≤ −(−11 fϵ)
2 − 2 Re⟨∇ fϵ, ∇(−11 fϵ − 2 ḟϵ)⟩.

F achieves its maximum at a point (p0, t0), where we may assume F(p0, t0) > 0; otherwise we are

already done. In particular, p0 ∈ Bgϵ

(
0, 2

3
r
)

by the definition of ϕ and t0 > 0. Then at (p0, t0), we have

0 ≤
(

∂

∂t
− 1gϵ

)
F

= F

t0
+ t0ϕ

(
∂

∂t
− 1gϵ

)
(−11 fϵ − 2 ḟϵ) − F

ϕ
1gϵ

ϕ − 2t0 Re

〈
∇ϕ, ∇

(
F

t0ϕ

)〉

≤ F

t0
+ t0ϕ

(
−(−11 fϵ)

2 − 2
F

t0ϕ2
Re⟨∇ fϵ, ∇ϕ⟩

)
+ C

F

R2ϕ
(ϕ′ + ϕ′′) + 2

F

R2ϕ2
(ϕ′)2, (4-7)

where we use the Laplacian comparison and the fact that ∇F = 0 at (p0, t0). The second term on the

right-hand side satisfies (we write F̃ := −11 fϵ − 2 ḟϵ for convenience of notation)

t0ϕ

(
−(−11 fϵ)

2 − 2
F

t0ϕ2
Re⟨∇ fϵ, ∇ϕ⟩

)
≤ t0ϕ

(
−F̃2 − 4F̃ ḟϵ − 4( ḟϵ)

2 + 2F̃

ϕ

|∇ fϵ ||ϕ′|
R

)

≤ t0ϕ

(
−F̃2 − 4F̃ ḟϵ + 2F̃ |∇ fϵ|2 + F̃ |ϕ′|2

2R2ϕ2

)

≤ t0ϕ

(
−F̃2 + F̃ |ϕ′|2

2R2ϕ2
+ C

F̃

t0
+ C

F̃

R2

)
(by Lemma 4.1)

= − F2

t0ϕ
+ C

F

2R2ϕ
+ C

F

t0
+ C

F

R2
.

Inserting this into (4-7), we get, for some constant C = C(n) > 0, at (p0, t0),

−F2 + CϕF + t0ϕF

R2
+ Ct0

F

R2
≥ 0,

from which we obtain F(p0, t0) ≤ Ct0/R2 + C . By the choice of (p0, t0), we can see that

sup
Bgϵ (0,R/2)

(−11 fϵ − 2 ḟϵ) ≤ C

(
1

R2
+ 1

t

)
for all t ∈ (0, R2),

which implies that, on Bgϵ

(
0, 3

5
R
)
× (0, R2),

−11uϵ ≤ u̇ϵ + C

(
1

t
+ 1

R2

)
uϵ . (4-8)

Applying (4-8) to the function sup uϵ − uϵ , we obtain, on Bgϵ

(
0, 3

5
R
)
× (0, R2),

|11uϵ | ≤ |u̇ϵ | + C

(
1

t
+ 1

R2

)
oscR uϵ ≤ C

(
1

t
+ 1

R2

)
oscR uϵ

by (4-6). Thus we finish the proof of the lemma. □
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Lemma 4.3. There exists a constant C = C(n) > 0 such that

sup
i ̸= j

sup
Bgϵ (0,R/2)

(|∇i∇ j uϵ | + |∇i∇ j uϵ |) ≤ C

(
1

t
+ 1

R2

)
oscR uϵ

for all t ∈ (0, R2). Recall, here |∇i∇ j uϵ |2 = ∇i∇ j uϵ∇ī∇ j̄ uϵgi ī
ϵ g

j j̄
ϵ (no summation over i, j is taken).

Proof. We only prove the estimate for |∇1∇2uϵ |. The other estimates are similar, so we omit their proofs.

By calculations similar to those used to derive (3-27), we have
(

∂

∂t
−1gϵ

)
|∇1∇2 fϵ | ≤ 2 Re⟨∇ fϵ, ∇|∇1∇2 fϵ |⟩+

∑

k

(|∇1∇k fϵ ||∇2∇k̄ fϵ |+ |∇2∇k fϵ ||∇1∇k̄ fϵ|), (4-9)

and similar to (3-20),
(

∂

∂t
− 1gϵ

)
(−11 fϵ − 12 fϵ) ≤ 2 Re⟨∇ fϵ, ∇(−11 fϵ − 12 fϵ)⟩

−
∑

k

(|∇1∇k fϵ |2 + |∇1∇k̄ fϵ|2 + |∇2∇k fϵ|2 + |∇2∇k̄ fϵ |2). (4-10)

Combining (4-10), (4-9) and the Cauchy±Schwarz inequality, we get
(

∂

∂t
−1gϵ

)
(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))

≤ 2Re⟨∇ fϵ,∇(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))⟩−
∑

k

(|∇1∇k fϵ |2+|∇1∇k̄ fϵ |2+|∇2∇k fϵ|2+|∇2∇k̄ fϵ |2)

≤ 2Re⟨∇ fϵ,∇(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))⟩− 1
10

(|∇1∇2 fϵ |+2(−11 fϵ−12 fϵ))
2.

We define a cut-off function η similar to ϕ in the proof of Lemma 4.2 such that η = 1 on Bgϵ

(
0, 1

2
R
)

and η vanishes outside Bgϵ

(
0, 3

5
R
)
. We write

G = tη(|∇1∇2 fϵ | + 2(−11 fϵ − 12 fϵ) − 2 ḟϵ).

Like we did for F in the proof of Lemma 4.2, we argue similarly that at the maximum point (p0, t0) of G,

for which we assume G(p0, t0) > 0,

0 ≤
(

∂

∂t
− 1gϵ

)
G ≤ G

t0
− G2

t0η
+ C

G

R2η
+ C

G

t0
+ C

G

R2
+ C

G

R2

η′ + η′′

η
+ 2G

R2η2
(η′)2

≤ 1

t0η

(
−G2 + CηG + t0ηG

R2
+ Ct0

G

R2

)
,

so it follows that G(p0, t0) ≤ C(1 + t0/R2). Therefore by the definition of G, on Bgϵ

(
0, 1

2
R
)
× (0, R2),

|∇1∇2 fϵ | + 2(−11 fϵ − 12 fϵ) − 2 ḟϵ ≤ C

(
1

R2
+ 1

t

)
,

and thus by Lemmas 4.1 and 4.2, we conclude that, on Bgϵ

(
0, 1

2
R
)
× (0, R2),

|∇1∇2uϵ | ≤ u̇ϵ + 2|11uϵ| + 2|12uϵ | +
|∇uϵ |2

uϵ

+ Cuϵ

(
1

R2
+ 1

t

)
≤ C

(
1

t
+ 1

R2

)
oscR uϵ,

as desired. □
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4A2. Existence of a solution u to (4-2). We will show the limit function of uϵ as ϵ → 0 solves (4-2).

Proposition 4.4. Given any R ∈ (0, 1) and any ϕ ∈ C
0(∂PQβ(0, R)), there exists a unique function

u ∈ C
2,1(Qβ(0, R)#) ∩ C0(Qβ(0, R)) solving (4-2). Moreover, there exists a constant C = C(n, β) > 0

such that, for any t ∈ (0, R2) we have (defining Bβ(r)# := Bβ(0, r)\S),

sup
Bβ (R/2)#

( p∑

j=1

|z j |2−2β j

∣∣∣∣
∂u

∂z j

∣∣∣∣
2

+ |D′u|2
)

≤ C

(
1

t
+ 1

R2

)
(oscR u)2, (4-11)

sup
Bβ (R/2)#

(∑

i ̸= j

(|∇i∇ j u|gβ
+ |∇i∇ j u|gβ

) +
∣∣∣∣
∂u

∂t

∣∣∣∣
)

≤ C

(
1

t
+ 1

R2

)
oscR u, (4-12)

sup
Bβ (R/2)#

( p∑

j=1

|∇gβ
1 j u| + |∇gβ

(D′)2u| +
∣∣∣∣∇gβ

∂u

∂t

∣∣∣∣
)

≤ C

(
1

t
+ 1

R2

)3/2

oscR u, (4-13)

where by abusing notation we write oscR u := oscBβ (0,R)×(0,R2) u.

Proof. Let uϵ be the C
2,1-solution to (4-4). The C

0-norm of uϵ follows from the maximum principle

(4-3).

