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Kähler–Einstein metrics near an isolated
log-canonical singularity

By Ved Datar at Bangalore, Xin Fu at Irvine and Jian Song at Piscataway

Abstract. We construct Kähler–Einstein metrics with negative scalar curvature near an
isolated log canonical (non-log terminal) singularity. Such metrics are complete near the singu-
larity if the underlying space has complex dimension 2. We also establish a stability result for
Kähler–Einstein metrics near certain types of isolated log canonical singularity. As application,
for complex dimension 2 log canonical singularity, we show that any complete Kähler–Einstein
metric of negative scalar curvature near an isolated log canonical (non-log terminal) singularity
is smoothly asymptotically close to model Kähler–Einstein metrics from hyperbolic geometry.

1. Introduction

The existence of Kähler–Einstein metrics on complex manifold has been the central topic
in complex geometry for decades. In [51], Yau established the existence of Ricci-flat metrics
on complex manifolds with zero Chern class by solving the Calabi conjecture, while Aubin and
Yau [2,51] proved the existence of Kähler–Einstein metrics independently on canonically polar-
ized compact manifolds. Recent results of Chen, Donaldson and Sun [11–13], Tian [47] and
many interesting subsequent papers proved equivalence between existence of Kähler–Einstein
metrics and K-stability for Fano manifolds, confirming the Yau–Tian–Donaldson conjecture.
Also there has been intensive study of degenerate complex Monge–Ampère equations and
construction of singular Kähler–Einstein metrics on singular varieties with Kawamata log ter-
minal (klt) singularities, for example in [22,44,54], based on Kolodziej’s fundamental result in
[34, 35]. Kähler–Einstein metrics on canonical polarized variety with log canonical singularity
are constructed in [4] by the variational approach. When such varieties appear on the boundary
of the KSB compactification of smooth canonical models of general type, such Kähler–Einstein
metrics turn out to be genuinely geometric as degeneration of Kähler–Einstein metrics [41–43].
However, little is known about the geometric behavior of these singular Kähler–Einstein met-
rics near the log canonical singularities. For smoothable klt singularities, the fundamental work
of Donaldson and Sun [20, 21] and Li and Xu [37] show that the tangent cone at any given
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singular point is unique and admits a Ricci-flat cone metric as the Gromov–Hausdorff limit
of smooth Kähler–Einstein metrics (see also general structure results for noncollapsed limit
in [10]). Such noncollapsed local models for smoothable klt singularities are always built on
Sasakian geometry and an interesting metric stability result is obtained in [16, 28]. In this
paper, we will study Kähler–Einstein metrics near isolated log canonical (non-log terminal)
singularity and their asymptotic collapsing behavior near the complete end.

Let .X; p/ be a germ of an isolated log canonical algebraic singularity p embedded in
.CN ; 0/. In this paper, we will assume p is not a log terminal singularity. We would like to
construct local Kähler–Einstein metrics with negative scalar curvature in an open neighborhood
of the singular point p. Let � be a nonnegative smooth plurisubharmonic (PSH) function on CN

with �.0/ D 0 and
p
�1𝜕𝜕� > 0. We let U �� X be the open domain defined by

(1.1) U D ¹� < aº \X

for some sufficiently small constant a > 0. For example, we can always choose

� D

NX
jD1

jzj j
2:

By choosing a generic sufficiently small a > 0, we can assume that 𝜕U is smooth and strongly
pseudoconvex. We will fix such a domain U for .X; p/ for the rest of the paper. We further
require that the canonical divisor KU is Cartier and fix a local volume measure �X on U by

(1.2) �X D .
p
�1/n� ^ �;

where � is a local generator of KU. Similarly, we can define �X when KU is Q-Cartier.
We will consider the following Dirichlet problem of a complex Monge–Ampère equation

related to the Kähler–Einstein metric on U:

(1.3)

´
.
p
�1𝜕𝜕'/n D e'�X in U n ¹pº;

' D  on 𝜕U;

where  2 C1.𝜕U/. Our first result is on existence of finite volume Kähler–Einstein metrics
near isolated log-canonical singularities. To state the theorem, fix a log resolution � W Y ! X

and let D be the simple normal crossing exceptional divisor. We also fix a defining section �D
and a hermitian metric hD for the line bundle corresponding to D (cf. Section 2 for more
precise definition).

Theorem 1.1. Let .U; p/ be a germ of an isolated log canonical algebraic (non-log ter-
minal) singularity defined as above. For any smooth function  on 𝜕U, there exists a function
'KE satisfying the following:

(1) 'KE 2 C
1.��1.U/ n Supp.D// \ PSH.��1.U//,

(2) for any " > 0, there is a constant C" > 0, such that on ��1.U/ n Supp.D/,

C � 'KE � �.2nC "/ log.� log j�Dj2hD / � C";

(3) 'KE solves equation (1.3) on U n ¹pº if we identify U n ¹pº with ��1.U/ n Supp.D/,
and the Kähler metric !KE D

p
�1𝜕𝜕'KE is Kähler–Einstein with finite volumeZ

Un¹pº

!nKE <1;
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(4) 'KE has vanishing Lelong number at any point in ��1.U/ and for x 2 ��1.U/,

lim
x!Supp.D/

'KE.x/ D �1:

Moreover, any solution to (1.3) (when pulling back to ��1.U/ n Supp.D/) satisfying (1)–(2)
above is unique.

One naturally would ask how the Kähler–Einstein metric gKE in Theorem 1.1 behaves
near the singularity p geometrically. We propose the following conjecture.

Conjecture 1.1. Let gKE be a Kähler–Einstein metric constructed in Theorem 1.1
on U n ¹pº. Then gKE is complete near p. More precisely, for any fixed point q 2 U n ¹pº and
R > 0, there exists an open neighborhood Vq;R of p in U such that for any point x 2 Vq;R n ¹pº
and any smooth path 
 joining q and x in U n ¹pº, we have

j
 jgKE > R;

where j
 jgKE is the arc length of 
 with respect to gKE.

We are able to confirm the above conjecture in the following two special cases.

Theorem 1.2. Conjecture 1.1 holds when dim U D 2.

The construction from Theorem 1.1 gives infinitely many Kähler–Einstein metrics near
the log canonical singularity p by assigning different boundary conditions. However, certain
asymptotic stability should hold for such complete Kähler–Einstein metrics. More precisely,
the asymptotic geometric behavior of complete Kähler–Einstein metrics near a log canonical
singularity p should be completely determined by the analytic structure of p.

Our next result is to establish a volume stability for such complete Kähler–Einstein met-
rics. We can always shrink U slightly because we are interested in the behavior of complete
Kähler–Einstein metrics near the isolated log canonical singularity p.

Theorem 1.3. Let gKE and g0KE be two Kähler–Einstein metrics on U n ¹pº for an
isolated log canonical (non-log terminal) singularity p. Let R.x/ and R0.x/ be the distance
functions from any point x 2 U n ¹pº to 𝜕U with respect to gKE and g0KE. If both gKE and g0KE
are complete near p, then there exists c D c.n/ > 0 such that

1 �
c.n/

R0.x/
�

det.g0KE/

det.gKE/
.x/ � 1C

c.n/

R.x/

for any x 2 U n ¹pº with R.x/ > 1 and R0.x/ > 1. In particular,

lim
x!p

det.g0KE/

det.gKE/
.x/ D 1;

where x ! p with respect to the Euclidean metric from any local embedding of p in CN .

Theorem 1.3 implies that the potentials of two complete Kähler–Einstein metrics near the
isolated log canonical singularity p must be asymptotically close to each other at infinity.
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There is a large class of log canonical singularities that admits complete Kähler–Einstein
metrics with bounded geometry at the complete end. For example, a metric uniformization
is obtained in [31, 32] for isolated log canonical singularity in complex dimension 2. Another
interesting example of cones over an abelian variety is constructed in [23]. We apply the method
of bounded geometry by [14] (see also [31, 32, 48]) to prove the following stability result.

Theorem 1.4. Let .U; p/ be a germ of an isolated log canonical singularity p. If
there exists a complete Kähler–Einstein metric � near p with bounded geometry of order
k � 2, then for any complete Kähler–Einstein metric gKE on U n ¹pº and k � 0, there exists
C D C.n; k; �; gKE/ > 0 such that for any x 2 U with R� .x/ > 1, we have

kr
k
� .!KE � �/k� .x/ �

C

.R� .x//
1
2

;

where R� .x/ is the distance from x to 𝜕U and r� is the covariant derivative with respect to � .

Remark 1.1. We remark that the completeness assumption of !KE is necessary, because
there are examples of germ of log canonical singularity .U n p/ which admit both complete
and incomplete Kähler–Einstein metrics (cf. [25, Example 2.7]). We also want to compare our
stability result with the results of [16, 28]. There in the Ricci-flat case, if we could relate two
different Kähler–Einstein metrics !1KE; !

2
KE as

!1KE D !
2
KE C

p
�1𝜕𝜕u;

the difficulty lies in the higher order estimate of u. While in our case, one new ingredient is
that we can show the boundedness of volume ratio u unconditionally in Theorem 1.3 and then
use it to show that any local complete !KE can be obtained from Cheng–Yau-type construction
once we have a good model metric. Then higher order regularity of volume ratio is a byprod-
uct of Cheng–Yau-type construction. And to our knowledge, the asymptotics result improves
Cheng–Yau global construction and hence is new.

We also have the following immediate corollary.

Corollary 1.1. Let .U; p/ be the germ of a log canonical singularity p with dim U D 2.
Then for any complete Kähler–Einstein metric gKE near p, .U n ¹pº; gKE/ must be asymptoti-
cally isometric to one of the following two local models:

(1) .B2=�; gB2=�/, where B2 is the unit ball in C2, � is a parabolic discrete subgroup of
Aut.B2/ and gB2=� is the Kähler metric induced by the group action invariant hyperbolic
metric on B2,

(2) ..H �H/=�; g.H�H/=�/, where H is the hyperbolic upper half plane, � is a parabolic
discrete subgroup of Aut.H �H/ and g.H�H/=� is the Kähler metric induced by the
group action invariant hyperbolic metric gH�H.

Furthermore, if we take a sequence of points pj 2 .U n p/ with pj ! p (in the Euclidean
topology), then .U; pj ; gKE/ converges to line R as in case (1) and converges to flat cylinder
S1 �R as in case (2), in pointed Gromov–Hausdorff topology.

Note that Theorem 1.4 can also be applied to higher dimensional complex hyperbolic
cusps. (cf. [23]).
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Remark 1.2. For application, our Theorem 1.4 and Corollary 1.1 can be applied to
understand the geometry of Kähler–Einstein metric with negative scalar curvature constructed
on certain stable canonical polarized variety by Berman-Guenancia [4] and Song [42] (cf.
Example 5.1).

We further conjecture that for any complete Kähler–Einstein metric gKE on .U; p/ an
isolated log canonical singularity p, any sequence of points xj ! p and positive �j � 1, then
.U n ¹pº; xj ; �jgKE/ converges in pointed Gromov–Hausdorff topology to a product of R, C,
compact Calabi–Yau varieties and complete Calabi–Yau varieties with cylindrical end.

