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Abstract
Incremental computation aims to compute more efficiently
on changed input by reusing previously computed results.
We give a high-level overview of works on incremental com-
putation, and highlight the essence underlying all of them,
which we call incrementalization—the discrete counterpart
of differentiation in calculus. We review the gist of a system-
atic method for incrementalization, and a systematic method
centered around it, called Iterate-Incrementalize-Implement,
for program design and optimization, as well as algorithm
design and optimization. At a meta-level, with historical
contexts and for future directions, we stress the power of
high-level data, control, and module abstractions in develop-
ing new and better algorithms and programs as well as their
precise complexities.

CCS Concepts: • Software and its engineering → Lan-
guage features; Compilers; • Theory of computation
→ Semantics and reasoning; Design and analysis of algo-
rithms; • Information systems → Database query process-
ing.
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1 Introduction
As the real world changes continually, computer programs
that handle input from the real world must handle contin-
ually changing input. Furthermore, because any algorithm
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that solves a nontrivial problem must proceed in an iterative
or recursive fashion, computations must be performed on
repeatedly changed state. The general area of incremental
computation studies how to efficiently handle continually
changing input by storing and reusing previously computed
results.

There was already a large literature on incremental compu-
tation even over 30 years ago [110], and the area has grown
significantly since then. 1 To grasp the depth and breadth of
the area, it is important to understand the essence underlying
different works and results.

This article gives a high-level overview of works on incre-
mental computation—organizing them into incremental algo-
rithms, incremental evaluation frameworks, and incremental-
program derivation methods—and highlights the essence
underlying all of them, which we call incrementalization.

Given a program 𝑓 and an input change oper-
ation ⊕, incrementalization aims to obtain an
incremental version of 𝑓 under ⊕, denoted 𝑓 ′,
that computes on the changed input more effi-
ciently by reusing results computed before the
change.

It is the discrete counterpart of differentiation in calculus.
We then review the gist of a systematic method for incre-

mentalization [66], and a systematic method centered around
it, called Iterate-Incrementalize-Implement (III), for program
design and optimization, as well as algorithm design and
optimization [67].

• Systematic incrementalization is a general transforma-
tional method for deriving incremental programs that
compute more efficiently by exploiting the previous
result, intermediate results, and auxiliary information.
The method consists of systematic program analysis
and transformations that are modular, and that are
drastically easier and more powerful for programs that
use high-level abstractions.

• III is a general transformational method for designing
and optimizing programs, for programs written using
different language features—loops and arrays, set ex-
pressions, recursive functions, logic rules, and objects

1A Google Scholar search of “incremental computation”, including the
quotes, performed on Dec. 11, 2023, returned “About 485 results” for the
period up until 1992, which includes the period covered by [110], and
returned “About 8,360 results” for the period up until the present.
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and classes. The method is particularly powerful for
high-level data abstractions using sets, as in database
programming; control abstractions using recursion, as
in functional programming; both sets and recursion, as
in logic programming; and module abstraction using
objects.

We will also see that incremental computation is closely re-
lated to and intertwined with partial evaluation, and that
optimization by incrementalization corresponds to integra-
tion by differentiation.
At a meta-level, with historical contexts and for future

directions, we stress the power of high-level data, control,
and module abstractions in enabling systematic analysis and
transformations for incrementalization, leading to new and
better algorithms, programs, and precise complexities. When
describing the personal experience of the author, we will
write in the first person.

At the same time, systematic design and optimization us-
ing incrementalization in turn have helped raise the level of
abstractions, enabling the design of a high-level language
for distributed algorithms [83, 84] and subsequently a uni-
fied semantics for logic rules with unrestricted negation,
quantification, and aggregation [78, 80].

For future work, significant further work is needed to put
both high-level abstractions and powerful transformation
methods into practice, for developing algorithms and gen-
erating programs with both correctness and performance
guarantees.

2 Incremental Computation: Three
Categories of Studies

Despite the vast amount and variety, we organize work on
incremental computation into three main categories.

Incremental algorithms. Algorithms for computing par-
ticular functions, such as shortest paths, under particu-
lar kinds of input changes, such as adding and deleting
edges.
This includes algorithms known as dynamic algorithms,
online algorithms, and other variants.