To prove the higher-order estimates, for any fixed compact subset K ⋐ Bβ(0, R) and δ > 0, standard

parabolic Schauder theory yields uniform C
4+α,(4+α)/2-estimates of uϵ on (K\TδS) × (δ, R2] for any

α ∈ (0, 1). As ϵ → 0, uϵ converges in C
4+α,(4+α)/2(K\TδS ∩ (δ, R2]) to some function u which is also

C
4+α,(4+α)/2 in (K\TδS) × (δ, R2]. Letting δ → 0 and K → Bβ(0, R) and using a diagonal argument,

we can assume that

uϵ

C
4+α,(4+α)/2

loc (Bβ (0,R)#×(0,R2])
−−−−−−−−−−−−−−−−−→ u as ϵ → 0.

Letting ϵ → 0, estimate (4-11) follows from (4-5); (4-12) is a consequence of Lemma 4.3; and (4-13)

follows by applying the gradient estimate (4-5) to the 1gϵ
-harmonic functions 1 j uϵ , (D′)2uϵ and ∂uϵ/∂t ,

and then letting ϵ → 0.

The gradient estimate (4-11) implies that, for any compact K ⋐ Bβ(0, R),

sup
K\S j

∣∣∣∣
∂u

∂z j

∣∣∣∣ ≤ C(n, K , β)(oscR u)2

t
|z j |β j −1 for all t ∈ (0, R2).

From this, for any t ∈ (0, R2), we see that u( · , t) can be continuously extended to S, and thus we have

u ∈ C0(Bβ(0, R) × (0, R2)).

It only remains to show u = ϕ on ∂PQβ(0, R). Fix an arbitrary point (q0, t0) ∈ ∂P(Qβ(0, R)).

Case 1: t0 = 0 and q0 ∈ Bβ(0, R). We define a barrier function φ1(z, t) = e−dCn (z,q0)
2−λt −1, where λ > 0

is to be determined. If λ ≥ 4n, we calculate
(

∂

∂t
− 1gϵ

)
φ1 = −λe−dCn (z,q0)

2−λt − (−1gϵ
d2

Cn + |∇d2
Cn |2gϵ

)e−dCn (z,q0)
2−λt

≤
(
−λ +

p∑

j=1

(|z j |2 + ϵ)1−β j + (n − p)

)
e−dCn (z,q0)

2−λt < 0.
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On the other hand, φ1(q0, t0)=0 and φ1(z, t)<0 for any (z, t) ̸= (q0, t0). For any ε>0, we can find a small

neighborhood V ∩∂P(Qβ(0, R)) of (q0, t0) such that, on V , we have ϕ(q0, t0)+ε >ϕ(z, t)>ϕ(q0, t0)−ε,

since ϕ is continuous. On ∂P(Qβ(0, R))\V , the function φ1 is bounded above by a negative constant.

Therefore the function φ−
1 := ϕ(q0, t0)− ε + Aφ1(z, t) ≤ ϕ(z, t) for any (z, t) ∈ ∂P(Qβ(0, R)) if A ≫ 1.

Therefore, by the maximum principle, φ−
1 (z, t)≤uϵ(z, t) for any (z, t)∈Qβ(0, R). Letting ϵ →0, we have

φ−
1 (z, t) ≤ u(z, t). Letting (z, t) → (q0, t0) yields ϕ(q0, t0)−ε ≤ lim inf(z,t)→(q0,t0) u(z, t). Setting ε → 0,

we conclude that ϕ(q0, t0) ≤ lim inf(z,t)→(q0,t0) u(z, t). Considering φ+
1 (z, t) = ϕ(q0, t0) + ε − Aφ1(z, t)

and using an argument similar to that above, we can get ϕ(q0, t0) ≥ lim sup(z,t)→(q0,t0)
u(z, t). Thus u

coincides with ϕ at (q0, t0).

Case 2: t0 > 0 and q0 ∈ ∂ Bβ(0, R) ∩ (S1 ∩S2). In this case z1(q0) = z2(q0) = 0. We define q ′
0 = −q0 ∈

∂ Bβ(0, R) to be the (Euclidean) opposite point to q0. For some small δ > 0, define

φ2(z, t) = dCn (z, q ′
0)

2 − 4R2 − δ(t − t0)
2.

Then φ2(q0, z0) = 0 and φ(z, t) < 0 for any (z, t) ̸= (q0, t0). We calculate ∂tφ2 − 1gϵ
φ2 ≤ 0. By an

argument similar to Case 1, replacing φ1 by φ2 we get lim(z,t)→(q0,t0) u(z, t) = ϕ(q0, t0).

Case 3: t0 > 0 and q0 ∈ ∂ Bβ(0, R)\(S1 ∩S2). As in Case 2 in the proof of Proposition 3.5, we define a

similar function G. Define φ3(z, t) = A(dβ(z, 0)2 − R2)+ G(z)− δ(t − t0)
2 for A ≫ 1 and small δ > 0.

Then we can calculate that ∂tφ3 ≤ 1gϵ
φ3, φ3(q0, t0) = 0 and φ3(z, t) < 0 for any other (z, t) ̸= (q0, t0).

Similar arguments to those in Case 1 proves that

lim
(z,t)→(q0,t0)

u(z, t) = ϕ(q0, t0).

Combining the three cases above, we obtain that u coincides with ϕ on ∂PQβ(0, R). Thus the Dirichlet

problem (4-2) admits a unique solution u ∈ C
0(Qβ(0, R)) ∩ C

2,1(Qβ(0, R)#). □

Corollary 4.5. Given any functions f ∈ C
α,α/2

β (Qβ) and ϕ ∈ C
0(∂PQβ), there exists a unique solution

v ∈ C
2,1(Q#

β) ∩ C
0(Qβ) to the Dirichlet problem

∂v

∂t
= 1gβ

v + f in Qβ and v = ϕ on ∂PQβ . (4-14)

Proof. Let vϵ ∈ C
2+α,(2+α)/2(Qβ) ∩ C

0(Qβ) be the unique solution to the equations

∂vϵ

∂t
= 1gϵ

vϵ + f in Qβ and vϵ = ϕ on ∂PQβ .

For any compact subset K ⋐ Bβ(0, 1) and δ ∈ (0, 1), the standard Schauder estimates for parabolic

equations provide uniform C
2+α,(2+α)/2-estimates for vϵ on K\TδS × (δ2, 1). Then vϵ → v for some

v ∈ C
2+α,(2+α)/2(K\TδS × (δ2, 1)). Taking δ → 0 and K → Bβ(0, 1) and using a diagonal argument, we

get that vϵ converges in C
2+α,(2+α)/2

loc (Bβ\S × (0, 1)) to v and v satisfies the equation ∂v/∂t = 1gβ
v + f

on Bβ\S × (0, 1).

It only remains to show v ∈ C
0(Qβ) and v = ϕ on ∂PQβ . The same proof as in Cases 1, 2 and 3

in Proposition 4.4 yields that v must coincide with ϕ on ∂PQβ , since we can always choose A > 1

large enough that (for example in Case 1) ∂φ−
1 /∂t − 1gϵ

φ−
1 ≤ infQβ

f ≤ ∂vϵ/∂t − 1gϵ
vϵ . To see
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the continuity of v in Qβ , because of the Sobolev inequality (3-42) for metric spaces (Bβ, gϵ) and by

the proof of the standard De Giorgi±Nash±Moser theory for parabolic equations, we conclude that,

for any p ∈ S and t0 ∈ (0, 1), there exists a small number R0 = R0(p, t0) such that, on the cylinder

Q̃R0
:= Bβ(p, R0) × (t0 − R2

0, t0), we have oscQ̃r
vϵ ≤ Crα′

for any r ∈ (0, R0) and some α′ ∈ (0, 1).

Therefore oscQ̃r
v ≤ Crα′

and v is continuous at (p, t0), as desired.

The uniqueness of the solution to (4-14) follows from the maximum principle. □

Remark 4.6. Corollary 4.5 is not needed in the proof of Theorem 1.7. So by Theorem 1.7, the solution u

to (4-14) is in C
2+α,(2+α)/2

β (Qβ) ∩ C
0(Qβ).