We briefly outline our paper. In Section 2, we prove Theorem 1.1 by solving the Dirichlet
problem of singular complex Monge-Ampere equations. We prove the volume stability of
Theorem 1.3 for complete Kähler–Einstein metrics near isolated log canonical singularities
in Section 3 and a metric stability Theorem 1.4 if one of the Kähler–Einstein metric satisfies
the bounded geometry condition in Section 4. In Section 6, we prove Theorem 1.2 for surfaces
and Corollary 1.1. In Section 6, we give a short discussion of conjecture 1.1 for smoothable
isolated log singularities.

Acknowledgement. The second author would like to thank Professor H-J. Hein for his
illuminating lectures on his joint work with Professor S. Sun [28] during the Summer School
at Notre Dame University in 2017 and F. Tong for many interesting discussions. We also thank
the anonymous referee for many useful suggestions.

2. Kähler–Einstein metrics near log canonical singularities

2.1. The set-up. In this section, we will prove Theorem 1.1. We first recall the defini-
tion for log canonical singularities.

Definition 2.1. Let X be a normal variety such that KX is a Q-Cartier divisor. Let
� W Y ! X be a log resolution and ¹Eiº

p
iD1 the irreducible components of the exceptional

locus Exc.�/ of � . There there exists a unique collection ai 2 Q such that

KY D �
�KX C

pX
iD1

aiEi :

Then X is said to have log-canonical (resp. klt) singularities if

ai � �1 (resp. ai > �1) for all i :

In this paper, since we are considering isolated singularity, we have �.Exc.�// D p.
We have to prescribe singularities of the solution ' to obtain a canonical and unique Kähler–
Einstein current on X . To do so, we lift all the data to a log resolution � W Y ! X . It is more
convenient to write the adjunction formula in the following form:

KY D �
�KX C

nX
i

aiEi �

mX
j

bjFj ; ai � 0; 0 < bj � 1:

Let �Ei , 1 � i � n, be the defining section for line bundle associated to Ei and let �Fi ,
1 � j � m, be the defining section for line bundle associated to Fj . We also equip the line
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bundles associated to Ei and Fi with smooth hermitian metric hEi , hFj on Y . Then we define

j�E j
2
hE
WD

Y
i

j�Ei j
2ai
hi
; j�F j

2
hF
WD

Y
j

j�Fj j
2bj
hj
:

Recall that �X is a local volume form defined on U in formula (1.2), now let �Y be a smooth
strictly positive volume form on ��1.U/, defined by

�Y D .j�E j
2
hE
/�1j�F j

2
hF
���X :

Then lifting equation (1.3) to Y , we have´
.��
p
�1𝜕𝜕'/n D e�

�'.j�F j
2
hF
/�1j�E j

2
hE
�Y ;

��'j𝜕U D  :

Abusing notation, we still denote the domain ��1.U/ by U. Let � be a fixed smooth Kähler
form on Y and we consider the following perturbed family of complex Monge–Ampère equa-
tions on ��1.U/ for s 2 .0; 1/:

(2.1)

8̂̂<̂
:̂
.s� C

p
�1𝜕𝜕's/n D e's

Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y ;

'sj𝜕U D  :

For each s > 0, we shall first get solution 's for equation (2.1). When s D 0, equation (2.1)
coincides with equation (1.3). Next we want to use pluripotential theory to get a uniform C 0

estimate with barrier of 's . Using pluripotential theory [3], a similar C 0 estimate of degenerate
Monge–Ampère equations has been obtained in different settings such as on unit ball in [34],
on singular Stein domain in [26] and on singular variety with klt singularity in [18,22,54]. The
main difference of our geometric domain with previous setting is the following: we consider
the log canonical singularity, which means we do not haveLp.p > 1/ integrability of the right-
hand side of equations (2.1), hence we do not have uniform boundedness control of 's , which
will also cause extra trouble for high order derivative estimates.

Firstly, let us recall that our domain U is defined by U WD ¹� < aº in formula (1.1),
where � is smooth on CN . Hence ��� is smooth on ��1U, where � is a resolution of singular-
ity. Now choose an arbitrary smooth extension  1 of  , which is supported on a neighborhood
of 𝜕U. Hence ��� is smooth on ��1U. By choosing A large enough, we define a semipositive
.1; 1/-form ! on U:

(2.2) ! WD A
p
�1𝜕𝜕.� � a/C

p
�1𝜕𝜕 1:

Now
s� C

p
�1𝜕𝜕's D ! C s� C

p
�1𝜕𝜕.'s � A.� � a/ �  1/:

Let �s WD 's � A.� � a/ �  1 and M WD A.� � a/C  1. Then we can rewrite equa-
tions (2.1) as a new family of equations with �s as unknown functions and with zero Dirichlet
boundary:

(2.3)

8̂̂<̂
:̂
.! C s� C

p
�1𝜕𝜕's/n D

e'sCM
Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y ;

'sj𝜕U D 0:
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The above equations hold for �s , we abuse notation and still denote the unknown functions
by 's . Notice all the estimate we get for �s also holds for 's due to the fact that M is
independent of s. From now on, we will focus on equations (2.3).

Lemma 2.1. For each fixed s > 0, there exists a unique smooth solution 's to equa-
tion (2.3).

Proof. Recall that 𝜕U WD ¹� D aº, hence � WD � � a is equal to 0 on 𝜕U. Now one
subsolution of equation (2.3) will be A� by choosing A sufficient large. it is well known that
existence of subsolution implies existence of solution, see for example [7, Theorem A].

Next, we state the Kodaira Lemma which is very useful in the estimates that follows.

Lemma 2.2 ([33, Lemma 2.62]). Let � W Y ! X be log resolution of singularity, where
X is Q factorial. Also let ! be a Kähler form on X and � be a Kähler form on Y . Then
there exist a simple normal crossing divisor D D

P
Di supporting on the exceptional locus,

hermitian metrics hDi on the line bundle associated to Di and a sequence of constants ˛i > 0
and s0 > 0 such that

��! C s
X
i

˛i
p
�1𝜕𝜕 log hDi > 0

for all 0 < s � s0. By adjusting the coefficients ˛i of Di , we may assume that s0 D 1 and that
there exists a constant ˇ > 0 such that

��! C
X
i

p
�1𝜕𝜕˛i log hDi > ˇ�:

For simplicity, we also define

(2.4) j�Dj
2
hD
WD

Y
i

jDi j
2˛i
hDi

;
p
�1𝜕𝜕 log hD WD

X
i

˛i
p
�1𝜕𝜕 log hDi :

In the next two subsections we obtain uniform estimates for 's , completing the proof
of Theorem 1.1.

2.2. The C 0 estimate.

Proposition 2.1. Let j�Dj2hD be defined as in (2.4). For any " > 0, there exists a con-
stant C" > 0 such that

C � 's � �.2nC "/ log.� log j�Dj2hD / � C":

Proof. First note that all 's are C� -PSH for some fixed large constant C independent
of s and 's D 0 on 𝜕U. This implies that

��'s � �C:

The upper bound then follows easily by comparing 's to the solution to the following Dirichlet
problem: ´

��u D �C;

u D 0 on 𝜕U:
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For the lower bound we will use a barrier function inspired by [43, Proposition 3.1] (see also
[19] for an interesting C 0 estimate for singular Kähler–Einstein metrics in families). From now
on, denote by " > 0 a small but fixed constant and byC" a constant depending on "which might
change from line to line. Let D be as in (2.4). We scale hD so that j�Dj2hD < e

�3n
" . Note that

this has no effect on
p
�1𝜕𝜕 log hD . Now let H be a function defined on .�1; 0� satisfying

H 0 > 0, H 00 > 0 to be determined. For each fixed divisor Fj and some constant 0 < ı < 1,
consider the barrier function H.uj" /, where

uj" WD " log j�Dj2 � "2.� log jFj j2hFj
/1�ı :

For " > 0 sufficiently small, direct calculation shows that

! C
p
�1𝜕𝜕uj" D ! � "Ric.D/ � "2.1 � ı/.� log jFj j2hFj

/�ı
p
�1𝜕𝜕.� log jFj j2hFj

/

C "2ı.1 � ı/.� log jFj j2hFj
/�1�ı

p
�1𝜕 log jFj j2hFj

^ N𝜕 log jFj j2hFj
:

Notice that � log jFj j2hFj
> 1. Therefore (possibly change � )

"2.1 � ı/.� log jFj j2hFj
/�ı
p
�1𝜕𝜕.� log jFj j2hFj

/ � "2�:

It follows from Kodaira’s lemma that for " sufficiently small, one has

(2.5) ! � "Ric.D/ � "2.1 � ı/.� log jFj j2hFj
/�ı
p
�1𝜕𝜕.� log jFj j2hFj

/ �
"

2
�:

If we write jFj j2 D jzj j2e'j locally near divisor Fj , we have

(2.6)
p
�1𝜕 log jFj j2hFj

^ N𝜕 log jFj j2hFj
�

p
�1dzj ^ d Nzj

2jzj j2
� �:

Combining inequalities (2.5) and (2.6) and further assuming that H can be chosen such that
H 0.u

j
" / < 1, we have

! C s� C
p
�1𝜕𝜕H.uj" / � ! CH

0
p
�1𝜕𝜕uj"

� H 0.! C
p
�1𝜕𝜕uj" /

� H 0
�
"

4
� C "2ı.1 � ı/.� log jFj j2hFj

/�1�ı
p
�1dzj ^ d Nzj

jzj j2

�
:

Now define

yH D

P
j H.u

j
" /

m

(recall that m is the number of components of F D
P
Fj ) and �s D ! C s� C

p
�1𝜕𝜕 yH .

Direct calculations show that

(2.7) �ns � Cı;";n.H
0/n
dz1 ^ d Nz1 � � � dzn ^ d Nzn

…j .jzj j2.� log jzj j/1Cı/
:

We define H.x/ D �B log.�x/ for some 3n > B > 0 to be chosen later, and consider

�s WD 's � yH:
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Then �s solves the following equation:

.�s C
p
�1𝜕𝜕�s/n D e�sC

yHCM

Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y :

Let qs be the minimum point of �s . Without loss of generality we may assume that qs lies in
the interior. Since �s.x/!C1 as x ! Supp.D/, we may also assume that qs … Supp.D/.
Then by the maximum principle, at qs we have the following estimate:

(2.8) �ns � e
�sC yHCM

Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y � C
e�sC

yHQ
j .j�Fj j

2
hFj
C s/bj

�n

for some constant C independent of s. Locally near qs , we have �D D z
˛1
1 � � � z

˛n
k

, where
.z1; : : : ; zn/ are complex coordinates and ˛i > 0 for i D 1; : : : ; k. Combining inequalities
(2.7) and (2.8), we have

e�s � Cı;";ne
� yH .H 0/n

…j .� log jzj j/1Cı
� Cı;";B

.� log j�Dj2/B�n

…j .� log jzj j/1Cı
;

where we have used bj � 1 and the two inequalities

e�
yH
� B log.� log j�Dj2hD /; .H 0/n � .�2B" log j�Dj2hD /

�n:

Choosing ı � " and B D 2nC ", we have e�s � C". Therefore

's � yH � C" D �
X
j

.2nC "/

m
log.�uj" / � C" � �.2nC "/ log.� log j�Dj2/ � C";

which ends the proof.

