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SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, I1

BIN GUO AND JIAN SONG

We continue our work on the linear theory for equations with conical singularities. We derive interior
Schauder estimates for linear elliptic and parabolic equations with a background Kéhler metric of conical
singularities along a divisor of simple normal crossings. As an application, we prove the short-time
existence of the conical Kdhler—Ricci flow with conical singularities along a divisor with simple normal

crossings.
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1. Introduction

This is a continuation of our paper [20]. Regularity of solutions of complex Monge—Ampere equations is
a central problem in complex geometry. Complex Monge—Ampere equations with singular and degenerate
data can be applied to study compactness and moduli problems of canonical Kéhler metrics in Kédhler
geometry. In [43], Yau considered special cases of complex singular Monge—Ampere equations as
generalizations of his solution to the Calabi conjecture. Conical singularities along complex hypersurfaces
of a Kihler manifold are among the mildest singularities in Kéhler geometry, and they have been
extensively studied, especially in the case of Riemann surfaces [28; 41]. The study of such Kihler metrics
with conical singularities has many geometric applications, for example, the Chern number inequality
in various settings [38; 39]. Recently, Donaldson [14] initiated the program of studying analytic and
geometric properties of Kédhler metrics with conical singularities along a smooth complex hypersurface on
a Kéhler manifold. This is an essential step in the solution of the Yau—Tian—Donaldson conjecture relating
existence of Kéhler-Einstein metrics and algebraic K-stability on Fano manifolds [7; 8; 9; 40]. In [14],
the Schauder estimate for linear Laplace equations with the conical background metric is established using
classical potential theory. This is crucial for the openness of the continuity method to find a desirable
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(conical) Kdhler—Einstein metric. Donaldson’s Schauder estimate is generalized to the parabolic case [5]
with a similar classical approach. There is also an alternative approach for the conical Schauder estimates
using microlocal analysis [23]. Various global and local estimates and regularity are also derived in the
conical setting [1; 6; 11; 12; 13; 15; 19; 24; 29; 32; 44; 45].

The Schauder estimates play an important role in linear PDE theory. Apart from the classical potential
theory, various proofs have been established by different analytic techniques. In fact, the blow-up or
perturbation techniques developed in [36; 42] (also see [2; 3; 33; 34]) are much more flexible and sharper
than the classical method. The authors combined the perturbation method in [20] and geometric gradient
estimates to establish sharp Schauder estimates for Laplace equations and heat equations on C" with a
background flat Kéhler metric of conical singularities along the smooth hyperplane {z; = 0} and derived
explicit and optimal dependence on conical parameters.

In algebraic geometry, one often has to consider pairs (X, D) with X an algebraic variety of complex
dimension n and the boundary divisor D a complex hypersurface of X. After possible log resolution,
one can always assume the divisor D is a union of smooth hypersurfaces with simple normal crossings.
The suitable category of Kéhler metrics associated to (X, D) is the family of Kihler metrics on X with
conical singularities along D. In order to study canonical Kéhler metrics on pairs and related moduli
problems, we are obliged to study regularity and asymptotics for complex Monge—Ampere equation
with prescribed conical singularities of normal crossings. However, the linear theory is still missing
and has been open for a while. The goal of this paper is to extend our result [20] and establish the
sharp Schauder estimates for linear equations with background Kahler metric of conical singularities
along divisors of simple normal crossings. We can apply and extend many techniques developed in [20];
however, new estimates and techniques have to be developed because, in the case of conical singularities
along a single smooth divisor, the difficult estimate in the conical direction can sometimes be bypassed
and reduced to estimates in the regular directions, while such treatment does not work in the case of
simple normal crossings. One is forced to treat regions near high codimensional singularities directly
with new and more delicate estimates beyond the scope of [20]. More crucially, the estimates in the
mixed normal directions (see Section 3D) relies on those in Lemma 3.3, which is new compared to the
case of a smooth divisor [20]. This enables us to compare the difference of mixed normal derivatives
at two different points. Readers who are interested only in the case of smooth divisors are advised to
omit Section 3D.

The standard local models for such conical Kdhler metrics are described below.

Let B =(B1,...,Bp) € (0,1)?, p <n, and let wg (or gg) be the standard cone metric on C” x C"~°
with cone singularity along S = Uf’zl Si, where §; = {z; = 0}, that is,
PV =ldzadz &
_ 2 j J — . = )
o= VBT 3V Ta ndiy a-1
j=1 J j=p+1
We shall use 53,41, ..., 52, to denote the real coordinates of C" ™7 = R2"=27 guch that, for j=p+1,...,n,

Zj =851+~ —1ls2;.
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In this paper we will study the conical Laplacian equation with the background metric gg on C"
Agu=f in Bg(0, )\S, (1-2)

where Bg(0, 1) is the unit ball with respect to gg centered at 0. The Laplacian Ag is defined as

Z A il Xp: Nz 2060 0%u 4 En &
Agu = —_— .
B 8z 0z 4 & 0z;0z; . 0z;0Z;

J.k R LA

We always assume
fec®Bg0,1)) and ueC’Bg(0, 1)) NC*(Bp(0, H\S).
Throughout this paper, given a continuous function f, we write

w(r):=wsr)y=sup |f(z)— f(w)]
zZ,weBg(0,1)
dg(z,w)<r

for the oscillation of f* with respect to gg in the ball Bg(0, 1). Itis clear that w (2r) < 2w (r) for any r < %
We say a continuous function f is Dini continuous if fol w(r)/rdr < oo.

Definition 1.1. We will write the (weighted) polar coordinates of z; for 1 < j < p as

17,

ri=1\z; 0; =argz;.

We define D’ to be one of the first-order operators {9/ 052p+41,-..,0/0s2,}, and N; to be one of the
operators {3/3r;, (B;r;)~1(3/36;)} which as vector fields are transversal to S;.

Our first main result is the Holder estimates of the solution u to (1-2).

Theorem 1.2. Suppose B € (%, l)p and f € CO(Blg (0, 1)) is Dini continuous with respect to gg. Let
u e CO(B/; O, )N CZ(B,g (0, D\S) be the solution to (1-2). Then there exists C = C(n, B) > 0 such that,
for any two points p, q € Bﬂ( )\S

|Zj|2(1—/31

9%u
2(1-8))
52,07, (p) —lz;] 8Zjazj(q)‘

4 w(r) Yo(r)
C(d|lu||L°°(B,g(0,l))+/ . dr—l—df Tdr), (1-3)
0 d

p
(DY u(p) — (DY ulg)|+ )

j=1

forany 1 < j <p,
- w(r) 1 Mo
|NID/u(p)_NjD/M(q)| SC(dl/ﬁ] 1||M“L°°(Bﬂ(0,l))+/ Td +dl/ﬁ] 1/ rlT’B]dr , (1_4)
0 d :
and, forany 1 < j, k < p with j £k,

- w(r) o e
|Niju(p)—Niju(q)|EC(dl/ﬁ"‘“ 1”M||L°°(Bﬂ(0,l))+/ — - dr+d/e ‘/ g dr ). (15)
O d max

where d = dg(p, q) > 0 is the gg-distance of p and q and Bax = max{fy, ..., By} € (% 1).
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Remarks 1.3. (1) The number B.x on the right-hand side of (1-5) can be replaced by max{B;, B}.

(2) We assume B € (%, l)p for the purposes of exposition and simplification of the statements of
Theorems 1.2 and 1.7. When some of the angles B; lie in (0, %], the pointwise Holder estimates in
Theorem 1.2 are adjusted as follows: in (1-4), if B; € (0, %], we replace the right-hand side by the
right-hand side of (1-3); in (1-5), if both 8; and x € (0, 1], we also replace the right-hand side by that
of (1-3); if at least one of the B;, B is bigger than %, (1-5) remains unchanged. The inequalities in
Theorem 1.7 can be adjusted similarly. The proofs of these estimates are contained in the proof of the

case when g; € (% 1) by using the corresponding estimates in (2-3).

An immediate corollary of Theorem 1.2 is a precise form of Schauder estimates for (1-2).
Corollary 1.4. Given g € (0, 1)? and f € Cg’a(Bﬂ(O, 1)) for some 0 < o < min{l, 1/Bmax — 1}, if
ue CO(B,g O, 1H)nN Cz(Bﬂ (0, D\S) solves (1-2), then u € Cé’a (Bg(0, 1)). Moreover, for any compact

subset K € Bg(0, 1), there exists a constant C = C(n, B, K) > 0 such that the following estimate holds
(see Definition 2.1 for the notations):

(1-6)

||f||cgv“(3ﬁ(o,1)) )
a(min{z——1,1} —a) /-

Remark 1.5. A scaling-invariant version of the Schauder estimate (1-6) is that, for any 0 < r < 1, there

lutll 2oy = C<||M||c0(3ﬂ(0,1)) +

exists a constant C = C(n, 8, o) > 0 such that (see Definition 2.4 for the notations)

* 2)
||M||C§,a(3ﬂ(0’r)) = Cllullcosgo.ry) + ||f||c2,a(3ﬁ(0’r))), (1-7)

which follows from a standard rescaling argument by scaling r to 1.

Letgbea Cg’“—conical Kihler metric on Bg(0, 1) (see Definition 3.31). By definition g is equivalent
to gg. We consider the equation

Agu=f inBg(0,1) and u=¢ ondBg(0,1) (1-8)

for some ¢ € C°(9 Bg (0, 1)). The following theorem is the generalization of Corollary 1.4 for nonflat
background conical Kahler metrics, which is useful for applications of global geometric complex Monge—
Ampere equations.

Theorem 1.6. For any given 8 € (0, 1)?, f € Cg’a(Bﬂ 0, 1)) and ¢ € Co(aBﬂ (0, 1)), there is a unique

solution u € Cé’“(Bﬂ O, )N CO(Bﬂ (0, 1)) to (1-8). Moreover, for any compact subset K € Bg(0, 1),
there exists C = C(n, B, «, g, K) > 0 such that

lell g2 gy = C Il coqsg 0,1 + 1S lcge gy 0,17))-

Theorem 1.6 can immediately be applied to study complex Monge—Ampéere equations with prescribed
conical singularities along divisors of simple normal crossings, and most of the geometric and analytic
results for canonical Kéhler metrics with conical singularities along a smooth divisor can be generalized
to the case of simple normal crossings.
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We now turn to the parabolic Schauder estimates for the solution u € € 0(Q,g) N %Z(Q’;) to the equation

u
m = Agu+ f (1-9)

for a Dini continuous function f in Qg, where for convenience of notation we write
Qp :=Bg(0,1) x (0,1] and Q’; := Bg(0, D\S x (0, 1].
Our second main theorem is the following pointwise estimate.

Theorem 1.7. Suppose B € (%, 1)p and u is the solution to (1-9). Then there exists a computable constant
C =C(n, B) > 0such that, forany Q, = (p,t,), Qs =(q,t;) € Bg (0, %)\S x (t, 1] (for some fe(0,1)),

[(D)?u(Q,) — (D)u(Q,)|

Y

j=1

0%u

azj'azj
J . d a)(r) d la)(r)
<C|— o0 732
_C<f3/2||u||L (Bp(0,1)) T1 /0 r dr+f3/2L r? )
and, forany 1 < j < p,

) ) c dl/Bi—1 - dw(r)d dV/Bi—1 lw(r)d
IN;D'u(Qp) —NjDu(Qq)| < WHMHLOO(B,;(O,U)-H T '+ v

ou ou
(Qg)|+ E(Qp)_E(Qq)

2
1,200 () — ;PO
! 07,07 d !

and, forany 1 < j, k < p with j #k,

1/ Bmax—1 (o) dV/Bna=1 1 4 (r)
|Niju(Qp>—N,-Nku<Qq)|SC(W||u||Loo<B,,(o,1>)+t [ e / dr),
0 d

r i\3/2 rl/ﬁmax

where d = dp g(Qp, Qq4) > 0 is the parabolic gg-distance of Q, and Q4, PBmax = max{py, ..., By},
and w(r) is the oscillation of f in Qg under the parabolic distance dp g (see Section 2A2).

If fe %; o/ 2(Q,q) for some o € (0, min(1/Bmax — 1, 1)), then we have the following precise estimates
as the parabolic analogue of Corollary 1.4.

Corollary 1.8. Suppose B € (0, 1)? and u € €°( 9p) Ne2( Qj;) satisfies (1-9). Then there exists a constant
C = C(n, B) > 0 such that (see Definition 2.6 for the notations)

e 1F ez g
Il et eayion ey = C\Ihevon + ZEmim = )

For general nonflat %; “/2_conical Kahler metrics g, we consider the linear parabolic equation

ad
a—j:Agu-kf inQﬂ, u=g Ol’lapQﬂ. (1-10)

We then have the following parabolic Schauder estimates as an analogue of Theorem 1.6.
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Theorem 1.9. Given 8 € (0, 1), f € ‘Ka Ol/z(ng) and ¢ € €°(9p Qg), there exists a unique solution
ue ngw (a+2)/2(Bﬂ 0,1)x (0,1DnN %O(Q,g) to the Dirichlet boundary value problem (1-10). For any
compact subset K € Bg(0, 1) and gy > 0, there exists C =C(n, B, a, K, &9, g) > 0 such that the following
interior Schauder estimate holds:

”u||<5132+a’(2+a)/2(1(><[80,1]) < C(||u||§g0(Qﬁ) + ||f||<6);,a/z(gﬂ)).

Furthermore, if we assume u|;—g = ug € Cé’“(Bﬂ 0, 1)), thenu € %;+a’(a+2)/2(85 (0,1) x [0, 1D, and
there exists a constant C = C(n, 8, «, g, K) > 0 such that

”u”cg;‘*'av(“"'z)/z(l(x[o’l]) = C(”u”%O(Qﬂ) + ”f”(ff;va/z(gﬂ) + ||u0||C§‘a(Bﬁ(O,l)))'

As an application of Theorem 1.9, we derive the short-time existence of the conical Kihler—Ricci flow
with background metric being conical along divisors with simple normal crossings.

Let (X, D) be a compact Kihler manifold, where D = Z D is a finite union of smooth divisors {D;}
and D has only simple normal crossings. Let wg be a o 8 (X )-conical Kdhler metric with cone angle 27 8
along D (see Definition 2.8), let &; be a family of conical metrics with bounded norm ||a)|| a/ « 2, and
let @y = wy. We consider the complex Monge—Ampere flow

3 V=13d¢)"
—g’:loz«;((‘”’+ 100¢) )+f and  ¢l—o=0 (1-11)
at R

for some f € %"‘ @20% % [0, 1]).

Theorem 1.10. Given o € (0, '), there exists T =T (n, @, f, &', @) > 0 such that (1-11) admits a unique
solution ¢ € €5 T (X x [0, T)).

An immediate corollary of Theorem 1.10 is the short-time existence for the conical Kidhler—Ricci flow

w

3 —Rlc(a))—i—Z(l—,B])[D] wli=o = wo, (1-12)

where Ric(w) is the unique extension of the Ricci curvature of @ from X \ D to X, and [D;] denotes the
current of integration over the component D;. In addition we assume wy is a Cg’“ (X, D)-conical Kéhler

metric such that
0 2 (1-13)
D0 =TT o2 \=B,° -
[T, (sj12 )=
where s; and & ; are holomorphic sections and hermitian metrics, respectively, of the line bundle associated
to D, and Q2 is a smooth volume form.

Corollary 1.11. For any given a € (0, a'), there exists a constant T = T (n, wy, a, a’) > 0 such that the
conical Kihler—Ricci flow (1-12) admits a unique solution w = w,, where w € ‘5“ a/z(X x [0, T]) and,
foreacht €0, T], w; is still a conical metric with cone angle 2 f8 along D.

Furthermore, w is smooth in X\ D x (0, T] and the (normalized) Ricci potentials of w, by which we

mean log(w" /wy), are still in ‘KEJFQ’(ZM)/Z(X x [0, T]).
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The short-time existence of the conical Kéihler—Ricci flow with singularities along a smooth divisor is
derived in [5] by adapting the elliptic potential techniques of Donaldson [14]. Corollary 1.11 treats the
general case of conical singularities with simple normal crossings. There have been many results in the
analytic aspects of the conical Ricci flow [5; 6; 15; 16; 24; 30; 43]. In [31], the conical Ricci flow on
Riemann surfaces is completely classified with jumping conical structure in the limit. Such phenomena is
also expected in higher dimension, but it requires much deeper and delicate technical advances both in
analysis and geometry.

2. Preliminaries

We explain the notations and give some preliminary tools which will be used later in this section.

2A. Notations. To distinguish the elliptic from parabolic norms, we will use C to denote the norms in
the elliptic case and % to denote the norms in the parabolic case.

We always assume the Holder component o appearing in Cg’“ or %; /2 (or other Holder norms) is in
(0, min{B,L — 1, 1}).

2A1. Elliptic case. We will denote dg(x, y) to be the distance between two points x, y € C" under the
metric gg. Bg(x, r) will be the metric ball under the metric induced by gg with radius » and center x. It
is well known that (C"\S, gg) is geodesically convex, i.e., any two points x, y € C"\S can be joined by
a gg-minimal geodesic y which is disjoint from S.

Definition 2.1. We define the gg-Holder norm of functions u € C O(B/g (0, r)) for some € (0, 1) as

||u||cg-"‘(3ﬁ(0’r)) = ”u”CO(Bﬂ(O,r)) + [u]Cg’a(Bﬂ(O,r))’

where the seminorm is defined as
lu(x) —u(y)l
sup _—

[u] 0, =
C’g (Bp(O.r)) x#yeBg(0,r) dﬂ(xay)a

We denote by Cg’“(Bﬂ (0, r)) the subspace of all continuous functions u such that ||u|| che < 00.

Definition 2.2. The Cé’“—norm of a function u on Bg(0, r) =: Bg is defined as

o — /
il 2o g,y = Ntllcocay) + 1 Vst llcosy.gn + D IN;D'tll
j=1
9%u

12 20=pp 971
! 3z;0Z) || ¢

DYV ull o g+ D IINNkuIICoa(B)+Z
I<j#k=p

(Bﬁ)
We denote by Cé’“(Bﬂ (0, r)) the subspace of all continuous functions u such that [u|| 2« < oco.
8

Remark 2.3. These spaces are generalizations of those defined in [20] and are slight variations of those
introduced in [14; 23].
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Let us compare the Schauder estimates in [14; 23; 20] in the special case when p = 1, i.e., the conical
singularities are supported on C"~!. The Hélder space of [14] is defined using a collection of differential
operators as components of v/—139. The collection of differential operators in our definition for Cg’“
(see [20]) is given by

28_2 8 D/’r—liD/}’

d 9 o a2 ! B ()
r —, D, —+r —+(pr s T
ar 302 or 30

ar’" 80" ar?
while those defined in [23] for the Holder space D%% gives the collection

28_2 8 D/ —liD/ 82 }'

D', — +r

A ) ) - - 2-1
a0 a2 or T8N -1

d 0 32 0
{ 30 062 ar " B30 " aroe
Here the operators D’ are given in Definition 1.1. There seems to a typo in the original definition of (2-1)
in [23, p. 104, (16)], where the factor ! is missing in the operator r ~'3/30 D’ (see [32, p. 57]). It was
pointed out by the referee that this typo does not affect Proposition 3.3 in [23] since the correct operator
was used in the proof. The space D% is introduced in [23] as an alternative definition for the Holder
space of [14] as a consequence of the Schauder estimates in [23, Proposition 3.3]. The Schauder estimates
in [23] are stronger than those established in [14] by Donaldson and later in [20] by the authors because
of the additional operator 92 /0rd6 in (2-1). This also implies that the two Holder spaces from [14]
and [20] must coincide. For interested readers, we refer to the survey paper [32] for more details on the
characterization of the Holder space of [14] in terms of the operators in (2-1).

For a given set 2 C Bg(0, 1), we define the following weighted (semi)norms.

Definition 2.4. Suppose o € R is a given real number and « is a Cﬁ’“—function in Q. We will write
dy =dg(x, dL2) for any x € 2. We define the weighted (semi)norms

[u]), = sup min(d, dJ”“‘M
C" @ zyeq ’ dg(x, y)*
lullgog = supdy lu()l,  [ul o = sup d?“(ZINjul(x)JrID’ul(x)),
xXEQ B xeQ\S j
. |Tu(x) —Tu(y)|
(W% o = sup d7Tu()|, [u]?), = sup min(dy,d,)" ">
GO o U@ yea\s R dg(x, y)*
(o) _ (o) (o) (o) (o)
1 gy = Nl gy + 11 gy + 101 g+ I g
where T is the collection of operators of second-order
82
|2 P07 ——, NiNi (j #K), N;D', (D)} (2-2)
0z;07;

When o = 0, we write the norms above as [ - ]* or || - ||* for simplicity of notation.

2A2. Parabolic case. We define Qg = Qg(0, 1) = Bg(0, 1) x (0, 1] to be a parabolic cylinder and

dpQp = (Bg(0, 1) x {0}) U (3B (0, 1) x (0, 1])
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to be the parabolic boundary of the cylinder Qg. We write Sp = & x [0, 1] for the singular set and
Q’; = Qp\Sp for the complement of Sp. For any two space-time points Q; = (p;, t;), we define their
parabolic distance dp g(Q1, Q2) as

dp g(Q1, Q2) = max{y/|t; — 12|, dg(p1, p2)}-
Definition 2.5. We define the gg-Holder norm of functions u € ¢ O(Q/g) for some « € (0, 1) as

”M”%g’a/z(gﬁ) = ”u”(é/o(Qﬂ) + [u]%ﬁ‘:,“/z(gﬁ)a

where the seminorm is
el u(Q1) — u(Q)|
b9 5 20,e05 dpp(Q1, 02)°

We denote by ‘@”; o 2(Q,g) the subspace of all continuous functions # such that ||| o0.

65 0p =

Definition 2.6. The %ﬂz o (@t2)/ 2—norm of a function u on Qg is defined as
”u||%ﬂ2+a,(a+2)/2(gﬂ) = ||u||(@oo(gﬁ) + ”Vgﬁ””‘é’o(glg,gﬂ) + ||TM||%,’;1,a/2(Qﬂ),

where 7T is the collection of all the second-order operators in (2-2) with the first-order operator 9/0¢.

For a given set 2 C Qg we define the following weighted (semi)norms.

Definition 2.7. Suppose o € R is a real number and u is a %ﬁz e @+D/2_finction in . We will write

dp,o =dp g(Q, 9p2) for any Q € Q2. We define the weighted (semi)norms

W1 = Sup min(dp,op. dp,o,)7 e IE]
B 02060 dp,g(Q1, 02)*

el = sp d%fg‘(ZleuKQH|D’u|<Q>>, Wl o = sup dp'GITu(Q)l.
J

(o) o
lull,oqy = sup dp olu(Q)l,
%) 0ce P.0

2,1
0eQ\Sp % € oca\sp

o . TM — Tl/l
[u]( z)+a,(a+2>/z = sup min(dp, g,, dP,Q2)6+2+a [Tu(Q1) (€Z)|
g @ 0,£0,e0\8p dp (01, 02)

(o) _ (o) (o) (o) (o)
||u||<gﬁ2+a,(a+2)/2(9) = ”””%0(9) + [u]%’é(ﬁ) + [”](gﬁz,](m + [u]%g+a<(a+2)/z(9)-
When o = 0, we write the norms above as [ - ]* or || - ||* for simplicity of notation.

2A3. Compact Kdhler manifolds. Let (X, D) be a compact Kihler manifold with a divisor D = ) iDj
with simple normal crossings, i.e., on an open coordinate chart (U, z;) of any x € D, DN U is given by
{zi---zp =0} and D; NU = {z; = 0} for any component D; of D. We fix a finite cover {U,, z,,;} of D.

