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Bounded Distributions place Limits on
Skewness and Larger Moments
David J. Meer and Eric R. Weeks

Abstract. Distributions of strictly positive numbers are common and can be
characterized by standard statistical measures such as mean, standard devi-
ation, and skewness. We demonstrate that for these distributions the skew-
ness D3 is bounded from below by a function of the coefficient of variation
(CoV) δ as D3 ≥ δ − 1/δ. The results are extended to any distribution that
is bounded with minimum value xmin and/or bounded with maximum value
xmax. We build on the results to provide bounds for kurtosis D4, and conjec-
ture analogous bounds exists for higher statistical moments.

Key words and phrases: skewness, kurtosis, standardized moment, bounded
distributions.

1. INTRODUCTION

Distributions of random numbers P (x) are character-
ized by quantities such as mean, median, standard devi-
ation, and skewness. The skewness is a measure of the
asymmetry of a distribution [Pearson (1895)]. While there
are several possible definitions of skewness [Groeneveld
(1991)], a common definition depends on the third mo-
ment of the distribution compared to the second moment
[Holgersson (2010); Li and Morris (1991)]. In particular,
one can define the central moments

(1) mn = 〈(x− µ)n〉=
∫ +∞

−∞

(x− µ)nP (x)dx

where µ is the mean of the distribution, and
√
m2 = σ is

the standard deviation. The standardized moments Dn are
defined as:

(2) Dn =
mn

m
n/2
2

.

We define skewness as the third standardized moment,
D3. This definition for skewness has the advantage that it
is dimensionless. It also has the useful property that dis-
tributions P1(x) and P2(x) = cP1(cx+ d) have the same
skewness for c > 0 and any d [Groeneveld (1991)]. Pear-
son [Pearson (1916)] derived an upper boundary on the
skewness:

(3) D2
3 ≤m4/m

2
2 − 1.

Alternate derivations of this result are also in the litera-
ture [Rohatgi and Székely (1989); Sen (2012)]. This ap-
plies for all distributions.
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Often one considers distributions of strictly positive
numbers: numbers of objects, sizes of objects (such as
Figure 1), ages of people, prices, barometer measure-
ments, etc. Such distributions have only non-negative sup-
port; one can more broadly consider distributions with
bounded support, with boundaries xmin and/or xmax,
generically xbound. Smołalski [Smołalski (2020)] worked
out upper and lower bounds on the skewness that applies
for distributions with bounded support:

(4) D3min,max = δmin,max −
1

δmin,max

with δmin = σ/(µ − xmin) to determine D3min and
δmax = σ/(xmax − µ) to determine D3max.

In this manuscript, we present an alternative deriva-
tion for these skewness bounds. Smołalski’s derivation re-
lies on the argument that achieving the extrema of skew-
ness requires a bidisperse distribution. We mathematically
prove that this is indeed the case in Section 2. Smołalski
then uses Lagrange multipliers to derive Equation 4; here,
we use calculus to derive this equation and extend it to all
real bounds. Our method also applies to higher order stan-
dardized moments, for which we find similar bounds in
Section 3. We state the bounds, show when their behavior
can be used to find the maximum or minimum standard-
ized moment, Dnextr, and conjecture that these extrema
apply to all distributions, not just bidisperse.

We are treating just the value of skewness correspond-
ing to the parent distribution, rather than the sample
skewness based on a finite number of samples [which
has different limits, see [Cox (2010)]. Note also that
there are other definitions of skewness, for example
that use the median of the distribution as part of the
calculation [Pearson (1895)], for which other limits
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(a) (b)

FIG 1. Examples of circles with random bidisperse distributions of

diameters with (a) CoV δ = 0.4, skewness D3 = −1 and (b) δ =

0.4,D3 =+3.

exist [Garver (1932); Hotelling and Solomons (1932);
Majindar (1962)].