Corollary 2.1. There exists a constant C independent of s such thatZ
UnSupp.D/

.! C s� C
p
�1𝜕𝜕's/n � C:

Proof. Recall that hD is chosen such that j�Dj2hD < e
�4n. Let

f D �3n log.� log j�Dj2hD /C A

for some sufficiently large A > 0 so that

f � 's

on 𝜕U for all s 2 .0; 1/. From the calculations above one can see that f 2 PSH.! C s�/. For
" > 0, we let

's;" D 's C " log j�Dj2hD :

By Proposition 2.1 we have 's;" < f near Supp.D/ and on 𝜕U. In particular, this implies that
the set ¹'s;" > f º will be supported on a relatively compact set contained in .U n Supp.D//.
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So by the comparison principle (cf. [9, Lemma 3.4]) and the fact that s� C "
p
�1𝜕𝜕 log hD � 0

for sufficiently small ", we haveZ
's;">f

.! C s� C
p
�1𝜕𝜕's/n �

Z
's;">f

.! C 2s� C
p
�1𝜕𝜕's;"/n

�

Z
's;">f

.! C 2s� C
p
�1𝜕𝜕f /n:

If we note that as "& 0, the open setsW" D ¹'s;" � f º increase toW D ¹'s > f º. Note that
Supp.D/ � W by Proposition 2.1. We shall see in the next subsection that on compact subsets
of U n Supp.D/ (for instance on U nW ), one has uniform second derivative bounds on 's
(cf. Lemma 2.6). So the corollary immediately follows as long as we can prove thatZ

UnSupp.D/
.! C s� C

p
�1𝜕𝜕f /n < C

for some uniform constant C . Similar to the calculations above, we have

! C s� C
p
�1𝜕𝜕f � C� C

2n

.� log j�Dj2hD /
2

kX
jD1

j̨

p
�1dzj ^ d Nzj

jzj j2

� C� C C

kX
jD1

j̨

p
�1dzj ^ d Nzj

.� log jzj j2/2jzj j2

for some uniform constant C . In the second line we also used the fact that

� log j�Dj2hD � �c log jzj j2

for all j , where c D min j̨ . The required estimate then follows from the binomial theorem
and the elementary observation thatZ

jzj< 1
2

p
�1dz ^ d Nz

.� log jzj/2jzj2
D

Z 1
2

0

1

.� log r/2
�
dr

r
D

Z 1
log2

ds

s2
<1:

2.3. Further estimates and proof of Theorem 1.1. We first prove the boundary C 1

estimate. We denote the covariant derivative of � by r. We also let D be the effective divisor
from Lemma 2.2 such that Supp.D/ D Supp.F / [ Supp.E/ and

(2.9) ! C
p
�1𝜕𝜕 log hD > ˇ�

for some ˇ > 0. Note that by the support condition, if �D is a defining section ofD, then there
exists a uniform constant C such that

(2.10) j�F j
�2; j�E j

�2
hE
� C j�Dj

�2l

for some l 2 N.

Lemma 2.3. There exists a constant C > 0 such that for all 0 < s < 1,

jr'sj𝜕U � C:
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Proof. As in the proof of Proposition 2.1, let u solve the Dirichlet problem´
�u D �A;

u D 0 on 𝜕U:

Then if we choose A to be large enough, we have 's � u. Next, again by Proposition 2.1,

's and
e's

Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y

.! C s�/n

are uniformly bounded in the neighborhood of the boundary 𝜕U. Let U" WD ¹� > a � "º.
We fix a small " such that U" has smooth boundary consisting of two components 𝜕U and
¹� D a � "º. Then we can choose b � 1 such that

.! C s� C
p
�1𝜕𝜕Œb.� � a/�/n >

e'sCM
Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y

D .! C s� C
p
�1𝜕𝜕's/n:

On the other hand we also have

b.� � a/j𝜕U D 0 D 'sj𝜕U;

b.� � a/j�Da�" D �b" < 'sj�Da�";

if we pick b � 1. Then by the maximum principle, and the upper bound above,

b.� � a/ � 's � u:

But then it is easy to see that for any x 2 𝜕U,

jr'sj.x/ � max.jrb.� � a/j.x/; jruj.x//;

and the boundary C 1 estimate follows.

Next, we prove the global C 1 estimate with suitable barrier function. Such gradient
estimate without barrier is firstly studied in [5] for standard non-degenerate Monge–Ampère
equation where ' is bounded and later improved in [40] when the potential only has an upper
bound in a different geometric setting.

Proposition 2.2. Let 's be the solution of equation (2.3). There exist N;C > 0 such
that for all 0 < s < 1,

jr'sj
2
j�Dj

2N
hD
� C:

Proof. Once again we fix a constant ˇ > 0 such that ! C
p
�1𝜕𝜕 log hD > ˇ� and

rewrite equation (2.3) as

�
! C
p
�1𝜕𝜕 log hD C s� C

p
�1𝜕𝜕�s

�n
D

e'sCM
Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y ;

where
�s D 's � log j�Dj2hD :
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It follows from Proposition 2.1 that �s > �C for some uniform constant C > 0. Note that our
reference metrics !C

p
�1𝜕𝜕 loghD C s� in the above equation are uniformly non-degenerate

as s ! 0. By abusing notation, in the rest of proof, we will use � to denote the Kähler form
! C
p
�1𝜕𝜕 log hD C s� . Define

F WD
e'sCM j�Dj

2
hD

Q
i .j�Ei j

2
hEi
C s/aiQ

j .j�Fj j
2
hFj
C s/bj

�Y

.! C
p
�1𝜕𝜕 log hD C s�/n

:

For the rest of the proof, for convenience, we drop the sub-script s from the notation, i.e.,
we denote �s by simply �. We define

H D log jr�j2� C log j�Dj2khD � 
.�/;

where k is a constant, 
 is a one-variable monotone increasing function to be determined.
Since the leading term of our function 
.x/ will be chosen as Bx, and � blows up in the rate
of � log j�Dj2hD , it follows that �
.�/ has upper bound. Now log jr�j� < C � 2 log j�DjhD ,
this implies that when k > 2, H has a maximum in U n Supp.D/. Direct computation (cf.
[39, p. 21]) shows that

�0 log jr�j2� �
2<hr logF;r�i�

jr�j2
�

�ƒ tr!0 �

C
jrr�j2

�;!0
C j Nrr�j2

�;!0

jr�j2
�

�
jrjr�j2

�
j2!0

jr�j4
�

;

(2.11)

where �0 is taken with respect to the metric !0 D ! C
p
�1𝜕𝜕 log hD C s� C

p
�1𝜕𝜕�s , ƒ

is the bound of bisectional curvature of metric � and j � j�;!0 means that the norm of the two
tensor is taken with respect to � on the first entry and !0 on the second entry. When jr�j� > 1,
by the Cauchy–Schwarz inequality,ˇ̌̌̌

2<hr logF;r�i�
jr�j2

�

ˇ̌̌̌
� C C C

X
i

j�Ei j
�2
hEi
C

X
j

j�Fj j
�2
hFj
C j�Dj

�2
hD

� C j�Dj
�2l
hD

(2.12)

for some l > 0. As observed before, the final equality follows from the fact that

Supp.D/ D Supp.E/ [ Supp.F /:

Next, by [39, Lemma 13], we have

jrr�j2
�;!0
C jr Nr�j2

�;!0

jr�j2
�

�
jrjr�j2

�
j2!0

jr�j4
�

� 2<

�
rjr�j2

�

jr�j2
�

;
r�

jr�j2
�

�
!0
� 2<

�
rjr�j2

�

jr�j2
�

;
r�

jr�j2
�

�
�

:

(2.13)

At the maximum of H , we have

r log jr�j2 Cr log j�Dj2khD � 

0
r� D 0:
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Hence we have

2<

�
rjr�j2

�

jr�j2
�

;
r�

jr�j2
�

�
!0
� 2<

�
rjr�j2

�

jr�j2
�

;
r�

jr�j2
�

�
�

D 2k<

�
�r log j�Dj2hD C 


0
r�;

r�

jr�j2
�

�
!0

� 2k<

�
�r log j�Dj2hD C 


0
r�;

r�

jr�j2
�

�
�

� 2k<

�
�
rj�Dj

2
hD

j�Dj
2
hD

;
r�

jr�j2
�

�
!0
C 2k
 0

jr�j2!0

jr�j2
�

C 2k<

�
rj�Dj

2
hD

j�Dj
2
hD

;
r�

jr�j2
�

�
�

� 2k
 0:

(2.14)

We choose 
 as a monotone increasing function, so we can drop the term 2
 0jr�j2!0 jr�j
�2
�

.
At the maximum of H , we can assume j�Dj2khD jr�j

2
�
� 1 otherwise we are done. Choosing

k � 2, we have the following two estimates:ˇ̌̌̌
2<

�
�
rj�Dj

2
hD

j�Dj
2
hD

;
r�

jr�j2
�

�
!0

ˇ̌̌̌
� 2

ˇ̌̌̌
<

�
rj�Dj

2
hD
;
r�

jr�j�

�
!0

ˇ̌̌̌

� jrj�Dj
2
hD
j
2
!0 C

j�Dj
2
hD
jr�j2!0

j�Dj
2
hD
jr�j2

�

� C jrj�Dj
2
hD
j
2
� tr!0 � C j�Dj2hD jr�j

2
!0 ;ˇ̌̌̌

2<

�
�
rj�Dj

2
hD

j�Dj
2
hD

;
r�

jr�j2
�

�
�

ˇ̌̌̌
� 2

ˇ̌̌̌
<

�
rj�Dj

2
hD
;
r�

jr�j�

�
�

ˇ̌̌̌
� C:

(2.15)

On the other hand, one has

��0
.�/ D �
 0�0� � 
 00jr�j2!0

D 
 0 tr!0 � � n
 0 � 
 00jr�j2!0 ; �
0 log j�DjkhD � C tr!0 �:

(2.16)

Combining estimate (2.16) with preceding estimates (2.12)–(2.15), we have

(2.17) �0H � .
 0 �ƒ � C/ tr!0 � � .nC 2/
 0 � .
 00 C j�Dj2hD /jr�j
2
!0 � C j�Dj

�2l
hD
:

Recalling that � > �C 0, now we construct our function 
 as


.x/ D .ƒC C C 1/x �
E

x C C 0 C 1
;

where E is a constant to be determined. Then by (2.17) we have

�0H � tr!0 � � .nC 2/.C C 1Cƒ/ � C j�Dj�2lhD

C

�
2E

.� C C 0 C 1/3
� j�Dj

2
hD

�
jr�j2!0 :

Noticing that � � C � 2 log j�Dj2hD , we can assume that�
2E

.� C C 0 C 1/3
� j�Dj

2
hD

�
� j�Dj

2
hD
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by choosing suitable large constant E depending on C and C 0. Now we conclude that at the
maximum of H , we have

tr!0 � � .j�DjhD /
�2l ; jr�j2!0 � C.j�DjhD /

�2.lC1/:

Hence
jr�j2� � C.j�DjhD /

�2.2lC1/:

Choosing k D 2l C 1, we have Hmax � C , and letting N WD k C .C C 1Cƒ/, it follows
from the definition of 
.�/ that

jr�j2� j�Dj
2N
hD
� C:

Lemma 2.4. Let 's be the solution of equation (2.3). Then there exist constant C > 0

such that for all 0 < s < 1,
jr
2
�'sj𝜕U � C:

Proof. Notice that our boundary is strictly pseudoconvex, and all data in equation (2.3)
is uniformly bounded near the boundary, so the second order estimates on the boundary follow
directly from the arguments in [8, Section 1.3].