Incremental program-evaluation frameworks.
Frameworks for evaluating general classes of programs
expressed in the framework and handling input changes.
This includes frameworks known as memoization,
caching, tabling, change propagation, and other vari-
ants.

Incremental-algorithm-and-program derivation
methods.Methods for deriving algorithms and pro-
grams that handle input changes from given algo-
rithms or programs and given kinds of input changes.
This includes methods known as finite differencing,
strengthening and maintaining loop invariants, incre-
mentalization, and other variants.

This categorization was first developed in 1991 frommy year-
long study of work in incremental computation. It enabled
me to formulate systematic incrementalization [62, 90] for
my Ph.D. thesis proposal in May 1992. Now over 30 years
later, after an extensive month-long further study of the
literature, this categorization is further confirmed.

Thanks to technological advances and extensive work by
many people, this new review of the literature has been
blessed with tremendous new resources not available over
30 year ago: the Web, Google scholar, free access to earlier
literature by major publishers like ACM and Elsevier, and
to newly available literature by services like arXiv and the
Computer History Museum. Given the vast literature spread-
ing in every dimension, I have tried to include the earliest
sources found, a range of examples, and latest overviews.

2.1 Incremental Algorithms
Algorithms are at the core of computation, aiming to com-
pute desired output efficiently from given input. Given cer-
tain ways that input can change, incremental algorithms
aim to compute desired output efficiently by maintaining
and reusing previously computed results. For example, an
algorithm for sorting computes sorted output from the given
input, whereas an incremental algorithm for sorting when an
element can be added to or deleted from the input computes
sorted output by storing and updating the previously sorted
output.

Example algorithms. Incremental algorithms have been
studied since at least the 1960s [110], e.g., for maintaining
the shortest distances in a graph when the length of an edge
is increased or decreased [99]. The area has grown to include
a vast number of algorithms for a wide variety of problems
and variants, e.g., incremental parsing [41, 126], incremental
attribute evaluation [111, 128], incremental circuit evalua-
tion [4], incremental constraint solving [25, 36], as well as
many incremental graph problems and more [31, 48, 97, 118],
to reference a few. Although efforts in this category are
directed towards particular incremental algorithms, an al-
gorithm may apply to a broad class of problems, e.g., any
attribute grammar, any graphs, etc.

Many incremental algorithms, especially those on graphs,
are also known as dynamic algorithms, which are called
fully dynamic, incremental, or decremental if the algorithm
handles both additions and deletions of edges, only additions,
or only deletions, respectively [27, 48]. Note that we use the
term “incremental dynamic algorithms” to differentiate from
uses of “incremental algorithms” for the general category.
A class of incremental algorithms are known as online

algorithms, which process input piece-by-piece in the order
that the input is fed to the algorithm [9, 118], essentially
corresponding to incremental dynamic algorithms. For ex-
ample, an online algorithm for sorting processes each next
element in the input as it comes. Another class of incremen-
tal algorithms are known as streaming algorithms, which
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process a sequential stream as input but with limited mem-
ory [97, 100], and thus can only examine the input in a few
passes, typically one pass, and often produce approximate
output using what is called a sketch. For example, a stream-
ing algorithm can sort, say, the 10 smallest elements but not
the entire input.

A wide range of efficiency and other measures, with trade-
offs, and complexity models, are used for characterizing in-
cremental algorithms. General incremental algorithms and
dynamic algorithms mainly aim to minimize the times to
maintain needed information and return desired output. On-
line algorithms also aim to be competitive in performance
against the case that the entire input is given at the start.
Streaming algorithms aim for small space and consider also
approximation ratio when output is approximated, for ex-
ample, for counting the number of distinct elements when
they do not fit in memory.

2.2 Incremental Program-Evaluation
Frameworks

Rather than manually developing incremental algorithms
for each particular problem, an incremental execution frame-
work allows non-incremental programs that are expressed
in the framework to run directly and automatically handles
changes supported by the framework to achieve incremental
computation. For example, a framework can support caching
the return values of certain functions and automatically reuse
the cached results when such functions are called again on
the same arguments.