2. RESULTS FOR SKEWNESS

We begin in the lowest order nontrivial case n = 3,
replicating Smołalski’s skewness results. A distribution
function with a low value of skewness has small val-
ues which rarely occur, for example the smallest circles
seen in Figure 1(a). A distribution with a high value of
skewness is the opposite situation, where the large values
rarely occur, for example the largest circles seen in Fig-
ure 1(b). For a distribution P (x) with only non-negative
support, the largest possible values of x are unbounded,
but the lowest possible values are bounded by zero. Thus,
it makes intuitive sense that the skewness will have some
minimum possible value.

Our derivation will proceed by first considering bidis-
perse distributions with nonnegative support and showing
that for a fixed δ, the distribution with one value equal
to zero achieves the lowest possible skewness. We then
show taking two distributions obeying Equation 4 and
considering a weighted sum will result in a new distribu-
tion that also obeys Equation 4. Next, we argue that any
continuous distribution can be approximated by an appro-
priately weighted sum of bidisperse distributions. In Sec.
2.4 we will conclude by generalizing from distributions
with non-negative support to distributions with arbitrary
bounds, including those with µ≤ 0.

2.1 Skewness for bidisperse distributions

We start by considering a bidisperse distribution, P (x)
which takes on values a+, a− with probabilities q, p= 1−
q. Following [Desmond and Weeks (2014)], we define the
ratio

(5) η = a+/a−

and focus on q as another important variable describing
the distribution. The meaning of the subscripts in a+ and

a− is the former is the value larger than the mean µ and
the latter is smaller than µ, respectively. Knowing the
mean µm allows us to relate these quantities as

a+ = ηµ/(1− q+ ηq)(6)

a− = µ/(1− q + ηq).

Note that a bidisperse distribution with a given (η, q)
is equivalent to a distribution with (1/η,1 − q) with
swapped a+ and a−. A key concept which we will use
for much of this derivation is that in addition to the mean
µ, in general knowing any other two quantities related to
the distribution will uniquely determine the distribution.
Those two quantities could be the values a+ and a−; they
could be η and q as per Equation 6. Usefully, they can
also be the standard deviation and skewness. Thus, we
will show that a distribution with a− achieving the mini-
mum possible value (a− = 0) is one where the skewness
D3 achieves its minimum value.

Given a bidisperse distribution defined as above, the
standard deviation

√
m2 = σ and skewness D3 are then

expressed as

√
m2 = σ =

(

(1− q)(a− − µ)2 + q(a+ − µ)2
)1/2

(7)

D3 =
(1− q)(a− − µ)3 + q(a+ − µ)3

m
3/2
2

.

While P (x) could be a distribution of a quantity with
dimensions (such as a probability distribution of weights),
our goal is to understand the non-dimensional skewness
D3. Thus, rather than considering σ which has dimen-
sions of x, we will use the non-dimensional quantity “co-
efficient of variation,” (CoV) defined as:

(8) δ = σ/µ.

Here we use the symbol, δ and later in this manuscript
we will generalize this symbol beyond the specific mean-
ing of CoV. We can use Equations 6 to eliminate a+ and
a− from m2 and Dn, resulting in

√
m2

µ
= δ =

(η − 1)
√

q − q2

1− q + ηq
(9)

D3 =
2q − 1
√

q − q2
.(10)

These require η > 1. Equations (9,10) can be inverted
to provide expressions for q and η in terms of δ and D3.
We include the substitution M3 =

√

4 +D2
3 which will

be a reoccurring term:

q =
±D3 +M3

2M3
(11)

η =
2− δ(±D3 −M3)

2− δ(±D3 +M3)
.(12)
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These two equations give rise to two branches of solu-
tions depending on whether the + or − is taken in each
equation. Inspection shows that the negative sign in Equa-
tions 11,12 arrives back at the classical definition of skew-
ness, whereas the positive branch has no significance. For
the remainder of our consideration of D3, we will use the
negative branch of the solutions and drop the ± symbol.
We continue and calculate the two possible values accord-
ing to Equation 6:

a+ = µ

(

1 +
δ

2
(D3 +M3)