Next, we will prove second order estimates with bounds from suitable barrier functions.

Lemma 2.5. There exist constants N;C > 0 such that for all 0 < s < 1,

sup
U

.j�Dj
N
hD
/j��'sj � C;

where �� is the Laplace operator with respect to the Kähler metric � .

Proof. We remark that the constant C in the proof might change from line to line and it
depends on �;U but does not depend on s. Let !0 D ! C s� C

p
�1𝜕𝜕's . Then we consider

the quantity
H D log tr� .!

0/ � B's C B log j�Dj2hD
for some large constant B > 2. By the C 0 estimate of 's , H is bounded above in U. Standard
calculations (cf. [45, Lemma 3.7]) show that

(2.18) �0 log tr� !
0
� �C tr!0 � �

tr� Ric.!0/
tr� .!0/

;

whereC depends on bisectional curvature of � . From equations (2.3), (2.10) and the elementary
observation that

p
�1𝜕𝜕 log.f C s/ D

f

f C s

p
�1𝜕𝜕 logf C s

p
�1𝜕f ^ 𝜕f
f .f C s/

holds for any smooth nonnegative function f , it is easy to see that

� tr� Ric.!0/ �
�C

j�Dj
2l
hD
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for some constant C > 0 independent of s. Together with (2.18) and our choice ofD (cf. (2.9))
we see that

�0H � �C tr!0 � �
C

j�Dj
2l
hD

tr� .!0/
C B tr!0.

p
�1𝜕𝜕 log hD �

p
�1𝜕𝜕's/

� .Bˇ � C/ tr!0 � �
C

j�Dj
2l
hD

tr� .!0/
� Bn

� tr!0 � �
C

j�Dj
2l
hD

tr� .!0/
� Bn .if B � 1/

� .tr� .!
0//

1
n�1

�
�n

!0n

� 1
n�1

�
C

j�Dj
2l
hD

tr� .!0/
� Bn

� .tr� .!
0//

1
n�1 j�Dj

2˛
hD
�

C

j�Dj
2l
hD

tr� .!0/
� Bn

for some constant ˛ independent of s and B � 1 so that Bˇ > C C 1 in line three.
By Lemma 2.4, it suffices to assume that H obtains maximum at a point p 2 U. More-

over, sinceH goes to �1 on Supp.D/, clearly p … Supp.D/. From the maximum principle it
follows that at point p,

C

j�Dj
2l
hD

tr� .!0/
C Bn � .tr� .!

0//
1
n�1 j�Dj

2˛
hD
:

We first assume that j�Dj2lhD tr� .!0/ � 1 at p. Then

.tr� .!
0//

1
n�1 j�Dj

2˛
hD
� C C Bn:

By noticing that the other case is j�Dj2lhD tr� .!0/ � 1 at p, it follows that in both cases there is
an integer k (depending on ˛; l and n) such that

j�Dj
2k
hD
.tr� !

0/.p/ � C C Bn:

Notice that 's � " log j�Dj2hD � C" for any " > 0, so it follows by choosing a B � k that
H.p/ � C C Bn. Now fixing this B , we have H.x/ � C for any x 2 U n Supp.D/. By the
definition of H , we have

j�Dj
2B
hD
.tr� !

0/.x/ � C:

Choosing N D 2B will finish proof.

The following lemma on local higher order regularity of 's is established by the standard
linear elliptic theory after applying Lemma 2.5 and linearizing the complex Monge–Ampère
equation (2.3).

Lemma 2.6. For any compact K �� .U n p/, and any natural number k 2 N, there
exists a constant C D C.k;K/ > 0 such that for any 0 < s < 1,

k'skCk.K/ � C:

In our context, we need a lemma for compactness of quasi-PSH function in L1 topology.
This kind of lemma is standard and we include it for convenience.
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Lemma 2.7 ([27]). Let U; � and 's be as above. Denote A.� � a/C  1 C 's by  s
(cf. (2.2) for the definition of A.� � a/C  1). Then  s converge to a PSH function on ��1.U/
by taking a subsequence.

Proof. Fix a measure �n and a finite open covering Vi for ��1.U/ such that � is
p
�1𝜕𝜕

exact on each chart. On each Vi ,  s is a s� -PSH function satisfying k skL1 < C and  s < C ,
for some C independent of s (cf. Proposition 2.1). By passing to a subsequence, one has

 s
L1.Vi /
����! 'i ;

where 'i is a s� -PSH function for any s > 0 (cf. [17]). Passing s ! 0, 'i is PSH on Vi . For
different charts Vi ; Vj with Vi \ Vj ¤ ;, we aim to show that 'i D 'j . Then we can patch all
'i to get a PSH function on ��1.U/. By taking a further subsequence, we may assume that
'i D 'j on a full measure subset W of Vi \ Vj . Hence it suffices to show that for any point
q 2 Vi \ Vj ,

'i .q/ D lim sup
x!q;x2W

'i .x/:

It follows from the upper semicontinuity of 'i that

'i .q/ � lim sup
x!q;x2W

'i .x/:

To get the reversed inequality, we argue by contradiction. If not, then

'i .q/ > lim sup
x!q;x2W

'i .x/:

By the mean value inequality for PSH function, one has that, for some sufficiently small r > 0,

cr

Z
B.q;r/\W

'idV < 'i .q/ � cr

Z
B.q;r/

'idV;

where B.q; r/ is a radius r ball in Vi \ Vj and cr is a constant depending on r . This is a
contradiction by noticing that 'i < C and B.q; r/ nW has measure zero.

Now we proceed to prove our first main theorem.

Proof of Theorem 1.1. By Lemma 2.7, for any sequence sj ! 0, one has

'sj
L1.��1.U//
��������! ';

by taking a subsequence and moreover if we define

(2.19) 'KE WD A.� � a/C  1 C ';

then 'KE is a PSH function on ��1.U/. It follows from the uniform estimates for 's away
from Supp.D/ that by taking a further subsequence, one has

'sj
C1loc .�

�1.U/nSupp.D//
����������������! ':
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Clearly, ' solves the desired Monge–Ampère equation on . NU n ¹pº/ by design. Moreover, by
Proposition 2.1 there exists C > 0 such that

�.2nC "/ log.� log j�Dj2hD / � C" � ' � C:

With the above sublog C 0 estimate of ' and the uniqueness Lemma 2.8 below, we have

's
C1loc .�

�1.U/nSupp.D//
����������������! '

when s ! 0. The PSH function 'KE satisfies properties (1)–(2) in the statement of Theorem 1.1
and !KE WD

p
�1𝜕𝜕'KE is a Kähler–Einstein metric on U n ¹pº Š ��1.U/ n Supp.D/. From

Corollary 2.1 and local smooth convergence on ��1.U/ n Supp.D/, we also get by the Fatou
Lemma that Z

Un¹pº

!nKE � lim
s!0

Z
Un¹pº

.! C s� C
p
�1𝜕𝜕's/n <1;

and this proves (3).
For part (4) we remark that in (2.19), our function 'KE is PSH function on ��1.U/.

Notice that ��1.U/ is smooth, by the sublog pole estimate of 'KE in Proposition 2.1, it follows
that 'KE has vanishing Lelong number at any point of ��1.U/.

At last, we show that limx!Supp.D/ 'KE.x/ D �1 for x 2 ��1.U/. We argue by con-
tradiction. If not, noticing that 'KE is bounded from above, then there is a smooth irreducible
component E of D and a sequence of point yi ! y 2 E such that

(2.20) C � lim
i!C1

'KE.yi / � 'KE.y/

for some finite constant C . The second inequality is due to the upper semicontinuity of 'KE.
Now by the definition of PSH function (cf. [17, Definition 1.4]), 'KE is still a PSH function
when restricted to a smooth component E of D. Indeed, a function with value in Œ�1;C1/
is PSH if and only if it is upper semicontinuous and it satisfies the mean value inequality when
restricted to any complex line. One can check easily that the mean value inequality on complex
line and the upper semicontinuity are preserved when restricted to complex submanifold.

Now we have showed that 'KEjE is a PSH function and moreover it is finite at a point
y 2 E (cf (2.20)). We claim that 'KE is constant on E. Indeed, since 'KEjE is upper semi-
continuous, we may assume that 'KEjE achieves its maximum at some point xmax. Then by
the mean value inequality for PSH function, it is clear that 'KE is locally constant. Now E

is a smooth manifold without boundary, hence 'KEjE is constant on E. The claim is proved.
Next, using the connectedness of Supp.D/ (using p is a normal singularity), 'KE must be con-
stant on Supp.D/. Then we need the following general fact from [4, Lemma 2.7]: Suppose �
is a plurisubharmonic function on the unit ball B � Cn such thatZ

B

jz1j
�2e�.

p
�1/ndz1 ^ dz1 ^ � � � ^ dzn ^ dzn <1:

Then � tends to �1 near B \ ¹z1 D 0º. Now pick a smooth exceptional divisor F with dis-
crepancy�1 fromD and also pick a generic point q 2 F (q is not included in other components
of D). Then applying the fact just recalled, one has 'KE.xi / tends to �1 when xi ! q. This
is a contradiction since 'KE is a finite constant on Supp.D/.

Finally, the uniqueness is a consequence of the slightly stronger uniqueness theorem
below.
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Lemma 2.8. There exists a unique smooth PSH function ' 2 C1.U n p/ satisfying the
following:

(1) .
p
�1𝜕𝜕'/n D e'�X on .U n p/, 'j𝜕U D  ,

(2) for any " > 0, there exists a constant C" > 0 such that

" log j�Dj2hD � C" � ' � C;

where D is a SNC divisor supported on the exceptional locus of a log resolution � (cf.
Lemma 2.2 for the definition).

Proof. Let ' be the limit of 's as s ! 0 as above. Suppose there exists another '0 sat-
isfying condition (2) in the lemma solving equation 2.3, and for any " > 0, there exist C1 > 0
and C2 D C2."/ > 0 such that

" log j�Dj2hD � C2 � '
0
� C1:

We consider the quantity

� D ' � '0 C ı3 log j�Dj2hD C ıM;

where recall that ! D
p
�1𝜕𝜕M in equation (2.3). Then � satisfies the following equation on

the log resolution Y :

.! C
p
�1𝜕𝜕'0 � ı! C ı3 Ric.hD/C

p
�1𝜕𝜕�/n

.! C
p
�1𝜕𝜕'0/n

D e��ıM j�Dj
�2ı3 :

Noticing that ';M are bounded from above on .U n p/ and .ı3 log j�Dj2hD � '
0/.x/! �1

when x ! supp.D/, � obtains its maximum in .U n p/. It follows from the maximum princi-
ple that there exists C > 0 such that

sup
.Unp/

� � ıC:

Therefore for any point x 2 .U n p/, one has

' � '0 � ıC � ıM � ı3 log j�Dj2hD :

Let ı ! 0. On .U n p/, one has
' � '0:

Similarly, one has ' � '0 on .U n p/. Therefore ' D '0.