4B. Sketched proof of Theorem 1.7. With Proposition 4.4, we can prove the Schauder estimates for the

solution u ∈ C
0(Qβ) ∩ C

2,1(Q#
β) to (4-1) for a Dini-continuous function f by making use of almost the

same arguments as in the proof of Theorem 1.2. We will not provide the full details and only point out

the main differences. For any given points Q p = (p, tp), Qq = (q, tq) ∈
(
Bβ

(
0, 1

2

)
\S

)
× (t̂, 1), to define

the approximating functions uk as in (3-44), we define uk in this case as the solution to the heat equation

∂uk

∂t
= 1gβ

uk + f (Q p) in B̂k(p) × (tp − t̂ · τ 2k, tp], uk = u on ∂P(B̂k(p) × (tp − t̂ · τ 2k, tp]),

where B̂k(p) is defined in (3-48). We can now apply the estimates in Proposition 4.4 to the functions uk

or uk − uk−1, instead of those in Lemmas 3.3 and 3.4 as we did in Sections 3B, 3C and 3D, to prove the

Schauder estimates for u. Thus we finish the proof of Theorem 1.7. □

4C. Interior Schauder estimate for nonflat conical Kähler metrics. Let g =
√

−1g j k̄(z, t) dz j ∧ dzk̄ be

a C
α,α/2

β conical Kähler metric on Qβ with conical singularity along S; that is, g( · , t) is a C
0,α
β conical

Kähler metric (from Section 3E) for any t ∈ [0, 1], and the coefficients of g in the basis {ϵ j ∧ ϵ̄k , . . . } are
1
2
α-Hölder continuous in t ∈ [0, 1]. Suppose u ∈ C

2+α,(2+α)/2

β (Qβ) satisfies the equation

∂u

∂t
= 1gu + f in Qβ (4-15)

for some f ∈ C
α,α/2(Qβ).

Proposition 4.7. There exists a constant C = C(n, β, α, g) such that

∥u∥∗
C

2+α,(2+α)/2

β
(Qβ )

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥(2)

C
α,α/2

β
(Qβ )

).

Proof. The proof is parallel to that of Proposition 3.32. Given any two points Px = (x, tx), Py = (y, tx)∈Qβ ,

we may assume dPx
= min{dPx

, dPy
} > 0, where dPx

:= dP,β(Px , ∂PQβ) is the parabolic distance of Px to

the parabolic boundary ∂PQβ . Let µ∈
(
0, 1

4

)
be a positive number to be determined later. Define d :=µdPx

,

Q := Bβ(x, d)× (tx − d2, tx ] the ªparabolic ballº centered at Px , and 1
2
Q := Bβ

(
x, 1

2
d
)
×

(
tx − 1

4
d2, tx

]
.

Case 1: dP,β(Px , Py) < 1
2
d . In this case we always have Py ∈ 1

2
Q.

Case 1a: Bβ(x, d) ∩ S = ∅. As in the proof of Proposition 3.32, we can introduce smooth complex

coordinates {w1, w2, z3, . . . , zn} on Bβ(x, d) under which gβ becomes the standard Euclidean metric and

the components of g are C
α,α/2 in the usual sense on Q. The leading coefficients and constant term f
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in (4-15) are both C
α,α/2 in the usual sense, so we apply the standard parabolic Schauder estimates (see

Theorem 4.9 in [27]) to get that there exists some constant C = C(n, β, α, g) independent of Q such that

[u]∗
C 2+α,(2+α)/2(Q)

≤ C(∥u∥C 0(Q) + ∥ f ∥(2)

C α,α/2(Q)
). (4-16)

Let D denote the ordinary first-order operators in the coordinates {w1, w2, z3, . . . , zn}. We calculate

|T u(Px) − T u(Py)| ≤ |D2u(Px) − D2u(Py)| +
dP,β(Px , Py)

d
(|D2u(Px)| + |D2u(Py)|)

≤ 4dP,β(Px , Py)
α

d2+α
[u]∗

C 2+α,(2+α)/2(Q)
+ 4dP,β(Px , Py)

d3
[u]∗

C 2,1(Q)

≤ 8dP,β(Px , Py)
α

d2+α
[u]∗

C 2+α,(2+α)/2(Q)
+ C

dP,β(Px , Py)
α

d2+α
∥u∥C 0(Q)

and ∣∣∣∣
∂u

∂t
(Px) − ∂u

∂t
(Py)

∣∣∣∣ ≤ 4dP,β(Px , Py)
α

d2+α
[u]∗

C 2+α,(2+α)/2(Q)
.

Recall T denotes the operators in T and ∂/∂t ; then by (4-16) it follows that

d2+α
Px

|T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ C

µ2+α
∥ f ∥(2)

C
α,α/2

β
(Q)

+ C

µ2+α
∥u∥C 0(Q). (4-17)

Case 1b: Bβ(x, d)∩S ̸=∅. Let x̂ ∈S be the projection of x onto S and P̂x = (x̂, tx) be the corresponding

space-time point. Define Q̂ := Bβ(x̂, 2d)× (tx − 4d2, tx ]. As in Case 1b in the proof of Proposition 3.32,

we may choose suitable enough complex coordinates that gϵ j ϵ̄k
(P̂x) = δ jk and, for j, k ≥ p + 1, we have

g j k̄(P̂x) = δ jk and the cross terms in the expansion of g in (3-114) vanish at P̂x . Thus (4-15) can be

rewritten as

∂u

∂t
= 1gβ

u + η ·
√

−1∂∂̄u + f =: 1gβ
u + f̃ , u ∈ C

0(Q̂) ∩ C
2,1(Q̂#),

for some (1, 1)-form η as in the proof of Proposition 3.32. From the rescaled version of Theorem 1.7 we

conclude that

d2+α |T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ C(∥u∥
C 0(Q̂) + ∥ f̃ ∥(2)

C
α,α/2

β
(Q̂)

).

Hence

d2+α
Px

|T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ C

µ2+α
(∥u∥

C 0(Q̂) + ∥ f̃ ∥(2)

C
α,α/2

β
(Q̂)

). (4-18)

Case 2: dP,β(Px , Py) ≥ 1
2
d. Here we calculate (recall Qβ := Bβ(0, 1) × (0, 1])

d2+α
Px

|T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ 4d2+α
Px

|T u|(Px) + |T u|(Py)

dα
≤ 8

µα
[u]∗

C
2,1
β

(Qβ )
. (4-19)

Combining (4-17)±(4-19), we obtain

d2+α
Px

|T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ 8

µα
[u]∗

C
2,1
β

(Qβ )
+ C

µ2+α
(∥u∥

C 0(Q̂) + ∥ f̃ ∥(2)

C
α,α/2

β
(Q̂)

)

+ C

µ2+α
∥ f ∥(2)

C
α,α/2

β
(Q)

+ C

µ2+α
∥u∥C 0(Q).
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Observe that, for any P ∈ Q or P ∈ Q̂, we have dP,β(P, ∂PQβ) ≥ (1 − 2µ)dPx
. Then it follows from

the definition that

∥ f ∥(2)

C
α,α/2

β
(Q)

≤ Cµ2∥ f ∥(2)

C 0(Qβ )
+ Cµ2+α[ f ](2)

C
α,α/2

β
(Qβ )

≤ Cµ2∥ f ∥(2)

C
α,α/2

β
(Qβ )

.

We calculate

∥ f̃ ∥(2)

C
α,α/2

β
(Q̂)

≤ ∥η∥(0)

C
α,α/2

β
(Q̂)

∥T u∥(2)

C
α,α/2

β
(Q̂)

+ ∥ f ∥(2)

C
α,α/2

β
(Q̂)

≤ C1[g]∗
C

α,α/2

β
(Qβ )

µα(µ2[u]∗
C

2,1
β

(Qβ )
+ µ2+α[u]∗

C
2+α,(2+α)/2

β
(Qβ )

) + µ2∥ f ∥(2)

C
α,α/2

β
(Qβ )

≤ C1[g]∗
C

α,α/2

β
(Qβ )

µα(C(µ)[u]∗
C

2,1
β

(Qβ )
+ 2µ2+α[u]∗

C
2+α,(2+α)/2

β
(Qβ )

) + µ2∥ f ∥(2)

C
α,α/2

β
(Qβ )

,

where in the last inequality we use the interpolation inequality, by which we also have

8

µα
[u]∗

C
2,1
β

(Qβ )
≤ µα[u]∗

C
2+α,(2+α)/2

β
(Qβ )

+ C(µ)∥u∥C 0(Qβ ).

If µ is chosen small enough that µα(2C1[g]∗
C

α,α/2

β
(Qβ )

+ 1) < 1
2
, combining the above inequalities yields

d2+α
Px

|T u(Px) − T u(Py)|
dP,β(Px , Py)α

≤ 1
2
[u]∗

C
2+α,(2+α)/2

β
(Qβ )

+ C(µ)(∥u∥C 0(Qβ ) + ∥ f ∥(2)

C
α,α/2

β
(Qβ )

).

Taking the supremum over all Px ̸= Py ∈ Qβ , we obtain

[u]∗
C

2+α,(2+α)/2

β
(Qβ )

≤ C(∥u∥C 0(Qβ ) + ∥ f ∥(2)

C
α,α/2

β
(Qβ )

).

The proposition is proved by invoking the interpolation inequalities. □

Remark 4.8. It follows from the proof that the estimates in Proposition 4.7 also hold on Qβ(p, R) :=
Bβ(p, R) × (0, R2) ⊂ Qβ , i.e., the cylinder whose spatial center p may not lie in S.