Definition 2.8. A (singular) Kéhler metric w is called a conical metric with cone angle 2z 8 along D
if w is equivalent to wg locally on any coordinate chart U, under the coordinates {z,, ;}, where wg is the
standard cone metric (1-1) with cone angle 27 8; along {z,, ; = 0}, and w is a smooth Kihler metric in
the usual sense on X\ |, U,.

A conical metric w is in Cg’“(X, D) if wisin Cg’“(Ua) for each a and w is smooth in the usual sense
on X\ |, Uy,. Similarly we can define the %g /2 _¢onical Kihler metrics on X x [0, 1].
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Definition 2.9. A continuous function u € C°(X) is said to be in C0 *(X, D) ifuisin C0 “(U,) locally on
each U, and u is C%*-continuous in the usual sense on X\ |, U We define the Cg “(X D)-norm of u

WMMMW=WMWMwww+2Nw@W

The C¥ 8 *(X, D)-norm depends on the choice of finite covers, and another cover yields a different but
equivalent norm. The space cY 8 “(X, D) is clearly independent of the choice of finite covers.

The other spaces and norms like c> 8 “(X, D), %; o/ 2(X x [0, 1], D), etc., can be defined similarly.

2B. A useful lemma. We will frequently use the following elementary estimates from [20]. We write
B¢ (0, r) for the Euclidean ball in C with center 0 and radius r > 0.

Lemma 2.10 (Lemma 2.2 in [20]). Given r € (0, 1], suppose v € C°(Bc(0, r)) N C*(Bc(0, r)\{0})

satisfies

9%y
1220 ﬂu)a 02 =F in Bc(0, r)\{0}

for some F € L*°(Bc¢(0, r)). Then we have the following pointwise estimate for any z € B@( , 10 )\{0}
A e ()
<l eppye J1PP i e (0.), (2-3)
f hog(21)| i 1=

where the L*°-norms are taken in Bc(0,r) and C > 0 is a uniform constant depending only on the
angle B.

Finally we remark that the idea of the proof of the estimates in Theorems 1.2 and 1.7 is the same for
general 2 < p < n. To explain the argument more clearly, we prove the theorems assuming p = 2, i.e.,
the cone metric of wg is singular along the two components Sy and S,.

3. Elliptic estimates

In this section, we will prove Theorems 1.2 and 1.6, the Schauder estimates for the Laplace equation (1-2).
To begin with, we first observe the simple C°-estimate based on the maximum principle.
Suppose u € CZ(B,g O, D\S)N CO(Bﬁ(O, 1)) satisfies the equation

Agu=0 in Bg(0, D\S, 3-1)
U=q on dBg(0, 1)
for some ¢ € C 0@ Bg(0, 1)), then we have the following lemma.
Lemma 3.1. We have the maximum principle
inf < inf u< sup u< sup o. (3-2)

9Bg(0,1) Bg(0,1) Bg(0,1) 3Bg(0,1)

Proof. Consider the functions it = u + €(log |z REE log |z2]?) for any € > 0. By the proof of Lemma 2.1
in [20], (3-2) is established. O
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The next step is to show (3-1) is solvable for suitable boundary values.

3A. Conical harmonic functions.

3A1. Smooth approximating metrics. Let € € (0, 1) be a given small positive number and define a smooth
approximating Kéhler metric g. on Bg(0, 1) as

2V =1ldzi ndZy v —=1dzy NdZp

Pzi2 418 " "2 (|2 4-€)1-F

g =P +8 +Y V=ldzj ndzj. (3-3)
j=3

The g, are product metrics on C x C x C"~2. It is clear that their Ricci curvatures satisfy
Ric(ge) = v/~ 183 log((z1 > + €)' " (jz2* +€)'7) = 0.
Let u, € CZ(B,g (0, 1)) be the solution to the equation
Ague =0 1in Bg(0, 1) and uc=¢ onaBg(0,1) (3-4)

with a given ¢ € C 0(8B,3 (0, 1)). Note that the metric balls Bg(0, 1) and B,, (0, 1) are uniformly close
when € is sufficiently small, so for the following estimates we will work on Bg(0, 1).

Let u. be the harmonic function for A, = A, as in (3-4), which we may assume without loss of
generality is positive by replacing u. by u. — infu, if necessary. We will study the Cheng—Yau-type
gradient estimate of u, and the estimate of Aj cu¢ := (|z1|> +€)'7#1(8%uc/921871). Let us recall Cheng—
Yau’s gradient estimate first.

In Sections 3A2-3AS5, for convenience of notation, we will omit the subscript € in g, and u. in the
proofs of the lemmas.

3A2. Cheng—Yau gradient estimate revisited. We assume u, > 0, as otherwise we could consider the func-
tion u, + 6 for some § > 0 and then let § — 0. We fix a metric ball By (p, R) C Bg(0, 1) centered at some
point p € Bg(0, 1). Since Ric(g.) > 0, the Cheng—Yau gradient estimate holds for A, -harmonic functions.

Lemma 3.2 [10]. Let u. € C*(B(p, R)) be a positive Ag -harmonic function. There exists a uniform
constant C = C(n) > 0 such that (the metric balls are taken under the metric g.)

0OSC u
sup  [Vielg, (x) < C(n) —2 20 ¢

(3-5)
xeB(p,3R/4) R

As we mentioned above, we will omit the € in the subscript of u, and g.. The proof of the lemma is

standard [10]. For completeness and to motivate the proofs of Lemmas 3.3 and 3.4, we sketch a proof.

Defining f =logu, it can be calculated that

Au  |Vu|?
Af =— ———=—|Vf]". (3-6)
u u
Then by Bochner’s formula we have
AIVFI? = |VVf P+ |VVF* +2Re(Vf, VAF) +Ric(Vf, V)

> |[VVf[> =2Re(Vf, VIVf). (3-7)
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Let ¢ : [0, 1] — [0, 1] be a standard cut-off function such that ¢|j03/4) =1, ¢5/6,11=0and 0 < ¢ < 1
otherwise. Let r(x) = dg (p, x) be the distance function to p under the metric g = g.. By abusing
notation, we also write ¢ (x) = ¢ (r(x)/R). It can be calculated by Laplacian comparison and the Bochner
formula (3-7) that, at the (positive) maximum point py,x of H := &%V fI%,

2

2,0 49 8<¢ 2
n R

——H? ((2 — Do’ + 6"+ (¢)%) <0.

Therefore, for any x € B(p, %R),

|V | _ C(")
IVf(x)I = H(x) < H(pmax) =<

(3-8)
3A3. Laplacian estimate in singular directions. We will prove the estimates of

Ajette :=(|zj|2+e)1 ﬁfa %)
J

for a A, -harmonic function u..

Lemma 3.3. Under the same assumptions as in Lemma 3.2, along the “bad” directions 7, and 7, we
have that A cue and As cue satisfy the estimates

OSCB(p,R) U
sup  (|A]cute](x) + | Ag et |(x)) < C(n) —2 2 7€

(3-9)
xeB(p,R/2) R?

As in the proof of Cheng—Yau gradient estimates, we will work on the function f = f =logu, and
we only need to prove the estimate for A cue. We write Aj o f := (|z1|> + €)' 7P1(3%f/321071).
As above, we will omit the subscript € in A ¢ f. We first observe that

AAg f=Ng ALf. (3-10)

Equation (3-10) can be checked from the definitions using the property that g, is a product metric. Indeed

3 f 3 f
AAg f =zl +e)' P _(z2+e“ﬁl —+ (2t =1 )
e T T S P Fa F+e 32202 92,0z,
2 1-8 : 2 1-8 9 . 9
= (0P 4+ P — A f (P A Y A f = AL AL
(Jz1l ) 32,97, 1f + (|2l ) 37295 1 f 29,0z, 1f = A ALf.

On the other hand, note that A, f = A, f = —|Vf? by (3-6). Choosing a normal frame {ey, ..., e,} at
some point x such that dg(x) =0 and A f = f,7, we calculate

MIVEP = (fifing = Fnfri+ fifn+ faifi+ fifai
= finfsi+ fiifn+ fifig + (A1 + fn Ry 1)
= ViV P+ IViVI 2 +2Re(VE, VAL + fu fiR 1
> (A1 f)* +2Re(VS, VA f). (3-11)
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Then
—A1f) = —AIAf = AV > (A1f)* +2Re(VS, VAL f).

Let ¢ : [0, 1] — [0, 1] be a standard cut-off function such that ¢|o,1,2) = 1 and ¢[[2/3,1) = 0. We also
define ¢ (x) = ¢(r(x)/R). Then consider the function G := gaz -(—=A1 f). We calculate

AG = A@*(=A1 )
= > A=A f) +2Re(Vp?, V(=A1 f)) + (= A1 f) Ap?
> 2 ((AL )2 +2Re(VS, VAL ) +2Re(Ve?, V(=A; ) + (= A; f)Ag?. (3-12)

We want to estimate the upper bound of G. If the maximum value of G = ¢?(—A f) is negative, we
are done. So we assume the maximum of G on B(p, R) is positive, which is achieved at some point
Pmax € B(p, %R) Hence, at ppax we have (—A | f) > 0. By Laplacian comparison, Ar < 2n —1)/r,
and we get, at pmyax,

2 2 / " N2
Agp ZF((ZH—UW +oe" +(¢)). (3-13)
Thus, at pmax, the last term on the right-hand side of (3-12) is greater than or equal to
2 / /" N2
(—Alf)ﬁ(@n — Do’ + 9"+ (¢)7).

Substituting this into (3-12), it follows that, at pmyax, we have AG <0 and VA f = —2¢*1A1fV(p,
and hence

0> AG
_ _ 2
> * (A1) 420" Re(VS, VAL f)+49Re(Vo, V(—A, f)) +<—A1f)—2<(2n—1)w/+w”+(w/)2>

> 2 (A1) =49l AL FIIVIIIVI+8A1 fIVe +(— Alf) 5(2n—Dpg'+9¢" +(¢")?)

G: |V </>I2

=7 ~40” GIVS1IVpl—8G R2 2((2n—1)<ps0 +e¢"+(¢)?)
G*  1¢'lIVf] l¢'? 26 (2

> 2T Ry O 8 2Ot g2 (= Do +eg "+ ().

(3-14)
Therefore, at ppax € B(p, %R),

'V |2 2G
G2—4‘p|‘pR e 8|(p| G+ 5 (2n = Doy’ +99" +(¢)") 0.
and combining (3-8) and the fact that ¢, ¢’, ¢” are all uniformly bounded, we can get, at pmax,

G <CORTG = Glpmu) = 2.

Then, for any x € B(p, %R), where ¢ = 1, we have

C(n)
R2

—Alf(X) =G(x) =< G (pmax) <
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Moreover, recall that f =logu and —A| f = —Au/u+|Vif |2, therefore it follows that

sup (—ﬂ(x)) L CO (3-15)

x€B(p,R/2)

This in particular implies that

0sC u 0SsC u
sup  (—Aju(x)) < C(”)B(;—ER/D < cmZEEent

(3-16)
xeB(p,R/2) R?

On the other hand, consider the function &i = maxpp, ) # — u, which is still a positive g.-harmonic
function with Agit = A, i = 0. Applying (3-15) to the function i, we get

Aqu(x) Ay C(n)
sup = sup —W)) < > (3-17)
xeB(p,R/2) \MaAXp(p R) U — u(x) xeB(p.R/2) u R

which yields

sup  Ayu(x) < C(n) 2R (3-18)

xeB(p,R/2) R
Combining (3-18) and (3-16), we get
0sc
sup [ Aqul(x) < C(n) = 2R (3-19)

xeB(p.R/2) R?
3A4. Mixed derivatives estimates. In this subsection we will estimate the mixed derivatives

Pf  2f i» 2 Ff  f i
e and |V;V; = —
07102 azlang § ViVas] 071022 021022 8

ViV f|? =

’

where as before f =logu and u is a positive harmonic function of A, . Here for simplicity, we omit
the subscript € in ue, fe and g.. Observing that since g = g is a product metric with the nonzero
components g,z depending only on zi, it follows that the curvature tensor

B 9%g;; 3 98ig 98p;
02,0z 0z 071

Ri5i=

vanishes unless i = j =k=1[/¢e{l,2} and also R;;>0foralli=1,...,n.

iiii
We fix some notation: we will write fj» = V|V, f (in fact this is just the ordinary derivative of f with
respect to g, since g is a product metric), |f12|§ =V V2f|§,, etc.
Let us first recall that (3-11) implies

A=A f = Axf)
n
= "™ fufir + 8" ¢ fui fix + 828" fu foi + 878 o fi)
k=1 o o
—2Re(VS, V(=ALf — M)+ fifig" ¢ Rijyi + 238787 Rozns

=Y VIV P+ IVIVEf P+ IVaVi f P+ IVaVi /1) = 2Re(Vf, V(= AL f = Az ). (3-20)
k=1
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Next we calculate A|V;V, f]?. For convenience of notation we will write 12 = fi5 glI gﬁ, and hence
IViVa f12 = fio f'2. We calculate

AIVIVof 1P =g (fraf D= g (i f D (since g is a product metric)
= gk];(fIZkIEflz + f12kf12,1€ + flzlEflz,k + f12f12,k/€ ) (3-21)
The first term on the right-hand side of (3-21) is (by Ricci identities and switching the indices)
8k]zf12(fk1122 + 8" fnt Rigoi + 8™ from Ry0f)
= 8" 2 (figra + 8™ 2 Rigui + 8™ Fon Rigirie + 8™ funt Rigaoge + 8™ fiom Ry o)
= % F2(fira + 8™ fonx Rt + 8™ fon Rigaop)
= gk,zflszlzlz + gligﬁflzfﬂ Riji+ 82282§f12f12R2222’ (3-22)
and the last term on the right-hand side of (3-21) is the conjugate of the first term; hence we get
AIVIV2 1P =2Re(f (A ) +2 £ fia(g g Rypyi + 87287 Rysns)
+8" froe P + & fraf % (3-23)
Recall from (3-6) that Af = —|Vf|?; hence the first term on the right-hand side of (3-23) is
2Re(f*(Af)12) = 2Re(f " (=IVfP)12)
= —2Re(f 2 (fea fr+ fu fia+ fiafia + fi frnn)
= —2Re(f2g" (fiae fr + fur fro + fia Sy + fic Fiai — fic Fn k™))
= —4Re(V/, VIViVa [ ) = 2Re(f 2" fu for + 28 fia fi)- (3-24)
Combining (3-24) and (3-23), we get

AVIV2f P = —4Re(VL VIViVaf )+ Y (fiae S 12+ fron f12)
k

—2 Z(|V1V2f| IViVi fIIV2VEFIH IVIV2 F V2V FHIVIVESD. - (3-25)
k

On the other hand, by Kato’s inequality we have
2
AV f P =2|ViVa fIAIVI Vo f| 4+ 2|VIViV, f]]
<2AViVofIAIVIVaf |4 Y IViVa f 1P + [ ViViVa f P
k

=2ViVafIAIVIVLf I+ Y froef P+ fiap 1. (3-26)
k

Combining (3-25) and (3-26), it follows that

AIVIVaf| = =2Re(VE VIVIVaf ) = D ViV fIIVaVi £+ [VaVie F1IVIVi£D). (3-27)
k
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Combining (3-20) and (3-27) and applying the Cauchy—Schwarz inequality, we have

A(ViVaf+2(=A1f = Ay f) = =2Re(VE, V(IViVa f+2(=A1 f — Ar )
n
D VIV f P+ VIV f P+ [ VaVie f P+ V2V f1P). - (3-28)
k=1
Note that the sum on the right-hand side of (3-27) is (recall under our notation |V V; f 1> = (A1)

greater than or equal to

IVIVaf P+ 1= AP+ = A f P = 5(VIVaf [+ 2(—=A1 f — Ar ),
so we get the equation
A(VIVafI+2(=A1f — A2 f)) = =2Re(Vf, V(IViVa f| +2(—= A1 f — A2 f)))
+ 5AVIV2f I+ 2(=A1f — A2 ) (3-29)
Write
0 =n*(IViVaf|+2(=A1f — Ao ) =0 Q1

where 1(x) =7(r(x)/R) and 7 is a cut-off function such that 7|jo,1/3; = 1 and 7|1 /2,1) = 0. The following
arguments are similar to the previous two cases. We calculate

AQ =n*AQ;+2Re(Vn?, VQi) + 01An?
> —2n*Re(Vf, VQ1) +2Re(Vi?, VO1) + 5n* 0% + 01 An*. (3-30)

Apply the maximum principle to @, and if max Q < 0, we are done. So we may assume that max Q > 0
and that it is attained at pp,x; thus at ppax, we have Q1 >0, AQ <0, VQ| = —217_1 Q01Vn and

2 2 / /" /N2
Q1An" = Q17 (@n—Dmn" +nm™ 4 (1)7).
So, at pmax,

2
_ 2
0> AQ >4n0Re(Vf, Vn) —8Q1|V77I2+772 di 5+ Q1 =(@n =Dy + 90"+ "))

0? 80 )2 Q
_ 12 = +4Qn Re(V/, V 772 R RZ 3

<Q2 40|V | 800 100n>

(@n—Dnn' +nn" + @)%

iy 3-31
12 R R2 Q R? ( )

where we choose 71 such that |1'|, |[n”| < 10, for example. Therefore, at pmax € B( D, %R) we have

2 40|V 100n
0 ( | f|+ n

Cn)
¢ TR

R% "’

) <0 =  QO(Pmx) =

since SUPB(p.R/2) |IVF| < C(m)R™" from the previous estimates. Then, for any x € B(p, %R), we have

0100 = P Q1) = 0() = Cpmar) < .
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Thus it follows that

IViVafl(x) < Qi(x) +2(A1 f(x) + Az f(x)) < % +2(A1f(x) + Az f(x)).

On the other hand, from |V V; f| = |(ViVou/u) — (Viu/u)(Vou/u)|, we get

IViu(x)| |Vou(x)|
u

IViVau|(x) < [ViVa f(x)|u(x) + u(x)

u
Vv Vv
< C(n)—ul(;;) F2A() + 280 () + () O V2u )l
< Cn) =500 (3-32)
Therefore we obtain
OSCB(p,R) u
sup |V Vau| < C(n) =L (3-33)
B(p.R/3) R

By exactly the same argument we get similar estimates for |V Vsu| and |V Viu| + [V Viu| for k # 1.
Hence we have proved the following lemma.

Lemma 3.4. There exists a constant C(n) > 0 such that, for the solution u. to (3-4),

OSCB, (0,R) Ue
sup  (IViVjuelg, +|ViViuelg) < C(n)——5——
Bg, (0.R/2) R

foralli,j=1,2,...,n

3AS5. Convergence of u.. In this subsection, we will show that the Dirichlet problem (3-1) admits a
unique solution for any ¢ € C°(d Bg(0, 1)). Here we will write Bg = Bg(0, 1) for simplicity of notation.

Proposition 3.5. For any ¢ € C O(8Bﬁ), the Dirichlet boundary value problem (3-1) admits a unique
solutionu € C 2(B,g \S)NC O(E;). Moreover, u satisfies the estimates in Lemmas 3.2—3.4 with u. replaced
by u and the metric balls replaced by those under the metric gg, which we will refer to as “derivatives
estimates” throughout this section.

Proof. Given the estimates of u. as in Lemmas 3.2-3.4, we can derive the uniform local C2@ estimates
of u. on any compact subsets of Bg(0, 1)\S.

The C° estimates of u, follow immediately from the maximum principle (see Lemma 3.1).

Take any compact subsets K € K’ € Bg(0, 1). By Lemmas 3.2 and 3.3, we have

_p,|Bu _p|Buc| | du il
1=p1| 7€ I=p| Z 7€ — ) <cm) —=_, 3-34
sz/p(lml ’8Z1 + |22 Py s, ) < (n)d(K’, 955) (3-34)

0%u *u 2u lucl
I=h < 1=-p2 € <|)<c €0 3-35
S}{JP(lzll ‘askazl + 22| 05,022 0si0s ) - (n)d([(/’ dBp)?’ (3-35)
and the third-order estimates

0u 0u 0u Juc]
1=A € 1=F2 : ¢ <C elo 3-36
S;P<|Zl| ‘Bzﬁ)skas; * |Z2| 3Z28Skasl asjaskas, ) - (n)d(](/’ 83/;)3 ( )




774 BIN GUO AND JIAN SONG

Moreover, applying the gradient estimate to the A, -harmonic function Ay cu., we get

sup(lmllﬁ1

K’

e lloo

1=p>
+ 22| d(K',9Bg)>"

0 0 d
_Al,eue _Al,eue + ‘_Al,eue ) <C(n)
8Z1 822 8Sj

From (3-34)—(3-36), we see that the functions u. have uniform C3-estimates in the “tangential directions”
on any compact subset of Bg(0, 1). Moreover, for any fixed small constant § > 0, let 75(S) be the tubular
neighborhood of S. We consider the equation

2n

3%u
+2_ 53 =0 onK\Tp(S),
j=5 77

2

0°u 9%u
—+(nl+e) P —

Acute = (21> + )
ce = (111" +€) 021071 022022

which is strictly elliptic (with ellipticity depending only on é > 0). Hence by standard elliptic Schauder
theory, we also have C>“-estimates of u, in the “transversal directions” (i.e., normal to S) and the mixed
directions on the compact subset K\7;5(S). By taking § — 0 and K — Bg, and using a diagonal argument,
up to a subsequence, the u. converge in Clzog (Bg\S) to a function u € C 2""(3,3 \S). Clearly, u satisfies
the equation Agu = 0 on Bg\S, and the estimates (3-34)—(3-36) hold for u outside S, which implies
that u can be continuously extended through S and defines a continuous function in Bg(0, 1). It remains
to check the boundary value of u.

Claim: u = ¢ on dBg(0, 1). It remains to show the limit function u of u. satisfies the boundary condition
u =@ on dBg(0, 1), which will be proved by constructing suitable barriers as we did in [20].
The metric ball Bg(0, 1) is given by

Bg(0, 1) = {ze@”

2n
dg(0, 2)* := |z1|*P' + |22 + Zs? < 1}.

j=5
Bg(0, 1) C Ben (0, 1), and their boundaries only intersect at S| NS, where z; = z = 0. Fix any point
q € 0Bg(0, 1) and consider the cases ¢ € SN Sy and g € S1 NSy

Case 1: ¢ € §1 NSy, i.e., z1(q) = z2(g) = 0. Consider the point
q'=—q €93Bg(0,1)NIBex (0, 1).