)

(13)

a− = µ

(

1 +
δ

2
(D3 −M3)

)

(14)

Using Equation 14, we can do a straightforward cal-
culation for the minimum possible skewness D3(δ) for
bidisperse distributions with a+, a− ≥ 0. A distribution
with a low skewness is one that has a small amount of
small numbers: and the smallest number we can get for
a distribution of strictly non-negative numbers is zero.
Thus, to find the limit on skewness, we solve Equation
14 for a− = 0. This also implies a+ = µ/(1 − q). Solv-
ing for D3 when a− = 0 in Equation (14) lets us solve for
D3min:

(15) D3min = δ− 1

δ
.

For example, this gives values D3min =−2.1 for δ = 0.4,
and D3min = 0 for δ = 1.

2.2 A bidisperse distribution with amin > 0

increases D3

For a fixed value of δ, if the minimum value of the dis-
tribution a− is larger than zero, then D3 will increase.
This is not straightforward to see from the equations
above, but an alternate formulation will work. Define:

∆′

+ = a+ − µ > 0(16)

∆′

−
= µ− a− > 0

Using Equations (6) we can factor out µ and arrive at nor-
malized definitions of ∆+,− =∆′

+,−/µ We then have the
probability of a+ being

(17) q =
∆−

∆− +∆+
.

We can then get δ using

(18) δ2 = (1− q)∆2
−
+ q∆2

+ =∆−∆+

Given that we wish to keep δ constant, we can thus use
∆+ = δ2/∆− to eliminate ∆+, leading to

(19) q =
1

1 +∆2
−
/δ2

.

Now consider the third moment of the distribution m3:

m3 = µ3
(

(1− q)∆3
−
− q∆3

+

)

(20)

= µ3δ2(∆− −∆+)

= µ3δ2(
δ2

∆−

−∆−).

The partial derivative of m3 with respect to ∆− is

(21)
∂m3

∂∆−

∣

∣

∣

δ
=−µ3

(

δ4

∆2
−

+ δ2
)

< 0

Increasing ∆− always decreases m3, assuming we keep δ
constant and µ positive. Likewise, decreasing ∆− (mak-
ing a− larger than zero) will always increase m3. Thus,
making a− larger than zero must increase the skewness
D3. This proves that for the bidisperse distribution with a
fixed δ, Equation 15 is indeed the lowest possible skew-
ness.

2.3 Generalizations of skewness results

Suppose we have two separate distributions Pr(x) and
Ps(x) both with mean µ and both satisfying the bound of
Equation 15. We wish to show that any combination of
these two distributions, Pt(x) = αPr(x) + (1− α)Ps(x)
(with 0 ≤ α ≤ 1), also satisfies Equation 15. Then it is
straightforward that δ2t = αδ2r +(1−α)δ2s and also m3,t =

αm3,r+(1−α)m3,s . As D3 =m3/m
3/2
2 , we can rewrite

the bound on skewness (Equation 15) as

(22) m3,min ≥ µ3
(

δ4 − δ2
)

Given that both Pr and Ps satisfy this constraint, we have

m3,r ≥ µ3(δ4r − δ2r )(23)

m3,s ≥ µ3(δ4s − δ2s),

and thus

m3,t = αm3,r + (1− α)m3,s(24)

≥ µ3
(

α(δ4r − δ2r ) + (1−α)(δ4s − δ2s)
)

= µ3
(

αδ4r + (1−α)δ4s − δ2t
)

,

where the last line uses the expression for δ2t introduced
above. Next, note that

δ4t = (αδ2r + (1−α)δ2s )
2(25)

= α2δ4r +2α(1−α)δ2r δ
2
s + (1−α)2δ4s .