Example frameworks. Incremental computation appeared
in the 1960s as a framework using LISP for computing func-
tion applications as partial information about the input is pro-
vided [92, 93]. “Memo” functions and machine learning ap-
peared in Nature April 1968 as a framework for caching and
reusing the results of functions [98]. Numerous frameworks
have since been proposed, e.g., incremental attribute eval-
uation frameworks performing change propagation [111],
function caching with improved cache replacement [109],
the INC language with change detailing network [129], in-
cremental reduction in lambda calculus [1, 34], logic rule
engines with tabling [20, 121] and incremental tabling [114],
combining change propagation and memoization [3, 50],
combining them also with demand [47, 50], and a recent
more extensive framework [49], to mention a few.

Caching—also known as memoization and tabling—is the
key idea in all these frameworks to enable reuse of previously
computed results. On top of it, with previously computed
results saved, change propagation aims to compute only re-
sults that depend on the changes in input. Additional im-
provements to these techniques and combinations of them,
e.g., [3, 47, 49, 50], can enable more refined reuse in more
specialized cases, all by expressing the given problem us-
ing the mechanisms supported by the framework, without

manually writing a particular incremental program for each
particular problem.

When such frameworks are used, no explicit incremental
version of an application program is derived and run by a
standard evaluator. Also, any input change to an application
program is captured as a form that the framework can handle,
which is limited for each framework. As a result, these solu-
tions to the incremental computation problem for particular
application functions and changes are not readily compa-
rable with explicitly developed incremental algorithms and
programs for those functions and changes.

2.3 Incremental-Algorithm-and-Program
Derivation Methods

Instead of developing incremental algorithms for each prob-
lem in an ad hoc way or an incremental evaluation frame-
work for problems expressed in that framework, incremental
algorithm and program derivation methods aim to derive
explicit incremental algorithms and programs from non-
incremental programs and given input change operations
using semantics-preserving program transformations. For
example, a method can start with a sorting program and
an input change operation that adds a new input element
and derive an algorithm and program that inserts the new
element into the previously sorted result.

Example methods. Early proponents of high-level lan-
guages supporting recursive functions [12, 94] and sets [29,
115] pioneered the study of efficient language implementa-
tions [22, 26, 28, 95, 117], especially transformations to avoid
repeated expensive computations in recursion [11, 96, 116]
and in iteration [30, 35, 101]. Significant effort has been de-
voted to such transformation methods for incremental com-
putation, e.g., transformation techniques for tabulation [5,
96, 116], iterator inversion for converting from a batch to an
incremental algorithm in VERS2 [30], finite differencing of
set expressions in SETL [101, 102, 106], deriving incremental
view maintenance in databases [2, 18, 51, 60, 61, 103], promo-
tion and accumulation [6, 7], differentiation of functional pro-
grams in KIDS [119, 120], incrementalization for recursive
functions [66], generating incremental object queries [68, 81,
113], static differentiation for lambda calculus [17, 42], and
incrementalizing graph algorithms [32].

Transformations for recursive functions, e.g., [5, 6, 11, 66,
120], can be general just as recursive functions are, but are
also limited by the structure of recursion. The generality
can be seen from the wide variety of transformations on
recursive functions, e.g., [33, 108]. The limitation is especially
notable on list, themain data type used in recursive functions,
because list elements must be traversed from head to tail
in a linear order, which makes it exceedingly complex and
inefficient to access an element in themiddle of the list, not to
mention more complex nested lists. Overall, it is challenging
to develop systematic and automatic transformations that
are general [8, 63, 119].
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Transformations for set queries, e.g., [18, 30, 35, 60, 68, 91,
101, 103, 106, 113], can be systematic and automatic, but un-
like recursive functions, these queries are not general, i.e.,
Turing-complete. Basically, fixed but powerful rules can be
developed for transforming each kind of high-level operation
on sets into more efficient incremental operations when the
sets are updated. In particular, Paige’s finite differencing of
set expressions [106] led to new and faster algorithms for
many challenging problems, e.g., attribute closure [105] in
database design, partition refinement [107] for model check-
ing, tree pattern matching [16] for program transformation,
DFA minimization [59] and regular expression to DFA [19]
conversion in automata theory, copy elimination [46] for
compiler optimization, and more.