Since ¢ is the unigue farthest point from ¢’ on dBg(0, 1) under the Euclidean distance, the function
Y, (z) :=den (2, q')? — 4 satisfies W, (g) =0and W, (z) <0 forall z € dBg(0, 1)\{g}. By the continuity
of ¢ for any § > 0, there is a small neighborhood V of g such that ¢(q) —§ < ¢(2) < ¢(g) + 8 for
all z € dBg(0, 1) NV, and, on dBg(0, 1)\ V, we have that ¥, is bounded above by a negative constant.
Hence we can define

¥q(2) ==(q) =8+ AV, (2) < 9(2)

for all z € 9Bg(0, 1) if A is chosen large enough. The function ¢, is A, -subharmonic; hence by the
maximum principle we have u.(z) > ¢,(z) for all z € Bg(0, 1). Letting € — 0 we get u(z) > ¢, (z), taking
z— q we have liminf,_, , u(z) > ¢(g) — 8, and since § > 0 is arbitrary we have liminf,_,, u(z) > ¢(q).
By considering the barrier function ¢(g) + 8 — AW, (z) and using a similar argument it is not hard to
see that lim sup,_, , u(z) < ¢(q); hence lim,_, ; u(z) = ¢(q) and u is continuous up to g € 9 Bg(0, 1).
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Case 2: g € dBg(0, 1)\S1 N S,. We first consider the case when z1(q) # 0 and z2(g) # 0. The boundary
dBg(0, 1) is smooth near ¢, and hence satisfies the exterior sphere condition. We choose an exterior
Euclidean ball Bcr (g, r,) which is tangential to d Bg(0, 1) (only) at g, i.e., under the Euclidean distance,
q is the unique closest point to g on dBg(0, 1). So the function

1 1

2n—2

G(z) = = -
lz—q|>"2 rg

(3-37)

satisfies G(¢) =0 and G(z) < O for all z € 3Bg(0, 1)\{g}. We calculate

392G 392G ", 3%G
Ae.G= (2 +) P —— 4 (P + o) P —— -
8 (21l ) 321071 (22 ) 022072 = 92kdZk
392G 392G
=1z +e P —D— + (22 + )P - 1) ——
021021 022022
2 2 —Bi+1 ~ 12
K|+ € —1 nlzr —
= (O (— 1o~ i +1)z—C(q,rq>.
P lz =4l 1z =4l

The function
W, (z) = Adp(z,0) — 1)+ G(2)

i8 A, -subharmonic for A >> 1, and ¥, (¢) =0 and ¥, (z) < 0 for all z € dBg(0, 1)\{g}. We are in the
same situation as Case 1, so by the same argument as above, we can show the continuity of « at such a
boundary point q.

In the case when z1(g) # 0 and z2(g) = 0, the boundary 9 Bg(0, 1) is not smooth at g and we cannot
apply the exterior sphere condition to construct the barrier. Instead we use the geometry of the metric
ball Bg(0, 1). Consider the standard cone metric

n

dz; ®dz; _

_ 2

8p = 1|Z1|2(T131)+E dzr @ dzk
k=2

with cone singularity only along S; = {z; = 0}. We observe that the metric ball Bg(0, 1) is strictly
contained in By, (0, 1), and the boundaries of these balls are tangential at the points with vanishing
z2-coordinate. Thus g € dBg(0, 1)N E)Bgﬂl (0, 1) and E)Bgl31 (0, 1) is smooth at g, so there exists an exterior
sphere for E)Bgﬂ1 (0, 1) at g. We define a similar function G(z) as in (3-37), and, by the strict inclusion of
the metric balls Bg(0, 1) C Bgﬁ1 (0, 1), it follows that G(g) =0 and G(z) < 0 for all z € 9Bg(0, 1)\{g}.
The remaining argument is the same as before. 0

Remark 3.6. For any constant ¢ € R, the Dirichlet boundary value problem
Aggu=c in Bg(0, D\S and u=¢ ondBg0,1)

admits a solution u € C 2(35\8) ncC O(l?ﬁ) for any given ¢ € C°(d Bg). This follows from the solution u
of (3-1) with boundary value ¢ = ¢ — %c(n 27! Z?"zs sjz. Then the function u = + %c(n —2)~! j sjz.
solves the equation above.
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For later application, we prove the existence of solutions for a more general right-hand side of the
Laplace equation with the standard background metric. This result is not needed to prove Theorem 1.2.

Proposition 3.7. For any given ¢ € C 0@ Bg(0,1)) and f € Cg’“(B/g (0, 1)), the Dirichlet boundary value
problem

{Agﬂv = f in Bg(0, D\S, (3-38)

V=9 on dBg(0, 1)
admits a unique solution v € C*(Bg(0, 1)\S) N C°(Bg(0, 1)).
By Theorem 1.2, the solution v to (3-38) belongs to Cé’“(Blg 0, 1))nNn CO(B,g(O, 1)).

Proof. The proof is similar to that of Proposition 3.5. As before, let g, be the approximating metrics (3-3)
of gg which are smooth metrics on Bg(0, 1). By standard elliptic theory we can solve the equations

{Ageve = f inBg(0, 1),

(3-39)
Ve =@ on dBg (0, 1).

For any compact subset K € Bg(0, 1) and small § > 0, we have a uniform C%% _pound of v, on K \T5(S)
for some o’ < «. Thus v converges in the C%% _porm to a function v on K\Ts5(S) ase — 0. By a
standard diagonal argument, letting K — Bg(0, 1) and § — 0, we can achieve

C2¥ (Bg(0,)\S) ,
ve =7y e C2¥ (Bg(0, H\S) as e — 0.

loc

Clearly v satisfies (3-38) in Bg(0, 1)\S. It only remains to show the boundary value of v coincides with ¢
and v is globally continuous in Bg(0, 1).

Global continuity: v € CO(Bﬁ (0, 1)). It suffices to show v is continuous at any p € SN Bg(0, 1). Fix
such a point p and take Ry > 0 small enough that Bcx(p, 10Ry) N9Bg(0, 1) = &. We observe that
1gcn < ge < gp, soforany r € (0, 1),

B, (p,1r) C By (p, 1) C Ben(p, 2r). (3-40)
In particular, the balls B, (p, 5Ro) are also disjoint with 9 Bg(0, 1).

Since Ric(ge) > 0, we have the following Sobolev inequality [25]: there exists a constant C = C(n) >0
such that, for any & € Cé (Bg . (p, 1)),

(n—1)/n rzn 1/n
( / h2n/<"—1>w'g) < c( ) / IVh|} o (3-41)
B (pr) Vol (B, (p, r)) By (por) ‘

It can be checked by straightforward calculations that Vol (B, (p, 1)) > co(n) > 0 for some constant ¢

independent of €. Then Bishop’s volume comparison yields, for any r € (0, 1),
C1(n)r®" = Volg, (B, (p. 1)) = c1(m)r™".

Thus the Sobolev inequality (3-41) is reduced to

(n=1)/n
( / hzﬂ/("—l)w:) <C / |Vh|; ! forall h € Co(By, (p.r)). (3-42)
B (p1) By (p,r)
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With (3-42) at hand, we can apply the same proof of the standard De Giorgi—-Nash—Moser theory (see the
proof of Corollary 4.18 in [22]) to derive the uniform Holder continuity of ve at p, i.e., there exists a
constant C = C(n, 8, Rg) > 0 such that

OSCB4(p.r) Ve < OSCB, (p.r) Ve < cr® forallre (0, Rp)

for some o’ =" (n, B, Ry) € (0, 1), where in the first inequality we use the relation (3-40). Letting € — 0
we see the continuity of v at p.

Boundary value: v = ¢ on dBg(0, 1). The proof is almost identical to that of Proposition 3.5. For
example, the function ¢, (z) = ¢(q) — § + AV¥,(z) defined in Case 1 in the proof of Proposition 3.5
satisfies A, ¢,(z) > maxy f if A > 0 is taken large enough. Then from A, (¢, —ve) > 0 in Bg and
¢, —¢ <0 on 9 Bg, applying the maximum principle we get ¢, < v in Bg(0, 1). The remaining arguments
are the same as in Proposition 3.5. Case 2 can be dealt with similarly. (|

Remark 3.8. Let H(} (Bg(0, 1), gg) be the completion of the space of C(} (Bg(0, 1))-functions under the

norm
1/2
IVl 2 )=</ Vulg w) :
88 By(0.1) g B

For any & € Cé (Bg(0, 1)), letting € — 0 in (3-42), we get

(n=1)/n
|h|2"/"—1w") < c/ |Vh|? o (3-43)
</Bﬂ<p,r> g By PP

for the same constant C in (3-42). That is, the Sobolev inequality also holds for the conical metric wg.

3B. Tangential and Laplacian estimates. In this section, we will prove the Holder continuity of Azu for
k=1,2 and (D’)?u for the solution u to (1-2). The arguments of [20] can be adopted here. We recall
that we assume 81, 8, € (% 1). We fix some notations first.

For a given point p ¢ S, we define r, = dq4(p, S), the gg-distance of p to the singular set S. For
simplicity of notation we will fix T = % and an integer k, € Z to be the smallest integer such that thr < ps
and k; , € 7 the smallest integer k; , such that thir < dg(p, S;) fori =1,2. So k, = max{ky p, k2 p}.
We write p; € S1 and p; € S; for the projections of p to §; and S, respectively.

For j =1, 2, we will write

2(1—-8/) 8214
Ajl/t: |Zj| S ——
07,07
We will consider a family of conical Laplace equations with different choices of k € Z™.

(i) If k > k,, the geodesic balls Bg(p, %) are disjoint from S and have smooth boundaries. We note
that gg is smooth on such balls. By standard theory we can solve the following Dirichlet problem for
ux € C*®°(Bg(p, T©) N C%(Bg(p, T4)):

{Aﬁuk = f(p) in Bg(p, "),

3-44
U =U on dBg(p, 0. ( )
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(i1) Without loss of generality, we assume dg(p, S1) < dg(p, S2), i.e., ki, > kz ,. We now solve the
following Dirichlet problem for uy € C*(Bg(p1, 2tX)\S1) N CO(Bg(p1, 21%)) for ka p, +2 <k < ki p:

Aguy = in Bg(p1, 2t)\S1,
pur = f(p) in Bg(py,2t )2 1 (3-45)
U =1u on 8B,g(p1,2r )
By similar arguments to those in the proof of Proposition 3.5 and Remark 3.6, such u; exists.
(iii) For2 <k <ka ,+ 1, letux € C*(Bg(p1.2, 2t)\S) N CO(Bg(p1.2, 27%)) solve the equation
Aguy = in B 27k
pur = f(p) in Bg(pi2,27 );{ (3-46)
Up=1u on dBg(p1.2,21"),

whose existence follows from Remark 3.6. Here p; 2 = (0; 0; s(p)) € §1 NS, is the projection of p; to Ss.

We remark that we may take f(p) =0 by considering i = u — %f(p)(n —2)7 s —s(p)|*. If the estimate
holds for i, it also holds for . So from now on we assume f(p) = 0.

Lemma 3.9. Let uy be the solutions to (3-44)—(3-46). There exists a constant C = C(n) > 0 such that,
forall k € 7., we have the estimates

itk = 1]l oo 3,y < C T (), (3-47)

where we define By( p) as
Bg(p. 7% ifk=kp,
Bi(p):={ Bp(p1,2t")  if ko p+2<k <kip, (3-48)
Bg(p12,2t%) if2<k<kyp+1
for different choices of k € Z .

We will also define )»f?k (p) to be the ball concentric with ék (p) with radius scaled by A € (0, 1).
This lemma follows straightforwardly from Lemma 3.1 and the definition of w(r), so we omit the
proof. By the triangle inequality, we get the estimates

ik = w11l o 5, 2y < C T (5. (3-49)

Since uy — uj41 are gg-harmonic functions on %l}k, applying the gradient and Laplacian estimates
(3-5) and (3-9) for harmonic functions, we get the following lemma.

Lemma 3.10. There exists a constant C(n) > 0 such that, forallk € 7,

1D ug — D'utrsill oo, 13y < C T (25) (3-50)
and
2
sup <Z|A,-<uk — )|+ (D) uy — (D’)zuk+1|) < Cmo(th), (3-51)
(Br/3\S Ni=1
where we recall that D’ denotes the first-order operators 3/9s; fori =5, ...,2n.

The following lemma can be proved by looking at the Taylor expansion of u; at p for k > 1 as in
Lemma 2.8 of [20].
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Lemma 3.11. Fori =1, 2, we have the limits
lim D'ur(p) = D'u(p),  lim (D) ur(p) = (D"Y’u(p), lim Ajur(p) = Aju(p). (3-52)
k— 00 k— 00 k— 00
Combining Lemmas 3.10 and 3.11, we obtain estimates on the second-order (tangential) derivatives.

Proposition 3.12. There exists a constant C = C(n, B) > 0 such that

/ Yo(r)
sup  [(D)’ul+|Aju| < C(”””L‘”(Bﬂ(o,l)) +f ——dr+ If(O)I). (3-53)
Bg(0,1/2\S o T

Proof. From the triangle inequality we have, for any given z € Bg (0, %)\S ,

(DY u@)| < DD ur(@) — (D)1 () + (D) ua 2))|

k=2
s 1
w(r)
<Cm) Y (") +Cn) osepy.1) uo < Cln, ﬂ)(llullm +/ —dr |f(0)|>.
0
k=2
The estimates for A;u can be proved similarly. U

For any other given point g € Bg (0, %)\S , we can solve a similar Dirichlet boundary problems as uy
with the metric balls centered at g, and we obtain a family of functions v such that

Agui = f(g) inBi(q), wv=u ondB(q), (3-54)

where Ek (g) are metrics balls centered at g given by
Bg(q.t%) if k > kg,
Bi(q) = By := { Bg(qi,2t%)  ifkj,+2 <k <k, (here ki, = max(ki g, ka4) and j # i),
Bg(qij,27%) ifk<k;,+1.
Similar estimates as in Lemmas 3.9-3.11 also hold for v; within the balls §k q).
We are now ready to state the main result in this subsection on the continuity of second-order derivatives.

Proposition 3.13. Letd =dg(p, q) < %. There exists a constant C = C(n) > 0 such that if u solves the
conical Laplace equation (1-2), then the following holds fori =1, 2:

"2 "2 ‘o) Lo
|Aju(p) — Aju(g@)|+ (D) u(p) — (D) u(q)| < C<d||u||L°c(Bﬂ(0,1)) +f0 Tdr +d/d dr).

2
Proof. We only prove the estimate for (D')%u; the estimates for A;u can be dealt with in the same way.
We may assume r, = min(r, r,). We fix £ € Z such that t* is comparable to d; more precisely, take

i <d <™ or <84 <<t

We calculate by the triangle inequality
(D) ?u(p) — (D)?u(g)| < |(D)u(p) — (DYue(p)| + (D) ue(p) — (D) ?ue(q)|

+1(D')?ue(q) — (D) ?ve(@)] + (D) ?ve(q) — (D) *u(q)]
=hL+hL+5+1.
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We will estimate I;—14 one by one.

11 and I4: By (3-51) and (3-52), we have

x
I = [(D)u(p) — (D'Yue(p)| < C(n) Y o(zh),
k=t
and a similar estimate holds for I as well:

Iy =1(D"Y’u(q) — (D)Yve(q)| < C(n) Y w(th).
k=t

1I3: By the choice of £, it is not hard to see that %Eg (@) C ég (p). In particular, u, and v, are both defined
on %Eg (g) and satisfy the equations

Agug= f(p) and Agve= f(q),
respectively, on this ball. From (3-47) for u, and from a similar estimate for v,, we get

2 0
e = vellpoo 28, (q)3) < CT7 (7).

Consider the function

S =f@

p— 7 2 -
S TS@F, (3-55)

Ui=u;,—vy

where ¢ is the center of the ball §g (¢). U is gg-harmonic in %Eg (g) and satisfies the estimate
U 2B 3yqy) < CTH 0 (T + CT*°w(d) < Cn)T* 0 ().
The derivatives estimates imply that
(DYU(@)] < CT Ul o5 3,9y < CM@(TY).
Hence
I =|(D")’ur(g) — (D) ve(g)] < C(ma(h).

Io: This is a little more complicated than the previous estimates. We define /iy = ux—1 —uy for k < €. We
observe that A is gg-harmonic on ék(p) and by (3-47) satisfies the L°°-estimate ||/ ”ék(p) < Ct*w(th
and the derivatives estimates ||(D’)%h|| LB (p) /3)60(‘Ck). On the other hand, the function (D’)2hy is
also gg-harmonic on %ék (p), so the gradient estimate implies that

2 —k k
V5 (D)2l e 3,y 2s) < €T 0 (26). (3-56)

Integrating this along the minimal gg-geodesic y connecting p and g and noting that y avoids S since
(C"\S, gp) is strictly geodesically convex, we get

(D) (p) = (DY i@ < d - Vg (DYl o (3 a5y < ACT o (25).

By the triangle inequality, for each k < £,
14
L =D ue(p) — (DYue(@)| < (D) uz(p) — (DN uz(q)| +dC Y v (7). (3-57)
k=2
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Observe that p, g € I§2( p) and the function (D’)%u; is gg-harmonic on I§2( p). From (3-47) and derivatives
estimates we have

1DV uall ey 3y < Cl2ll By ) < CUlll L + @0 (7).
Again by the gradient estimate we have
IVes (DYl ooy )2y < C Il L + 0(2)).
Integrating along the minimal geodesic y we arrive at
(D)2uz(p) = (DYur(g)| < dC(Jull= +w(z?).
Combining this with (3-57), we obtain

L
L=<Cd (uunmwﬂm,m +) f"w(rk)).

k=2

Combing the estimates for I,—14, we get

L oo
|(D")?u(p) — (D) u(q)| < C<d (nunmgﬂ(o,])) +> r"w(r’@) +>° w(r")).

k=2 k=t
Proposition 3.13 now follows from this and the fact that w(r) is monotonically increasing. O
3C. Mixed normal-tangential estimates along the directions S. Throughout this section, we fix two

points p, g € Bg (0, %)\S and assume r, < r,. Recall that we defined the weighted “polar coordinates’
(ri, 6;) for (z1, 22):

B

pl:|Zl|’ ri=p£3[» 9i=argZi, i=1,2.
Under these coordinates,
Pu 9w lou 1 0u

Au=zPP 0P ——=— +——+ ———.
it = lai] dzi0z;  dr?  ridr; P} an?

(3-58)

Let u; and vy be the solutions to (3-44)—(3-46) on ék( p) and §k (q), respectively. Recalling that u; — ug4
satisfies (3-49) and applying gradient estimates to the gg-harmonic function uy — uy1, we get the bound
of ||Vg}g (up — ”k+1)”L°C(1§k(p)/3)’ which in particular implies that, for i =1, 2,

(o
' 0z 9z

Similarly, D'ux — D'uj1 is also gg-harmonic on %ék (p), and applying gradient estimates to this function

e (3D’uk _ aD’uk+1>
l az; 0z;

< Cthw(h). (3-59)
L (By(p)/3)

we get, fori =1, 2,

< Cw (). (3-60)
L>(By(p)/3)

The next lemma can be proved in the same way as Lemma 2.10 of [20] since p ¢ S; we omit the proof.
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Lemma 3.14. Fori =1, 2, we have the limits

ou . Oug
hm —(P) —(17), 11111 —(P)

k— 00 8 I’,' 39 l’iael‘
and
5 8D’uk( ) 8D/u( ) I 8D/uk( ) 8D’u( ) (3-61)
1m = , 1m = . -
k— 00 ari p Br,- p k— 00 r,-89,- p r,-89,- p

Similar formulas also hold for vy at the point q.

We are going to estimate the quantities

8D/ dD'u

dD'u
(p) = or, (@)

r; 00;
Note that J, K correspond to |[N;D'u(p) — NjD'u(q)| in Theorem 1.2. We will estimate the case for
i =1 and J, since the other cases are completely the same. By the triangle inequality we have

J = and K :=

(p) — (q)‘ =12

oD'u BD/ug dD'u, 8D/ug
J < 3 (p) — (p)|+ ‘ (p) — (@)
ri
oD'u, aD'v, oD'v, oD'u
+‘ o (q) - (61)‘ ‘ (@)= ——(9)
1

= Ji+h+ I3+ 4

Lemma 3.15. There exists a constant C(n) > 0 such that Jy, Js and J4 satisfy

o
H+J<C) o@h, J<Co.
k=t
Proof. The estimates for J; and J4 can be proved similarly to those of I} and I in Section 3B, using
(3-60) and (3-61). J3 can be estimated in a similar way to I3 in Section 3B, using (3-60). We omit the
details. O

To estimate J5, as in Section 3B we define hy := uy_1 — uy for 2 < k < £ which is gg-harmonic on
Bi(p) and satisfies the L>-estimate [/ |l Belp) = Ct%*w (%) by (3-60). We rewrite (3-56) as

< Ct*w(th). (3-62)
L>((Bi(p)/2\S)

0
|zi| TP —(D)?hy,
0Z;

2
"3
1D il (i ryons) + 2
i=1

Lemma 3.16. There exists a constant C = C(n, f8) > 0 such that, for any z € %ék (P)\S, the following
pointwise estimate holds for all k < min(¢, k):

/
'aD i OD Tk I < Cry () VP11 =kUBI=D gy (k).

()‘ ‘ L)

Proof. We define a function F' as

2 / 2 / 2n 2 ’
21— 0" D'hic _ _|Z2|2(1—ﬂ2)8 D'hy B 0°D'hy, _

971071 022072 o 8s]2-

|z1] (3-63)
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The Laplacian estimates (3-9) and derivatives estimates applied to the gg-harmonic function D’k imply
that F' satisfies

1l gy ) < CTF 0 (7). (3-64)

For any k < min({, k,) and x € S N %Bk(p), we have that Bg(x, ™) ¢ %f?k(p). The intersection of
Bg(x, %) with the complex plane C passing through x and orthogonal to the hyperplane S lies in a
metric ball of radius t* under the standard cone metric gp, on C. We view (3-63) as defined on the ball
B:= Be(x, (tF)1/Pry ¢ C. The estimate (2-3) applied to the function D’hy, gives rise to

oD hy
071

”D/hk ”Loc(é)
(O /P

sup
Be(x, (7)) VA1 2)\(x)

Therefore, on Be(x, 5(t%)/A1)\{x},

+ CF [l o ) (T9* /P

aD'hy,
921

‘E)th

8D/hk( ) 1/,31 1
1"189

@z )‘ ——( )‘ < /PSR k) (3-65)

On other hand, since B@(x, %(rk)l/ﬂl) = Bgﬁl (x,27Pichy,

Bpc | Be(x. 3G@H'YP). (3-66)
xe8NBy/4
Equation (3-65) implies the desired estimate on the balls }‘ék (p). O

Remark 3.17. By similar arguments we also get the following estimates for any k < min(¢, k,,) and
z € 1Bu(p)\Si:
d(D")*hy

(z)‘-i— ‘—(z)

2
d(D")"hy, < Cri()/B—1e=k/B1 g (25, (3-67)
ri106

ary

Lemma 3.18. There exists a constant C =C (n, B) > 0 such that, for all k <min(k,, £) and z € %ék (p\S,
the following pointwise estimates hold:

32D'hy, 3°D )
@+ L2 | < @) B2k b, (3-68)
r20? r19r196; :
9*D'h
2 L@)] < Cri@)VA—2p B0 (h), (3-69)
1

Proof. Applying the gradient estimate to the gg-harmonic function D'hy, we get

dD'hy
1"1891

. =< “vgﬂD hk||L°°(BA(p)/2) CCL)(‘L' )
L®(Bk(p)/2)

The function 3y, D'y is also a continuous gg-harmonic function, so the derivatives estimates implies, on
A

3Br(p\S,

3%(0p, D'hy)

2
E)sj

2(1—pz) 07 (6, D'hy)
022022

|Fi| < ||z2] < Ct*w(th),
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where F is defined as

2
2(1- /31)8 (99, DI — — |0 ,32)3 (09, D'hy) _Zn 82 (99, D'hy)

921071 922022 — ds?
j=5 J

|z1] =: F|. (3-70)

We apply similar arguments as in the proof of Lemma 3.16. For any x € §; N %ék (p), we view (3-70) as
defined on the C-ball B¢ (x, (t¥)!/A1), and by the estimate (2-3) we have, on Be(x, (tk)l/ﬁl/Z)\{x},

3(d, D'h 186, D' Pl oo
' (06 D'hi) | _ % LB 4 CFy oy (D2

- (‘L’k)l/}gl

021
Equivalently, this means that, on B¢ (x, (VB 2)\(x},

82D’ hy
31’1391

92D’ hk
71007

(39, D'hy)
071

1/p1—1
— "1

Crll/ﬂl—lrk(l—l/,sl)w(rk)_

Again by the inclusion (3-66), we get (3-68). The estimate (3-69) follows from Lemma 3.16, (3-68),
(3-64) and the equation (from (3-63))

*D'hy 13D'hy 1 3°D'hy

=— O
o r an AP 062

Lemma 3.19. There exists a constant C(n, B) > 0 such that, for k <min(ky, p, £), the following pointwise
estimates hold for any z € }Lék (P\S:

i(&D’hk)( ‘ <8th)()
872 8r1 2802 r1 .