On the right-hand side of Equation 24, add µ3δ4t and sub-
tract the right-hand side of Equation 25:

(26) m3,t ≥ µ3(αδ4r + (1−α)δ4s − δ2t + δ4t

−α2δ4r − 2α(1− α)δ2r δ
2
s − (1− α)2δ4s)
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Every term without δt on the right-hand side can be com-
bined as µ3α(1 − α)(δ2r − δ2s )

2 which is always non-
negative, so thus

(27) m3,t ≥ µ3(δ4t − δ2t ),

proving that the combined distribution function Pt(x)
must satisfy Equation 4 if the two original distributions
satisfy that bound.

Finally, we need to generalize from the bidisperse dis-
tribution to any distribution. Following [Rohatgi and Székely
(1989)], we observe that any continuous distribution with
some fixed µ= µ0 can be approximated by a discrete dis-
tribution with values ai and probabilities pi and µ = µ0.
Rohatgi and Székely then proved that any such discrete
distribution can be decomposed into a sum of discrete dis-
tributions with two values and µ = µ0, that is, the bidis-
perse distributions that we have been considering (see
also Appendix A). In the previous paragraph, we have
shown that sums of distributions satisfy the bound. Thus,
we have proven that Equation 4 holds for any distribution
P (x) of strictly non-negative values of x.

2.4 Distributions bounded by xmin or xmax

We have considered distributions P (x) for which x ≥
0. By rescaling the distribution, we can enforce any value
of µ we would like. However, this comes at the expense
of potentially running into our bounds. For example, you
cannot have some µ≤ 0 without a minimum less than or
equal to zero. When some values of x are below 0, we
cannot simply rescale by a constant multiple to enforce
the bounds. Of course, an additive constant would fix a
distribution and make it non-negative. As noted in the in-
troduction, this also leaves D3 unchanged: consider P (x)
and P ′(x) = P (x−d). µ′ = µ+d but as the moments are
defined as 〈(x− µ)n〉, m2 and m3 are unchanged by this
shift, and thus D3 does not change.

Similarly, we also note that limµ→0+(a+, a−, η) =
limµ→0−(a+, a−, η). This limit can be calculated directly
by multiplying by µ

µ in Equation 12 and distributing the µ

factor in Equations 13 and 14, leaving us with just
√
m2

where there was previously δ. Therefore, we do not have
to be concerned with means approaching zero.

Now consider the general case of a distribution P (x)
with bounded by xmin from below, and with a mean µ
which might be zero. Let us assume P (x) has a non-
trivial domain, which is to say, it is not a distribution
which is only nonzero at one value (which would thus
be σ = 0,D3 = 0). The transformed distribution P ′(x) =
P (x+ xmin) has mean µ′ = µ− xmin. This transformed
distribution now is nonzero only for x ≥ 0, so is one of
the distributions we considered above, and since the dis-
tribution has a nontrivial domain, µ′ > 0 must be true.
Therefore, we have:

(28) δ = σ/(µ− xmin).

That is, δ depends on the standard deviation σ and mean
µ of the original distribution P (x), with the additional
correction of subtracting xmin, at which point we can use
Equation 15 to find D3min.

The other interesting case is a distribution bounded by
xmax from above. Considering P ′′(x) = P (−x) changes
the mean to be µ′′ = −µ and the skewness to be D′′

3 =
−D3, but does not change the standard deviation. The dis-
tribution P ′′(x) is now bounded from below by −xmax so
we get:

(29) δ = σ/(xmax − µ),

which goes into Equation 15 to calculate D3min. In this
case, we actually have found D3max =−D3min. Thus, we
have rederived the results of [Smołalski (2020)], that is,
Equation 4.

If a distribution P (x) has domain xmin ≤ x ≤ xmax

then the above results give both a lower and an upper
bound on D3. As a conceptual example, suppose that
xmin = µ − 3σ and xmax = µ + 3σ; then −8/3 ≤D3 ≤
8/3. This is consistent with the empirical observation that
the skewness tends to lie between -3 and +3.

As a useful check on these results, consider the bidis-
perse distribution again with probability P (a+) and
P (a−) for sizes a− < a+. Here we have xmin = a, and
CoV given by Equation 9. Using Equations 6, 28, and 4,
one can solve for D3min in terms of the variables η and
q, recovering Equation 10: that is, D3min is achieved in
this situation. Similarly, using xmax = a+ one finds again
D3max =D3.