3. Volume stability

The goal of this section is to prove Theorem 1.3 and some consequences by a localized
version of Yau’s Schwarz Lemma [24, 50]. Suppose we have two complete Kähler–Einstein
metric !KE and !0KE on .U n p/. By the Kähler–Einstein condition, we can write

!0KE D !KE C
p
�1𝜕𝜕';

where

' WD log
!0nKE

!nKE
:
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Proof of Theorem 1.3. Fix a point q such that dist!KE.q; 𝜕U/ DW 2R.q/. We construct
a cut-off function

�.x/ D �

�
r.x/

R

�
� 0;

where r.x/ is some smoothening of d!KE.x; q/ (obtained for instance by running the heat flow)
and

� 2 Œ0; 1�; ��1.�0/2 � C.n/; j�00j � C.n/;

and let H D �'. Note that � satisfies

� D

´
1 on B!KE.q; R/;

0 outside B!KE.q; 2R/:

Moreover, by Laplace comparison, we also have

�!KE� �
�C

R2
.1CR/

for some dimensional constant C . Since both !KE and !0KE are KE metrics, we have

tr!KE

p
�1𝜕𝜕' D �nC tr!KE !

0
KE � n.e

'
n � 1/:

AssumeH attains a positive maximum at a pointQ (otherwiseH.q/ � 0). Then at the pointQ,
we have

�H � .�!KE�/

�
H

�

�
C ��!KE' C 2<

�
r�;r

H

�

�
�
�c.n/H

�
.R�2.1CR//C �n.e

'
n � 1/C 2<

�
r�;

1

�
rH

�
� 2H

�
r�;

1

�2
r�

�
�
�c.n/H

�
.R�2.1CR//C n�

'2

n2
C 2<

�
r�;

1

�
rH

�
� 2

H

�R2

�
�c.n/H

�

�
R�2.1CR/ �

H

c.n/n

�
C 2<

�
r�;

1

�
rH

�
� 2

H

�R2

D
c.n/H

�

�
�R�1 �R�2 �

2

c.n/
R�2 C

H

nc.n/

�
C 2<

�
r�;

1

�
rH

�
;

where c.n/ is a dimensional constant which might change from line to line. By maximum
principle on the ball of radius R, noticing that rH.Q/ D 0, we get

H.Q/ � c.n/

�
1

R
C

1

R2

�
:

Hence '.q/ D H.q/ � 2c.n/ 1
R.q/

when R � 1.

Remark 3.1. The above theorem is true as long as !KE and !0KE are complete. No other
metric properties of !KE; !

0
KE are required.

We prove a corollary of Theorem 1.3.

Corollary 3.1. Suppose we are in the setting of Theorem 1.3, i.e., U admits a complete
Kähler–Einstein metric !KE with negative scalar curvature and Vol!KE.U/ <1. Then for any
other complete Kähler–Einstein metric !0KE with negative scalar curvature, Vol!0KE

.U/ <1.

Proof. It is obvious since ' D log !
0n
KE
!nKE

is bounded by Theorem 1.3.
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By applying Yau’s Schwarz Lemma, we have the following theorem concerning the
comparison of two different Kähler–Einstein metrics.

Corollary 3.2. Let !KE and !0KE be two complete Kähler Einstein metrics with negative
scalar curvature. If moreover the bisectional curvature of !KE is smaller than �K2, where K2
is a positive constant, then there is a constant c such that

1

C
!0KE � !KE � C!

0
KE:

Proof. Let u D tr!0KE
!KE. By Chern–Lu’s inequality we have

�!0KE
u � �K1uCK2u

2;

where �K1 is the Ricci curvature of !0. We still use the cut-off function � as in Theorem 1.3.
Let G D �u. Then by the Chern–Lu inequality and the same argument as in the proof of
Theorem 1.3, we get the following inequality:

G �
K1

K2
C c.K1; K2/R

� 1
2 :

When R is larger, the estimate is better, hence we have !KE � c!
0
KE for some constant which

depending on the metric !0. The volume ratio estimate in Theorem 1.3 also gives us the reverse
inequality.

To end this section, we prove a uniqueness theorem for Dirichlet problem which will be
used later in Section 4.

Lemma 3.1. Suppose there exists a complete Kähler metric ! D
p
�1𝜕𝜕� on .U n p/.

Further assume that the Kähler potential � is bounded from above and �.x/! �1 when
x ! p. Then any smooth bounded solution ' of the Dirichlet problem´

.! C
p
�1𝜕𝜕'/n D e'!n on U n p;

'j𝜕U D 0;

is unique, i.e., ' D 0.

Proof. Let '" D ' � "� and !" D .1C "/!. Then '" satisfies the equation8<:.!" C
p
�1𝜕𝜕'"/n D

e'

.1C "/n
!n" on U;

'"j𝜕U D �"�:

Since � goes to �1, it follows that '" admits a minimum in U. If the minimum is on the
boundary, we have

'" � �" inf
𝜕U
�:

If the minimum is in the interior point Q, then

'".Q/ D '.Q/ � "�.Q/ � log.1C "/ � "max �:

In both cases, letting "! 0, we get ' � 0. Similar arguments show that ' � 0. Hence 0 is the
unique solution.
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Remark 3.2. We remark that Lemma 3.1 can also be proved by using maximum prin-
ciple when ! has bounded geometry property.

4. Kähler–Einstein metrics with bounded geometry

4.1. Preliminaries of the bounded geometry method. In this section, we want to use
bounded geometry methods of [15, 31, 48] to construct complete Kähler–Einstein metric on
U n ¹pº. So our geometric domain of interest will be U n ¹pº with boundary 𝜕U and also one
complete end of infinite distance, which is punctured neighborhood of p in Euclidean topology.

We recall definitions of quasi-coordinate which are used by [14, 31, 48] to deal with
complete Riemannian manifolds with bounded curvature but with shrinking injectivity radius.

Definition 4.1. Let V be an open set in Cn with coordinates .v1; v2; : : : ; vn/. Let X be
an n-dimensional complex manifold and � a holomorphic map of V into X . We call � a quasi-
coordinate map if it is of maximal rank everywhere. In this case, .V; �; .v1; v2; : : : ; vn// is
called a quasi-coordinate of X .

Definition 4.2. Let W be a neighborhood of p compactly contained in U, and let ! be
a Kähler metric on .U n p/ which is complete towards p. A system of quasi-coordinates on
. yW WD W n ¹pº; !/ is a set of quasi-coordinates � D ¹.V˛; �˛; .v1˛; v

2
˛; : : : ; v

n
˛//º of yW with

the following properties:

(a) yW �
S
˛.Image of V˛/ � .U n p/,

(b) for each point x 2 yW , there is a quasi-coordinate Vˇ and zx 2 Vˇ such that �ˇ .zx/ D x
and dist.zx; 𝜕Vˇ / � "1 in the Euclidean sense, where "1 is constant independent of ˇ,

(c) there are positive constant c and Ak , k D 1; 2; : : : , independent of ˛, such that for each
quasi-coordinate .V˛; �˛; .v1˛; v

2
˛; : : : ; v

n
˛//, the following inequalities hold:

c�1.ıi Nj / � .g˛i Nj / � c.ıi Nj /;

ˇ̌̌̌
𝜕pCq

𝜕vp˛ Nv
q
˛

g˛i Nj

ˇ̌̌̌
< ApCq for all p; q;

where .g˛i Nj / denote the metric tensor of the Riemannian metric associated to ! on the
chart .V˛; �˛; .v1˛; v

2
˛; : : : ; v

n
˛//.

Roughly speaking, a set of quasi-coordinates of metric domain . yW ; !/ is a set of cover-
ings of W by charts such that the pull back of ! satisfies uniform bounded metric properties.
Now we define the Cheng–Yau function space.

Definition 4.3. We define the Hölder space ofC k;˛ function on yU WD U n p by exploit-
ing the quasi-coordinate system. For any nonnegative integer k; ˛ 2 .0; 1/, we define

kukk;˛. yW/ D sup
Vˇ2�

 
sup
z2Vˇ

X
pCq�k

ˇ̌̌̌
𝜕pCq

𝜕vp
ˇ
𝜕 Nvq
ˇ

u.z/

ˇ̌̌̌

C sup
z;z02Vˇ

X
pCqDk

jz � z0j�˛
ˇ̌̌̌
𝜕pCq

𝜕vp
ˇ
𝜕 Nvq
ˇ

u.z/ �
𝜕pCq

𝜕vp
ˇ
𝜕 Nvq
ˇ

u.z0/

ˇ̌̌̌!
:
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Let us introduce one more compact set V with yU n yW � V � yU to cover the whole yU. Now
define

kukk;˛. yU/ D kukk;˛. yW/C kukk;˛.V /:

The function space C k;˛. yU/ is the completion of ¹u 2 C k. yU/ W kukk;˛. yU/ <1º.

Remark 4.1. The existence of quasi-coordinate is crucially used in our proof. The
classical interior Schauder estimate for a linear elliptic operator L is as follows:

kukCk;˛.V1/ � C.sup jujV2 C kLukCk�2;˛.V2//;

where V1 �� V2 � Rm. Notice that the constant C depends on the ellipticity ofL, the C k�2;˛

norms of the coefficients of L and the distance between V1 and 𝜕V2. If we have a quasi-
coordinate system defined above, the Schauder estimate on yU is reduced to that on a fixed
bounded domain in Euclidean space.

We also introduce the following assumption for our geometric domain .U; p/.

Definition 4.4 (Bounded geometry of order k). Let .X; p/ be a germ of isolated log
canonical singularity embedded in .CN ; 0/. We say that .X; p/ has bounded geometry of
order k if

(1) there is a complete metric ! D
p
�1𝜕𝜕� defined on .X n p/which has a system of quasi-

coordinates up to kth derivative of metric g, see Definition 4.2 (d),

(2) there is a functionM on .U n p/ satisfying Ric.!/C ! D
p
�1𝜕𝜕M and for any i � k,

kri!Mk < Ci . (Here the potential functionM is not unique, we only require one of them
satisfy the boundedness property, and in this note, the most interesting case is M D 0.)

Before we proceed, we state and prove the following modified version of Yau’s general-
ized maximum principle on noncompact manifold.

Lemma 4.1 ([14]). Suppose . yU; !/ is of bounded geometry of order k with k � 2. Let
f be a smooth function on yU, which is bounded from above, and supf > sup𝜕U f . Then
there is a sequence ¹yiº in yU such that limi!1 f .yi / D supf; limi!1 jrgf j.yi / D 0 and
limi!1 j�gf j.yi / � 0, where the derivatives are taken with respect to metric g associated to
the Käher form !.