3 Essence of Incremental Computation
The three categories of incremental computation are clearly
different from each other—particular algorithms vs. general
program-evaluation frameworks vs. derivation methods for
algorithms and programs. What is the essence of incremental
computation in all of them? Additionally, how is incremental
computation related to partial evaluation?

In fact, it is understanding this essence and following the
transformational approach for partial evaluation that enabled
the systematic method for incrementalization discussed in
Section 4.

3.1 Incrementalization
We first define incremental programs before discussing incre-
mentalization as the essence of incremental computation.
Given a program 𝑓 and an operation ⊕, a program 𝑓 ′ is

called an incremental version of 𝑓 under ⊕ if 𝑓 ′ computes
𝑓 (𝑥 ⊕ 𝑦) efficiently by using 𝑓 (𝑥). Precisely,

𝑓 (𝑥) = 𝑟 =⇒ 𝑓 ′(𝑥,𝑦, 𝑟 ) = 𝑓 (𝑥 ⊕ 𝑦) (1)

That is, if the result of 𝑓 (𝑥) is 𝑟 , then 𝑓 ′ can use 𝑥 , 𝑦, and 𝑟
in computing the result of 𝑓 (𝑥 ⊕ 𝑦).

Note that 𝑓 and ⊕ are just two functions. An input 𝑥 to 𝑓

can have any structure, e.g., a tuple (𝑥1, ..., 𝑥𝑘 ). So can a value
of parameter 𝑦. Operation ⊕ can be any function that takes
an old input 𝑥 to 𝑓 and a value of parameter 𝑦 and returns a
new input 𝑥 ⊕ 𝑦 to 𝑓 . Note also that just as 𝑥 ⊕ 𝑦 captures
how the input changes from the previous input 𝑥 , 𝑓 ′(𝑥,𝑦, 𝑟 )
captures how the output changes from the previous output
𝑟 .

Given a program 𝑓 and an operation ⊕,
incrementalization is the problem of finding an incremental
version 𝑓 ′ of 𝑓 under ⊕.

Incrementalization is the essence of incremental computa-
tion. To see this, we examine how each of the three categories
in Section 2 achieves incrementalization.

• Incremental algorithms. It is easy to see that an explicit
incremental algorithm corresponds to an incremental

version 𝑓 ′0 of a particular function 𝑓0 under a particular
kind of input change operation ⊕0:

𝑓0 (𝑥) = 𝑟 =⇒ 𝑓 ′0 (𝑥,𝑦, 𝑟 ) = 𝑓0 (𝑥 ⊕0 𝑦)

For examples, 𝑓0 takes an input list 𝑥 and computes a
sorted list 𝑟 , ⊕ takes a list 𝑥 and a new element 𝑦 and
returns a new list with element 𝑦 added to 𝑥 , and 𝑓 ′0
inserts 𝑦 into 𝑟 in the right place instead of sorting the
new list from scratch.
Note that function 𝑓0 and thus 𝑓 ′0 may return values
that have any structure, e.g., a map mapping each pair
(𝑢, 𝑣) of vertices in a graph to the shortest distance
from 𝑢 to 𝑣 . In general, function 𝑓 ′0 may be computed
in two steps: (1) incrementally maintain appropriate
values when the input is changed and (2) retrieve a
new return value when the value is used.
Also, operation ⊕ may express different kinds of in-
put changes, e.g., adding or deleting an edge (𝑢, 𝑣)
to a set 𝑒 of graph edges—as for fully dynamic graph
algorithms [27, 48]—depending on the value of a pa-
rameter 𝑡𝑎𝑔, i.e., to be precise, ⊕ takes 𝑒 and (𝑢, 𝑣, 𝑡𝑎𝑔)
and returns 𝑒 ∪ {(𝑢, 𝑣)} if 𝑡𝑎𝑔 = ’add’ and 𝑒 − {(𝑢, 𝑣)}
if 𝑡𝑎𝑔 = ’del’.