It is easy to derive the following local Schauder estimate for C
2+α,(2+α)/2

β -solutions to (4-15) from

Proposition 4.7.

Corollary 4.9. Let K ⋐ Bβ(0, 1) be a compact subset and ε0 ∈ (0, 1) be a given number. With the same

assumptions as in Proposition 4.7, there exists a constant C = C(n, β, α, g, K , ε0) > 0 such that

∥u∥C 2+α,(2+α)/2(K×[ε0,1]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2

β
(Qβ )

).

With the interior Schauder estimates in Proposition 4.7, we can show the existence of C
2+α,(2+α)/2

β (Qβ)-

solutions to the Dirichlet problem

∂u

∂t
= 1gu + f in Qβ and u = ϕ on ∂PQβ (4-20)

for any given f ∈ C
α,α/2

β (Qβ) and ϕ ∈ C
0(∂PQβ). We first show the existence of solutions to (4-20) in

the case ϕ ≡ 0.



816 BIN GUO AND JIAN SONG

Lemma 4.10. Let σ ∈ (0, 1) be given and u ∈ C
2+α,(2+α)/2

β (Qβ) solve (4-20), with ∥u∥(−σ)

C
0(Qβ )

< ∞ and

∥ f ∥(2−σ)

C
α,α/2

β
(Qβ )

< ∞. Then there is a constant C = C(n, α,β, g, σ ) > 0 such that

∥u∥(−σ)

C
2+α,(2+α)/2

β
(Qβ )

≤ C(∥u∥(−σ)

C 0(Qβ )
+ ∥ f ∥(2−σ)

C
α,α/2

β
(Qβ )

).

Proof. The lemma follows from the definitions of the norms and the estimates in Proposition 4.7. □

Lemma 4.11. Suppose u ∈ C
2,1
β (Qβ)∩C

0(Qβ) satisfies ∂u/∂t = 1gu + f and u ≡ 0 on ∂PQβ . For any

σ ∈ (0, 1), there exists a constant C = C(n, β, g, σ ) > 0 such that

∥u∥(−σ)

C 0(Qβ )
= sup

Px∈Qβ

d−σ
Px

|u(Px)| ≤ C sup
Px∈Qβ

d2−σ
Px

| f (Px)| = C∥ f ∥(2−σ)

C 0(Qβ )
,

where dPx
= dP,β(Px , ∂PQβ) is the parabolic distance of Px to the parabolic boundary ∂PQβ .

Proof. We write N := ∥ f ∥(2−σ)

C0(Qβ )
< ∞ and Px = (x, tx). Define functions

w1(Px) = (1 − dβ(x)2)σ and w2(Px) = tσ/2
x ,

where dβ(x) = dβ(x, 0) is the gβ-distance between x and 0. Observe that dPx
= min{1 − dβ(x), t

1/2
x } by

definition. By a straightforward calculation there is a constant c0 > 0 such that

(
∂

∂t
− 1g

)
w1 ≥ c0(1 − dβ(x))σ−2 and

(
∂

∂t
− 1g

)
w2 ≥ c0(t

1/2
x )σ−2.

By the maximum principle we get

|u(Px)| ≤ Nc−1
0 (w1(Px) + w2(Px)) for all Px ∈ Qβ . (4-21)

We take the decomposition of Qβ into different regions, Qβ = �1 ∪ �2, where

�1 := {Px ∈ Qβ | t1/2
x > 1 − dβ(x)},

�2 := {Px ∈ Qβ | t1/2
x ≤ 1 − dβ(x)}.

Inequality (4-21) implies that, on the parabolic boundaries ∂P�1 and ∂P�2, we have |u(Px)| ≤ 2Nc−1
0 dσ

Px
.

On �1 we have (∂/∂t − 1g)(2Nc−1
0 w1 ± u) ≥ 0 and 2Nc−1

0 w1 ± u ≥ 0 on ∂P�1, so the maximum

principle implies that 2Nc−1
0 w1 ± u ≥ 0 in �1, i.e., |u(Px)| ≤ 2Nc−1

0 dσ
Px

in �1. Similarly we also have

2Nc−1
0 w2 ± u ≥ 0 in �2, and thus |u(Px)| ≤ 2Nc−1

0 dσ
Px

in �2. In conclusion, we get

|u(Px)| ≤ 2c−1
0 Ndσ

Px
for all Px ∈ Qβ . □

Proposition 4.12. If ϕ ≡ 0, equation (4-20) admits a unique solution u ∈ C
2+α,(2+α)/2

β (Qβ) ∩ C
0(Qβ)

for any f ∈ C
α,α/2

β (Qβ).

Proof. Uniqueness follows from the maximum principle, so it suffices to show existence. We will use

the continuity method. Define a continuous family of linear operators as follows: for s ∈ [0, 1], let

Ls := s(∂/∂t − 1g) + (1 − s)(∂/∂t − 1gβ
). It can been seen that Ls = ∂/∂t − 1gs

for some conical



SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 817

Kähler metric gs which is uniformly equivalent to gβ and has uniform C
α,α/2

β -estimate. So the interior

Schauder estimates holds also for Ls . Fix σ ∈ (0, 1). Define

B1 := {u ∈ C
2+α,(2+α)/2

β (Qβ) | ∥u∥(−σ)

C
2+α,(2+α)/2

β
(Qβ )

< ∞},

B2 := { f ∈ C
α,α/2

β (Qβ) | ∥ f ∥(2−σ)

C
α,α/2

β
(Qβ )

< ∞}.

Observe that any u ∈ B1 is continuous in Qβ and vanishes on ∂PQβ . Ls defines a continuous family of

linear operators from B1 to B2. By Lemmas 4.10 and 4.11 we have

∥u∥B1
≤ C(∥u∥(−σ)

C 0(Qβ )
+ ∥Lsu∥B2

) ≤ C∥Lsu∥B2
for all s ∈ [0, 1] and for all u ∈ B1.

By Corollary 4.5 and Remark 4.6, L0 is invertible, thus by Theorem 5.2 in [18], L1 is also invertible. □

Corollary 4.13. For any ϕ ∈ C
0(∂PQβ) and f ∈ C

α,α/2

β (Qβ), equation (4-20) admits a unique solution

u ∈ C
2+α,(2+α)/2

β (Qβ) ∩ C
0(Qβ).

Proof. The proof is identical to that of Corollary 3.39 by an approximation argument. We may assume

ϕ ∈ C
0(Qβ) and choose a sequence ϕk ∈ C

2+α,(2+α)/2

β (Qβ) which converges uniformly to ϕ on Qβ . The

equations

∂vk

∂t
= 1gvk + f − 1gϕk and vk ≡ 0 on ∂PQβ

admit a unique C
2+α,(2+α)/2

β -solution by Proposition 4.12. The interior Schauder estimates in Corollary 4.9

imply that uk := vk + ϕk converges in C
2+α,(α+2)/2

β,loc to some function u in C
2+α,(2+α)/2

β (Qβ) which

solves (4-20). The C
0-convergence uk → u is uniform on Qβ by the maximum principle, so u = ϕ

on ∂PQβ , as desired. □

We recall the definition of weak solutions and refer to Section 7.1 in [17] for the notations.

Definition 4.14. We say a function u on Qβ is a weak solution to the equation ∂u/∂t = 1gu + f if:

(1) u ∈ L2(0, 1; H 1(Bβ)) and ∂u/∂t ∈ L2(0, 1; H−1(Bβ)).

(2) For any v ∈ H 1
0 (Bβ) and t ∈ (0, 1),

∫

Bβ

∂u(x, t)

∂t
v(x)ωn

g = −
∫

Bβ

⟨∇u(x, t), ∇v(x)⟩gω
n
g +

∫

Bβ

f (x, t)v(x)ωn
g.

On can use the classical Galerkin approximations to construct a weak solution to ∂u/∂t = 1gu + f

(see Section 7.1.2 in [17]). If f has better regularity, so does the weak solution u.

Lemma 4.15. If f ∈ C
α,α/2

β (Qβ), then any weak solution to

∂u

∂t
= 1gu + f

belongs to C
2+α,(α+2)/2

β (Qβ).
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Proof. The Sobolev inequality holds for the metric g, so by the proof of the standard De Giorgi±Nash±

Moser theory for parabolic equations we have that u is in fact continuous on Qβ . Since the metric g is

smooth on Q#
β , the weak solution u is also a weak solution in Q#

β with the smooth background metric, so

we have that u ∈ C
2+α,(2+α)/2

loc (Q#
β) in the usual sense by the classical Schauder estimates. Thus it suffices

to consider points at S. We choose the worst such point 0 ∈ S only, since the case when centers are in

other components of S is even simpler. We fix the point P0 = (0, t0) ∈ Qβ with t0 > 0. Fix r ∈ (0,
√

t0).