Proof. By the Laplacian estimate in (3-9) for the harmonic function D’A; on %ék (p), we have

<C(n ﬂ)rl/ﬁl 1 l/ﬁZ 1 7/(( 1+1/ﬂ1+1/ﬁ2)w(_[k) (3_71)

sup  (|A1D'hy|+|A2D'hi]) < Cm)r~H oscy, (2 (D'hi) < C(n)t Fw (). (3-72)
Bi(p)/2.2

Since A (D’hy) is also gg-harmonic, the Laplacian estimates (3-9) imply

sup (1A AID il + 18281 D'li]) < CmyT~H osey 05 A1D'Iy < Ct ¥ (75, (3-73)
Bu(p)/24

Now from the equation Ag(A1D'hy) =0, we get

3> 32
|24 [20=AD A\D'hy=—MA\D'h— Y — A D'y =: F,. (3-74)
021021 I ds;

From (3-73) and the Laplacian estlmates (3-9), we see that sup 4 Bu(p)/2.4 |Fh|<Ct™ ko (Th). Using similar

arguments, by considering x € Bk(p) N Si, we obtain from (3-74) that, on B:= Be(x, (9P 2)\{x},

”AID hk”Loo(é)
(-L'k)l/ﬂl

ad
—AlD//’lk <

= + ClI Fall o 3, (7P < CoH VA (1),




SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 785

This implies that, for any z € %ék (pI\S,

3 E) _
‘a—rlAlD/hk(z) +'WA1D/hk(z) < /Pl RAF B g (0, (3-75)
Now taking d/dr| on both sides of AgD'h; =0, we get
3> (dD'h 9 8% (dD'h
20-p)_ 9" L L TN > 7 7 T W “) = F. 3-76
|22] 8Z2822< o ) 5y (A1D'ho) ; 32\ on 3 (3-76)

From (3-75), for any z € %ék\S, we have |F3](z) < Crll/ﬂ‘_lr‘k(lH//gl)a)(rk). By a similar argument,
forany y € 55 By (p)NS,, we apply estimate (2-3) to d D'hy./dry and get, on Aj := Be(y, (%) VP2)\(y} —
the punctured ball in the complex plane C of (Euclidean) radius %(rk)l/ P> and orthogonal to S, passing

through y — that
gny 0D hy

0 ath ary HL ®(Ay) kn2—1
— ———————2 + C| sl /B2
3Z2< arl )( )‘ k)l/lg + ” 3||L (A])(T )

< Crll/ﬂl ]T_k(l/ﬂl+l/ﬂ2_l)a)(‘[k),

(3-77)

Varying y € %Bk (p) NS, we get, for any z € %ék\S , that the following pointwise estimate holds:

3 (9D, aD'h,
a_r2< o )( )' ‘ 392< o )(Z)

Lemma 3.20. Let d = dg(p, q). There exists a constant C(n, B) such that, for all k < £,

< Crll/ﬂ]_]rzl/ﬂz_lr_k(l/ﬂlﬂ/ﬂz_l)a)(rk), 0O

oD hy dD'hy 1 _
' o (p) — - (@)| < CdVBI=1e=kAUB=0 ) (£hy, (3-78)
oD hy oD'h

< CdVP =K AB=D g (K, (3-79)

k
(p) — T (@)

r100;
Proof. We will consider the different cases r, = min(r,, r;) < 2d and r,, = min(rp, r,) > 2d.

Case 1: r, <2d. In this case, it is clear by the choice of £ that r, ~ ke <2d < 12 50 kp>4€+2.

From our assumption when solving (3-45), r, = dg(p, S1), i.e., ri(p) = rp, < 2d. By the triangle
inequality we have r{(g) < 3d. We also remark that, for k < £, we have t*
geodesics considered below all lie inside the balls }‘Bk (p), and the estimates in Lemmas 3.16-3.19 hold
for points on these geodesics.

> 1% > 8d. In particular, the

Let the coordinates of the points p and g be given by

p=(ri(p), 01(p); r2(p), 2(p); s(p)) and q = (ri1(q),01(q): r2(q), 02(q); s(q)).

Let y : [0,d] — Bg(0, g)\S be the unique gg-geodesic connecting p and g. We know the curve y is
disjoint from S, and we write

y (1) = (ri(1), 01(1); ra(1), 02(1); (1))

for the coordinates of y (¢) for ¢ € [0, d]. By definition we have, for all ¢ € [0, d],

Y/ (13, = (1) + Biri ()01 (1)) + (5(1)) + B3r2(1)*6;(1))* + ' (D> = 1.
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So |s(p) —s(g)| <d and |r;(p) —ri(g)| <d fori =1,2. We define

= (r1(9), 01(q); r2(p), 02(p); s(p)) and  p’:= (r1(p), 61(q); r2(p). 02(p): s(p)),  (3-80)

the points with coordinates related to p and g. Let y; be the gg-geodesic connecting ¢ and ¢’, y» be the
gp-geodesic joining ¢’ to p’, and y3 be the gg-geodesic joining p’ to p.
By the triangle inequality, we have

D' hy 8D’
5 (p) — “(q )‘
r
8D/hk D’ hy, aD/hk oD’ hk BD/hk oD’ hk
< (p) — (r) - (q") — (q)
ory or ory ary
= .]1 + Jz + J3.
Integrating along y3, on which the points have fixed rj-coordinate r;(p), we get (by (3-68))
d (dD'h
Ji= —( k) dor| < C(n, Byri(p)!/P e KA Do (), (3-81)
sy 001\ 97
Integrating along y», we get (by (3-69))
9 /oDh r1(q)
Iy = _< ") dri| < C(n, )t *V/A=Dy (%) / P12 4y
y2 071 dry ri(p)
=C(n, By A D@ n ()Pt —ri@)P
= Co. Hr P Do) (p) —n@)h
< C(n, Byt K=y (kg /Pt (3-82)

To deal with J3’, we need to consider different choices of k < £.

Case la: k> , +1 < k < £. In this case, the balls Bk (p) are centered at p; € S; (recall p; is the projection
of p to S1; hence p and p; have the same (r;, 65; s)-coordinates). We have k<8 lg-] by the choice
of £. The balls l§’k (p) are disjoint from S;, so we can introduce the smooth coordinates w; = zgz, and
under the coordinates (r, 61; w2, z3, . . ., Z,), the metric gg becomes the smooth cone metric with conical

singularity only along S; with angle 277 8;. Therefore we can derive the following estimate as in (3-62):
d (0D hy
_|_ JR—
3]’1 8w2

Since ¢ and ¢ have the same (ry, 6;)-coordinates and gg is a product metric, y; is in fact a straight

(D) 2hy
ory

sup < Ct*w(t). (3-83)

(Be(p)/D\Si

line segment (under the coordinates (w», z3, ..., Z,)) in the hyperplane with fixed (ry, 6;)-coordinates.

d (0D hy
3Sj 8r1

Integrating over y;, we get

] 8D’hk)‘
+
i 8w2< ary ;

Jj < < Ct*w(t")dg(q. q") < Ct " w(t")d

<Cn, ﬂ)r_k(l/ﬂl_l)w(rk)dl/ﬂl—1.
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Case 1b: k < k3 p. In this case, the balls ék(p) are centered at p; 2 € S NS, and * > r2(p). By the
triangle inequality, r2(q) <d +r2(p) < %‘L’k. We choose the points

g =(r1(q),01(q); r2(p), 02(p); s(q)) and ¢ = (r1(q),01(q); r2(q), 02(p); 5(q)). (3-84)

Let y; be the gg-geodesic joining ¢’ to g, y the gg-geodesic joining g to g, and y the gg-geodesic joining
q to g. The curves 7,  and y all lie in the hyperplane with constant (r, 61)-coordinates (r1(g), 61(g)).
Then by the triangle inequality we have

D’ hy, oD’ hk

D’ hy, D hy, @

(q) — (@) =0+ 1+ J5.

(@) —

‘8D hy oD’ hk

-]

We will use frequently the inequalities 71 (¢) < 3d and max(r2(q), r2(p)) < 27K in the estimates below.
Integrating along y we get (by (3-71))

9 (9D'h
—( ") d6s| < Cri(@) /P~ ra(q) Ve PR o ()
5 06\ 0r

< VB kAIBI=D) g (k).

Jy <

Integrating along y we get (again by (3-71))

i(aD/hk) dry| < Cri(g)V/Pr= 1 =kIFUBIH1/B2) o) (25
7 87‘2 37‘1

1"
Jy <

ra(p)
/ RISy
r2(q)

< Cri)!/P B o () max (ra(g), ra(p) P71
< CdVh=1=kAB=D g (K,

Integrating along y; we get (by (3-67))

0 (0D'h
—( k) dt
71 aSj 8!‘1

Combining the three inequalities above, we get, in the case k < k» ,,

Jl” < < Crl(q)l/ﬂl_l-[_k/ﬂlw(rk)d < Cdl/ﬂl_lT—k(l/ﬁl_l)w(rk)'

J3/ < Cdl/ﬁlfl.L.*k(l/ﬂrl)w(.ck)‘

Combining the estimates on J{, J; and J;, we finish the proof of (3-78) in the case r, < 2d.

kv ~ 7, > 2d > %+, From the triangle inequality we get

Case 2a: r, > 2d and ¢ < k. In this case T
dg(y(t),S) = d. In particular, the r; and r, coordinates of y(t) are both bigger than d. In this case

k <t <k, and Lemmas 3.16-3.19 hold for the points in y. So r(y(¢)) <ri(p)+d < 27K, We calculate
the gradient of d D’hy/dr; along y:
D' > | 8 (dD'm\|? 3 (dD'm\|* | 8 (ID'h\|?
S 9r B_rl( ory > + ,81r1391( ory ) * a_rz( ory )
9 [aD'h\|*
" ,32r2392< ary )

3 (aD'h\|?
3Sj 81’1

R
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(1) When ky , +1 < k < £ we have by (3-83) that
sup

9 (BD/hk>
— +
Boons | 972\ 91

Thus by Lemma 3.18, (3-67) and (3-85), along y we have

3D hy
88

0 <8D/hk

—k, (- k }
7230, \ o )‘ <Ct "w(t"). (3-85)

Y < Co(z*)(@"Pr=2g=KA/BI=D 4 k)

Integrating along y we get

‘BD hi D’ hy, aD/hk

(p) — < Ca)(-ck)(dl//gl—lf—k(l/ﬂl—l)+d1——k)

(q)‘
< Cw(tk)dl/ﬁl_ll—_k(l/lgl—l)'

(2) When k <k ,, we have rp(y (1)) <r(p)+d =<t kpd< 9r and similar estimates hold for | (y (¢))

too. Then by Lemma 3.18, Lemma 3.19 and (3-67) along y the following estimate holds

dD'h
y, 2P

% or (¥ (1)) < Co(th)(@"/Pr=2¢=FU/BI=D 4 =k

Integrating along y we get

‘BD hy D' hy aD’hk

< Co(z*) (@ P17 KU/B=D 4 gr=k)

(p) —

(q)‘
< Co(th)aV/Pr=1y=k1/h=D,
This finishes the proof of the lemma in this case.
Case 2b: r, > 2d but £ > k, + 1. When k < k,, the estimate (3-78) follows in the same way as the case
above. Hence it suffices to consider the case when &k, +1 < k < £. In this case the balls ék (p) = Bg(p, )
and it can be seen by triangle inequality that the geodesic y C %ék (p)\S. Since the metric balls B( D)

B2

are disjoint with S we can use the smooth coordinates w; = z’f "and wy = 75" as before, and everything

becomes smooth under these coordinates in ék (p).
The estimate (3-79) can be shown by the same argument, so we skip the details. O
Iteratively applying (3-78) for k < £, we get

E)D/ug( ) aD/ug

L
J = 4+ cdl/p-t Z‘L’_k(l/ﬂl_l)a)(‘ck)

(q)'

¢
<cd'/P (||M||c0 + r—“l/ﬁ'—“w(r")),
k=2
where the inequality

2 _
(p) — (@)| < Cd"PHul| co

ary ary

can be proved by the same argument as in proving (3-78).
Combining the estimates for Jy, J», J3, J4 we finish the proof of (1-4).

‘8D’u2 0D'u
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We remark that in solving (3-45) we assume r;(p) < ra(p), so we need also to deal with the following
case, whose proof is more or less parallel to that of Lemma 3.20, so we just point out the differences and
sketch the proof.

Lemma 3.21. Let d =dg(p, q) > 0. There exists a constant C(n, B) > 0 such that, for all k < ¢,

oD hy oD hy, 1 _ _
' P (p) — i (q)| < CdVP1g=k/B= ) (£, (3-86)
oD hy oD hy 1 _
1206, (p) — TS (@) < Cca'/Pr=1e=KUB=D g 5y, (3-87)

Proof. We consider the cases when k <k , and ky , +1 <k < L.

Case 1: k1 ,+1 <k <. The balls l§k (p) are disjoint with S;, so we can introduce the complex coordinate

wy = zgz on these balls as before. Let ¢; and 7, be the real and imaginary parts of w,, respectively. The

derivatives estimates imply that
”8w2D/hk”Loo(1§k(p)/2) = Cw(fk) and ”aizD/hk”Lw(ék(p)/z) =< Cf_ka)(fk),
where 85)2 denotes the full second-order derivatives in the {t;, f,}-directions. Also

9 (9D 9 (D' o
i <Ct"w(").
ar; \ dws r1060; \ dw;

L>(Bi(p)/2) L>(Bi(p)/2)
Since
d wy 0 vy 0
I . (3-88)
0ry  Porp 0wy Pory 0wn
we have

|lwa|? dD'hy, W -wy 3D My

o (aD/hk) 19Dy
o 0w 2r3  dwy 2r3 0wy

U)2 2 ’
+ —0: D'hy,
8w2 r w2 k

arp
and we have, on 1 By (p),

C
< ~w@+Ccr*w(E"

9 (0D hy
8w2 arz

r

and
9 (0D'h 9 (oDh
_( k) ( k) < Ct_kw(tk).
I\ 0r2 Jllregupy 111901\ 92 Sl 12)

Therefore,
OD'h |* 82Dy |* 9*  * 192Dk |? 92D’y |? . 1
Vv = <C(t~ 2 C— k2‘
‘ % or, arvirs | T rroears| t|Bwaan| T2 asjory | = G EHC GO

In this case we know that r;(p) = ke > 27k > ¢t > 8d, so along y

r(y @) =r(p)—d = ri(p) —d = j7*.
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Integrating along y we get

oD’ hk D’ hy,

aD/hk
(p) —

< Ct*w(®d < 7 */B=D gy (k) g1/,

(q)‘

Case 2: k < kl,,,. This case is the same as in the proof of (3-78), replacing r; by r, and 8; by B,. We
omit the details.
We can prove (3-87) similarly. U

3D. Mixed normal directions. In this section, we deal with Holder continuity of the four mixed derivatives
0u 0%u 0%u 0%u
ar10ry’ r106010ra’  rdri06,  r1r00,06,°

which by our previous notation correspond to N Nou. Since the proof for each of them is more or less

(3-89)

the same, we will only prove Holder continuity for 32u/dr;dr,. The following holds at p and g by the
same reasoning of Lemma 3.11:

tim Uy P i D0y P
k—>o00 Or10rs or10ry k—>o00 dr10ry aryorp
By the triangle inequality,
8%u 3%u
oriar P arans (Q))S oriar P Brrar (p)‘ ‘ (P) orior (q)‘
y | L (q)— (q)‘
ar10r;

= L1+ L+ L3+ Ly.
Lemma 3.22. We have the estimate ~
Li+Ly<) o
k=t
Proof. We consider the cases when k >k, +1 and £ <k <k,,.

Case 1: k > k, + 1. In this case the balls ék (p) are disjoint from S and we can introduce the smooth
coordinates w; = zf "and wy, = zz . Under the coordinates {wl, w2, 23, . - -, Zn), the cone metric gg
becomes the standard Euclidean metric gc» and the metric balls Bk( p) become the standard Euclidean
balls with the same radius and center p. Since the gg-harmonic functions u; — uy4 satisfy (3-49), by
standard gradient estimates for Euclidean harmonic functions, we get

sup < Cow(th),

Bi(p)/2.1

Dy, Dy, (g — uj—1)

where we use D,,, to denote either d/dw; or d/9dw; for simplicity. From (3-88) and a similar formula

for 9/0r, we get
2

sup < Co(th). (3-90)

Bi(p)/2.1

or19rs (g —ug—1)




SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 791

Case 2a: £ > ky ,+1and £ <k, =k ,. For all £ <k, the balls Bi(p) are disjoint from S, and centered
at p;. We can still use wy = zzﬂz as the smooth coordinate. The cone metric gg becomes smooth in the
wy-variable, and we can apply the standard gradient estimate to the gg-harmonic function D, (uy —ui—1)

to get

_sup %Dwz(uk —up—1)|+ %Dwz(uk —up_1)| < Co(th).
Bi(p)/2.21 911 191
Again by (3-88), we get
2 82 '
) 5oy (g —ug—1)| + m(”k—uk—l) <Co(t"). (3-91)
Bi(p)/221 971972 19V1972

Case 2b: £ <k, and k > kz , + 1. This case can be dealt with similarly as above.

Case 2¢: £ <k < k> p. In this case r2(p) = thr < ok < ¢f ~ 8d. Now the balls ék(p) are centered at
P12 € S NS,. We can proceed as in the proof of Lemma 3.19, with the harmonic functions uy — ux_1
replacing the D’hy in that lemma to prove that, for any z € %Bk( PI\S,

2 2

200,07

(2) + (2)

<Cn, B)r (Z)l/ﬂl—lrz(z)l/ﬂz—l t_k(_2+]/ﬂ]+l/ﬂ2)w(tk).

(g — ug—1) (g — ug—1)

37'131”2

In particular, the estimate in each case holds at p, and from r{(p) < ry(p) < ¥ we obtain
82 2

- k ~
12307071 (p) = Ca (7). (3-92)

(ur —ur—1)|(p) + (e — up—1)

al”1 arz
Combining each case above, by (3-90)—(3-92), we get, for all k > ¢,
9%u

8r13r2

(p) < C(n, Boo(zh).

(e — up—1)

Therefore, by the triangle inequality,

oo 821,{ oo
Ly< Y. (e —ug-)|(p) C(, B) Y w(th).
37131’2
k=0+1 k=t+1
The estimate for L4 can be dealt with similarly by studying the derivatives of vy at g. 0
Lemma 3.23. Ly < C(n, Bo(th).

Proof. As in the proof of Lemma 3.22, we consider the cases £ > ky ,+1,ky , >€>ky p and £ <k , — 1.

Case 1: £ > ki , + 1. Here the ball ég(p) is equal to Bg(p, %), the function U defined in (3-55) is
gp-harmonic in %éz (p), and SUP, (p)/2 |U| < Co**w(t"). Since the ball %ég(p) is disjoint from S, we
have that w; and w, are well defined on %é@( p), and thus we have the derivatives estimates

?U
ar10rp

<Cn, Po(th).

sup
Be(p)/3

< sup
Be(p)/3

Dy, D,,U
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In particular, at g € %éz (p),

L2— 3214(3 ( ) 821)@
3= or10r; 9

U
@)| < Cn, Po(h).

82
‘arlarz

(q)‘ =

B or10r;

Case 2: ki, > £ > ky . Here the ball ég (p) is equal to Bg(p1, 27Y), the function U defined in (3-55) is
gp-harmonic and well defined in a ball

By = Bg(q, 157") C 55 Be(p),

andAsupée(p)/2 |U| < Co**w(t?). Since %l}g (p) is disjoint from S,, we have that w; is well defined on
ﬁBz (p), and thus we have the derivatives estimates

32U 9 ‘
sup <sup|—D,,U| <C(n, Bo(t").
B,/210r10r2| T B, /2| 011
In particular, at g € %Bq, we have
3%uy 3%vy U ¢
Ly = — = < C(n, 7).
3= 99 (9) 91972 (q) 3riors (@) =Cn, Po(t)

Case 3: £ <ky , — 1. Here ra(p) ~ th2r <71 < 84, s0
ra(q) <r(p)+d <3t° and ri(g) <d+ri(p) <d+r(p) <3gTh.

Therefore the ball Eg (g) is centered at either g1, g2 or g1 2 € S NSy, with radius 27¢. Tt follows that the
function U defined in (3-55) is well defined on the ball ﬁée (p).

By the same strategy as in the proof of Lemma 3.19, with the harmonic function D’ in that lemma
replaced by U on the metric ball 1%34 (p), we can prove that, for any z € %Be (PI\S,

(Z) < C(I’l, ﬂ)rll/ﬂl—1’,.21//32—1T—ﬁ(—2+1/.31+1/ﬁ2)w(1,€)‘

o

aryorp

Applying this inequality at g, we get

3% (ue — vp) _ 1 e
L=l 5, @|=C0Bn (@) By () /B gL 2B B 4y () < C(n. BYeo (Y.
In sum, in all cases L3 < C(n, B)w(t?). O

Lemma 3.24. There exists a constant C = C(n, f8) > 0 such that, forallk <{ and z € %ék (PI\S,

d [ 9%hy 3 hy
aa (Z) + Yy
891 81’18}’2 r1891 872

e pi/P kI B ) (K if k € [ky,p+ 1, min(¢, k)],
- rll/ﬂl—lrzl/ﬂz—l.L.—k(—2+1//31+1/ﬂ2)a)(1.k) lfk < k2,p-

(3-93)
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Proof. The proof is parallel to that of Lemma 3.19. The function dhy /36, is gg-harmonic on B( p), and
by the Laplacian estimates (3-9), we have

( dhy
sup
B(p)/1.2

Al— |+ A2
The function A;(0hy/06;) is also glg—harmonic, so the Laplacian estimates (3-9) imply

261

‘ ohy

7, ) < Cn, Po(h).

O "2 2k E)hk ok
A Ay— D -C ) ¢
ékflil/jl-‘*( oo | ‘( "R, ) = Cr T OSChpa Bagy ) S €T T
We consider
32 ohy dhy 9 ohy
e Az —A1Ay = — —Ay— =: F5, R
|z2] 312822< 391) 1822 30, : 3s]2. 2 20, 5 (3-94)

where the function Fj satisfies SUPg. (p)/1.4 |Fs| < Ct~*w(t5).