If we extend equation 15 to any arbitrary upper or lower
bound xbound, we get the following relationship for the
extreme value of D3, D3extr

(30) D3extr =
δ

1− xbound/µ
− 1− xbound/µ

δ

which has reprised Equation 4.

3. EXTENSIONS TO HIGHER ORDER MOMENTS

3.1 Notes to Generalize from Skewness

Going forward, we note that Equation 30 is useful for
more than the extreme D3 of the system, when consider-
ing a bidisperse system. As noted at the start of Sec. 2,
if one is given µ and two other quantities, then one can
uniquely determine a bidisperse distribution. Thus know-
ing one size xbound, δ, and µ, determines the other size
and relative probabilities. By plugging in any generic size
a/µ, which could be a+/µ or a−/µ to Equation 30, this
produces the D3 that makes a bidisperse distribution with
that size and a given CoV δ. This equation can be solved
for a to give either of Equations (13,14). In other words, if
we know we have a bidisperse distribution, then Equation
30 is a formula for D3 as a function of one of the sizes a.
We will derive similar results for higher moments.
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3.2 Kurtosis D4

As noted in the introduction, previous results by Pear-
son [Pearson (1916)] show that D4 ≥ D2

3 + 1 for any
given distribution (Equation 3). If we now know an in-
equality for D3 on any distribution with Equation 30, we
can solve for a new limit in D4. in terms of xmin, µ, and
δ. In particular, we have to consider two cases. Treating
the situation where the distribution has only nonnegative
support (xmin = 0), then for δ < 1, D3,min < 0. This im-
plies that D3 = 0 is also possible, and therefore we can
achieve lower D4 than is predicted by Equation 3 based
on D3,min. In other words, we can consider the bidisperse
distribution with D3 = 0 (which can be found using Equa-
tions 11 and 12) to achieve D4,min = 1 as per Equation 3.
For δ ≥ 1, D3,min ≥ 0 and the limit on D4 then follows
from Equation 30. Thus we have

D4 ≥ 1 (δ < 1)

D4 ≥
(

δ− 1

δ

)2

+1 (δ ≥ 1)(31)

for the limits on D4 in the two cases.
For the more general case of a distribution bounded on

one side (by either xmin from below, or xmax from above,
but not both), we can define the limits on kurtosis D4 in
terms of the extremum bounding value xextr. Define

(32) δ0 = |1− xextr/µ| .
That is, δ0 is the equivalent of Equations 28 and 29. We
then get

D4 ≥ 1 (δ < δ0)(33)

D4 ≥
(

δ

δ0
− δ0

δ

)2

+ 1 (δ ≥ δ0)(34)

In other words, whether the distribution is bounded from
below or bounded from above, in both cases this sets a
minimum on D4 – but not a maximum.

When the distribution is bounded from below by xmin

and bounded from above by xmax, the situation compli-
cates further. We start by defining δmin and δmax analo-
gously to Equation 32. While xmin < xmax, the ordering
of δmin and δmax is not determined. Thus define

δ1 = min(δmin, δmax),(35)

δ2 = max(δmin, δmax),(36)

D4,m(δ) =

(

δ

δm
− δm

δ

)2

+1,(37)

where m= 1,2. Next define δ′ using

(38) D4,1(δ
′) =D4,2(δ

′)

which can be solved to get δ′ =
√
δ1δ2 =

√
δminδmax. The

limits on kurtosis D4 are then

1≤D4 ≤D4,2(δ) (δ < δ1)

D4,1(δ)≤D4 ≤D4,2(δ) (δ1 ≤ δ < δ′)(39)

and values δ > δ′ are disallowed as they would require
the bidisperse distribution be composed of values that lie
outside of one or both of the boundaries (xmin, xmax).
At δ = δ′, the only bidisperse distribution that is valid is
composed of the two values (xmin, xmax) with appropri-
ate probabilities necessary to get the value of δ, and we
have D4,1 =D4,2 =D4.