Proof. Without loss of generality, let us assume that sup f D 0. If supf is attained, the
lemma is obvious. Otherwise we choose a sequence xi with limf .xi / D 0. It is easy to see that
¹xiºmust go to infinity. Now at each point we take a quasi-coordinate chart Vi covering xi . On
each Vi , define a nonnegative function ˇi W Vi ! R such that

ˇi .xi / D 1; ˇi D 0 on 𝜕Vi ; ˇi � C; jrˇi j � C; .ˇip Nq/ � �C.ıp Nq/;

where C is positive number independent of i , and all norms are taken with respect to the
Euclidean norm. Now consider

�f

ˇi
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as a function on Vi . Notice that �f
ˇ i

blows up on the boundary of Vi , so it admits minimum at
a point yi which is in the interior of Vi . Now let

�f

ˇi
.yi / D inf

Vi

�f

ˇi
:

Then
�f

ˇi
.yi / �

�f

ˇi
.xi / D �f .xi /;

df

f
.yi / D

dˇi

ˇi
.yi /;

fp Nq

f
.yi / �

ˇip Nq

ˇi
.yi /:

Using these inequalities and our choice of ˇi , we have

0 < �f .yi / � �Cf .xi /;

jdf .yi /j � �Cf .xi /;

.fp Nq/.yi / � �Cf .xi /.ıp Nq/:

By the bounded geometry of quasi-coordinates, the above norms can also be take with respect
to the metric !. Hence sequence ¹yiº satisfies all the properties required in the lemma.

4.2. Construction of Kähler–Einstein metrics with bounded geometry. We use the
function � in item (1) of Definition 4.4 to define a domain .U n p/ WD ¹� < aº. We point out
that the function � used here is different from the one used in definition (1.1). The main goal of
this subsection is to prove the following theorem concerning the solvability of Kähler–Einstein
equation on .U n p/ by a perturbative method.

Theorem 4.1. Suppose .X; p/ is a germ of log canonical singularity and a punctured
neighborhood U n p of p admits a complete Kähler metric ! with bounded geometry of
order k. Then for any smooth function  on the boundary 𝜕U, the Dirichlet problem

(4.1)

´
.! C

p
�1𝜕𝜕'/n D e'CM!n on U;

'j𝜕U D  ;

admits a solution in Cheng–Yau function space defined in (4.3) with k'kk;˛ < C. ; �;M/.

We first take the function spaceU to be an open set ofC k;˛.U/, which is defined in (4.3),
as follows:

U D

²
� 2 C k;˛.U/ W

1

c
.g˛i Nj / � .g˛i Nj C �i Nj / � c.g˛i Nj / in each quasi-coordinate V˛

³
for some constant c, which however is not fixed.

Proof of Theorem 4.1. The proof consists of several steps.

Step 1: Find an !-PSH extension of function  to the domain U. Choose an arbi-
trary smooth extension  1 of  , which is supported on ¹x W a � �.x/ � cº. Also choose



102 Datar, Fu and Song, Kähler–Einstein metrics near an isolated log-canonical singularity

a convex monotone increasing function H W Œ�1; a�! R which is zero on Œ�1; b� for some
constant b < c. Now define

P D AH.�/ � AH.a/:

By choosing A large, ! C
p
�1𝜕𝜕P C

p
�1𝜕𝜕 1 is still a Kähler form. If we choose P C  1

as our new extension of  , then by construction
p
�1𝜕𝜕.P C  1/ is supported on a neighbor-

hood of 𝜕U. Therefore ! coincides with ! C
p
�1𝜕𝜕P C

p
�1𝜕𝜕 1 in a punctured neighbor-

hood of p. In sum, we have´
.! C

p
�1𝜕𝜕. 1 C P //n D e�F !n on U;

 1 C P j𝜕U D  ;

where the function F is still in Cheng–Yau’s function space. Hence if we define z! by

z! D ! C
p
�1𝜕𝜕. 1 C P /; z' D ' � . 1 C P / and zF D F C  1 C P :

Simple calculations show that equation (4.1) is equivalent to´
.z! C

p
�1𝜕𝜕z'/n D e z'C zF z!n on U;

z'j𝜕U D 0:

So from now on, we will focus on zero boundary value problem. The rest of the proof is by
continuity method, which is based on a combination of estimates from [5, 8, 14, 31]. We set up
the continuity method as follows:´

.! C
p
�1𝜕𝜕't /n D e'tCtM!n;

't j𝜕U D 0;

where M belongs to Cheng–Yau function space defined in (4.3).

Step 2: Openness part in the continuity method. As usual, the openness will follow
from the inverse mapping theorem. We need to show the linearized equation at !t´

�!th � h D v on U;

hj𝜕U D 0;

has a unique solution in C k;˛.U/ with the estimate

khkk;˛.U/ � ckvkk�2;˛.U/

for some constant c independent of the function v. We first remark that !t WD ! C
p
�1𝜕𝜕't

is a complete metric of bounded geometry up to k � 2 covariant derivatives by the function
choice of function space U at the beginning of the proof. Next take an exhaustion ¹Uiº of the
domain U towards infinity. (Here the boundary of our compact domain Ui has two components
and one of them coincide with 𝜕U.) The equation´

�!thi � hi D v on Ui ;

hj𝜕Ui
D 0;

has a unique solution hi for each i . The maximum principle implies that supUi
jhi j � sup jvj.

The interior Schauder estimate of our function space implies that

khikk;˛.K/ � ckvkk�2;˛.U/
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for any compact setK strict away from 𝜕U. This inequality combined with the standard global
Schauder estimate for a fixed compact set V containing 𝜕U imply that hi ! h pointwise with

�!th � h D v; hj𝜕U D 0:

Moreover, we have
khkk;˛.U/ � ckvkk�2;˛.U/:

Hence we establish the openness part.

Step 3: C 0 estimate. We have the following equality:

' CM D log det.gi Nj C 'i Nj / � log detgi Nj

D

Z 1

0

𝜕
𝜕t

log det.gi Nj C t'i Nj / dt

D

Z 1

0

B.t/i Nj'i Nj dt;

where B.t/i Nj is the cofactor matrix of the matrix .gi Nj C t'i Nj /. At a point x 2 � we may
assume gi Nj D ıi Nj and 'i Nj D ıi Nj'i Ni . If 'i Ni � 0, then

'i Ni
1C t'i Ni

� 'i Ni :

If 'i Ni � 0, then
'i Ni

1C t'i Ni
� 'i Ni :

Hence we have the two inequalities

' CM � �!'; ' CM � �!1';

where !1 D ! C
p
�1𝜕𝜕'. By Lemma 4.1, we get the C 0 estimate.

Step 4: C 1 boundary estimate. On the one hand, since ' CM � �!', we can con-
struct a barrier function h from above as follows. Take a domain V � U satisfying p … V . We
also require that 𝜕V D 𝜕U [ C , where C is a smooth connected manifold disjoint with 𝜕U.
Then derive h by solving the following Dirichlet problem in V :´

�!h D c;

hj𝜕U D 0 and hjC D d;

where d WD supU j'j and c WD infU.' CM/. Then the maximum principle implies that h � '
in V . On the other hand, we construct a barrier function h1 from below as follows. Take the
global strict !-PSH function P we constructed in Step 1 and choose a constant B large enough
such that 8̂<̂

:
.! C

p
�1𝜕𝜕BP/n � esup'CM!n on V;

BP � ' on C;

BP D 0 on 𝜕U:

Then the maximum principle of the Monge–Ampère equation implies h1 WD BP � ' on V .
Noticing that h and h1 coincide with ' on 𝜕�, we get the boundary gradient estimate of '.
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Step 5: Global C 1 estimate. On a noncompact manifold, we do not necessarily have
a maximum point with vanishing gradient, etc. We will follow [5] to obtain the C 1 estimate.
Define � D log jr'j2 � 
.'/, where 
 is a monotone increasing function to be determined.
Assume that sup� � is not obtained on 𝜕U. Then by the generalized maximum principle, we
can find a point q 2 � with

�.q/C " > sup
�

�;

jV j!.q/ < ";

�!�.q/ < ";

where V WD r!�. By (2.11), at q, we have

�0 log jr'j2g �
2Rerm logFrm'

jr'j2g
�ƒ trg 0 g C 2<

�
rjr'j2g

jr'j2g
;
r'

jr'j2g

�
g 0

� 2<

�
rjr'j2g

jr'j2g
;
r'

jr'j2g

�
g

:

Now using V D r log jr'j2 � 
 0r', we get

2<

�
rjr'j2g

jr'j2g
;
r'

jr'j2g

�
g 0
� 2<

�
rjr'j2g

jr'j2g
;
r'

jr'j2g

�
g

D 2<

�
V C 
 0r';

r'

jr'j2g

�
g 0
� 2<

�
V C 
 0r';

r'

jr'j2g

�
g

> �" trg 0 g � " � 
 0:

The inequality above together with

�0
.'/ D 
 0�0' C .
 00/jr'j2

imply that

" trg 0 g > �0� > .
 0 � " �ƒ/ trg 0 g C .
 00/jr'j2 � 
 0 � " � n � C;

where C is the bound of the gradient of the function logF . Now we construct our function 

as


.x/ D .ƒC 2/x �
1

x C C 0 C 1
;

where C 0 is the lower bound of '. Then by a standard argument we get a global C 1 estimate.

Step 6: Boundary C 2 estimate. We notice the argument of [8] that the boundary C 2

estimate is purely local around the boundary and our equation can be written as´
det'i Nj D e

'Cf on �;

'j𝜕U D  :

Locally, this is exactly the equation considered in [8], hence the estimate follows by the fact
that
p
�1𝜕𝜕� is strictly positive in a neighborhood of 𝜕U.
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Step 7: Global C 2 estimate and completion of the proof. We have the well-known
inequality

�0 log trg g0 � �B trg 0 g � C;

where B;C depends on the geometry of the good background metric g and the Ricci curvature
of the volume form on the right-hand side of the equation. Notice that

�0' D n � trg 0 g:

By setting A D B C C C 1, we have the differential inequality

�0.log trg g0 � A'/ D trg 0 g � An:

This inequality and the boundary C 2 estimate imply the global C 2 estimate. Then by the
Evans–Krylov Theorem, we have the interior C 2;˛ estimate. Since the metric is uniformly
bounded in a neighborhood of the boundary, the local argument of [8] will give the global
C 2;˛ estimate.

Remark 4.2. The C 2;˛ estimate of ' depends on the extension  1 of our boundary
function  in Step 1. It is not clear if we can have k 1k2;˛ < Ck k2;˛ for some constant C
independent of the boundary value.

In the following lemma, we will prove that any complete local Kähler–Einstein metric
is indeed obtained from solving the Monge–Ampère equations (4.1) with different Dirichlet
boundary conditions.

Lemma 4.2. Let !KE be a complete Kähler–Einstein metric with bounded geometry
property on U n p and let !0KE be another complete Kähler–Einstein metric on U n p. Then
there exist a function  on 𝜕U and a solution ' of equation (4.1) (with ! D !KE, M D 0,
Dirichlet boundary value  ) obtained by the bounded geometry method as in Theorem 4.1.
Moreover, !0KE D !KE C

p
�1𝜕𝜕'.

Proof. From the fact that !0KE is a complete Kähler–Einstein metric and Theorem 1.3,
we know that

!0KE D !KE C
p
�1𝜕𝜕z'

and z' is a bounded smooth solution of equation (4.1). On the other hand, by Theorem 4.1, we
can find another function ' solving equation (4.1) with Dirichlet boundary value  WD z'j𝜕U.
By the uniqueness Lemma 3.1, we conclude that ' D z', and hence

!0KE D !KE C
p
�1𝜕𝜕':

This completes the proof.