Case 1: k> ,+1 <k <min(¢, k,,). Here we introduce the smooth coordinate w, = 22’32 in the ball ll—sf?k (p)
as before. Since this ball is disjoint from S;, under the coordinates (ry, 61; w», z3, ..., Z,) We can use
the usual standard gradient estimate to the gg-harmonic function A;(dhy/d6;) to obtain

0 A ohy . 0 A ohy
ara \" 296, A
Case 2: k <k ,. Here the ball ék (p) is centered at p; ». We apply the usual estimate (2-3) to the function
A2(dhi/361), the solution to (3-94), on any C-ball A, := Be(y, (t5)/#2) for any y € S, N 1% Bi(p),

where A denotes the Euclidean ball in the complex plane orthogonal to S; and passing through y. Then,
for any z € Be(y, (fk)]/ﬂ2/2)\{y}

sup < Ct_ka)(rk). (3-95)

Bi(p)/2

d ohy ael HL *(A) ky2—1 -

2 TR R L Y Fally oo T 1B < 7% B20y ().
812( 801>( )‘ s + CIFsllLoay) (T7) < w (")

This implies that, on 1 Bx(p)\S,

3 Ihy 3 hy
— (A== )|+ | —— (A==
ar "2 96, 1200, \ "~ 00,

Taking 9/0r, on both sides of Ag(dhy/0601) =0, we get

9 [ 9%h 9 [ ohy 92
2(1-81) _ - ]
|z1] 021021 <8r2801> 8r2< 391> ; ]2 (3-97)

It is not hard to see from (3-95), (3-96) and standard derivatives estimates that, on ﬁék( PI\S,

< Cry/P e kP (25, (3-96)

e in Case 1 when k> , +1 < k <min(¢, k), we have |Fg| < Ct*w(th),

« in Case 2 when k <k, ,, we have | Fg| < Crzl/ﬂz_lt_k/ﬂzw(rk).
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Then by applying estimate (2-3) to the function 82hk/8r2891 on any C-ball A3 := Bg(x, (t%)1/B1y for
any x € 15 Bi(p) NS, we get that, on Be(x, (6)!/P1/2)\(x},
8%hy

d [ 8%hy N d 32hy
31‘1 31’2891 1’18(91 8}’28(91
1/81—1 H drpd6, ||L°°(A3)
=Cn kB

1/81—1 _
+C7’1/ﬂ1 || Fo | poo(ay TF @1/

e ri /P e R IH1B g () if k € [ky, 4+ 1, min(¢, k)],
== rll/ﬂl—lrzl/ﬂ2—1T—k(—2+l//3|+1//32)w(.[k) ifk <ky p-

Therefore this estimate holds on %ék( PI\S. O

Lemma 3.25. For any k < £ and any point 7 € %ék(p)\S,

9*hy ol<c ri/ P R IR B g (£F) if k € [ky,p + 1, min(£, k)1,
<
or10ry Y= rll/ﬂl_1,»21/’32_1T*k(*2+1/ﬂ1+1/ﬂ2)w(1—k) if k <k p.
(3-98)
92D'hy ol <c. ri/ P kB g () if k € [ky,, + 1, min(¢, k)],
ar10ry - rll/ﬁlflrzl/ﬂZ*l_L,fk(fl+1/.31+l/ﬂ2)w(rk) lfk < k2,p-

Proof. This follows from almost the same argument as in the proof of Lemma 3.24, by studying the
harmonic functions 4, and D’hy instead of dhy/00;. Il

Lemma 3.26. Forany k <{ and any z € %ék(p)\s,
3 ( %hi
dry \dr10r;
LR STC R if k € [ka,p + 1, min(€, k)],
rg(z)l/ﬂ2_lt_k/’32 +r (Z)1//31—2,-2(Z)1//32—1T—k(—2+1//31+1//32) if k <k -

(2)

< Cw<r’<)-{

Proof. By the Laplacian estimates (3-9) we have

Cosup [Arhl + [Asky| < C(n, Bo(eh). (3-99)
(Br(p)/1.2\S
Applying again the Laplacian estimates (3-9) to the gg-harmonic function Ak, we have
sup  (IA1ALh] + [A2Athe] + (D) Arhg]) < CmT~* 0 (79,
Bu(p)/1.4

We consider the equation

82

2277 s e = A1 A — ) j@mhk = F;. (3-100)
2042 X ;
J J

From the estimates above, ”F7”L<><>(1§k(p)/1.8) < Ct~ g (th).
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Case 1: ky , +1 < k <min({, k). Here we directly apply the gradient estimate to Al to get

B
— Arhg < Ct*w(t). (3-101)

2

sup
(Bi(p)/1.5\S

+

3
A h
02 11k

rn

Case 2: k < k ,. Here the balls By( p) are centered at p; ,, and we can apply the usual C-ball type
estimate to get that, for any z € %ék (p\S,

1/B2—1 ||A1hk||L°O
tk/B2

< Cry()/P e by (o),

d _ _
‘;Alhk + Cra(2) VP Fy || oo e 1P
2

0
——A1h
(Z)+'r2892 1hk

<Cry(z)

Recall that

9 (82hk) 9 1 8%k 1 33

ar \orar,)  or ¢ randr, B2rYa6ar,

from which we derive that, for any z € %l}k (pI\S,
d [ 3%hy
81”1 8}’1 8}’2

Tk () VA2 KA Bi=D) if k € [ka, p+1, min(¢, k)],
rz(z)l/ﬁz—l-[—k/ﬁz+rl (Z)l/ﬁl—2r2(z)1/,32—1-L——k(—2+1//31+1/,32) ifk<ka p.

)

wa(r"){

Lemma 3.27. There exists a constant C = C(n, B) > 0 such that, forallk <{ and 7 € %l}k (PI\S,

i )0+ (o)
30, \orom ) 50629

VBi=1 —k(=1+1/p1) if ke lk ;
r if ke + 1, min(¢, kp)],
< Co(ch) sl G 5 10
1/ﬂ| 1 1//32 1 7 —k(=2+1/B1+1/B2) if k <k p.
Proof. 1t follows from the Laplacian estimates (3-9) that
oh oh
sup < Ala—ek + ‘Aza—ek ) < C)w(th).
Bu(p)/1:2 2
Again by (3-9), we have
dhy dhy
sup (|ArAa =]+ + (DA — ) < Ct 0w ().
A 00 06,
Bu(p)/1.4 2
We look at the equation
9? dh dh 9* (. 0h
|21 P —— (A k) =—AA - —2<A ") =: Fy
021021 06, 06, , st a6,

and note that

sup | Fg| < Ct % w(th).
Bu(p)/14



796 BIN GUO AND JIAN SONG

As we did before, by estimate (2-3) it follows that, for any z € lék (p)\S (remember here k <min(¢, kp)),

]y | 28] < ot 200 L e ety g
ar, 06, rd6, 96, Th/Bi

< Cri(@)VP e Mgy (h),

Taking d/dr; on both sides of the equation Ag(dh,/96,) =0, we get

9?2 9%h 0 ah 3 (9% oh
20-p) _ % L2 LA il I v N DAL 3-103
122] 322322<3r1392> an( ‘aez) ;Brl <as§. 892) Y (3-103)

Here | Fo(z)| < Cri(z) /A=l =%/Biy(t%) for any z € %ék (p)\S. Therefore, by the usual C-ball argument,

e when k <k ,, forany z € %l}k(p)\S, we have

0 32hk 82hk 1
_ <C /B2—1 1/B1—1_k(2-1/B1—1/B2) k ,
ors (ar1392>( )' 1230 <3I’18(92>(Z) < Cr@ ™ i@ e @)
e when ky , +1 <k <min({, k,), we have

d 32/’lk d ath 1
— <C /Br—1_k(1-1/B1) ky ]
or2 <3r1392>(Z)‘ 506, (31’1392)(Z) < Cr@ e (™)
Lemma 3.28. Forany k < { and any z € %Ek (P\S,

d [ 9%hy @

dry \ dr10r; ¢

<Ca)(‘[k) r](z)l/ﬂl 1 —k/lsl—}—rl/ﬂl 1 1 —k( 1+1/81) lfke[kz,p—i-l,min(ﬁ,kp)],
Fi (VA1 gk B 1B 12}/ﬂz—2T—k<—z+1/ﬂ1+1/ﬁz> ik <k,

(3-104)

Proof. We first observe that

3 [ 9%hy 9 1 3%hy 1 dhy
— :—Azhk——————
dry \ dr10rp ory rp 0ri0r; ,32]"2 892 81"1

It can be shown by the C-ball argument that, for any z € %ék (p\S,

d
—MAohi(2)| < Crl(z)l/ﬂl_lr_k/ﬁla)(rk).

8r1

From Lemma 3.25, we have, for any z € l]f}k(p)\cS'

1 8%y r P T R I BD gy (2K if k € [ky,p + 1, min(€, k)],
Earu‘)i’z( 2= 1//31 1 1/ﬁ2 2 k(= 2/ Bit1/B2) g (o) itk <k .
From Lemma 3.27, we have, for any z € —Bk (pI\S,
1 33y
3 or 1392

P VB k11 /) if k € [ka,p + 1, min(¢, kp)],

(@) 1/B1—1 1//32 -2 —k(=2+1/B1+1/B2) ifk <kyp.

< Co(zh) - {
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Therefore, for any z € %ék( P)\S, we have

3 [ 3%hy
— (2)
31‘2 31‘18}’2
oty |7 (VA1 p kB p Pl k(141 By if k€ ko p+ 1, min(e, k)L
=Co(r’)- r (Z)l/ﬂ| Le=k/Br 4 rll/ﬁl 1rzl/ﬂz—ZT—k(—2+1/ﬁ1+1/ﬂz) ifk <kap.
It remains to estimate L,. For simplicity, we write hj := —uy + ux_; as before, where we take k < €.

We will define B,.x = max(8, B2).
Lemma 3.29. Let d = dg(p, q). There exists a constant C(n, B) > 0 such that, for all k < £,

9%hy 9%hy
(p) —

(q) <Ca)(1:k)t k(1/B1=1) 41/B1—1
or10r; oryor

Sca)(fk)f k(l/,ﬂmax—])dl/ﬂmaX 1

Proof. Case 1: First we assume that r,, < 2d, so that r, <3d and £+2 < k,. In particular, the balls B( P)
are centered at either p; € Sy or 0, depending on whether k > k , + 1 or k < k> ,. As in the proof of
Lemma 3.20, let y : [0, d] — Bg(0, 1)\ S be the gg-geodesic connecting p and g, let the two points g’
and p’ be defined as in (3-80), and let y;, y», y3 be the gg-geodesics defined in that lemma. By the
triangle inequality we calculate
3%hy

or10r
3% hy 3%hy

< - /
| 9r10r; P) 8r18r2(p)

()—

’ 32 th

8%hy 8%hy,
o 82( )— ‘

2(qz) = Li+L5+Lj.

Integrating along y3, where the coordinates (ry; 12, 62; z3, . . . , 2,) are the same as p, we get (by (3-93))

d ( 3%hy )d@ r(p) /A=ty —k(=1+1/6D) if k € ko, ,+1, 2],
an 1
vy 001 \0r10r2

r (p)l/ﬁl—lrz(p)l/ﬁz—l.L.—k(—2+1/f31+1/,32) if k < ko ).
Integrating along y», where the coordinates (61; 2, 62; 23, . . . , 2,) are the same as p’ or ¢/, we get by the
estimate in Lemma 3.26 that

d [ 3%h
/ —( k )dl’]
v ory \0r10r;

v kd 4+ RB=D 1 (p) — 1y ()| VP! ifk €lkyp+1,4],
< Co(t") - { ra(p)V/Br-1¢Kb2g
+ ra(p) VP g KB YB) 1y (p) — 1 () |VP! ik < ko

tkd 4 ¢ *U/B=Dgl/Bi- ifk €k, + 1, €],
ra(p) VB lp=kIBag oy (p) VP gk BB gUB=T if | <Ky .

L=

< au(r")-{

L=

< Co(th)-

To deal with the term L, we consider two cases for k: £ >k >k ,+1and k <k; p.
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Case la: k> , +1 <k < £. In this case the balls ék(p) are centered at p; € S;. Here t* <t ¢ <87 14~!
and 7F < kst < %rz(p), sor(q) > —d+ry(p) > 7%, The balls ék(p) are disjoint from S;, and we
can use the smooth coordinate wy, = zgz as before. The functions D,,, D'h; are gg-harmonic; hence by
the gradient estimate we have

”Dsz/hk”Loo B 1.1
sup  |Vgs(Dw,D'hy)| < C(n) (B(p)/1.1)

(Bk(p)/1.2\S

< Ct*w(h.

ok

From (3-88), we get )

sup D'hi| < C(n)t*w(th). (3-105)

(Bi(p)/1L2D\Si

orior

Recalling that r1(p) =7, <2d < %rk , the triangle inequality implies r{(g) < 3d < %tk. The points in y;
have fixed (rq, 61)-coordinates (r1(g), 61(gq)), so integrating along y; we get (by (3-104) and (3-105))

, d 9%hy d 8%hy , 8%hy
L3 < o + +|D
w1 0r2 \0r1dr; 1200, \ 0r 10712 dr10r
< Cdw (@) (r1(@) PP 4 1(@) P min(ra(p), ra(q)) T THPD 7Ry
<Ct*w(") -d < Ct7KUB=Dg (kygl/hi=T,

Case 1b: k < ky . In this case k> thp > r2(p) and 8 > 7¢ > 84. Thus r(q) <r(p)+d< %‘[k.
We choose points ¢ and g as in (3-84), and let y;, y and y be gg-geodesics defined as in the proof of
Lemma 3.20. Then we have

82hy @) 8%hy
or10r; 4 or10r;

%hy 3?hy
+ ‘ or10r; @~ or10ry @)

hy . hy
+ (@) —
31’13?‘2 31’131’2

(@)

/

(@)|=:L{+Lj+Lj.

We will estimate LY, L} and L term by term by integrating appropriate functions along the geodesics i,
y and y as follows: The points in y have fixed (r1, 01; r2; s)-coordinates (r1(q), 01(q); r2(q); s(q)), so
(by (3-102))

9 ( 9%h
/ —( k )d@z
y 892 31‘18}’2

Integrating along y, where the points have constant rj-coordinate r;(g), we get (by (3-104))

/ 9 ( 9%hy >
- drz
7 drp \drjor;

< Co@)(ri@)" PPy (q) — ra(p)
+r (q)l/ﬂlflffk(*2+1//31+1/ﬂ2) |r2(q)1//32*1 _ rz(p)l/ﬁzfl |)

Lg — < Ca)(rk)rl (q)l/ﬂl—lrz(q)l/ﬂz—l k(241 Bi+1/ )

< Ca)(rk)rl (q)l/ﬁlflrfk(*lﬂ/ﬂl) < Cr—k(l/ﬁl—l)w(rk)dl/ﬁl—l‘

"__
L2—

< Co(@)ri(@)VP e big 4 i (q) /P11 ¢ KE2H Bt B2) g1 /BTy
< Co(t)ri(g)V/Pr— g =kE1+1/BD
< CrHU/B=D gy (£hyg /BT,
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Integrating along y;, where the points have constant (ry, 61; r2, 6>)-coordinates, we have (by (3-71))
L < f
4!

Combining both cases, we conclude that

3%h
D' 225 < Cri(@) /By (p) /Bl gk 1+ B+ B g
or10r

< Cdt*w(z%) < cdV/Pr—1¢=KA/BI=D ) 5y,

L/3 < Ct_k(l/ﬂ'_l)a)(rk)dl/ﬂl_l.
Then by the estimates above for L’1 and L’z, we finally get, for all k < ¢,

3%hi 9%hi k(- _ - - _
p)— (@] < Ca)(‘L'k)‘L' kA/pi=1 41/B1—1 Cw(‘rk)t k(1/Bmax—1) 1/ Bmax—1
aryorp ariory - -

where in the last inequality we use the fact that = *d < % < 1 when k < £. Hence we finish the proof of
Lemma 3.29 in the case r, < 2d.

Now we deal with the remaining cases.

Case 2: Here we assume min(r,,r,) =r, > 2d and £ < k,. In this case hr & rp>2d > 63 50
£ +3 > k,. It follows by the triangle inequality that dg(y (), S) > d, where y is the gg-geodesic joining
p to g as before. In particular, this implies that min(r((y (¢)), r2(y(¢))) > d.

Since ¢ < k,, Lemmas 3.24-3.28 hold for all k < € and r1(p) ~ T < 7%, s0

r(y(®) <d+ri(p) < g’ < 37

We calculate the gradient of 9%hy, /dr10r, along the geodesic y as
3 [ 3% \ | = 3% \ |* | 32he \ |
31’1 81’131’2 /311‘1891 31’18}”2 31’2 81’181”2
3 32 \|?
+ +
Borp 36, (Brlarz) Xj:

r(y(t) > r(p)—d>t"—d >

2
‘Vgﬂa a

2

3 [ 3%hy
st 8r18r2

Case 2a: k» , +1 <k < £. Here along y we have

oo|\1

Then by Lemmas 3.24-3.28, along y we have

()| < Co () (x7F + a1 1F1=20~+/B=D)y

2
‘gﬁa 8

Integrating this inequality along y we get
3%hy th 2

orior p

h
g,g 31’137‘2

< Co(th)(dr™ 4 a'/Pr=1e=kU/A=1)y

(q)‘

< Cdl/ﬂ‘_l‘L'_k(l/ﬁ'_l)a)(rk).
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Case 2b: k < k; ,. Here along y we have

2

[es]N=)

Ry ®) <rn(p)+d<t‘+d<
Then by Lemmas 3.24-3.28, along y we have

3%y,
&# 87‘1 3}’2

< Co(th)(x 7% 4 @V/Pr—2¢—*1/Bi=D)y,

Integrating this inequality along y we again get

alhk() ath()<fV
orior p aryor D)= y 88

2
Ohi | _ e glpri=1=k/B1=1) gy (k.
r

a

arp

Case 3: Here we assume min(r,, ry) =1, > 2d but £ > k, + 1. The case when k < k,, can be dealt with
by the same argument as in Case 2, so we omit it and only consider the case when k, +1 < k < £. Here
ra(p) > ri(p) > 8 > ¢ > 84, and hence

ry®) =" and r@y @) = It

for any point y (¢) in the geodesic y. By the triangle inequality it follows that  C %ék (p) =Bg ( D, %rk).
As before, we can introduce smooth coordinates w; = 2’13 "and wy = zzﬁz, and gg becomes the standard
smooth Euclidean metric gc» under these coordinates. Moreover, /i is the usual Euclidean harmonic

function A, iy =0 on ék (p). By the standard derivatives estimates we have

cn

sup (1D, | +|D' (D2 i) < Ct*w(zh).

. w,wa wy,wa
Bi(p)/2

From the equation

hy  wiwy %hx  wiwy 9%hg | wiwy 0Pk wiby 9%hg

or10r; o rirp owjdws rirp owjdws rirp owi0ws rirp 0wi0ws
o 8y
or10rs

C C
< sup(Ct_ka)(tk) + Zw(Tk) + Ew(t")) < Ct_ka)(rk).
Y

we see that, fori =1, 2,
3 [ 9%hy
8w,- 37’1 87‘2

From this we see that

< Ct*w(h).

C
< —a)(rk) —I—Ct_kw(rk) and sup
i Bi(p)/2

sup
Bi(p)/2

8%hy

\Y
8p 8r18r2

sup
¥
Integrating along y we get

82hk() azhk()</v 9%hy
p DI=] 1 %m0

_ < Cdt o ("
orior aryor r

< Cdl/ﬂ'_lT_k(l/ﬂ'_l)a)(rk).

Combining the estimates in all three cases, we finish the proof of Lemma 3.29. U
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By Lemma 3.29,

Ly=| Ly P
2= 3?’13}’2 P 81” 8)’
82u2
< Cdl/ﬂm’tx 1 E —k(1/Bmax—1) k 3_106
—|0r10r (p) ario + ’ @ (). ( )

k=3

To finish the proof, it suffices to estimate the first term on the right-hand side of the above equation.
Recall that we assume u; is a gg-harmonic function defined on the ball 32 (p), which is centered at
P12 € §1 NS, and has radius 272. We also know u, satisfies the L>-estimate by the maximum principle:
there exists some C = C(n) > 0 such that

U2l oo (B pyy < CUlellLoeo(Bg0,1)) + »(t?)). (3-107)

Recall that the proofs of the estimates in Lemmas 3.24-3.28 in the case when k < k , work for any
gp-harmonic functions defined on suitable balls, and we can repeat the arguments there replacing the
L*>-estimate of Ay, namely ||Ag|pe~ < Ct%*w(15), by the L*°-estimate of u; given in (3-107) to get
similar estimates as in those lemmas. We will omit the details. Given these estimates, we can repeat the
proof of Lemma 3.29 to prove the estimates
0%us 9%us
orors P ariors

()| < Cd" Pl oo gy 0,1)) + @ (T2).

This inequality, combined with (3-106), gives the final estimate of the L, term, that is

£
Ly < Cdl/ Bmax—1 ||M||L°°(Bﬂ(0,l)) + Cdl/ Bmax—1 Z T*k(l/ﬂmaxfl)w(fk)‘ (3-108)
k=2

By Lemmas 3.22 and 3.23 and the estimate (3-108) for L,, we are ready to prove the following estimate;
see (1-5).
Proposition 3.30. For given p, q € B,g( )\S there is a constant C = C(n, ) > 0 such that

7 — ) Upmaet [ @)

9%u (p) —
aror L " ariom

Proof. From Lemmas 3.22 and 3.23 and the estimate (3—108) for L,, we have

3%u 3%u
— < C dl/ﬁmax 1 00 +d /lsmax 1 T*k(l/lgmax 1)) Tk _|_ Tk
59 P " s @ ( i)l LBy 0,1 Z (") Zw( )
k=2 k=¢
U B —1 @(r) Vot [ 20
< C<d ||M||L°°(Bﬂ(0,1))+/0 dr+d /[; Y7 dr),
where the last inequality follows from the fact that w(r) is monotonically increasing. g

Finally, we remark that the estimates for the other operators in (3-89) follow similarly; we omit the
proofs and state that the estimates are the same as the estimates for 32u/dr;dr» in Proposition 3.30.
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3E. Nonflat conical Kdihler metrics. In this section, we will consider the Schauder estimates for gen-
eral conical Kihler metrics on Bg(0,2) C C" with cone angle 27 8 along the simple normal crossing
hypersurface S. Let w be such a metric. By definition, there exists a constant C > 1 such that

C'wg <w<Cwpg in Bg(0,2)\S, (3-109)

where wg is the standard flat conical metric as before. Since w is closed and Bg(0, 2) is simply connected,
we can write @ = +/—19d¢ for some strictly plurisubharmonic function ¢. By elliptic regularity, ¢ is
Holder continuous under the Euclidean metric on Bg(0, 2).

We fix @ € (0, min{1/Bmax — 1, 1}).

Definition 3.31. We say w = g is a C Kihler metric on Bg(0, 2) if it satisfies (3-109) and the Kihler
potential ¢ of w belongs to C}g (Bg (0 2)).

We are interested in studying the Laplacian equation
Agu= f in Bg(0, 1), (3-110)

where f € Cg’a(Bﬂ (0,1)) and u € Cé‘“. We will prove the following scaling-invariant interior Schauder
estimates. The proof closely follows that of Theorem 6.6 in [18], so we mainly focus on the differences.

Proposition 3.32. There exists a constant C = C(n, 8, ||g||*0a) > 0 such that, if u € Cfg *(Bg(0, 1))
satisfies (3-110), then

10y 0.1, = CNtlcoimyo.n + 171G g 1) (3-111)

Proof. Given any points xo # yo € Bg(0, 1), assume d,, = min(d,,, dy,); recall d, = dg(x, dBg(0, 1)).
Let u € ( ) be a small number to be determined later. Write d = ud,,, and define B := Bg(x¢, d) and
1B := Bg (xo, 1d).

Case 1: dg(xo, yo) < 3d.

Case la: Bg(xp,d) NS = . We introduce smooth complex coordinates {w; = z'lg‘, wy = zg 23y e nyZn)

on Bg(xo, d), under which gg becomes the Euclidean metric and the components of g become C“ in
the usual sense. Equation (3-110) has C* leading coefficients, and we can apply Theorem 6.6 in [18] to
conclude that (the following inequality is understood in the new coordinates)

[y < Clullcosy + 1 F g0 s)- (3-112)

Recall that T denotes the second-order operators appearing in (2-2). Let D denote the ordinary first-order
operators in {w;, wy, 23, ..., Z»}. We calculate

dp (xo.
M(IDZM(X())I-HDZM(W)I)

4dg(x0, yo)
[u]cz,a(B)'i_T[ ]CZ(B)

dg(x0, y0)*
d2ta

| Tu(xo) — Tu(yo)| < |D*u(xo) — D*u(yo)|+

- 4dg(xo0, y0)*
- d2+o

o
- 8dpg(x0, yo)

< Jita lullcocgy (by the interpolation inequality).