By Corollary 4.13,
∂v

∂t
= 1v + f in Qβ(P0, r) := Bβ(0, r) × (t0 − r2, t0]

with boundary value v = u on ∂PQβ(P0, r) admits a unique solution v ∈ C
2+α,(α+2)/2β (Qβ (P0,r)). Then by

the maximum principle u = v in Qβ(P0, r). Thus u ∈ C
2+α,(α+2)/2

β (Qβ(P0, r)) too. Since the argument

also works at other space-time points in SP , we see that u ∈ C
2+α,(2+α)/2

β (Qβ), as desired. □

Corollary 4.16. Let (X, g, D) be as in Corollary 3.41, and let u0 ∈ C0(X) and f ∈ C
α,α/2

β (X × (0, 1])
be given functions. The weak solution u to the equation

∂u

∂t
= 1gu + f in X × (0, 1], u|t=0 = u0

always exists. Moreover, u ∈ C
2+α,(2+α)/2

β (X × (0, 1]), and there exists a constant C = C(n, g, β, α) > 0

such that

∥u∥
C

2+α,(2+α)/2

β
(X×(1/2,1]) ≤ C(∥u0∥C0(X) + ∥ f ∥

C
α,α/2

β
(X×(0,1])).

Proof. The weak equation can be constructed using the Galerkin approximations [17]. The uniqueness

is an easy consequence of the maximum principle. The regularity of u follows from the local results in

Lemma 4.15. The estimate follows from the maximum principle, a covering argument as in Corollary 3.41,

and the local estimates in Corollary 4.9. □

The interior estimate in Corollary 4.16 is not good enough to show the existence of solutions to

nonlinear partial differential equations since the estimate becomes worse as t approaches 0. We need

some global estimates in the whole time interval t ∈ [0, 1] if the initial value u0 has better regularity.

4D. Schauder estimate near t = 0. In this subsection, we will prove a Schauder estimate in the whole

time interval for the solutions to the heat equation when the initial value is 0 or has better regularity. We

consider the model case with the background metric gβ first, then we generalize the estimate to general

nonflat conical Kähler metrics.

4D1. The model case. In this subsection, we will assume the background metric is gβ . Let u be the

solution to the equation
∂u

∂t
= 1gβ

u + f in Qβ, u|t=0 ≡ 0, (4-22)

and u = ϕ ∈ C
0 on ∂ Bβ × (0, 1], where f ∈ C

α,α/2

β (Qβ). In the calculations below, we should have used

the smooth approximating solutions uϵ , where ∂t uϵ = 1gϵ
uϵ + f and uϵ = u on ∂PQβ . But by letting

ϵ → 0, the corresponding estimates also hold for u. So for simplicity, we will work directly on u.
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We fix 0 < ρ < R ≤ 1 and define BR := Bβ(0, R) and Q R := BR × [0, R2] in this section. Let u be

the solution to (4-22). We first have the following Caccioppoli inequalities.

Lemma 4.17. There exists a constant C = C(n) > 0 such that

sup
t∈[0,ρ2]

∫

Bρ

u2ωn
β +

∫∫

Qρ

|∇u|2gβ
ωn

β dt ≤ C

(
1

(R − ρ)2

∫∫

Q R

u2ωn
β dt + (R −ρ)2

∫∫

Q R

f 2ωn
β dt

)
(4-23)

and

sup
t∈[0,ρ2]

∫

Bρ

|∇u|2gβ
ωn

β +
∫∫

Qρ

(|∇∇u|2gβ
+ |∇∇u|2gβ

)ωn
β dt

≤ C

(
1

(R − ρ)2

∫∫

Q R

|∇u|2gβ
ωn

β dt +
∫∫

Q R

( f − fR)2ωn
β dt

)
, (4-24)

where fR := |Q R|−1
ωβ

∫∫
Q R

f ωn
β dt is the average of f over the cylinder Q R .

Proof. We fix a cut-off function η such that supp η ⊂ BR , η = 1 on Bρ , and |∇η|gβ
≤ 2/(R − ρ).

Multiplying both sides of (4-22) by η2u and integrating by parts, we get

d

dt

∫

BR

η2u2 =
∫

BR

2η2u1gβ
u + 2η2u f =

∫

BR

−2η2|∇u|2gβ
− 4uη⟨∇u, ∇η⟩gβ

+ 2η2u f

≤
∫

BR

−η2|∇u|2gβ
+ 4u2|∇η|2gβ

+ η2 u

(R − ρ)2
+ η2(R − ρ)2 f 2.

Equation (4-23) follows by integrating this inequality over t ∈ [0, s2] for all s ≤ ρ. To see (4-24), observe

that the Bochner formula yields

∂

∂t
|∇u|2 ≤ 1gβ

|∇u|2 − |∇∇u|2gβ
− |∇∇u|2gβ

− 2⟨∇u, ∇ f ⟩gβ
.

Multiplying both sides of this inequality by η2 and integrating by parts, we get

d

dt

∫

BR

η2|∇u|2 ≤
∫

BR

−2η⟨∇η, ∇|∇u|2⟩gβ
− η2|∇∇u|2 − η2|∇∇u|2 − 2η2⟨∇u, ∇ f ⟩

≤
∫

BR

4η|∇u||∇η|
∣∣∇|∇u|

∣∣ − η2|∇∇u|2 − η2|∇∇u|2

4η| f − fR||∇η||∇u| + 2η2| f − fR||1gβ
u|

≤
∫

BR

− 1
2
η2(|∇∇u|2 + |∇∇u|2) + 10η2|∇u|2|∇η|2 + 20η2( f − fR)2.

Then (4-24) follows by integrating this inequality over t ∈ [0, s2] for any s ∈ [0, ρ]. □

Combining (4-23) and (4-24) we conclude that

sup
t∈[0,R2/4]

∫

BR/2

|∇u|2 +
∫∫

Q R/2

|1gβ
u|2

≤ C

R4

∫∫

Q R

u2 + C R2n+2∥ f ∥2
C 0(Q R)

+ C R2n+2+2α([ f ]
C

α,α/2

β
(Q R)

)2. (4-25)

By a standard Moser iteration argument we get the following sub-mean-value inequality.
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Lemma 4.18. If in addition f ≡ 0, then there exists a constant C = C(n, β) > 0 such that

sup
Qρ

|u| ≤ C

(
1

(R − ρ)2n+2

∫∫

Q R

u2ωn
β dt

)1/2

.

Proof. For any p ≥ 1, multiplying both sides of the equation by η2u
p
+, where u+ = max{u, 0}, and

integrating by parts, we get

d

dt

∫

BR

η2

p + 1
u

p+1
+ =

∫

BR

−pη2u
p−1
+ |∇u+|2 − 2ηu

p
+⟨∇u+, ∇η⟩.

By the Cauchy±Schwarz inequality and integrating over t ∈ [0, R2], we conclude that

sup
s∈[0,R2]

∫

BR

η2u
p+1
+

∣∣∣∣
t=s

+
∫∫

Q R

|∇(ηu
(p+1)/2
+ )|2 ≤ C

(R − ρ)2

∫∫

Q R

u
p+1
+ ωn

β dt =: A.

By the Sobolev inequality we get

∫ R2

0

∫

BR

(η2u
p+1
+ )1+1/n ≤

∫ R2

0

(∫

BR

η2u
p+1
+

)1/n(∫

BR

(ηu
(p+1)/2
+ )2n/(n−1)

)(n−1)/n

≤ A1/nC

∫ R2

0

∫

BR

|∇(ηu
(p+1)/2
+ )|2 ≤ C A(n+1)/n.

If we write

H(p, ρ) =
(∫ ρ2

0

∫

Bρ

u
p
+

)1/p

,

the inequality above implies

H((p + 1)ξ, ρ) ≤ C1/(p+1)

(R − ρ)2/(p+1)
H(p + 1, R),

where ξ = (n+1)/n >1. Writing pk+1=2ξ k and ρk =ρ+(R−ρ)2−k , we then have H(pk+1+1, ρk+1)≤
H(pk + 1, ρk). Iterating this inequality we get

H(∞, ρ) = sup
Qρ

u+ ≤ C

(R − ρ)n+1

(∫∫

Q R

u2
+

)1/2

.