We shall now prove Theorem 1.4 on the asymptotic behavior of KE metrics we con-
structed in Theorem 4.1. With the help of estimates of higher order derivatives of ' and quasi-
coordinates, we prove the stability of local complete Kähler–Einstein metrics with negative
scalar curvature near isolated log canonical singularity.

Proof of Theorem 1.4. First of all, since !0KE is complete, by Lemma 4.2,

!0KE D !KE C
p
�1𝜕𝜕';
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where ' is the solution from Theorem 4.1 with suitable Dirichlet boundary value. For any point
q 2 .U n p/, we can choose a quasi-coordinate . yV ; �/ covering q such that there is a point
yq 2 V � yV , �.yq/ D q and dist.yq; 𝜕 yV / � dist.V; 𝜕 yV / � "1. Let ˇ be the cut-off function we
constructed in the proof of Lemma 4.1. Then we have the inequality

kX
iD1

jˇ.k/jEuc � Bk;

where Bk are constants independent of p and V by the existence of quasi-coordinates (Def-
inition 4.2). This is true because under the construction of the system of quasi-coordinates,
we have dist.V; 𝜕 yV / � "1 > 0, hence controlling the derivatives of cut-off function uniformly.
Actually, we can even assume the covering domains we chose are B 1

4
"1 ; B 1

2
"1 by subdividing

the original coverings. By our previous proof of the a priori estimates of ' from equation (4.1),
we also have the following inequality for any point q 2 .U n p/ and any nonnegative integer k:

kX
iD1

kr
.k/'k!KE.q/ � Ck :

When k D 0, the C 0 decay of ' is Theorem 1.3. For k � 1, we do computations in the
quasi-coordinate as follows:

�

Z
yV

ˇ'�' D

Z
yV

ˇjr'j2 C

Z
yV

'hr';rˇi;Z
V

jr'j2 �

Z
yV

ˇjr'j2 � C � .C2 C B1/ � sup
yV

j'j:

Similarly, using integration by part,Z
V

ˇjrk'j2 D

Z
V

� X
iCjD2k�1

r
iˇrj'

�
' � .Bk C C2k�1/ � sup

yV

j'j:

Note that by Theorem 4.1, there is a constant C. ; !KE; n/ such that
!KE

C. ; !; n/
� !0KE � C. ; !KE; n/!KE:

Suppose dist!KE.q; 𝜕U/ � R. Then

dist!0KE
.q; 𝜕U/ �

1

C.!KE;  ; n/
R;

and by the triangle inequality, we have

dist!KE.𝜕.�. yV //; 𝜕U/ � dist!KE.q; 𝜕U/ � dist!KE.q; 𝜕.�. yV /// � R � C
0"1 �

R

2
;

where yV is a covering of point q and C 0 is the metric equivalence constant in the definition of
quasi-coordinates (Definition 4.2), which depends on the geometry of !KE. Similarly, we have

dist!0KE
.𝜕.�. yV //; 𝜕U/ �

R

2C.!KE;  ; n/
:

Hence by the C 0 estimate of ' in Theorem 1.3,Z
V

jr
k'j2 � C. ; !KE; n/ � .C2k�1 C Bk/ �

c.n/

R
:
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Now that we have L2 norm control of all higher order derivatives, by Sobolev embedding on
Euclidean space and property (d) of quasi-coordinates (Definition 4.2), we can conclude that

kX
iD1

kr
i'k!KE.q/ �

1

R.q/
1
2

� C.k; !KE;  /:

Remark 4.3. We remark that the decay rate R
�1
2 of the function ' obtained in the

above theorem is far from optimal. The optimal decay rate might need a case-by-case treat-
ment depending on the type of the singularity. It is pointed out to us by Professor Hein that if
j'j � R�1, and if all its higher order derivatives are bounded, then by using quasi-coordinates
and the regularity theory of Monge–Ampère equations, the decay rate can be improved toR�1.

We use the metric stability result to show that to construct a geometric domain with
bounded geometry property in a punctured neighborhood of an isolated log canonical singu-
larity, we only need to show that there exists a Kähler metric with bounded geometry property
on its finite cover. Therefore, once for some singularity it has bounded geometry property, so it
does for its finite quotient, hence more examples of singularity with bounded geometry prop-
erty will be obtained. This will be useful when the metric on the finite cover is not necessary
invariant under the finite group action.

Corollary 4.1. Let .X; p/ be an isolated log canonical singularity embedded in CN and
let .U n p; ! D

p
�1𝜕𝜕�/ be a Kähler–Einstein domain with bounded geometry property of

infinite order defined as in Definition 4.4. Let .Y; p0/ be the quotient space .X; p/=G, where G
is a finite group acting freely on .X n p/ and fixing point p. Then for any k � 1, there is a punc-
tured neighborhood U0 n p0 of p0 admitting a Kähler metric !0 with bounded geometry prop-
erty of order k. Hence Theorem 1.4 can be applied to the finite quotient domain .U0 n p0; !0/.

Proof. For simplicity, assume G D Z2. Let f be the nontrivial element of G. Define

�0 WD �C f ��; !0 WD
p
�1𝜕𝜕�0:

Then �0 is invariant under the Z2 action. Note that y! D
p
�1𝜕𝜕f �� is also a complete Kähler–

Einstein metric with bounded geometry property near p. Hence by Theorem 1.4, we have

y! D ! C
p
�1𝜕𝜕';

kX
iD1

kr
i'k!.q/ �

C.k; !; /

R
1
2 .q/

:

In particular, this shows that !0 D ! C 1
2

p
�1𝜕𝜕' has bounded geometry property of order k

by possibly shrinking the domain. This completes the proof.

5. Log canonical singularities on surfaces

5.1. Model metrics with bounded geometry property. In this short subsection, we
provide some explicit examples of .X; p/with bounded geometry property of infinite order. We
mainly focus on complex dimension 2 and expect that there are more examples in higher dimen-
sion by using the arithmetic quotient of symmetric domains (cf. [23, 52]). We should remark
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that log canonical surface singularities are classified in [1,29,36] and they admit a model metric
with bounded geometry property. However, in complex dimension higher than two, there are
examples of log canonical singularity which admit a local Kähler–Einstein metrics but these
metrics do not have bounded geometry property. For such an example, we can take a negative
line bundle over a non-flat Calabi–Yau manifold and then contract the zero section.

Lemma 5.1 ([32,38,53]). Any isolated normal log canonical (non-log terminal) surface
singularity can be uniformized by bounded symmetric domains with invariant Kähler–Einstein
metric ! D

p
�1𝜕𝜕� and classified as follows:

(1) One point partial compactification of B2=�; � a parabolic discrete subgroup of Aut.B2/.
Invariant metric is defined by

p
�1𝜕𝜕�, where

� D log
1

1 � jz1j2 � jz2j2

and z1; z2 are complex coordinates of B2.

(2) One point compactification of H�H=�;� a parabolic discrete subgroup of Aut.H�H/
corresponding to a boundary point. Invariant metric is defined by

p
�1𝜕𝜕�, where

� D log
�

1

y1y2

�
and y1; y2 are the imaginary parts of the complex coordinates of H �H.

Remark 5.1. Type 1 singularities, up to a finite quotient, have a minimal resolution
whose exceptional divisor is an elliptic curve. Type 2 singularities, once again up to finite
quotients, have minimal resolutions whose exceptional divisor is a cycle of smooth rational
curves.

Remark 5.2. The invariant Kähler–Einstein metrics in Lemma 5.1 have a system of
quasi-coordinates in a punctured neighborhood of the isolated log canonical singularities. This
is the main property we will use in the following proof of Corollary 1.1.

Proof of Corollary 1.1. By Lemma 5.1, for any isolated log canonical surface singular-
ity, there is a reference metric with bounded geometry of order k for any k. Hence Corollary 1.1
is a direct consequence of Theorem 1.4 except for the statement about the Gromov–Hausdorff
convergence. We deal with each of the cases separately.

(1) By [23], the uniformization metric in the upper half plane model is

! D �
p
�1𝜕𝜕.Imu � jvj2/ D �

p
�1𝜕𝜕 log.� log j�DjhD /;

where D is an elliptic curve. The total space of resolution is a negative line bundle over the
elliptic curve. Direct calculations show that the metric ! degenerates along the tangential direc-
tion of D and the S1 circle direction contained in the fiber of the negative line bundle. Hence
it is clear that, when we choose the base point pj ! p, .U; pj ; gKE/! R in the pointed
Gromov–Hausdorff topology.

(2) In this case, the model is H �H=� with invariant metric given by
p
�1𝜕𝜕 log. 1

y1y2
/,

where yi is the imaginary part zi , i D 1; 2. To make things clear, we describe what is the group
action (see [31, p. 55] or [32, p. 344] for more details).
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Let G.M; V / D
®� " �
0 1

�
W " 2 V; � 2M

¯
act on C2 properly discontinuous and without

fixed points as follows:

(5.1)
� " �
0 1

�
� .z1; z2/ WD ."z1 C �; "

0z2 C �
0/;

whereM Š Z � Z!0 is a rank 2 free module over Z generated by 1 and another real quadratic
irrational number !0 and V Š Z generated by a quadratic irrational number " > 0. Here "0

(resp. �0) is the Galois conjugation over Q of " (resp. �0) and " also satisfies "0 D 1
"

. The
action of G.M; V / can be restricted onto H2, where H is the upper half plane.

Let x1; y1 and x2; y2 be the real coordinates of z1; z2 separately and define

Lc WD ¹y1y2 D cº � H �H;

where c is a positive constant. By ""0 D 1, we know that Lc is invariant under the action of � .
Now show that the set Lc=� is a torus bundle over a circle. Let x1; x2; y1 be the coordinates
on the set Lc . By (5.1), the action of

�
"n �
0 1

�
when restricted on Lc is given by

.x1; x2; y1/! ."nx1 C �; "
�nx2 C �

0; "ny1/:

The action of M via the embedding

� 7!

 
1 �

0 1

!
on R2.x1; x2/ realizes M as a lattice of R2, so that the projection of Lc=� onto y1 identifies
Lc=� with a T2 bundle over S1.