These results are visualized in figure 2(a), which illus-
trates a specific example with xmin = 0, xmax = 5, and
µ= 1. For this example, δ1 = 1.0 and δ′ = 3.25. The solid
lines indicate Inequalities 39, and the symbols indicate
simulated random distributions with a specified δ. Specif-
ically, we generated distributions with data lying between
limits xmin, xmax, and with enforced mean µ, and cal-
culated δ and D4 for all. For a given small range of δ,
we generated 20,000 distinct random distributions, half
that are bidisperse, and the other half with three or four
values. Over these 20,000 distributions, Figure 2(a) plots
the maximum and minimum D4 found for each δ, all of
which lie between the limits corresponding we have found
(shown by the lines). While we have not proven that the
bidisperse distribution sets the limits for D4 for all other
distributions, this is suggestive that Inequalities 39 are in-
deed limits for the kurtosis for any distribution.

3.3 Higher order generalized moments

We now proceed with an alternate derivation of In-
equalities 34 which we can extend to higher moments.
The generic definition of Dn in the bidisperse case is:

(40) Dn =
(1− q)(a− − µ)n + q(a+ − µ)n

m
n/2
2

.

If we use Equations 6 to solve for the generic definition
of Dn in terms of q and η, we arrive at a formula of only
q:

(41) Dn =
(1− q)n−1 + (−1)n qn−1

(q− q2)
n

2
−1

.

Plugging in n= 3 arrives back at Equation 10.
For a bidisperse distribution, we can rewrite Inequality

34 as an equality in terms of a, one of the two bidisperse
values. We then note that Equations 30 and 34 are both
functions of z = δ/(1− a/µ):

D3 =
δ

1− a/µ
− 1− a/µ

δ
= z1 − z−1(42)

D4 =
δ4 − δ2(1− a/µ)2 + (1− a/µ)4

δ2(1− a/µ)2

= z2 − z0 + z−2.
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FIG 2. Simulations with bidisperse, and tri or quad-disperse extrema

plotted against the prediction (black line) given by Equation (43) for

D4 (top) and D5 (bottom) with size greater than zero and less than

5µ. The bidisperse triangles are green (pointing up) for the minima

and blue (pointing down) for the maxima, and the tri or quad-disperse

are pink (diamonds) for minima and purple (squares) for maxima.

(In D4, because only even powers of z appear, the abso-
lute value signs in Equation 32 can be dropped, allowing
z to have the same meaning for both D3 and D4.) The
general pattern appears to be a finite sum of a geometric
series. In fact, Appendix B shows how one can start from
Equation 41 to derive

Dn =

n−1
∑

i=1

(−1)(n−i+1)

(

δ

1− a/µ

)2i−n

(43)

=

n−1
∑

i=1

(−1)(n−i+1) z2i−n.

One can immediately put in a value for a of interest and
get a potential limit of Dn. For example, for distributions
bounded from below by xmin we conjecture

(44) D5 ≥D5,min = z3 − z1 + z−1 − z−3

with z = δ/(1 − xmin/µ) as above. As with D3, our
conjectured D5,max is a similar equation using z =
δ/(xmax/µ − 1). Figure 2(b) shows these two limits as
the solid lines for the case xmin = 0, xmax = 5, and µ= 1,
along with the maximum and minimum observed D5 val-
ues from numerically generated random distributions. All

the random distributions lie within our conjectured ana-
lytic limits, again suggestive that they are the actual lim-
its.

To try to show that these bounds achieve minima for
any n, we can try a similar method as section 2.2. If we
write out a more generic mn:
(45)

mn =
∆2

−

∆2
−
+ δ2

(

δ2

∆−

)n

+

(

1− ∆2
−

∆2
−
+ δ2

)

(−∆−)
n

we then can take its derivative with respect to ∆−, giving

∂mn

∂∆−

=
(−1)n

(

δ2∆n−1
−

) (

(n− 2)∆2
−
+ nδ2

)

(

∆2
−
+ δ2

)2(46)

−δ2n∆1−n
−

(

(n− 2) δ2 + n∆2
−

)

(

∆2
−
+ δ2

)2 .