Similarly we get the same inequality for u− = max{−u, 0}. □

Corollary 4.19. If in addition f ≡ 0, then there is a constant C = C(n, β) > 0 such that
∫∫

Qρ

u2ωn
β dt ≤ C

(ρ

R

)2+2n
∫∫

Q R

u2ωn
β dt. (4-26)

Proof. When ρ ∈
[

1
2

R, R
]
, the inequality is trivial; when ρ ∈

[
0, 1

2
R
)
, it follows from Lemma 4.18. □

Lemma 4.20. If in addition f ≡ 0, then there is a constant C = C(n, β) > 0 such that, for any ρ ∈ (0, R),
∫∫

Qρ

u2ωn
β dt ≤ C

(ρ

R

)2n+4
∫∫

Q R

u2ωn
β dt.
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Proof. The inequality is trivial in the case ρ ∈
[

1
2

R, R
]
, so we assume ρ < 1

2
R. First we observe that 1βu

also satisfies the equations ∂t(1βu) = 1β(1βu) and (1βu)|t=0 ≡ 0, so (4-26) holds with u2 replaced

by (1βu)2, i.e., ∫∫

Qρ

(1βu)2ωn
β dt ≤ C

(ρ

R

)2+2n
∫∫

Q R

(1βu)2ωn
β dt.

Since u|t=0 = 0, we have u(x, t) =
∫ t

0
∂su(x, s) ds, and we calculate

∫∫

Qρ

u2 ≤ ρ4

∫∫

Qρ

∣∣∣∣
∂u

∂t

∣∣∣∣
2

= ρ4

∫∫

Qρ

(1βu)2 ≤ Cρ4
(ρ

R

)2n+2
∫∫

Q R/2

(1βu)2

≤ C
(ρ

R

)2n+6
∫∫

Q R

u2ωn
β dt (by (4-25)). □

Lemma 4.21. Let u be a solution to (4-22). There exists a constant C = C(n, β, α) > 0 such that

1

ρ2n+2+2α

∫∫

Qρ

(1βu)2 ≤ C

R2n+2+2α

∫∫

Q R

(1βu)2ωn
β dt + C([ f ]

C
α,α/2

β
(Q R)

)2.

Proof. Let u = u1 + u2, where

∂u1

∂t
= 1βu1 + fR in Q R, u1 = u on ∂P Q R,

and
∂u2

∂t
= 1βu2 + f − fR in Q R, u2 = 0 on ∂P Q R.

The function 1βu1 satisfies the assumptions of Lemma 4.20. Thus

∫∫

Qρ

(1βu1)
2ωn

β dt ≤ C
(ρ

R

)2n+4
∫∫

Q R

(1βu1)
2ωn

β dt.

Multiplying both sides of the equation for u2 by u̇2 = ∂u2/∂t and noting that u̇2 = 0 on ∂ BR × (0, R2),

we get ∫

BR

(u̇2)
2 =

∫

BR

u̇21βu2 + u̇2( f − fR) =
∫

BR

−2⟨∇u̇2, ∇u2⟩ + u̇( f − fR)

≤
∫

BR

− ∂

∂t
|∇u2|2 + 1

2
(u̇2)

2 + 2( f − fR)2.

Integrating over t ∈ [0, R2], we obtain

∫∫

Q R

(u̇2)
2 ≤ −2

∫

BR

|∇u2|2
∣∣∣∣
t=R2

+ 4

∫∫

Q R

( f − fR)2,

therefore
∫∫

Q R

(1βu2)
2 ≤ 2

∫∫

Q R

(u̇2)
2 + 2

∫∫

Q R

( f − fR)2 ≤ C R2n+2+2α([ f ]
C

α,α/2

β
(Q R)

)2.
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Then for ρ < R we have
∫∫

Qρ

(1βu)2 ≤ 2

∫∫

Qρ

(1βu1)
2 + 2

∫∫

Qρ

(1βu2)
2

≤ C
(ρ

R

)2n+4
∫∫

Q R

(1βu1)
2ωn

β dt + C R2n+2+2α([ f ]
C

α,α/2

β
(Q R)

)2.

The estimate is proved by an iteration lemma (see Lemma 3.4 in [22]). □

Lemma 4.22. Suppose u satisfies (4-22). There exists a constant C = C(n, β, α) > 0 such that, for any

ρ ∈
(
0, 1

2
R
)
, ∫∫

Qρ

(1βu − (1βu)ρ)2ωn
β dt ≤ C MRρ2n+2+2α,

where

MR := 1

R4+2α
∥u∥2

C 0(Q R)
+ 1

R2α
∥ f ∥2

C 0(Q R)
+ ([ f ]

C
α,α/2

β
(Q R)

)2.

Proof. From Lemma 4.21, we get

∫∫

Qρ

(1βu)2 ≤ Cρ2+2n+2α

(
1

R2n+2+2α

∫∫

Q2R/3

(1βu)2 + ([ f ]
C

α,α/2

β
(Q2R/3)

)2

)

≤ Cρ2+2n+2α

(
1

R2n+6+2α

∫∫

Q R

u2 + 1

R2α
∥ f ∥2

C0(Q R)
+ ([ f ]

C
α,α/2

β
(Q R)

)2

)
(by (4-25))

≤ Cρ2+2n+2α MR.

On the other hand, by the Hölder inequality,

(1βu)2
ρ = 1

|Qρ |2gβ

(∫∫

Qρ

(1βu)ωn
β dt

)2

≤ C

ρ2+2n

∫∫

Qρ

(1βu)2 ≤ C MRρ2α.

The lemma is proved by combining the two inequalities above. □

By Campanato’s lemma (see Theorem 3.1 in Chapter 3 of [22]), we get the following.

Corollary 4.23. There is a constant C = C(n, β, α) > 0 such that, for any x ∈ Bβ

(
0, 3

4

)
and R < 1

10
,

[1βu]
C

α,α/2

β
(Bβ (x,R/2)×[0,R2/4])

≤ C

(
1

R2+α
∥u∥C 0(Bβ (x,R)×[0,R2]) + 1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2

β
(Bβ (x,R)×[0,R2])

)
. (4-27)

Lemma 4.24. There exists a constant C = C(n, β, α) > 0 such that, for any x ∈ Bβ

(
0, 3

4

)
and R < 1

10
,

[T u]
C

α,α/2

β
(Bβ (x,R/2)×[0,R2/4]) +

[
∂u

∂t

]

C
α,α/2

β
(Bβ (x,R/2)×[0,R2/4])

≤ C

(
1

R2+α
∥u∥C 0(Bβ (x,R)×[0,R2]) + 1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2

β
(Bβ (x,R)×[0,R2])

)
. (4-28)
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Proof. It follows from (4-27) and the elliptic Schauder estimates in Theorem 1.2 by adjusting R slightly

that, for any t ∈
[
0, 1

4
R2

]
,

[T u( · , t)]
C

0,α
β

(Bβ (x,R/2))

≤ C

(
1

R2+α
∥u∥C 0(Bβ (x,R)×[0,R2]) + 1

Rα
∥ f ∥C 0(Bβ (x,R)×[0,R2]) + [ f ]

C
α,α/2

β
(Bβ (x,R)×[0,R2])

)
,

that is, in the spatial variables the estimate (4-28) holds. It only remains to show the Hölder continuity of

T u in the time-variable. For this, we fix any two times 0 ≤ t1 < t2 ≤ 1
4

R2 and denote r := 1
2

√
t2 − t1. For

any x0 ∈ Bβ

(
x, 1

4
R
)
, Bβ(x0, r) ⊂ Bβ

(
x, 1

2
R
)
. By (4-27) and the equation for u, it is not hard to see that

the inequality (4-27) holds when 1βu on the left-hand side is replaced by u̇ = ∂u/∂t . In particular,

|u̇(y, t) − u̇(y, t1)|
|t − t1|α/2

≤ AR for all y ∈ Bβ

(
x, 1

2
R
)
,

where AR is defined to be the constant on the right-hand side of (4-27). Integrating over t ∈ [t1, t2] we get

|u(y, t2) − u(y, t1) − u̇(y, t1)(t2 − t1)| ≤ C AR(t2 − t1)
1+α/2.

Thus, for any y ∈ Bβ(x0, r),

|u(y, t2) − u(y, t1) − u̇(x0, t1)(t2 − t1)|
≤ |u(y, t2) − u(y, t1) − u̇(y, t1)(t2 − t1)| + |u̇(x0, t1) − u̇(y, t1)|(t2 − t1)

≤ C AR(t2 − t1)
1+α/2 + ARrα(t2 − t1).

Write

ũ(y) := u(y, t2) − u(y, t1) − u̇(x0, t1)(t2 − t1),

which is a function on Bβ(x0, r). We have that the function f̃ := 1β ũ = 1βu( · , t2)−1βu( · , t1) satisfies

the inequalities ∥ f̃ ∥C0(Bβ (x0,r)) ≤ AR(t2 − t1)
α and [ f̃ ]

C
0,α
β

(Bβ (x0,r))
≤ AR by (4-27). It follows from the

rescaled version of Proposition 3.32 that

|T ũ|C0(Bβ (x0,r/2)) ≤ C(n, β, α)

(∥ũ∥C0(Bβ (x0,r))

r2
+∥ f̃ ∥C0(Bβ (x0,r))+rα[ f̃ ]C0,α(Bβ (x0,r))

)
≤ C(t2−t1)

α/2 AR.