The metric tensor is given by

g D
dx1 ˝ dx1

y21
C
dy1 ˝ dy1

y21
C
dx2 ˝ dx2

y22
C
dy2 ˝ dy2

y22

D
dx1 ˝ dx1

y21
C
y21dx2 ˝ dx2

c2
C 2

dy1 ˝ dy1

y21
C
dc ˝ dc

c2
� 2

dc ˝ dy1

cy1
;

where c D y1y2. Letting yc D log c, we have

g D
dx1 ˝ dx1

y21
C
y21dx2 ˝ dx2

e2yc
C 2

dy1 ˝ dy1

y21
C d yc ˝ d yc � 2

d yc ˝ dy1

y1
:

Let T2.y1/ be the family of torus defined by the lattice action on R2.x1; x2/, which depends
on y1. We claim that the diameter of .T2; gyc/! 0 when yc !1, where

gyc D
dx1 ˝ dx1

y21
C
y21dx2 ˝ dx2

e2yc
:

Since y1 is bounded, without loss of generality, we may assume

gyc D dx1 ˝ dx1 C
dx2 ˝ dx2

e2yc
:

We prove the claim by contradiction. If not, we can assume that diam.T2; gyc/ decreases to
some constant � ¤ 0. Hence for each i 2Z, we have a point qi 2T2 such that distgi .o; qi /�

�
2

.
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We can take an accumulation point q of qi by the compactness of T2. By the triangle inequality,
we have distgi .o; q/ �

�
4

. This contradicts the fact that ZC Z! is dense in R, which enables
us to show that distgi .o; q/! 0. So if we take a sequence of base point pi D .x1i ; x2i ; y1i ; ci /
in U n p with ci ! 0, the Gromov–Hausdorff limit of .U; pj ; gKE/ is a flat cylinder Y . More
precisely, Y is defined as R2=Z, where

n � . yy1; yc/ D . yy1 C n log "; yc/

and the metric is

gY D 2d yy1 ˝ d yy1 C d yc ˝ d yc � d yy1 ˝ d yc � d yc ˝ yy1;

where yy D logy.

Proof of Theorem 1.2 (surface case). By Theorem 4.1, when ! D
p
�1𝜕𝜕� is a Kähler–

Einstein metric with bounded geometry property, the following Dirichlet problem on U n p

admits a bounded solution ': ´
.! C

p
�1𝜕𝜕'/n D e'!n;

'j𝜕U D  :

Now we rewrite the equation

.! C
p
�1𝜕𝜕'/n D e'!n

as

.
p
�1𝜕𝜕z'/n D e z'��

!n

.
p
�1/n� ^ �

.
p
�1/n� ^ �;

where z' D �C ' and � is a local holomorphic volume form (possibly multi valued). Note that
log !n

.
p
�1/n�^�

� � is a pluriharmonic function on U n p.

Claim. The function log !n

.
p
�1/n�^�

� � is sublog, i.e.,

log
!n

.
p
�1/n� ^ �

� � � " log j�DjhD C C":

Assuming this claim, we can complete the proof as follows. By the uniqueness Theo-
rem 2.8, we conclude that

z' C log
!n

.
p
�1/n� ^ �

� �

coincides with the solution from Theorem 1.1 (when the boundary value is matched). Recall
that the Riemannian metric induced by ! C

p
�1𝜕𝜕' in Theorem 4.1 is complete, in particular,

this implies that the Kähler–Einstein metric associated with the solution from Theorem 1.1 is
complete towards p.

Proof of the Claim. We will use the explicit expression of �, !, and � from Lemma 5.1
to prove the claim case by case. Now we outline the proof. There are essentially four types of
isolated log canonical (non-klt) singularities in complex dimension 2.
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Type (1.1): The exceptional divisor of the minimal resolution of singularity is an
elliptic curveD. Then the model metric is

! D �
p
�1𝜕𝜕�; � D log.� log j�DjhD /:

When pulled back to the resolution, � ^ N� has a pole j�Dj�2hD along the exceptional divisor.
Straightforward calculations show that log !2

�^N�
and � are both sublog functions.

Type (1.2): The singularity is a finite quotient of case (1.1) above. When pulled back
to the finite cover,

log
!n

.
p
�1/n� ^ �

� �;

by the proof of case (1) above, is a bounded function. Here we have used the fact that ! is
invariant under the finite quotient, and when pull backed to finite cover, � is still a generator of
holomorphic volume form near the singularity point p.

Type (2.1): The exceptional divisors of the minimal resolution of singularity is cir-
cle of rational curves Di , 0 � i � m. Let us focus on the metric behavior of ! near the
intersection of two exceptional divisors. Without loss of generality, assume locally

Dk D ¹uk D 0º; DkC1 D ¹vk D 0º;

then the metric
! D

p
�1𝜕𝜕�; � D � log.log ju˛kv

ˇ

k
j log ju˛

0

k v
ˇ 0

k
j/

can be written as

! D

p
�1𝜕 log ju˛

k
v
ˇ

k
j ^ N𝜕 log ju˛

k
v
ˇ

k
j

.log ju˛
k
v
ˇ

k
j/2

C

p
�1𝜕 log ju˛

0

k
v
ˇ 0

k
j ^ N𝜕 log ju˛

0

k
v
ˇ 0

k
j

.log ju˛0
k
v
ˇ 0

k
j/2

:

When pulled back to the resolution, � ^ N� has a pole jukvkj�2 along the exceptional divisor.
Then direct calculations show that log !2

.
p
�1/n�^N�

and � are both sublog functions.

Type (2.2): The singularity is a finite quotient of case (2.1). Then we can argue as
case (1.2) to complete the proof.

We end this section by providing an example of a family of canonical polarized surface
with the central fiber equipped with log canonical singularity satisfying bounded geometry
property.

Example 5.1 (Degeneration of Godeaux surfaces). A surface X is called a Godeaux
surface if �1.X/ D Z5 and the universal cover is a quintic hypersurface. A explicit construction
could be as follows: Define Z5 on P3 in the following way:

� � .X0; X1; X2; X3/ D .X0; �X1; �
2X2:�

3X3/:

Then there exist quintics (in P3) invariant and fixed-point free under the Z5 action with
five non-degenerate triple points and no other singularities by a dimension count argument
(cf. [49, p. 135]). The Z5 quotient will give a family of Godeaux surfaces with central fiber
a canonical polarized variety coupled with a single simple elliptic singularity (cone over an
elliptic curve).



112 Datar, Fu and Song, Kähler–Einstein metrics near an isolated log-canonical singularity

6. Discussion of Conjecture 1.1 for smoothable isolated
log canonical singularities

In this section, we give a discussion of Conjecture 1.1 when the isolated log canonical
singularity is smoothable. First we set up the question.

Let � W X ! B be a smoothing of an isolated log canonical (non-log terminal) singu-
larity .X0; p/ over B 2 C such that Xt D �

�1.t/ is smooth for t ¤ 0. We assume that the
total space X has at worst canonical singularities and the canonical divisor KX is ample. For
simplicity, we assume KX=B is Cartier and let � be a local generator � of the bundle KX=B

such that �t D �jXt
is a local holomorphic n form on Xt , where dim Xt D n for t 2 B . Then

X can locally be embedded in CNC1 and we apply a pluriharmonic function � on CNC1 to
define U WD ¹� � 0º \X so that p 2 U. After perturbation, we can always assume 𝜕U is
smooth and d� ¤ 0 on 𝜕U. By continuity, we may assume 𝜕Ut is smooth for t sufficiently
close to 0, where Ut D U \Xt and �t D �jXt

.
We let be a smooth function in an open neighborhood of 𝜕U and let t be its restriction

to 𝜕Ut . We also let � be the real-valued smooth .n; n/-volume measure on X defined by

� D .
p
�1/n� ^ N�

and let
�t D �jXt

D .
p
�1/n�t ^ N�t

be the restriction of � on Ut . Immediately we have
p
�1𝜕𝜕 log� D 0;

p
�1𝜕𝜕 log�t D 0

for t 2 B .
By Theorem 1.1, there is a unique solution 't to the following Dirichlet problem for

Monge–Ampère equation on Ut : ´
.
p
�1𝜕𝜕't /n D e't�t ;
't j𝜕Ut

D  t

for each t 2 B . If we let !t D
p
�1𝜕𝜕't , then the corresponding Kähler metric gt satisfies the

Kähler–Einstein equation
Ric.gt / D �gt

on Ut for t 2 B� and U0 n ¹pº for t D 0.
In [42], the third author combines semistable reduction [30] and maximum principle to

derive uniform estimates with barrier for 't for t 2 B when X is a stable family of canonical
polarized variety, and then applies the local version of partial C 0 estimate (cf. [20,21]) initiated
by [46] for noncollapsed polarized Kähler–Einstein manifolds and some other tools to show
that the Kähler–Einstein metric g0 on X0 is complete towards the local canonical locus.

In our local situation, now we have a degeneration of polarized Kähler–Einstein manifold

.Ut ; gt ; Lt ; ht /

with boundary, where Lt is a trivial line bundle and ht WD e�'t is the hermitian metric on Lt
whose curvature is the Kähler form associated to the Kähler–Einstein metric gt . Notice that Ut ,
t 2 B�, is a strongly pseudoconvex domain, so we can solve the N𝜕 equation with L2 estimate
on �t . We believe that the techniques developed in [42] and the local version of the partial
C 0 estimate (cf. [21, Theorem 1.1]) can still be applied.
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A. Appendix

Lemma A.1. Let .U; !/ be a Kähler manifold with boundary (the boundary can pos-
sibly have several components). If '; are two continuous !-PSH function on NU satisfying
' >  on 𝜕U, then for � WD ¹' <  º we haveZ

�

!n �

Z
�

!n' :

Proof. Suppose first that '; and the boundary � are smooth. Set

't D max.' C t;  /; t > 0:

Then close to 𝜕�, we have 't D ' C t . Define the closed current

Tt D

kDnX
kD1

 
n

k

!
.
p
�1𝜕𝜕't /k�1 ^ !n�k

and set T D limt!0 Tt . By Stokes’s theoremZ
�

!n't D

Z
�

p
�1𝜕𝜕't ^ Tt C !n

D

Z
𝜕�
d c't ^ Tt C

Z
�

!n

D

Z
𝜕�
d c' ^ T C

Z
�

!n

D

Z
�

!n' :

Since 't !  in � as t ! 0, we get by applying the convergence theorem that !n't ! !n 
in �. Hence for a test function � in � with 0 � � � 1 we getZ

�

�!n D lim
t!0

Z
�

�!n't � lim inf
t!0

Z
�

!n't :

So Z
�

!n � lim inf
t!0

Z
�

!n't D

Z
�

!n' ;

which completes the proof for smooth functions. Now we suppose that ' and  satisfy the
extra assumption

(A.1)
p
�1𝜕𝜕' � .ı � 1/!;

p
�1𝜕𝜕 � .ı � 1/!

for some ı > 0. Then by [6, Theorem 2], we can find two sequence of !-PSH functions 'j
and  j on N� converging uniformly to '; respectively. Given a compact set K � �, we find
t > 0 and a positive integer j0 such that

K � �.t; j / WD ¹'j <  j � tº � �

for j > j0 and the boundary of �.t; j / is smooth (using Sard’s theorem). Now we haveZ
K

!n � lim inf
j!1

Z
�.t;j /

!n j � lim inf
j!1

Z
�.t;j /

!n'j �

Z
�

!n' ;
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where the second inequality is due to the first part of the proof. We still need to get rid of the
assumption of (A.1). Note that for fixed t 2 .0; 1/ and !-PSH functions '; , the functions
t'; t satisfy (A.1) for some ı > 0. For a fixed compact set K � � and constant t 2 .0; 1/,
we may choose ı > 0 sufficiently small such thatK � �.ı; t/ WD ¹' <  � ı

t
º. Now we haveZ

K

!n � lim inf
t!1

Z
�.t;ı/

!nt � lim inf
t!1

Z
�.t;ı/

!nt' �

Z
�

!n' ;

To complete the proof it is enough to consider an exhaustion sequence of compact subsets
of �.
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