[u]*cz,a(B) + C
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Then we get

gorel T (0) — Tu(yo)l

¢ ) C
0 dg(xo, y0)* e ”f”cof' M2+_“ lullcocsy- (3-113)

Case 1b: Bg(xg,d) NS # @. Let Xp € S be the nearest possible point xg to S. We consider the ball
B:= Bg (%o, 2d), which is contained in Bg(0, 1) by the triangle inequality. As in [14], we introduce a
(nonholomorphic) basis of Tffo((E” \S)

lej :=drj+~—1Bjr;d0;, dz;}j=12k=3,....n,

and the dual basis of 77 o(C"\S)

{ 0 1 9 0 }
yii=—— .
! ar; ﬁj’f 89 Tz ) o 2:k=3,....n
We can write the (1, 1)-form w in the basis {€; A €, €; AdZy, dzx N€j,dzj NdZy} as
W= 8e;a€j NEk + 8 i€ NdZk + gke; dzk NE€j+ g jrdzj Ndzy, (3-114)

where

_ _ - 0
e =V —1009 (v, Vi), ggj;;zv—188¢<yj,8—zk>,
82
gkéj \ 88¢( ’ yj)v gk]_ =

0707
We remark that all the second-order derivatives of ¢ appearing in (3-115) are linear combinations of
|z |>—28; (82/811 dzj))NjNi (j #k), N; D’ and (D’)2, which are studied in Theorem 1.2. The standard
metric wg becomes the identity matrix under the basis above for (1, 1)-forms. If w is C 0.0 , all the

(3-115)

coefficients in the expression for w in (3-114) are c% 8 “-continuous, and the cross terms 8ejé ( j #k)and
8eik tend to zero when approaching the corresponding singular sets S; or S;. Moreover, the limit of
8k dzj N dzZx when approaching §; N - -- NS, defines a Kéhler metric on it. Rescaling or rotating the
coordinates if necessary we may assume at o € S that 8ejé; x)=1, g ik (Xo) = & ¢ and the cross terms
vanish at Xo. Let wg be the standard cone metric under these new coordinates near xo. We can rewrite
(3-110) as

Agu(z) = Agyu(z) +1(2) i00u(z) = f(z) forallz ¢S

for some hermitian matrix n(z) = (nfk)J k=1 771 = ng(z) — g% Tt is not hard to see the term n(z)- i00u
can be written as
2 ~ n ~
Y@@ =8 uce +2Re Y g u p+ Y (M@ —8puz, (3-116)
Jok=1 1<j=2 jk=3
3<k<n

where g with the upper indices denotes the inverse matrix of g. We consider the equivalent form of
(3-110) on B:
Agpu=f—n-~/=13du=: f, ueC'B)NC*(B\S).
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Observing that xo, yo € Bg ()20, %d), we can apply the scaled inequality (1-7) of Theorem 1.2 to conclude
that

| Tu(x0) — Tu(y0)| o
d2+0l C
dﬂ(XOv yo)"‘ (”u”CO(B) + ”f”COa )
thus o) (
|Tu(xp) —Tu y0)| C
dy, < e (lelcogsy + 171G ) (3-117)

dg(xo, y0)*

Case 2: dg(xo, yo) > 1d.
|Tu(x0)| +Tu(yo)l

d2+a |Tu(xo) — Tu(yo)] < 4d2+a _[ ] (3-118)
R TET S 1)) L de P GRS
Combining (3-113), (3-117) and (3-118) we get
24 [T (x0) = Tu(yo)| _ C (2)
de “ dﬁ(-xO, yo)“ M [ ]CZ(Bﬂ(O 1)) (”u”CO(B) + ”f”
C
2
T ||f||coa + oo G-119)
By definition it is easy to see that (writing Bg = Bg(0, 1))
@) (2) 2+a 2) (2)
IIfIICOa(B) cu’ 11l o,y +C1e [f]coty(B y =K IIfIICM By’

We calculate
)] < ) 2) 2)
173 3y = NG I T e g, + 171 e 5

2+a 2 (2)
CO[g]COa(B )I’L (/“L [u]CZ(B )+M [u]CZDt(B ))+I’L ||f||C0,a(B )

CO[g]CO" M (C(“)”””CWBM+2“2+a[”]cza Dtu ||f||(c,9 “(Bp)’

8 k o *
F[”]CE(B}Q) =M [M]Cz’“(B,s) + C(M)”””C“(B,g)'

If we choose © > 0 small enough that u*(2Cy[g]* +1) < % then we get from (3-119) and the

CO a )
inequalities above that
g2+ [Tu(xp) — Tu(yo)|

10 dg(xo, y0)*

L, 1% ()]
< M+ OO Nulcoiny + 11 )

Taking the supremum over xo # yo € Bg(0, 1), we conclude from the inequality above that

(&)
C(””||C0(Bﬂ)+||f||c()a "

[l/l] Za

(Bg) —
Proposition 3.32 then follows from interpolation inequalities. O

Remark 3.33. It follows easily from the proof of Proposition 3.32 that estimate (3-111) also holds for
metric balls Bg(p, R) C Bg(0, 1) whose center p may not lie in S.
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Remark 3.34. The Schauder estimate was first established by Donaldson [14] for a background cone
metric with singularity along a smooth divisor assuming u € Cé’“; this latter assumption was removed by
Brendle [1] in the case B € (0, %) and by Jeffres, Mazzeo and Rubinstein [23], requiring only a weak
solution. Jeffres, Mazzeo and Rubinstein [23] then extend the results to nonflat background metrics using
a perturbation argument. This is the first time a Schauder estimate for the linear conic equation in the
smooth divisor case appeared in the literature with a full proof.

An immediate corollary to Proposition 3.32 is the following interior Schauder estimate.

Corollary 3.35. Suppose u satisfies (3-110). For any compact subset K € Bg(0, 1), there exists a constant

C=C(n,B, K, ||g||c2.a(33(0’1))) > 0 such that

||u||C§'a(K) = C(””“C°(Bﬂ(0,l)) + ”f”Cg‘m(Bﬂ(O,l)))'

Next we will show that (3-110) admits a unique Cé’“—solution forany f € Cg’“(Bﬂ (0, 1)) and boundary
value ¢ € CO(E)B,g (0, 1)). We will follow the argument in Section 6.5 in [18]. In the following we write
Bg = Bg(0, 1) for simplicity.

(o)

Lemma 3.36. Let o € (0, 1) be a given number. Suppose u € Cﬂ (Bg) solves (3-110), |lul| < 00

C%(Bg)
and ||f||(C20;29 ) < 00. Then there existsa C = C(n, B, «, g, o) > 0 such that
(= (—0) 2-0)
Iy = CUlp + 11T, )

Proof. Given the estimates in Proposition 3.32, the proof is identical to that of Lemma 6.20 in [18]. We
omit the details. g

Lemma 3.37. Let u € C;(Bﬂ) N CO(B_ﬂ) solve the equation Agu = f and u = 0 on dBg. For any
o € (0, 1), there exists a constant C = C(n, B, 0, g) > 0 such that

= sup 47 ()| = C sup d2~7 1) = CILFIGE).
XGB )CEB,Q

(o)
”M”CO(Bﬂ)
where d, = dg(x, 0 Bg) as before.
Proof. Consider the function w; = (1 — dé)“, where dg(x) = dg(x, 0). We calculate
Agwi =0 (1 —dg)° >(—(1 —dp) try gg — (1 — 0)|Vdg|3)
<o(1—dg)’ > (=C 7' (1 —dg) —4C'dz(1 — 0)) < —coo (1 —dp)° >

Take a large constant A > 1 such that, for w = Awy,

Aqw < —(1—dg)" % < —% in Bg,
where

N = sup dZ°| f(x)] = sup (1 —dg(x))* | f(x)].
xEBﬁ xGBﬁ

Hence Ag(Nw=+u) <0, and from the definition of w we also have w|yp, = 0. By the maximum principle
we obtain [u(x)| < Nw < CN(1 —dg(x))° = CNd{, and hence the lemma is proved. O
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Proposition 3.38. Given any functlon fe C (B_,g) the Dirichlet problem Aqu = f in Bg and u =0 on
0 Bg admits a unique solution u € Cﬂ (Bg) ﬂ cY (Bﬂ)

Proof. The proof of this proposition is almost identical to that of Theorem 6.22 in [18]. For completeness,
we provide the detailed argument. Fix o € (0, 1) and define a family of operators A; = 1A, + (1 —1)Ag,.
It is straightforward to see that A; is associated to some cone metric which also satisfies (3-109). We

study the Dirichlet problem
A,ut=f in Bﬂ, u,EO on aBﬂ (*I)

Equation (x() admits a unique solution ug € C;"’ (Bg)yNcC O(Eg) by Proposition 3.7. By Theorem 5.2

in [18], in order to apply the continuity method to solve (1), it suffices to show A; ! defines a bounded
linear operator between some Banach spaces. More precisely, define

(=
= {u € C3" (B | Il 3, < 00).

— 0,a 2—0)
Bai= U1 < Cp (B A1, < o0)

By definition any u € B; is continuous on Eg and u =0 on d Bg. By Lemmas 3.36 and 3.37, we have

_ (—o) 2-0) _
lulls, = Nl < AN, = CllAwl,
for some constant C independent of ¢ € [0, 1]. Thus () admits a solution u € B;. Il

Corollary 3.39. For any given ¢ € C°(d Bg) and f € Cg’a(gﬂ), the Dirichlet problem
Agu=f inBg and u=¢ onodBg, (3-120)
admits a unique solution u € Cé’a (Bg) N CO(I?,g).

Proof. We may extend ¢ continuously to Bg and assume ¢ € C O(Eﬂ). Take a sequence of functions
Ok € C;“(Eg) ncC O(Eg) which converges uniformly to ¢ on Eg The Dirichlet problem

Agvp = f — Ay in Bg and v, =0 ondBg

admits a unique solution v € Cﬁ’“(Bﬂ) N Co(l?ﬁ). Thus the function uy := vy + ¢ € C§’°‘ satisfies
Agup = f in Bg and uy = ¢ on BB,g By the maximum principle, u; is uniformly bounded in C O(I?ﬂ)
Corollary 3.35 gives uniformly Cﬂ (K)-bounds on any compact subset K € Bg. Letting k — oo and
K — Bg, by a diagonal argument and up to a subsequence, u; — u € c* 8 *(Bg). On the other hand, from
Ag(uy —uy) =0, we see that {u;} is a Cauchy sequence in CO(B;;) thus u; converges uniformly to u
on I?ﬂ Hence u € CO(I?B), and u satisfies (3-120). Il

Corollary 3.40. Given f € Cg’“(Bﬂ), suppose u is a weak solution to the equation Agu = f in the sense
that

/ (Vu, Vo), = — fowy forallg e HOI(Bﬂ),
Bg Bg

then u € C5* (Bp).
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Proof. We first observe that the Sobolev inequality (3-43) also holds for the metric g, since g is equivalent
to gg. The metric space (Bg, g) also has maximal volume growth/decay, so we can apply the same proof
of De Giorgi-Nash-Moser theory [22] to conclude that u is continuous in Bg. The standard elliptic theory
implies that u € Cloc (Bg\S). For any r € (0, 1), by Corollary 3.39, the Dirichlet problem A u = f
in Bg(0,7), u = u on dBg(0, r) admits a unique solution % € Cﬂ (Bg(0,r)) N CO(Bﬂ(O, r)). Then
Ag(u —it) = 0in Bg(0,r) and u — 1 = 0 on dBg(0, r). By the maximum principle, we get u = u
in Bg(0, r), so we conclude u € C;“’(Bﬁ (0, 7)). Since r € (0, 1) is arbitrary, we get u € Cé’a(Bﬁ). d

Corollary 3.41. Let X be a compact Kéhler manifold and D = j Dj be a divisor with simple normal
crossings. Let g be a conical Kihler metric with cone angle 2 B along D. Suppose u € H'(g) is a weak
solution to the equation Agu = f in the sense that

/(Vu Vo)w / f(pa) forall p € C'(X)
X
for some f € Cg’a (X). Thenu € Cé’a(X) NCO(X) and there exists a constant C = C (n, B, g, &) such that

”u”C;ﬂ(X) = C(||u||CO(X) + ”f”Cg'a(X))’

Proof. We choose finite covers of D, {B,} and {B/}, with B € B, and centers in D. By assumption
u is a weak solution to Agu = f in each B, so by Corollary 3.40 we conclude that u € C *(B,) for
each B,. On X\S, the metric g is smooth so standard elliptic theory implies that u € ClOC (X \S). Since
{B,} covers D, we have u € C;“(X).

We can apply Corollary 3.35 to obtain that, for some constant C > 0,

||M||C123-u(3[;) = C(||”||c0(Ba) =+ ||f||Cg(Bg))-

On X\ J,{B,} the metric g is smooth, so the usual Schauder estimates apply. We finish the proof of the
corollary using the definition of C;“”(X ); see Definition 2.9. O

Remark 3.42. Let (X, D, g) be as in Corollary 3.41. It is easy to see by the variational method that weak
solutions to Agu = f always exist for any f € L*(X, wy) satistying f x fwg =0.

4. Parabolic estimates

In this section, we will study the heat equation with background metric wg and prove the Schauder
estimates for solutions u € C%(Qg) N ‘52’1(@;) to the equation

u
ot

for a function f € € O(Q,g) with some better regularity.

= Agyu+ f (4-1)

4A. Conical heat equations. In this section, we will show that, for any ¢ € €°(p Qp), the Dirichlet
problem (4-2) admits a unique ¥ 2.1 (Qt;) Ne 0(Q_/g)—solution in Qg. We first observe that a maximum
principle argument yields the uniqueness of the solution.
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Suppose u € 6> (Q%) N%4°(Qp) solves the Dirichlet problem

dJu .
E:Agﬂu in Qg, 4-2)
u=g on dpQpg

for some given continuous function ¢ € €°(3p Qp). As in Lemma 3.1, it follows from the maximum
principle that
inf u <infu <supu < sup u. 4-3)
apQp Qg Qg apQp
So the ¢! (Qﬁ) N %O(Q_p)—solution to (4-2) is unique, if it exists.
We prove the existence of solutions to (4-2). As before, we use an approximation argument. Let g, be
the smooth approximation metrics in Bg from (3-3). Let u, be the ©*!(Qg) N € °(Qp)-solution to

ou,
ot
4A1. Estimates of u.. We first recall the Li—Yau gradient estimates [26; 35] for positive solutions to the

= Ag ue in Qg and Ue=¢ onadpQg. 4-4)

heat equations.

Lemma 4.1. Let (M, g) be a complete manifold with Ric(g) > 0 and B(p, R) be the geodesic ball
with center p € M and radius R > 0. Let u be a positive solution to the heat equation d;u — Agu =0
on B(p, R). Then there exists C = C(n) > 0 such that, forallt > 0,

(|W|2 2u,) _C N 2n
sup —— )<=+ —,
B(p,2R/3) u? u R? t

where u; = du/ot.

By considering the functions u, — infu, and sup u. — u., from Lemma 4.1, we see that there exists a
constant C = C(n) > 0 such that, for any R € (0, 1) and ¢ € (0, R?),

1 1
sup IVuelﬁ < C<—2 + —) (oscg ue)?, (4-5)
By, (0.2R/3) ‘ R= 1
Ue 1 1
sup  |Agucl=  sup =C| 57+ )oscrite, (4-6)
By, (0.2R/3) By (0.2R/3)| 91 R 1

where oscg U, := 0SCp__(0,R)x(0,R?) Ue is the oscillation of u. in the cylinder B, (0, R) x (0, R?). Replac-
ing u. by u —infu., we may assume u, > 0 and define f. =logu.. Then we have

af,
8—; = Ag fe + VS

Let ¢(x) = ¢(r(x)/R), where ¢ is a cut-off function equal to 1 on [0, %] and 0 on [%, oo) satisfying the
inequalities |¢”| < 10 and (¢’)? < 10¢. Let r(x) be the distance function under g, to the center 0.
Lemma 4.2. There exists a constant C = C(n) > 0 such that, for any small € > 0,
1 1
sup  |Ajue| < C(— + —2) oscrue forallt e (0, Rz),
By (0.3R/5) t R

where we write Ajuc = (|z;|> + €)' =P (a2u€/aziaz;) fori=1,...,p.
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—_A

Proof. We only prove the case when i = 1. We define F :=tp(—A;fe —2 f;) and we calculate
0
ot

g€>< Ay fe=2f) = = VaV > = IViVf P —2Re(Vfe, V(= A1 fe = 2f)) — Ryiji fo j fek
< —(—A1f)? —2Re(Vfe, V(=A fe = 2f0)

F achieves its maximum at a point (py, tp), where we may assume F(po, fp) > 0; otherwise we are
already done. In particular, py € B, (0 2

) by the definition of ¢ and 7y > 0. Then at (po, t9), we have
0
0< <— —A )F
ot

0 . F _( F
= — +t0(P<_ - Age) (A1 fe—=2f) — —Ag€¢ — 21 RC<V§0, V(_)>
to ot Q oy
F ) F — F p
< E‘H‘Ofp —(=A1fo) _2W Re(Vfe, Vo) +C—(<P +¢)+2

R2 59, (4-7)

where we use the Laplacian comparison and the fact that VF = 0 at (pog, #p). The second term on the
right-hand side satisfies (we write F

Ay fe—2 f; for convenience of notation)

F _ ~ ~ .
fog (—(—Alfaz 2 S Re(Vfe, vm) < tog (—F2 —4F fe—4(f. -
0
~9 ~ 2 ~ 2 |§0/|2
Stop|—F" —4F fe + 2F|Vfe|" +

2R2<p2
<t F2+ ﬁl(ﬂz +C—+C F (by Lemma 4.1)
=109 2R2?2 " 1y R? Y '

’ +2_F|er||go |>

FZ
-——+C
g 2R%p

Inserting this into (4-7), we get, for some constant C = C(n) > 0, at (po, ty)

F F
+C=+C—.
1

) F
—F +CoF + + Cto >0,
from which we obtain F(py, tg) < Cto/R2 + C. By the choice of (py, tp), we can see that
. 1
sup  (=Ajfe—2f) =< C(—2
By (0.R/2) R

which implies that, on B, (0, %R) x (0, R?)

1 1
~ A su€+c( Rz) (4-8)

Applying (4-8) to the function sup u — ue, we obtain, on By, (O, gR) x (0, R?),

. 1 1 1 1
[Ajue| < el + C(; + ﬁ) OSCR Ue = C<; + ﬁ) OSCR U¢
by (4-6). Thus we finish the proof of the lemma

1
+ ;) for all ¢ € (0, R?),
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Lemma 4.3. There exists a constant C = C(n) > 0 such that
1
sup sup (|ViV; u€|+|VV ue|)<C( z)oscRue
i#j Bg (0,R/2) R
forallt € (0, R?). Recall, here |V,~V.,-u€|2 = V[V.,-MSV;Vquegé’ gﬁj (no summation over i, j is taken).

Proof. We only prove the estimate for |V V,u|. The other estimates are similar, so we omit their proofs.
By calculations similar to those used to derive (3-27), we have

(% - Agf) IViVafel <2Re(Vfe, VIViVafel) + Xk:(IW Vi felIVaVi fel +IVa Vi felIVIVE feD), (4-9)
and similar to (3-20),
(% - Age)(_Alfe — Ao fe) <2Re(Vfe, V(=Ay fe — Aa fe))
=D VIV fe P+ IV Vi fe P+ IVaVi fe P+ VoV fe D). (4-10)
k
Combining (4-10), (4-9) and the Cauchy—Schwarz inequality, we get

d
(E_Ag5>(|V1v2fe|+2(_A1fe_A2fe))

<RV e, VIVIVafel+2(=A1 fe= Do f)) = D (IViVi [ P+ IVIVEf P4V Vi fe P+ V2 Ve feP)
k

<2Re(Vfe, VIVIVa fe +2(= A1 fe— Ao f)) — 15 (IVi Vo fel +2(— Ay fe— Aa fo)*.

We define a cut-off function n similar to ¢ in the proof of Lemma 4.2 such that n = 1 on B, (O, %R)
and 7 vanishes outside By, (O, %R) We write

G = tn(IViVafel +2(=A1 fe — Ao fo) —2fo).

Like we did for F in the proof of Lemma 4.2, we argue similarly that at the maximum point (pyg, #p) of G,
for which we assume G (py, t9) > 0,

0 G G? G G G Gn+n" 2
O0<l——A, |IGE———+C—+C C— C——
_(Eh ge> ) l‘on+ R2 + ()+ + n R2 2( )
1 ) G
<—\-G to— 1,
Y] R?

so it follows that G(py, fo) < C (1 + 19/ R?). Therefore by the definition of G, on By, (0, %R) x (0, R?),

: 1 1
IViVafel +2(=A1fe = Ao f) =2 fe < C(F + ;)»

and thus by Lemmas 4.1 and 4.2, we conclude that, on By, (0, 3R) x (0, R?),

. |Vu|? 1 1 1 1
|vlv2ue|§ue +2|A1Me|+2|A2M€|+ + Cue 2+_ <Cl|-+—= 3 OSCR U,
Ue R t R

as desired. O



SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 811

4A2. Existence of a solution u to (4-2). We will show the limit function of u, as € — 0 solves (4-2).

Proposition 4.4. Given any R € (0, 1) and any ¢ € €°(9p Qg(0, R)), there exists a unique function
uee>! (Qp(0, RN CO(Qﬂ (0, R)) solving (4-2). Moreover, there exists a constant C = C(n, f§) >0
such that, for any t € (0, R%) we have (defining Bg ()= Bg(0,r)\S),

p 2
| ou 1 1
sup (Z|Zj|2_2'BJ — +|D/u|2) 5C(—+—2>(OSCR u)?, 4-11)
B,g(R/Z)# aZ] t R
1 1
sup (D _(IViVjulg, +|ViV; u|gﬁ)+ —|)=<c — ) oscr u, (4-12)
Bﬂ(R/Z)# '7&/ R
1 1\3/2
su Vs Aju| + 1|V D"Y°u| + —|)=<C|-+—= OSCR U, 4-13
Bﬂ(RE)Z)#<Z| gﬁ [+ Ve rul ‘ 9 D (f R2> . ( )

where by abusing notation we write 0SCg u := 0SCp (0, R)x (0, R?) U-

Proof. Let u, be the ¢>!1-solution to (4-4). The ¢°-norm of u. follows from the maximum principle
4-3).

To prove the higher-order estimates, for any fixed compact subset K € Bg(0, R) and § > 0, standard
parabolic Schauder theory yields uniform ¢ 4te.(4a)/2_ogtimates of ue on (K \T5S) x (8, R?] for any
a€(0,1). Ase — 0, u. converges in ‘54+""(4+°‘)/2(K\T58 N (8, R?]) to some function u which is also
EAre@+a/2 iy (K\T5S) x (8, R?]. Letting § — 0 and K — Bg(0, R) and using a diagonal argument,

we can assume that et
Gt @2 (Bg (0, R)F % (0,R?])
Ue u ase— 0.

Letting € — 0, estimate (4-11) follows from (4-5); (4-12) is a consequence of Lemma 4.3; and (4-13)
follows by applying the gradient estimate (4-5) to the A, _-harmonic functions A ju, (D’ )2u, and du. /dt,
and then letting € — 0.