Equation 46 is negative for all odd values of n, imply-
ing an increase in the smallest size above zero will only
increase Dn: thus, for odd n, Dn is minimized for a bidis-
perse distribution with the smallest size set to zero. For
even n, negative values of Equation 46 are achieved for
∆− between 0 and δ, but positive for ∆− > δ. Thus, the
minimum mn is achieved at ∆− = δ. In fact, this reca-
pitulates the result of Equation 31, that D4,min is not a
universal formula but rather depends on δ. Furthermore,
if we try to replicate Equations (22-27) with m4, the state-
ments are untrue even when δr = δs. This gives credence
that the boundaries of Dn for even n are not always given
by the choice of xbound.

Lastly, as previously noted, a bidisperse distribution
can be completely described by three parameters: most
directly by the values a−, a+, and the probability q for
one of these values. Our approach has been to instead use
µ, δ, and a− to find a constraint on Dn. We note that
Equation 43 and the definition of z is sufficient to find
analogues of Equations 11-14: thus, to use Dn, µ, and δ
to describe a bidisperse distribution. One can start with
those three quantities and determine a−, a+, and q – an-
alytically for D3 as per Equations 11 - 14, and numeri-
cally in other cases. This has been useful in the past for
finding distributions with desired values of the moments
Desmond and Weeks (2014). Moreover, by then consider-
ing which values of a− and a+ lie within bounds, one has
a slightly alternate approach to finding bounds on Dn.

4. CONCLUSION

We have presented an alternative derivation of Equation
4 to that presented in [Smołalski (2020)]; this equation
provides bounds on the skewness D3 for a bounded dis-
tribution with a given CoV δ. Equivalently, if D3 is given,
then this equation provides a bound for δ. Returning to
our starting example, if one is considering a distribution
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of strictly positive numbers, then for a given D3, Equation
4 can be solved for the maximum possible δ.

Our results for D3 naturally imply limits on D4 (In-
equalities 34 using Pearson’s formula [Pearson (1916)],
and Inequalities 39 more generally). Our general method-
ology is to note that bidisperse distributions are charac-
terized by three parameters, which most naturally are the
two values a+ and a− as well as the probability q of the
value a+; however, one can fruitfully choose as the three
parameters the mean µ, coefficient of variation δ, and a−.
Setting a− to the lower bound of all possible distributions
with a given µ and δ leads to lower bounds for D3 and D4.
Moreover, our methodology extends to higher moments,
leading to conjectures for limits on higher standardized
moments as discussed in Section 3.3. One possible exten-
sion to our work would be to see if there are other rela-
tionships between general Dn and Dm. It would also be
interesting to discover a counterexample where a distribu-
tion exists that exceeds the limits of Dn set by consider-
ing bidisperse distributions as in Section 3.3. We note that
numerically at least, we have not found such a counterex-
ample for n= 5, as seen in the data of Figure 2.

APPENDIX A: DISCREET DISTRIBUTION

DECOMPOSITION

Rohatgi and Székely derived the result that any discrete
distribution with mean µ can be decomposed into a sum of
bidisperse distributions, all with mean µ [Rohatgi and Székely
(1989)]. Their derivation is terse, so we rederive the result
in this Appendix with a slightly lengthier presentation.

First, consider a discrete distribution P (x) where x can
take values ai with probability pi for 1≤ i≤ n, Σipi = 1,
and with mean Σipiai = µ. Replace an and an−1 by

(47) a′n−1 =
pn−1

pn−1 + pn
an−1 +

pn
pn−1 + pn

an

which occurs with probability p′n−1 = pn−1 + pn. This is
now a new distribution with mean µ and one fewer value.
This can be repeated until one ends with a final distribu-
tion that takes on three discrete values, a1, a2, and a′3 with
probabilities p1, p2, and p′3.