Therefore, for any x0 ∈ Bβ

(
x, 1

4
R
)
,

|T u(x0, t2) − T u(x0, t1)|
|t2 − t1|α/2

≤ C AR.

It is then easy to see by the triangle inequality that (adjusting R slightly if necessary)

[T u]
C

α,α/2

β
(Bβ (x,R/2)×[0,R2/4]) ≤ C AR,

as desired. The estimate for u̇ follows from the equation u̇ = 1gu + f . □

Remark 4.25. By a simple parabolic rescaling of the metric and time, we see from (4-28) that, for any

0 < r < R < 1
10

,

[T u]
C

α,α/2

β
(Qr )

≤ C

( ∥u∥C 0(Q R)

(R − r)2+α
+

∥ f ∥C 0(Q R)

(R − r)α
+ [ f ]

C
α,α/2

β
(Q R)

)
. (4-29)
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4D2. The nonflat metric case. In this subsection, we will consider the case when the background metrics

are general nonflat C
α,α/2

β -conical Kähler metrics g = g(z, t). Suppose u ∈ C
2+α,(2+α)/2

β (Qβ) satisfies

the equation
∂u

∂t
= 1gu + f in Qβ, u|t=0 = 0, (4-30)

and u ∈ C
0(∂PQβ).

Proposition 4.26. There exists a constant C = C(n, β, α, g) > 0 such that

∥u∥
C

2+α,(2+α)/2

β
(Bβ (0,1/2)×[0,1/4]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2

β
(Qβ )

).

Proof. Choosing suitable complex coordinates at the origin x = 0, we may assume the components of g

in the basis {ϵ j ∧ ϵ̄k, . . . } satisfy gϵ j ϵ̄k
( · , 0) = δ jk and g j k̄( · , 0) = δ jk at the origin. As in the proof of

Proposition 4.7, we can write (4-30) as

∂u

∂t
= 1βu + η ·

√
−1∂∂̄u + f =: 1βu + f̂ ,

where η is given in the proof of Proposition 3.32. By (4-29) we get

[T u]
C

α,α/2

β
(Q̃r )

≤ C

( ∥u∥
C 0(Q̃ R)

(R − r)2+α
+ 1

(R − r)α
∥ f̂ ∥

C 0(Q̃ R) + [ f̂ ]
C

α,α/2

β
(Q̃ R)

)
,

where Q̃ R := Bβ(0, R) × [0, R2]. Observe that

1

(R − r)α
∥ f̂ ∥

C 0(Q̃ R) ≤ 1

(R − r)α
∥ f ∥

C 0(Q̃ R) + 1

(R − r)α
∥η∥

C 0(Q̃ R)∥T u∥C0(Q̃ R)

≤ 1

(R − r)α
∥ f ∥

C 0(Q̃ R) +
[η]

C
α,α/2

β
(Q̃ R)

Rα

(R − r)α
(ε[T u]

C
α,α/2

β
(Q̃ R)

+ C(ε)∥u∥
C 0(Q̃ R))

and

[ f̂ ]
C

α,α/2

β
(Q̃ R)

≤ [ f ]
C

α,α/2

β
(Q̃ R)

+ ∥η∥
C 0(Q̃ R)[T u]

C
α,α/2

β
(Q̃ R)

+ ∥T u∥
C 0(Q̃ R)[η]

C
α,α/2

β
(Q̃ R)

≤ [ f ]
C

α,α/2

β
(Q̃ R)

+ [η]
C

α,α/2

β
(Q̃ R)

Rα[T u]
C

α,α/2

β
(Q̃ R)

+ [η]
C

α,α/2

β
(Q̃ R)

(ε[T u]
C

α,α/2

β
(Q̃ R)

+ C(ε)∥u∥
C 0(Q̃ R)).

By choosing R0 = R0(n, β, α, g) > 0 small enough and suitable ε > 0, for any 0 < r < R < R0 < 1
10

, the

combination of the above inequalities yields

[T u]
C

α,α/2

β
(Q̃r )

≤ 1
2
[T u]

C
α,α/2

β
(Q̃ R)

+ C

( ∥u∥
C 0(Q̃ R)

(R − r)2+α
+ 1

(R − r)α
∥ f ∥

C 0(Q̃ R) + [ f ]
C

α,α/2

β
(Q̃ R)

)
.

By Lemma 4.27 below (setting φ(r) = [T u]
C

α,α/2

β
(Q̃r )

), we conclude that

[T u]
C

α,α/2

β
(Bβ (0,R0/2)×[0,R2

0/4]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥
C

α,α/2

β
(Qβ )

).

This is the desired estimate when the center of the ball is the worst possible. For the other balls Bβ(x, r)

with center x ∈ Bβ

(
0, 1

2

)
, we can repeat the above procedures and use the smooth coordinates w j = z

β j

j
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in case the ball is disjoint from S j . Finitely many such balls cover Bβ

(
0, 1

2

)
, so we get

[T u]
C

α,α/2

β
(Bβ (0,1/2)×[0,1/100]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2

β
(Qβ )

).

The proposition is proved by combining this inequality, the equation for u, interpolation inequalities, and

the interior Schauder estimates in Corollary 4.9. □

Lemma 4.27 [22, Lemma 4.3]. Let φ(t) ≥ 0 be bounded in [0, T ]. Suppose, for any 0 < t < s ≤ T ,

we have

φ(t) ≤ 1
2
φ(s) + A

(s − t)a
+ B

for some a > 0 and A, B > 0. Then it holds that, for any 0 < t < s ≤ T ,

φ(t) ≤ c(a)

(
A

(s − t)a
+ B

)
.

Corollary 4.28. Suppose u satisfies the equations

∂u

∂t
= 1gu + f in Qβ u|t=0 = u0 ∈ C

2,α
β (Bβ(0, 1)).

Then

∥u∥
C

2+α,(α+2)/2

β
(Bβ (0,1/2)×[0,1]) ≤ C(∥u∥C 0(Qβ ) + ∥ f ∥

C
α,α/2

β
(Qβ )

+ ∥u0∥C
2,α
β

(Bβ (0,1))
)

for some constant C = C(n, β, α, g) > 0.

Proof. We set û = u−u0 and f̂ = f −1gu0. û satisfies the conditions in Proposition 4.26, so the corollary

follows from Proposition 4.26 applied to û and triangle inequalities. □

Corollary 4.29. In addition to the assumptions in Corollary 4.16, we also assume that u0 ∈ C
2,α
β (X).

Then the weak solution to ∂u/∂t = 1gu + f with u|t=0 = u0 exists and is in C
2+α,(2+α)/2

β (X, ×[0, 1]).
Moreover, there is a C = C(n, β, α, g) > 0 such that

∥u∥
C

2+α,(2+α)/2

β
(X×[0,1]) ≤ C(∥ f ∥

C
α,α/2

β
(X×[0,1]) + ∥u0∥C

2,α
β

(X)
). (4-31)

Proof. Observe that by the maximum principle we have

∥u∥C 0(X×[0,1]) ≤ ∥ f ∥C 0(X×[0,1]) + ∥u0∥C0(X).

Then (4-31) follows from Corollary 4.28 and a covering argument as in the proof of Corollary 3.41. □

5. Conical Kähler±Ricci flow

Let X be a compact Kähler manifold and D =
∑

j D j be a divisor with simple normal crossings. Let ω0

be a fixed C
0,α′

β (X) conical Kähler metric with cone angle 2πβ along D and ω̂t be a family of C
α′,α′/2

β

conical metrics which are uniformly equivalent to ω0, with ω̂0 = ω0 and ∥ω̂∥
C

α′,α′/2

β
(X×[0,1]) ≤ C0. We

consider the complex Monge±Ampère equation



∂ϕ

∂t
= log

(
(ω̂t +

√
−1∂∂̄ϕ)n

ωn
0

)
+ f,

ϕ|t=0 = 0,

(5-1)
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where f ∈ C
α′,α′/2β (X×[0,1]) is a given function. We will use an inverse function theorem argument

from [4] which was outlined in [21] to show the short-time existence of the flow (5-1).

Theorem 5.1. There exists a small T = T (n, β, ω0, f, α, α′) > 0 such that (5-1) admits a unique solution

ϕ ∈ C
2+α,(2+α)/2

β (X × [0, T ]) for any α < α′.

Proof. The uniqueness of the solution follows from the maximum principle. We will break the proof of

short-time existence into three steps.

Step 1. Let u ∈ C
2+α′,(2+α′)/2

β (X × [0, 1]) be the solution to

{
∂u

∂t
= 1g0

u + f in X × [0, 1],
u|t=0 = 0.