The gradient estimate (4-11) implies that, for any compact K € Bg(0, R),

_C@. K, B)(oscgu)’ 21!
t

ou )
sup | — for all r € (0, R7).

K\s; 10251

From this, for any ¢ € (0, Rz), we see that u( -, ¢) can be continuously extended to S, and thus we have
u € CO%(Bg(0, R) x (0, R?)).
It only remains to show u = ¢ on 9pQg(0, R). Fix an arbitrary point (qo, fo) € dp(Qg(0, R)).

Case 1: to =0 and go € Bg(0, R). We define a barrier function ¢ (z, 1) = e =" (.90°=M _ 1 where A > 0
is to be determined. If A > 4n, we calculate

ad
<_ - Ag€>¢l = _)\‘e—d(tn (Z,LIo)z_M _ (_Aged([z:n + |Vd([2:,1 |§€)e_dﬁ” (Z,(]())z—)nt

Jat
i 2
< (—)» + X:(IZ]‘I2 +e) P+ (n— p))e_dc”(z’q") M 0.
j=1
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On the other hand, ¢ (qo, o) =0 and ¢;(z, ) <0 for any (z, t) # (qo, tp). For any & > 0, we can find a small
neighborhood VNap(Qg(0, R)) of (qo, tp) such that, on V, we have ¢(qo, to) +¢€ > ¢(z, 1) > ¢(qo, to) —¢,
since ¢ is continuous. On 9p(Qg(0, R))\V, the function ¢; is bounded above by a negative constant.
Therefore the function ¢, := ¢(qo, fo) — & + Ap1(z, 1) < ¢(z, ) for any (z, 1) € 9p(Qg(0, R)) if A> 1.
Therefore, by the maximum principle, ¢, (z, ) <uc(z, t) forany (z, 1) € Qg (0, R). Letting € — 0, we have
¢, (z,1) <u(z,t). Letting (z, 1) — (qo, to) yields ¢(qo, to) —& < liminf(, ;) 4o.1) U (2, 1). Setting € — 0,
we conclude that ¢(qo, fo) < liminf(; ;) 4,.1) #(z, ). Considering ¢f“ (z,t) = @(qo, to) + ¢ — Ap1(z, 1)
and using an argument similar to that above, we can get ¢(qo, o) = imsup, ,_, 4 ) #(z, ). Thus u
coincides with ¢ at (qo, ).

Case 2: 1o > 0 and go € dBg(0, R) N (S1 N S2). In this case z1(qo) = z2(g0) = 0. We define q(’) =—qp €
0Bg(0, R) to be the (Euclidean) opposite point to gg. For some small § > 0, define

$2(z.1) = den (2, qp)* —4R* = 8(1 —10)”.
Then ¢>(qo, z0) = 0 and ¢ (z, 1) < O for any (z, 1) # (qo, o). We calculate 9;¢» — Ay ¢ < 0. By an
argument similar to Case 1, replacing ¢ by ¢, we get lim; 1) (49,1 % (2, 1) = ¢©(q0, ).
Case 3: 19 > 0 and gp € dBg(0, R)\(S1 NS2). As in Case 2 in the proof of Proposition 3.5, we define a
similar function G. Define ¢3(z, ) = A(dg(z, 0)* — R?) + G(z) — 8(t — 1p)* for A > 1 and small § > 0.

Then we can calculate that 9,3 < A, ¢3, ¢3(qo, o) =0 and ¢3(z, ) < 0 for any other (z, t) # (qo, to).
Similar arguments to those in Case 1 proves that

lim  u(z,t) = @(qo, to).

(z,6)—>(qo0.10)

Combining the three cases above, we obtain that u coincides with ¢ on dpQg(0, R). Thus the Dirichlet
problem (4-2) admits a unique solution u € ¥°(Qg(0, R)) N€>1(Qg(0, R)¥). O
Corollary 4.5. Given_ any functions f € ‘5; o 2(Q_/;) and ¢ € €°(3p Qg), there exists a unique solution
Ve %Z’I(Q’;) N %O(Q/g) to the Dirichlet problem

av
ot
Proof. Let ve € €27 2T9/2(Qg) N¥(Qp) be the unique solution to the equations

=Agv+ [ inQp and v=¢ ondpQg. (4-14)

%:Ageve—i—f in Qg and Ve=¢ ondpQg.

For any compact subset K € Bg(0, 1) and 6 € (0, 1), the standard Schauder estimates for parabolic
equations provide uniform ¢ 2te 240)/2_egtimates for v, on K \TsS x (8%, 1). Then v, — v for some
v e FHOCHIZ(K\T;S x (82, 1)). Taking § — 0 and K — Bg(0, 1) and using a diagonal argument, we
get that v converges in Cgl(z):a,(zw)/z(Bﬂ \S x (0, 1)) to v and v satisfies the equation dv/dt = Ag,v + f
on Bg\S x (0, 1).

It only remains to show v € %O(Qﬂ) and v = ¢ on dpQg. The same proof as in Cases 1, 2 and 3
in Proposition 4.4 yields that v must coincide with ¢ on dpQg, since we can always choose A > 1

large enough that (for example in Case 1) d¢, /0t — Ay ¢ < infg, [ < dve /0t — Ag ve. To see
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the continuity of v in Qg, because of the Sobolev inequality (3-42) for metric spaces (Bg, g.) and by
the proof of the standard De Giorgi—Nash—Moser theory for parabolic equations, we conclude that,
for any p € S and 1y € (0, 1), there exists a small number Ry = Ro(p, tp) such that, on the cylinder
éRO = Bg(p, Ro) x (to — Rg, 1), we have oscy ve < Ccr¥ for any r € (0, Ry) and some «’ € (0, 1).
Therefore oscg, v < Cr? and v is continuous at (p, ty), as desired.

The uniqueness of the solution to (4-14) follows from the maximum principle. (|

Remark 4.6. Corollary 4.5 is not needed in the proof of Theorem 1.7. So by Theorem 1.7, the solution u

to (4-14) is in 65 2% (Qp) N % 0(Qp).

4B. Sketched proof of Theorem 1.7. With Proposition 4.4, we can prove the Schauder estimates for the
solution u € ¢ O(Q_ﬂ) Nne>! (Q’;) to (4-1) for a Dini-continuous function f by making use of almost the
same arguments as in the proof of Theorem 1.2. We will not provide the full details and only point out
the main differences. For any given points Q, = (p, 1,), Q, = (q,1,) € (B,g (0, %)\8) x (f, 1), to define
the approximating functions uy as in (3-44), we define u; in this case as the solution to the heat equation

ou

k .oon ~ ~ A
— =Bt + £(Qp) in Be(p) x (tp —F- 7 1)), we=uon dp(Be(p) x (tp = -7, 1)),

where l}k (p) is defined in (3-48). We can now apply the estimates in Proposition 4.4 to the functions uy
or uy — uk—_1, instead of those in Lemmas 3.3 and 3.4 as we did in Sections 3B, 3C and 3D, to prove the
Schauder estimates for u. Thus we finish the proof of Theorem 1.7. U

4C. Interior Schauder estimate for nonflat conical Kihler metrics. Let g =/ —1g ji(z, 1)dzj Ndzg be
a %; /2 conical Kihler metric on Qg with conical singularity along S; thatis, g(-,#) is a Cg’o‘ conical

Kihler metric (from Section 3E) for any 7 € [0, 1], and the coefficients of g in the basis {€; A €, ...} are

Ja-Hélder continuous in € [0, 1]. Suppose u € ‘5; +o,(2ta)/2

0
=Dt/ inQp (4-15)

(Qp) satisfies the equation

for some f € %“’“/Z(Q_ﬁ).
Proposition 4.7. There exists a constant C = C(n, B, «, g) such that

()] ).

*
IIMIIKK;MM)/z < C(llullgogy) + ||f||(g;.a/z(gﬂ)

(Qp) —

Proof. The proof is parallel to that of Proposition 3.32. Given any two points P, = (x, t), Py =(y, t) € Qg,
we may assume dp, = min{dp,, dp } > 0, where dp, :=dp g(Px, dpQp) is the parabolic distance of Py to
the parabolic boundary dpQg. Let € (O, :1;) be a positive number to be determined later. Define d := udp,,
Q:=Bg(x,d) x (ty — d?, t,] the “parabolic ball” centered at P,, and %Q = Bg (x, %d) X (tx — %dz, tx].
Case 1: dp g(Py, Py) < %d. In this case we always have Py € %Q.

Case la: Bg(x,d) NS = @. As in the proof of Proposition 3.32, we can introduce smooth complex
coordinates {wy, w2, 23, ..., Z,} on Bg(x, d) under which gg becomes the standard Euclidean metric and
the components of g are ¥*%/? in the usual sense on Q. The leading coefficients and constant term f
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in (4-15) are both “%/? in the usual sense, so we apply the standard parabolic Schauder estimates (see
Theorem 4.9 in [27]) to get that there exists some constant C = C(n, 8, «, g) independent of Q such that

2
(152000002 0y < CUltllgoiey + I 0 o)- (4-16)
Let D denote the ordinary first-order operators in the coordinates {w;, wy, 23, ..., 2,}. We calculate

(Py, Py)

|Tu(Py) — Tu(Py)| < |D*u(Py) — D*u(Py)| + MTX(W u(Py)| + |D*u(Py)))
4d73,ﬂ(P . Py)* 4d73’l3(P , P))

E dz_i_ca . [u]:;2+a,(2+a)/2(g) + *[u](gzl(g)

8d73,l3(P ,P )0{ dP,ﬂ(P ,P )0{
=< #[u]ézw,(um/z(g) + C# lullgoo)

and 4 v
ou u p.p(Px, Py
E(Px) - E(Py) =< #[u]:}zw,(ﬂw/z(g)-

Recall T denotes the operators in 7" and 9/dt; then by (4-16) it follows that

g2+ [Tu(Py) — Tu(Py )| C
Py o 2+a
dp,ﬂ(sz Py)

C
11 e g, + 27 ooy (4-17)

Case 1b: Bg(x,d)NS # @. Let X € S be the projection of x onto S and P, = (%, t,) be the corresponding
space-time point. Define Q:= Bg(x,2d) x (t, — 4d?, t]. As in Case 1b in the proof of Proposition 3.32,
we may choose suitable enough complex coordinates that g ¢, (P)=3$ jk and, for j, k> p + 1, we have
gj,;(Px) = 8 and the cross terms in the expansion of g in (3-114) vanish at P,. Thus (4-15) can be
rewritten as

ou

ar
for some (1, 1)-form 7 as in the proof of Proposition 3.32. From the rescaled version of Theorem 1.7 we

=Agu+n-V=10du+ f = Agu+ f, uee®(Qne>'(Q",

conclude that

| Tu(Py) — Tu(Py)|

d2 C u +
ar y,B(P)m Py)a (” ||<KO(Q) ”f| (bpa oc/Z(Q))
+Ol| ( x) ( )|
d2 u < u + 4-18
B d7:,,3(Px, Py)“ = 2 (” ”‘bﬂO(Q) ||f| aa/z(@)) ( )

Case 2: dp g(Py, P)) > %d. Here we calculate (recall Qg := Bg(0, 1) x (0, 1])
J2t [ Tu(Pe) = Tu(Py)| _ 42 |Tul(Px) + [ Tul(Py )

— . 4-19
P dp (P Py S n & [ T tap 19
Combining (4-17)—(4-19), we obtain
ria | TU(P) = Tu(P)| _ 8 s
A s [uJ%g,l(Qﬂﬁ—Ha(uun%o(gﬁ||f||¢_a/2@)
2
2+Ot ”f” aa/Z(Q) +a ”””%’O(Q)
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Observe that, forany P € Qor P € O, we have dp g(P,0pQg) > (1 —2u)dp,. Then it follows from
the definition that

?2) 2 2+a (2) 2
”f” oto(/Z(Q) = Cl"L ”f”(fo(Qﬂ) [f aa/Z(Q ) E Cl"L ”f” aa/Z(Q )
We calculate
(I e 7 PO 7 O e
PR (o (o) (e e (®)
24y, 1% )
C][g](gotoz/Z(Q )M (M [u]%z,l(gﬂ) +un [M]%ﬁzw,(zw)/z(g )) +M ||f|| oto(/Z(Q )
* 2+4ap,, 1% 2)
< Cl[g] aa/Z(Q )M (C(M)[u]%ﬁz*'(gﬂ) +2u [M]%,ﬂzw,(zw)/z(g )) +M £l ota/Z(Q )’

where in the last inequality we use the interpolation inequality, by which we also have

8 k %k
E[u]%ﬁz,l(gﬂ) < Ma[u](g;w,(zw)/z(gﬂ) +C) lullgogp)-

If 1 is chosen small enough that u*(2C 1[g ez +1) < %, combining the above inequalities yields

(Qp )
d2+a|TM(P)—TM(P )l
P dP,,B(Px’ Py)a

1
j[ ]%ﬁua (2+a)/2(Q )+ C(M)(”“”%’O(Qﬂ) + ”f”(é/a m/Z(Q ))

Taking the supremum over all P, # P, € Qg, we obtain

C(Ilull(gO(gﬂ)+||f|| % ).

[M]*z 2+a)/2
(é)ﬂw,( +a)/ Q)

(Qp) —
The proposition is proved by invoking the interpolation inequalities. O

Remark 4.8. It follows from the proof that the estimates in Proposition 4.7 also hold on Qg(p, R) :=
Bg(p, R) x (0, R?) C Qg, i.e., the cylinder whose spatial center p may not lie in S.

2+4a,(2+a)/2

It is easy to derive the following local Schauder estimate for ‘f -solutions to (4-15) from

Proposition 4.7.

Corollary 4.9. Let K € Bg(0, 1) be a compact subset and ¢ € (0, 1) be a given number. With the same
assumptions as in Proposition 4.7, there exists a constant C = C(n, B, a, g, K, g9) > 0 such that

]l g2acrarr2 (i xfeg, 1) < CUlullgogq) + ”f”(é);v“/z(gﬂ))'

With the interior Schauder estimates in Proposition 4.7, we can show the existence of %Ha 2t/ 2(Q )-

solutions to the Dirichlet problem

d
a—’t‘ =Agu+f inQ and wu=g¢ ondpQp (4-20)
for any given f € ‘5; o 2(Q_ﬁ) and ¢ € €°(9p Qp). We first show the existence of solutions to (4-20) in
the case ¢ = 0.
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Lemma 4.10. Let o € (0, 1) be given and u € &5 *"***/?(Qp) solve (4-20), with ||u| ‘E)Q | <ooand
||f||(2 o) < 00. Then there is a constant C = C(n, o, B, g,0) > 0 such that

5% (Qp)
(= (=0) (2—0)
||M|| 2+a (2+a)/2(Q ) — C(””I|9ﬂ0(g ) + ||f|| aa/Z(Q ))
Proof. The lemma follows from the definitions of the norms and the estimates in Proposition 4.7. 0

Lemma 4.11. Suppose u ‘Kﬂz’l(Qﬂ) ﬂ%O(Q_ﬂ) satisfies 0u /0t = Agu+ f and u =0 on dpQp. For any
o € (0, 1), there exists a constant C = C(n, B, g, o) > 0 such that

= sup dplu(P)| = C sup d3If (POl =CIfIST
PeQ PreQp

where dp, = dp g(Py, 0pQg) is the parabolic distance of Py to the parabolic boundary dp Qg.

Proof. We write N := || f ||gi;;) < oo and P, = (x, t,). Define functions

wi(Py) =(1—dg(x)*)” and  wy(Py) =177,

where dg(x) = dg(x, 0) is the gg-distance between x and 0. Observe that dp, = min{1 — dg(x), t;/z} by
definition. By a straightforward calculation there is a constant ¢y > 0 such that

0 d
(5 - Ag)wl > co(1 —dg(x))’ % and (5 —-A )wz > co(ty/3)7 2.

By the maximum principle we get
lu(Py)| < Ny (wi(Py) +wa(Py))  forall Py € Qp. (4-21)
We take the decomposition of Qg into different regions, Qg = 1 U 5, where
Q:={P. € Qg |1,/* > 1—dg(x)},
Q=P € Qp|t)/? <1—ds(x)}.

Inequality (4-21) implies that, on the parabolic boundaries 9p£2; and 9p€2>, we have |u(Py,)| <2Nc, ldj,’,Y.
On Q; we have (d/0t — g)(ZNcal wi £ u) >0 and 2Nc(;1 wy £ u > 0 on 0p24, so the maximum
pr1n01ple implies that 2Nc0 w)Etu>0in Qp,ie., [u(Py)| < 2Nco_1dp in ;. Similarly we also have
2Nc0 wy £u > 01in 25, and thus [u(Py)| <2N¢, ldj'gx in 2. In conclusion, we get

lu(Py)| <2cy ' Nd§  forall P, € Qp. O

Proposition 4.12. If ¢ = 0, equation (4-20) admits a unique solution u € ‘5”“ QMW(Q )n <50(9,3)
forany f € %a a/z(Q ).

Proof. Uniqueness follows from the maximum principle, so it suffices to show existence. We will use
the continuity method. Define a continuous family of linear operators as follows: for s € [0, 1], let
Ly :=15(0/0t — Ag) + (1 —5)(3/01 — Ag,). It can been seen that Ly = 9/d7r — A for some conical
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Kéhler metric gy which is uniformly equivalent to gg and has uniform %ﬂa @/2_estimate. So the interior
Schauder estimates holds also for L. Fix ¢ € (0, 1). Define

o 24a,(2+a)/2 (—o)
By :={u¢€ (gﬂ (Qp) | ||M||%}32+a,<2+a>/2(gﬂ) < 00},

L a,0/2 (2—0)
BZ — {f € (gﬂ (Qﬂ) | ”f”(gg,aﬂ(gﬁ) < OO}

Observe that any u € B) is continuous in Qg and vanishes on dpQg. L, defines a continuous family of
linear operators from 5; to ;. By Lemmas 4.10 and 4.11 we have

lulls, < CClullzogg,, + I Lsulls,) < CllLsulls, foralls € [0, 1] and for all u € Bi.

By Corollary 4.5 and Remark 4.6, L is invertible, thus by Theorem 5.2 in [18], L is also invertible. [

Corollary 4.13. For any ¢ € €°(3p Qp)and f € %;’Q/Z(Q_ﬁ), equation (4-20) admits a unique solution
ue %ﬂ2+a,(2+a)/2(gﬂ) Q%O(Q_ﬁ).

Proof. The proof is identical to that of Corollary 3.39 by an approximation argument. We may assume

@ € €°(Qp) and choose a sequence ¢y € %;+“’(2+“)/2(Q_3

equations

) which converges uniformly to ¢ on Qg. The

0
%:Agvk—kf—Ag(pk and =0 ondpQg

(KﬂZJra, 24a)/2

admit a unique -solution by Proposition 4.12. The interior Schauder estimates in Corollary 4.9

imply that u; := vg + @ converges in %;T(?C’(O‘H)/ ? to some function u in %;+a,(2+a)/ 2(Q,g) which

solves (4-20). The ¢°-convergence u; — u is uniform on Q_ﬂ by the maximum principle, so u = ¢
on dpQg, as desired. O

We recall the definition of weak solutions and refer to Section 7.1 in [17] for the notations.
Definition 4.14. We say a function u on Qg is a weak solution to the equation du /9t = Agu + f if:

(1) u € L*(0, 1; H'(Bg)) and du/dt € L*(0, 1; H~'(Bp)).
(2) Forany v € Hj(Bg) and 1 € (0, 1),

/ 8”(x”)v(x>w;=—f <w<x,t),w(x>>gw§+/ f e, D).
Bg ot Bg Bg

On can use the classical Galerkin approximations to construct a weak solution to du/dt = Au + f
(see Section 7.1.2 in [17]). If f has better regularity, so does the weak solution u.

Lemma 4.15. If f € %;’Q/Z(Qﬂ), then any weak solution to

ou
E:Agu—i-f

belongs to %§+a’(a+2)/2(Q,3).
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Proof. The Sobolev inequality holds for the metric g, so by the proof of the standard De Giorgi—Nash—
Moser theory for parabolic equations we have that u is in fact continuous on Qg. Since the metric g is

smooth on Qﬁ, the weak solution u is also a weak solution in Q’; with the smooth background metric, so
24w, (2+a)/2
ocC

to consider points at S. We choose the worst such point O € S only, since the case when centers are in
other components of S is even simpler. We fix the point Py = (0, tp) € Qg with 7y > 0. Fix r € (0, J1o)-
By Corollary 4.13,

we have that u € ¢ (Q:;) in the usual sense by the classical Schauder estimates. Thus it suffices

v
5= Av+f in Qp(Po,r):= Bg(0,7) x (to — °, to]

with boundary value v =u on dp Qg(Py, r) admits a unique solution v € ¢ 2o, (@+2)/28(Qp(Po.))  Then by
the maximum principle u = v in Qg(Py, r). Thus u € %gw’(aﬂ)/ 2(Q,;(Po, r)) too. Since the argument
also works at other space-time points in Sp, we see that u € ‘5;+“’(2+“)/ *(Qp), as desired. O

Corollary 4.16. Let (X, g, D) be as in Corollary 3.41, and let ugy € C%X) and fe %/;"*“/2()( x (0, 1])

be given functions. The weak solution u to the equation

]
a—btt:Agu+f in X x (0, 1], uli=0 = uo

CgﬂZJrot, 2+a)/2

always exists. Moreover, u € (X x (0, 1]), and there exists a constant C =C(n, g, B,a) >0

such that

“u”(gﬁ*‘I’(ZJr"‘)/Z(XX(1/2,1]) = C(””O”CO(X) + “f”%;"“/z(Xx(O,l]))'

Proof. The weak equation can be constructed using the Galerkin approximations [17]. The uniqueness
is an easy consequence of the maximum principle. The regularity of u follows from the local results in
Lemma 4.15. The estimate follows from the maximum principle, a covering argument as in Corollary 3.41,
and the local estimates in Corollary 4.9. U

The interior estimate in Corollary 4.16 is not good enough to show the existence of solutions to
nonlinear partial differential equations since the estimate becomes worse as ¢ approaches 0. We need
some global estimates in the whole time interval ¢ € [0, 1] if the initial value ug has better regularity.

4D. Schauder estimate near t = (0. In this subsection, we will prove a Schauder estimate in the whole
time interval for the solutions to the heat equation when the initial value is O or has better regularity. We
consider the model case with the background metric gg first, then we generalize the estimate to general
nonflat conical Kihler metrics.

4D1. The model case. In this subsection, we will assume the background metric is gg. Let u be the
solution to the equation

du _
= Agyu+ f 1inQp, ul— =0, (4-22)

ot
andu=¢ € ¢ on 0Bg x (0, 1], where f € %;’a/z(Q_,g). In the calculations below, we should have used

the smooth approximating solutions u., where d;u = A, u + f and u. = u on d9pQg. But by letting
€ — 0, the corresponding estimates also hold for u. So for simplicity, we will work directly on u.
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We fix 0 < p < R <1 and define Bg := Bg(0, R) and Qf := Bg x [0, R?] in this section. Let u be
the solution to (4-22). We first have the following Caccioppoli inequalities.

Lemma 4.17. There exists a constant C = C(n) > 0 such that

2 2 n
sup f u’o' // |Vu| ol dt < < f/ W' dt+(R—p) / fw dt) (4-23)
rel0.07] B g B (R — p)? Ox B Ox B

and

sup / Vul2,wf + f (IVVulgﬂ+|VVu|gﬂ)a)ﬂdt

1€[0, %]
EC(W // |V“|§ﬂwgdt+/ QR(f—fR)Zwﬁ dt>, (4-24)

where fr:=|0Rrl, fo fa) dt is the average of f over the cylinder Q.