If we have a tridisperse distribution with three discrete
values (a1, a2, a3), of probabilities (p1, p2, p3) and mean
µ, we can decompose this into the sum of two bidisperse
distributions as follows. Without loss of generality, as-
sume a1 < µ and a2 ≤ µ. Then the first bidisperse distri-
bution has values (a1, a3) with probabilities p′1 =

a3−µ
a3−a1

and p′3 =
µ−a1

a3−a1
, and similarly for the second distribution

with values (a2, a3). Sampling the first distribution with
probability p1/p

′

1 and the second with probability p2/p
′

2
recovers the original tridisperse distribution.

Now consider the distribution with four discrete val-
ues (a1, a2, a3, a4) and the related distribution (a1, a2, a

′

3)
formed using Equation 47. The latter can be decomposed

as a sum of two bidisperse distributions, as just demon-
strated. This then provides a scheme to reduce the four-
valued distribution to a sum of two three-valued distri-
butions, one of which eliminates a1 and the other which
eliminates a2. That is, the probability of finding a′3 in each
of the two bidisperse distributions is used to determine the
new probabilities of finding a3 and a4 in the two tridis-
perse distributions. Proceeding by induction, each distri-
bution with n distinct ai values can be decomposed into
two distributions of n − 1 distinct values, ultimately re-
ducing down to a sum of bidisperse distributions.

APPENDIX B: DERIVATION OF EQUATION 43

We wish to show that Equations 41 and 43 are equiva-
lent expressions for Dn for a bidisperse distribution. It is
easiest to start with the end result and work backwards.
Equation 43 is

Dn =

n−1
∑

i=1

(−1)(n−i+1) (z)(2i−n)(48)

=

n−1
∑

i=1

(−1)(n−i+1)

(

1− a/µ

δ

)(n−2i)

(49)

where a can represent either a+ or a−. We will begin by
examining the term with a,µ, and δ and work to express
it in terms of η and q. We will initially assume a = a−
and use Equation 6 to express a− in terms of η,µ, and q;
and likewise we will use Equation 9 to express δ in terms
of those same variables. This leads to

1− a−/µ

δ
=

µ− a−
µδ

(50)

=
µ− [µ/(1− q+ ηq)]

µ(η− 1)
√

q − q2/(1− q+ ηq)
(51)

=
1− q + ηq − 1

(η− 1)
√

q− q2
(52)

=
q

√

q(1− q)
=

(

q

1− q

)1/2

.(53)

We can put this in to Equation 49 to give

Dn =

n−1
∑

i=1

(−1)(n−i+1)

(

q

1− q

)(n/2)−i

(54)

= (−1)n+1

(

q

1− q

)n/2
[

n−1
∑

i=1

(−1)i
(

1− q

q

)i
]

(55)

where now the summation is simply a finite geometric
sum. The sum can be evaluated as

n−1
∑

i=1

(

q− 1

q

)i

=

(

q−1
q −

(

q−1
q

)n)

1− q−1
q

(56)
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= (q − 1)− q

(

q− 1

q

)n

.(57)

Putting this in to Equation 55, recognizing that (q−1)n =
(−1)n(1 − q)n, and distributing the leading factor of
(−1)n+1, we get
(58)

Dn =

(

q

1− q

)n/2
[

(−1)n (1− q) + q1−n(1− q)n
]

,

and this can be simplified to Equation 41.
The starting point we used above was Equation 53:

1− a−/µ

δ
=

(

q

1− q

)1/2

.

If instead one focuses on a+, the equivalent result is

(59)
1− a+/µ

δ
=−

(

1− q

q

)1/2

.

Given that Equation 48 is unchanged when replacing
z → −(1/z), the derivation holds whether using a+ or
a−. Thus, the ‘a’ in Equation 49 is valid for either mean-
ing of a, and we have shown that Equations 41 and 43 are
equivalent.
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