Thanks to Corollary 4.29, such a u exists and satisfies the estimate (4-31). We fix ε > 0, so that, as long

as ∥φ∥C
2,α
β

(X) ≤ ε, we have that ω̂t,φ := ω̂t +
√

−1∂∂̄φ is equivalent to ω0, i.e.,

C−1
0 ω0 ≤ ω0,φ ≤ C0ω0 and ∥ω̂t,φ∥

C
α,α/2

β

≤ C0.

We claim that, for T1 > 0 small enough, ∥u∥C
2+α,(2+α)/2

β
(X×[0,T1]) ≤ ε. We first observe by (4-31) that

N := ∥u∥
C

2+α′,(α′+2)/2

β
(X×[0,1]) ≤ C∥ f ∥

C
α′,α′/2

β
(X×[0,1]).

It suffices to show that [u]C 2+α′,(α′+2)/2

β
(X×[0,T1]) is small, since the lower-order derivatives are small because

u|t=0 = 0. We calculate, for any t1, t2 ∈ [0, T1],
|T u(x, t1) − T u(x, t2)|

|t1 − t2|α/2
+ |u̇(x, t1) − u̇(x, t2)|

|t1 − t2|α/2
≤ N |t1 − t2|(α

′−α)/2 ≤ 1
4
ε

if N T
(α′−α)/2

1 < 1
4
ε. For any x, y ∈ X and t ∈ [0, T1],

|T u(x, t) − T u(y, t)|
dg0

(x, y)α
≤ N min

{
2T

α′/2

1

dg0
(x, y)α

, dg0
(x, y)α

′−α

}
≤ 1

2
ε.

The claim then follows from the triangle inequality.

We define a function

w(x, t) := ∂u

∂t
(x, t) − log

(
(ω̂t +

√
−1∂∂̄u)n

ωn
0

)
(x, t) − f (x, t) for all (x, t) ∈ X × [0, T1].

It is clear that w(x, 0) ≡ 0.

Step 2: We consider the small ball

B = {φ ∈ C
2+α,(2+α)/2

β (X × [0, T1]) | ∥φ∥C
2+α,(α+2)/2

β
≤ ε, φ( · , 0) = 0}

in the space C
2+α,(2+α)/2

β (X × [0, T1]). Then u|t∈[0,T1] ∈ B by the discussion in Step 1.

Define the differential map 9 : B → C
α,α/2

β (X × [0, T1]) by

9(φ) = ∂φ

∂t
− log

(
(ω̂t +

√
−1∂∂̄φ)n

ωn
0

)
− f.
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The map 9 is well defined and C1, where the differential D9φ at any φ ∈ B is given by

D9φ(v) = ∂v

∂t
− (ĝφ)i j̄vi j̄ = ∂v

∂t
− 1ω̂t,φ

v

for any

v ∈ TφB = {v ∈ C
2+α,(2+α)/2

β (X × [0, T1]) | v( · , 0) = 0},

where (ĝφ)i j̄ denotes the inverse of the metric ω̂t +
√

−1∂∂̄φ. As a linear map,

D9φ : TφB → C
α,α/2

β (X × [0, T1])

is injective by the maximum principle and surjective by Corollary 4.29. Thus D9φ is invertible at any φ ∈B.

In particular, D9u is invertible, and by the inverse function theorem, 9 :B → C
α,α/2

β (X ×[0, T1]) defines

a local diffeomorphism from a small neighborhood of u ∈ B to an open neighborhood of w = 9(u) in

C
α,α/2

β (X ×[0, T1]). This implies that, for any w̃ ∈ C
α,α/2

β (X ×[0, T1]) with ∥w − w̃∥C
α,α/2

β
(X×[0,T1]) < δ

for some small δ > 0, there exists a unique ϕ ∈ B such that 9(ϕ) = w̃.

Step 3. For a small T2 < T1 to be determined, we define a function

w̃(x, t) =
{

0, t ∈ [0, T2],
w(x, t − T2), t ∈ [T2, T1].

Since u ∈ C
2+α′,(2+α′)/2

β , we see that w ∈ C
α′,α′/2

β (X ×[0, T1]) with M := ∥w∥C
α′,α′/2

β
(X×[0,T1]) < ∞. We

claim that if T2 is small enough, then ∥w − w̃∥C
α,α/2

β
(X×[0,T1]) < δ. We write η = w − w̃. It is clear from

the fact that w( · , 0) = 0 that ∥η∥C 0 ≤ 1
2
δ if T2 is small enough.

Spatial directions: If t < T2 then

|η(x, t) − η(y, t)|
dg0

(x, y)α
= |w(x, t) − w(y, t)|

dg0
(x, y)α

≤ M min

{
2T

α′/2

2

dg0
(x, y)α

, dg0
(x, y)α

′−α

}
≤ 2MT

(α′−α)/2

2 .

If t ∈ [T2, T1] then

|η(x, t) − η(y, t)|
dg0

(x, y)α
= |w(x, t) − w(y, t) − w(x, t − T2) + w(y, t − T2)|

dg0
(x, y)α

≤ 2M min

{
T

α′/2

2

dg0
(x, y)α

, dg0
(x, y)α

′−α

}
≤ 2MT

(α′−α)/2

2 .

Time direction: If t, t ′ < T2 then

|η(x, t) − η(x, t ′)|
|t − t ′|α/2

= |w(x, t) − w(x, t ′)|
|t − t ′|α/2

≤ M |t − t ′|(α′−α)/2 ≤ MT
(α′−α)/2

2 .

If t, t ′ ∈ [T2, T1] then

|η(x, t) − η(x, t ′)|
|t − t ′|α/2

= |w(x, t) − w(x, t ′) − w(x, t − T2) + w(x, t ′ − T2)|
|t − t ′|α/2

≤ 2MT
(α′−α)/2

2 .
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If t < T2 ≤ t ′ ≤ T1 then

|η(x, t) − η(x, t ′)|
|t − t ′|α/2

= |w(x, t) − w(x, t ′) + w(x, t ′ − T2)|
|t − t ′|α/2

≤ 2MT
(α′−α)/2

2 .

Therefore, if we choose T2 > 0 small enough that 2MT
(α′−α)/2

2 < 1
4
δ, then we have

|η(x, t) − η(x, t ′)|
|t − t ′|α/2

+ |η(x, t) − η(y, t)|
dg0

(x, y)α
≤ 1

2
δ for all x ∈ X, t, t ′ ∈ [0, T1].

It then follows from the triangle inequality that

|η(x, t) − η(y, t ′)| ≤ |η(x, t) − η(y, t)| + |η(y, t) − η(y, t ′)|
≤ 1

2
δ(dg0

(x, y)α + |t − t ′|α/2) ≤ 1
2
δdP,g0

((x, t), (y, t ′))α.

In conclusion, ∥w̃ − w∥C
α,α/2

β
(X×[0,T1]) < δ, so by Step 2 we conclude that there exists a ϕ ∈ B such

that 9(ϕ) = w̃. Since w̃|t∈[0,T2] ≡ 0 by definition, ϕ|t∈[0,T2] satisfies (5-1) for t ∈ [0, T ], where T := T2.

This shows the short-time existence of the flow (5-1). □

Proof of Corollary 1.11. Recall that in (1-13) we wrote ωn
0 = �/

∏
j (|s j |2h j

)1−β j , where � is a smooth

volume form, s j and h j are holomorphic sections and hermitian metrics, respectively, of the line bundle

associated to the component D j . Choose a smooth reference form

χ =
√

−1∂∂̄ log � −
∑

j

(1 − β j )
√

−1∂∂̄ log h j .

Define the reference metrics ω̂t = ω0 + tχ which are C
α′,α′/2

β -conical and Kähler for small t > 0. Let ϕ be

the C
2+α,(2+α)/2

β -solution to (1-11) with f ≡ 0. Then it is straightforward to check that ωt = ω̂t +
√

−1∂∂̄ϕ

satisfies the conical Kähler±Ricci flow equation (1-12) and ω ∈ C
α,α/2

β (X ×[0, T ]) for some small T > 0.

The smoothness of ω in X\D × (0, T ] follows from the general smoothing properties of parabolic

equations; see [37]. Taking ∂/∂t on both sides of (1-11) we get

∂ϕ̇

∂t
= 1ωt

ϕ̇ + trωt
χ and ϕ̇|t=0 = 0.

By Corollary 4.29, ϕ̇ ∈ C
2+α,(2+α)/2

β (X × [0, T ]) since trωt
χ ∈ C

α,α/2

β (X × [0, T ]). Therefore the

normalized Ricci potential log(ωn
t /ωn

0) exists in C
2+α,(2+α)/2

β (X × [0, T ]). □
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