Proof. We fix a cut-off function 5 such that suppn C Bg, n =1 on By, and [Vnlg, < 2/(R — p).
Multiplying both sides of (4-22) by n?u and integrating by parts, we get

d

— | nu’= / 20°uB gy +20°uf = —2n2|Vu|§ﬂ—4un<Vu,Vn>g,g+2772uf
dt BR BR BR

s/ VUl + 41V, + n? +iPR =) 2.
Bp

(R )2
Equation (4-23) follows by integrating this inequality over ¢ € [0, s?] for all s < p. To see (4-24), observe
that the Bochner formula yields

i|vu|2 < Ay, |Vul> = |VVu|?, —|VVul®, —2(Vu, Vf)
ot — T88 8B 8B ’ 88
Multiplying both sides of this inequality by 5> and integrating by parts, we get

d _
— | n?Vul? s/ —20(Vn, VIVul?) gy — n*IVVul> = 0*|VVul> = 20*(Vu, V f)
dt Br Bg

sf 4| Vul V[V [Vul| = 0|V Vul® = *| VVu?
” Anlf — fRIVIIVul +20° f = frlAggul
s/B =3P (VY +VVu?) +100%[Vul?| V> +200°(f = fr)*.
R
Then (4-24) follows by integrating this inequality over ¢ € [0, s2] for any s € [0, p]. U
Combining (4-23) and (4-24) we conclude that

sup / |Vu|2+f/ |Agul®
t€[0,R2/4] Y Br2 ORr)2

2n42 2n+2+2a
< //Qu FCR [ g, + CRT ([ g g, )2 (429)

By a standard Moser iteration argument we get the following sub-mean-value inequality.
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Lemma 4.18. If in addition f =0, then there exists a constant C = C(n, B) > 0 such that

1/2
sup|u|_ ((R p)2n+2//;uwﬂ ) .
R

Proof. For any p > 1, multiplying both sides of the equation by nzuﬂ:, where u#, = max{u, 0}, and
integrating by parts, we get

d 772 p+1 /
- LYY —pnu? |Vu+| —2nul (Vuy, Vn).
dt By P+ 1 Br + *

By the Cauchy—Schwarz inequality and integrating over ¢ € [0, R?], we conclude that

2, p+l (p+1/2 p+1
sup / n-uy /f IV (nu )P < // ul U wpdt =: A.
s€[0,R?] J Bg (R — /0)2 Or p

By the Sobolev inequality we get
2

1 (n—1
2 p+1 1+1/n K 2 p+1 " (p+1)/2\2n/(n—1) (=
(n°u < nul (nui )
BR 0 BR BR

R2
SAIMC/ f VO VPP < cat o,
Br

o’ 1/p
H(p,p) = (/ / ui) ,
0o JB,

1/(p+1)

H((p+1é&, p) < mH(P+1,R),

If we write

the inequality above implies

where £ = (n+1)/n > 1. Writing py+1=2&" and p; = p+(R—p)27%, we then have H (piy1+1, prs1) <
H(pr + 1, pr). Iterating this inequality we get

C 172
H (00, p) =supu 5—(// uz) .
o, R=pT\JJg, "

Similarly we get the same inequality for u_ = max{—u, 0}. O

Corollary 4.19. Ifin addition f = 0, then there is a constant C = C(n, ) > 0 such that

f/ ua)ﬂdt<C m"f/ W>oly di (4-26)

Proof. When p € [%R , R], the inequality is trivial; when p € [O, §R), it follows from Lemma 4.18. [
Lemma 4.20. Ifin addition f =0, then there is a constant C = C(n, ) > 0 such that, for any p € (0, R),

2n+4
//Qua)ﬂdl<C // uwﬂ
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Proof. The inequality is trivial in the case p € [§R, R], so we assume p < 1 R. First we observe that Agu
also satisfies the equations d;(Agu) = Ag(Agu) and (Agu)|;—o = 0, so (4-26) holds with u? replaced

by (Agu)?, ie.,
" 1ol 24+2n "
//Q (Aﬂu)Qa)ﬂdth(E) /fQ (Agw)’wly d.
P R

Since u|;—o = 0, we have u(x, t) = fot dsu(x, s)ds, and we calculate

[l 2= 11,

ul? 4/ 5 L[ P\21+2 5

—| =p (Agu)” < Cp*( = // (Apu)

ot 0, <R> Or)2
0 2n+6// s

<Cl(— u o’ dt (by (4-25)). O
(R) or F

Lemma 4.21. Let u be a solution to (4-22). There exists a constant C = C(n, 8, a) > 0 such that

L[ == ([ aprefar+cir 2
pi2i | B = ponia4a o pU) @ ¢ r)
P

Proof. Let u = uy + uy, where

ouq

W:Aﬂul'f‘fR in Qg, uy=u ondpQg,

and

ouy .
W=Aﬁ“2+f_fR in Qg, up=0 ondpQg.

The function Agu satisfies the assumptions of Lemma 4.20. Thus

2 n £ n+4 2. n
//QP(AM) Wy di < C(R) /fQR(Aﬂul) Wl di.

Multiplying both sides of the equation for u; by 1> = du,/dt and noting that i1, = 0 on dBg x (0, R?),
we get

oy - /B 2 Az +in(f — fr) = /B 2 (Vity, Vug) +i(f — fr)

0
5/ Vil b @) + 207~
Bg t

Integrating over ¢ € [0, R?], we obtain

/ <uz)25—2/ Viis 2
Or Br

,/ (Agua)? < 2/ (it2)? +2/ (f—fr)* < CRZHHZ“([f]%“*“/z(QR))z'
Or Or Or ’

+4 / (f — fR)%
t=R? Or

therefore
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Then for p < R we have

/ (Aﬂu)zssz (Aﬁu1>2+2/ (Apuz)®
o Q9 Qp

2n+4
SC(£> / (Agun)*whdi + CRT T2 f] g, )
R Or

The estimate is proved by an iteration lemma (see Lemma 3.4 in [22]). O

Lemma 4.22. Suppose u satisfies (4-22). There exists a constant C = C(n, 8, a) > 0 such that, for any
€ (0, 3R),
/ (Agu— (Apu),)whdt < CMpp™ ™+,
Qp
where
Mp = e gy + 52 1 2o gy & (L ]z,
R = "pat2a 1Mlg00p) T p2a 1 lg0(0p) o) -

Proof. From Lemma 4.21, we get

1
2 2420420 2 2
//Q,,(Aﬁu) <Cp (R2n+2+2a //QzR/s(Aﬂu) +([f](ﬁ;’a/2(Q2R/3)) )

1
< CIO2+211+20! (m f/QR 1,{2 + — RZO! ”f”CO(QR) +( f] aa/Z(Q )) ) (by (4-25))

< Cp2+2n+2aMR‘

On the other hand, by the Holder inequality,

1 > c
(Agu)? = —(/ (Agu)” dt) < —/ (Agu)? < CMgp™®
BY")p |Qp|§ﬂ 0, B B p2+2n 0, B
The lemma is proved by combining the two inequalities above. O
By Campanato’s lemma (see Theorem 3.1 in Chapter 3 of [22]), we get the following.

Corollary 4.23. There is a constant C = C(n, B, o) > 0 such that, for any x € Bg (O ) and R < 15

[Aﬂu] aa/Z(Bﬁ(x R/2)X R2/4])

1
< C(ﬁﬂuﬂ %9(Bp(x.R)x[0,R2]) T _”f”(/U(Bﬁ(x,R)x[O,RZ]) + [f]cg;,a/z(Bﬂ(x’R)X[O,Rz])>- (4-27)

Lemma 4.24. There exists a constant C = C(n, B, o) > 0 such that, for any x € Bg (0 ) and R < -

ou

[Tuliger gy c.ry2pxi0.82/) [E

]%;'“/Z(Bﬂ(x R/2)x[0, R2/4])

1
< C<R2+a llwll 0B x, R)x10.R2]) + — ”f”%”o(Bﬂ(x,R)x[O,Rz]) + [f]%;u/z(gﬂ(xy,g)x[O,Rz])>- (4-28)



SCHAUDER ESTIMATES FOR EQUATIONS WITH CONE METRICS, II 823

Proof. 1t follows from (4-27) and the elliptic Schauder estimates in Theorem 1.2 by adjusting R slightly
that, for any ¢ € [0, 1 R?],

[Tu(-, t)]cgwgﬁ(x,ze/m)

1 1
< C(_R2+a lullz0 By (x, RYx10.R2) + ﬁ”f”%o(B,g(x,R)x[O,Rz]) + [f]%‘:'a/z(Bﬂ(x,R)X[O,Rz]))’

that is, in the spatial variables the estimate (4-28) holds. It only remains to show the Hélder continuity of
Tu in the time-variable. For this, we fix any two times 0 <1 <, < iRZ and denote r := %m . For
any xo € Bg(x, 1 R), Bg(xo.r) C Bg(x, 5R). By (4-27) and the equation for u, it is not hard to see that
the inequality (4-27) holds when Agu on the left-hand side is replaced by & = du/dt. In particular,

|t — 1]/

<Ar forallye B,g(x, %R),
where Ag is defined to be the constant on the right-hand side of (4-27). Integrating over ¢ € [#1, ;] we get

lu(y, ) —u(y, t1) —i(y, 1) (ta — t1)| < CAr(ta — 1) T%/2.

Thus, for any y € Bg(xo, ),

lu(y, ) —u(y, t1) —u(xo, t1)(t2 — t1)|
<lu(y,tr) —u(y, t1) —u(y, t1)(t2 — t1)| + [u(xo, t1) — u(y, t1)|(t2 — t1)
< CAR(ty — 1) 4 Apr®(ta — 1y).
Write
u(y) :=u(y, ) —u(y, t1) —u(xo, t1)(tr — 1),

which is a function on Bg(xo, r). We have that the function f i=Agu=Agu(-,t)—Agu(-, ) satisfies

the inequalities || £l cop,(x.r) < Ar(t2 —11)* and [f] 0 Ag by (4-27). It follows from the

“(Bp(xour)) =

. ot 8
rescaled version of Proposition 3.32 that
. ldllcoBsory = < 5
1Tl coBgxg.r/2)) =C 1, B, at) <r—2+ £ llcoBpxo.ry) +ra[f]c0va(3ﬂ(xo,r))> <C(h—1)**Ag.

Therefore, for any xo € Bg (x, %R),

T ) =T 1
|Tu(xo, 12) u(xo 1)|§CAR.
|ty — 11]%/2

It is then easy to see by the triangle inequality that (adjusting R slightly if necessary)

[T”]%;'“/Z(Bﬂ(x,k/z)x[0,R2/4]) = CAg,
as desired. The estimate for u follows from the equation it = Agu + f. 0

Remark 4.25. By a simple parabolic rescaling of the metric and time, we see from (4-28) that, for any

1
O<r<R<qp

lullgocory . I fllgoc0p)
[Tulier g,y = C((R “ e TRy T gperon ) (429
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4D2. The nonflat metric case. In this subsection, we will consider the case when the background metrics
are general nonflat /2_conical Kihler metrics g = g(z, t). Suppose u € ‘gﬁz FO@TO2 00y satisfies

the equation

9
a_”[‘ =Agu+f inQp  uleo=0, (4-30)

and u € €°(0p Qp).

Proposition 4.26. There exists a constant C = C(n, B, «, g) > 0 such that

”M||56/;+a,(2+a)/2(3ﬂ(0’1/2)><[0’1/4]) S C(”M ”‘(Q”O(Qﬂ) + ”f”%;;‘v"‘/z(gﬂ))'

Proof. Choosing suitable complex coordinates at the origin x = 0, we may assume the components of g
in the basis {€; A €, ...} satisty gee (-, 0) =4 and gj,;( -, 0) = §; at the origin. As in the proof of
Proposition 4.7, we can write (4-30) as

ou - n
§=A5u+n-«/—188u+f:: Agu—+ f,

where 7 is given in the proof of Proposition 3.32. By (4-29) we get

. <C lullzo@y) 1 Al ;
[Tulgper g, < C\ g = pyzra T Ropya 1/ le0@0 T U g gy )

where éR = Bg(0, R) x [0, R?]. Observe that

" 1 1
mﬂfﬂw(éw < mﬂf”w(ém + m”n”%(’(éR)”Tu“CO(éR)
~ o
[”]%;*“/Z(QR)R

=< R—1) I fllgocGq) + W(S[Tu]%;uﬂ@m +C@)lullzog,)

and
Flggon gy = U lggon g+ 1lleo@o Tl oon g, + 1Tullgogonlgeor g,
<Lflgpar gy + [77]%;.‘%/2@1?)R“[TM]%;.a/z(éR)
+ [U]%;.a/z(ém(S[TM]%;.a/z@R) + C(©)lullgzoG,))-

By choosing Ry = Ry(n, B, @, g) > 0 small enough and suitable ¢ > 0, forany 0 <r < R < Ry < 1—10, the

combination of the above inequalities yields

lullgop 1
I (On) N ~
[TM](K;,Q/Z(@‘r) < E[TM]%&;,ozﬂ(éR) + C((R _ r)2+“ + (R — r)a ||f||<50(QR) + [f]%éx,a/Z(QR) .

By Lemma 4.27 below (setting ¢ (r) = [T u] )), we conclude that

%5 (0,

[Tu]%”;’a/z(Bﬂ(O,Ro/2)X[O,R%/4]) 5 C(”””%’O(Qﬂ) + ||f||%);~”/2(gﬂ))'

This is the desired estimate when the center of the ball is the worst possible. For the other balls Bg(x, r)
with center x € Bg/(0, %), we can repeat the above procedures and use the smooth coordinates w; = Z?'i
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in case the ball is disjoint from S;. Finitely many such balls cover Bg (0, %), so we get

[Tl 2 gy 0,120, 100 = € llzniagy + 1 s o)

The proposition is proved by combining this inequality, the equation for u, interpolation inequalities, and
the interior Schauder estimates in Corollary 4.9. O
Lemma 4.27 [22, Lemma 4.3]. Let ¢(t) > 0 be bounded in [0, T). Suppose, forany0 <t <s <T,
we have

+B

1
o0 =366+

for some a > 0and A, B > 0. Then it holds that, forany0 <t <s <T,

1) < A B
¢()_C(a)((s—t)“+ )

Corollary 4.28. Suppose u satisfies the equations

ou R 2,a
E:Agu—i—f in Qg ul,:ozuoeCﬁ’ (Bg (0, 1)).

Then
”u||(&§'Bz+a’(a+2)/2(3'9(0,1/2)><[0,1]) S C(”””‘Ko(gﬂ) + ||f||(6);’“/2(gﬁ) + ”uO”Cé“(BB(O’l)))
or some constant C =C(n, B, a, g) > 0.
8

Proof. We set il =u —ug and f = f — Aguyo. i satisfies the conditions in Proposition 4.26, so the corollary
follows from Proposition 4.26 applied to u# and triangle inequalities. g

Corollary 4.29. In addition to the assumptions in Corollary 4.16, we also assume that ug € Cz’a(X ).

Then the weak solution to du /0t = Agu + f with ul,—o = ug exists and is in %/32+a’(2+a)/2(X, %[0, 1]).

Moreover, there isa C = C(n, B, o, g) > 0 such that
”M ||zg’qpr""(”o‘vz(XX[07 11 5 C(” f ||‘Io”;’a/2(X><[O,l]) + ||u0 ” Cé“(x))' (4_31)
Proof. Observe that by the maximum principle we have
lullzox <011 = 1 llwox xo.17) + ol cox)-
Then (4-31) follows from Corollary 4.28 and a covering argument as in the proof of Corollary 3.41. [
5. Conical Kihler—Ricci flow

Let X be a compact Kéhler manifold and D =) j Dj be a divisor with simple normal crossings. Let wo
be a fixed Cg’“,(X ) conical Kidhler metric with cone angle 2 8 along D and &; be a family of fég /2

conical metrics which are uniformly equivalent to wg, with @y = wy and ||c?)||(faqa/ P xx(0.1]) < Cp. We
consider the complex Monge—Ampere equation g ’

a_¢_10 (& ++/—133¢)" iy

ar 8 ol ’ (5-1)

(p|f:0 == 07
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where f € €@ /2(XxI0.1) i5 a given function. We will use an inverse function theorem argument
from [4] which was outlined in [21] to show the short-time existence of the flow (5-1).

Theorem 5.1. There exists a small T =T (n, B8, wo, f, @, &’) > 0 such that (5-1) admits a unique solution

Q€ <KﬂHO"(HD‘)/z(X x [0, T)) forany o < a'.

Proof. The uniqueness of the solution follows from the maximum principle. We will break the proof of
short-time existence into three steps.

Step 1. Letu <ff,”o‘l’(”o‘/)/Z(X x [0, 1]) be the solution to

2—?=Agou+f in X x [0, 1],
uli—o =0.

Thanks to Corollary 4.29, such a u exists and satisfies the estimate (4-31). We fix ¢ > 0, so that, as long
as ||¢||C,2;‘“(X) <, we have that &, ¢ = &, + V—1980¢ is equivalent to wy, i.e.,

Co_la)o <wo,¢y < Cowp and ||65t,¢||<5;~a/2 < Co.
We claim that, for T} > 0 small enough, ||u ||(gﬁz+°‘~<2+°‘)/2( xx[0,7;]) < €. We first observe by (4-31) that

= <
N: ””||<g§+°‘"("’+2’/2(xx[0,1]) = C”f”%;,’a,/z(Xx[O,l])'

It suffices to show that [u]%ﬁzwﬁ(a#zvz( xx[0,7,7) 1s small, since the lower-order derivatives are small because
ul;—o = 0. We calculate, for any ¢1, t; € [0, T1],
|Tu(x,t) —Tu(x, )| |u(x, 1) —u(x, )] -
|t —1]%/2 i —nl*/?2  ~
if NTI(“ —/2 %8. For any x, y € X and 1 € [0, T],

Nty — 0@ 2 < Le

|Tu(x,t) —Tu(y,t)|
dgo(x7 e

The claim then follows from the triangle inequality.

a2
< Nmin{ ——— d, (x, y)“/_“} <.
{dgo(x’ ) % 2

We define a function

(& + ~/—130u)"
a)n

ou
w(x,t):= E(x, t) —log
0

)(x, t)— f(x,t) forall (x,1) € X x[0, T1].

It is clear that w(x, 0) =0.
Step 2: We consider the small ball
B={peb; X x [0, D | pllzer <&, ¢(-,0) =0}
in the space %;+“’(2+a)/2(X x [0, T1]). Then u|;cjo.7,] € B by the discussion in Step 1.
Define the differential map ¥ : B — ‘5; o/ 2(X x [0, T1]) by

0 D ++/—103¢)"
W<¢>=8—‘f—log<(w hi = ?) )—f
0
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The map W is well defined and C!, where the differential DV, at any ¢ € B is given by

ov A NiT ov
DWy(v) = i (8¢)"v;5 = o AV

for any
veTpB={vee, X x[0,T1]) | v(-,0) =0},

where (§¢)ij denotes the inverse of the metric &, + ~/—193¢. As a linear map,
DV : TyB — €5 (X x [0, Ty])

is injective by the maximum principle and surjective by Corollary 4.29. Thus D Wy is invertible at any ¢ € B.
In particular, D, is invertible, and by the inverse function theorem, ¥ : B — ‘K; o/ 2(X x [0, T1]) defines
a local diffeomorphism from a small neighborhood of # € 13 to an open neighborhood of w = W (u) in
¢4 "*/*(X x [0, Ty]). This implies that, for any i € 75 */>

for some small § > 0, there exists a unique ¢ € B such that ¥ (¢) = w.

(X x [0, T1]) with [|w — |5 x x[0,13)) <8

Step 3. For a small 7, < T} to be determined, we define a function

D) = {o, t €0, T»],
T wx, =Ty, tell, Tl

Since u € %ﬂzw (22 e see that w € %; 20X % [0, Ty]) with M := lwllg<'?xxjo.17) < 00. We

claim that if T, is small enough, then ||w — II)”{;"”/Z(XX[(),T]]) < 8. We write n = w — w. It is clear from
the fact that w( -, 0) =0 that ||n]l40 < %8 if 75 is small enough.

Spatial directions: If t < T, then
a' )2

Mmin{ —2—— d, (x, y)* ¢ <2MT® 9",
{dgo(x,y)“ go( ) }_ 2

(.0 =001 _ w0 —w(y. 0l _
dgo(xs ) dgo(x’ e B

If t € [T5, T1] then

In(x, 1) —n(y, Dl _ lw, 1) —w(y, 1) —wx, t =) +w(y, t —1r)|

dg,(x, y)* dgy(x, y)*
a'/2 ,
< 2M min] —2——_ dg, (x, »)* 0 <2M T, "2,
N {dgo(x,y)“ go( ») } N 2

Time direction: If t, t' < T, then

_ / _ / , ,
InGx, ) —n(x, )] _ Jwlx, 1) —wx, 1] < Mt — )@= < T,
|t_t/|a/2 |t_t/|O[/2

If ¢, ¢t € [T, T1] then

n(x, 1) —n(x,t)] _ w1 —w(x, )y—wkx,t —T)+wx, ' —T)|

(@' —a)/2
<
lr — t/|a/2 |t — t/la/z — 2MT2 :
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Ift <T, <t <T then

In(x, 1) —n(x, 1) |wlx, 1) —wx, ) +wlx, 1’ — 1)
|t — t/|°‘/2 - |t — l/|a/2

<2MT* 2,

(o' —a)/2
TZ

Therefore, if we choose T, > 0 small enough that 2M < %8, then we have

|77(x»t)_77(x,t/)| |77(x»t)_77(y,f)|
|t —1'|%/2 dgy(x, y)*

<18 forallxeX, ¢ €[0, T;].

It then follows from the triangle inequality that

NG, 1) =n, ) <Inx,0)=nQ, O+ 0y, 1) —ny, )]
< 38y (x, Y)* + |t —1|%7%) < J8dp gy ((x, 1), (v, ')

In conclusion, ||w — wllg;-aﬂ(XX[o,Tl]) < 8, so by Step 2 we conclude that there exists a ¢ € B such
that W (¢) = w. Since W/;e[0,7,] = 0 by definition, ¢|;c[0.7,] satisfies (5-1) for ¢ € [0, T'], where T := T>.
This shows the short-time existence of the flow (5-1). O

Proof of Corollary 1.11. Recall that in (1-13) we wrote wj = Q/]_[j(|sj|%j)l—/31, where €2 is a smooth
volume form, s; and & ; are holomorphic sections and hermitian metrics, respectively, of the line bundle
associated to the component D ;. Choose a smooth reference form
X =~—1331logQ— ) "(1—B;)v/~13d logh;.
J

Define the reference metrics @; = wo+ ¢ x which are %; “'/2_conical and Kihler for small £ > 0. Let ¢ be
the %ﬁz e (2He)/2_golution to (1-11) with f =0. Then it is straightforward to check that @; = &, +~/— 193¢
satisfies the conical Kihler—Ricci flow equation (1-12) and @ € ‘5; /2(X % [0, T]) for some small T > 0.

The smoothness of w in X\ D x (0, T'] follows from the general smoothing properties of parabolic
equations; see [37]. Taking d/9¢ on both sides of (1-11) we get

aQ ) .
5 :sz§0+trwt X and (p|l‘=0:0'
By Corollary 4.29, ¢ € <KZJ”X’(ZJ”)‘)/Z(X x [0, T']) since tr,, x € %a’“/Z(X x [0, T]). Therefore the
y y B t B
normalized Ricci potential log(w} /) exists in ‘Kﬂz e @)/ 2(X x [0, T)). Il
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