• Incremental program-evaluation frameworks. An in-
cremental evaluation framework corresponds to an
incremental version 𝑒𝑣𝑎𝑙 ′ of an evaluator 𝑒𝑣𝑎𝑙 under
an input change operation ⊕, where the input 𝑥 to 𝑒𝑣𝑎𝑙
is a pair: a function 𝑓 and an input 𝑑𝑎𝑡𝑎 to 𝑓 . Precisely,

𝑒𝑣𝑎𝑙 (𝑓 , 𝑑𝑎𝑡𝑎) = 𝑟 =⇒
𝑒𝑣𝑎𝑙 ′((𝑓 , 𝑑𝑎𝑡𝑎), 𝑦, 𝑟 ) = 𝑒𝑣𝑎𝑙 ((𝑓 , 𝑑𝑎𝑡𝑎) ⊕ 𝑦)

That is, 𝑒𝑣𝑎𝑙 ′ is in itself an incremental algorithm and
program, handling a certain kind of change to its input.
For example, a function caching framework can incre-
mentally execute any program written with caching
directives, by capturing all changes as changed func-
tions and arguments in function calls, caching results
of certain calls, and reusing cached results for calls
with same, or unchanged, functions and arguments.
For another example, an incremental attribute evalua-
tion framework [111] can solve any tree analysis prob-
lems specified using supported attribute equations,
by capturing all changes to the input tree as subtree
replacements that it handles and running a specific
incremental change-propagation attribute evaluation
algorithm.
Note that an input change operation for 𝑒𝑣𝑎𝑙 can in
general change both 𝑓 and 𝑑𝑎𝑡𝑎, e.g., in [1, 34, 55], but
most incremental evaluation frameworks handle only
changes to 𝑑𝑎𝑡𝑎, e.g., [3, 47, 49, 50, 111], especially
frameworks for compiled languages.

• Incremental-algorithm-and-program derivation
methods. An incremental algorithm-and-program
derivation method is simply a method 𝑖𝑛𝑐 for deriving
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an incremental version 𝑓 ′ of 𝑓 under ⊕, given 𝑓 and
⊕:

𝑖𝑛𝑐 (𝑓 , ⊕) = 𝑓 ′

where 𝑓 , ⊕, and 𝑓 ′ together satisfy (1). For example, fi-
nite differencing of set expressions [101, 106] can auto-
matically derive incremental maintenance of complex
set expressions under various set update operations by
using a collection of finite differencing rules—each for
a kind of set expression and a few update operations—
and using the chain rule to handle nested expressions.
It has been used for optimizing bodies of loops in set
languages [101, 106] and also efficient database view
maintenance [61, 103].
Note that 𝑓 and ⊕ can be any functions or operations
written in the language that the method applies to.
Higher-level ormore limited languages allowmore sys-
tematic and automatic derivations, while lower-level
and more general languages make the transformations
more challenging.

Thus, works in all three categories of incremental compu-
tation aim to obtain incremental algorithms or programs for
computing a function incrementally under an input change
operation. This is exactly the essence of incremental compu-
tation, and is what we call incrementalization.
Each work differs in the particular 𝑓 and ⊕ considered,

including different evaluators as 𝑓 , and the language inwhich
𝑓 and ⊕ are written.
The challenge in all cases is how to achieve better incre-

mentalization more systematically for more general prob-
lems and languages, and ideally achieve even the best incre-
mentalization possible fully automatically.

3.2 Incremental Computation vs. Partial
Evaluation

An area closely related to and intertwined with incremental
computation is partial evaluation [57].

Partial evaluation, also called specialization, considers a
program 𝑓 whose input has two parts, say (𝑥1, 𝑥2), and aims
to evaluate 𝑓 as much as possible on a given value 𝑥1 of the
first part, yielding a partially evaluated program 𝑓𝑥1 :

𝑃𝐸 (𝑓 , 𝑥1) = 𝑓𝑥1

so that when given a value 𝑥2 for the second part, 𝑓𝑥1 (𝑥2)
can compute the result of 𝑓 (𝑥1, 𝑥2) more efficiently.

Partial evaluation is especially important and interesting
in connecting compilers with interpreters. Consider an in-
terpreter 𝑖𝑛𝑡𝑒𝑟𝑝 that takes program 𝑝𝑟𝑜𝑔 and data 𝑑𝑎𝑡𝑎 as
input. We can see the following:

1. 𝑃𝐸 (𝑖𝑛𝑡𝑒𝑟𝑝, 𝑝𝑟𝑜𝑔) yields 𝑖𝑛𝑡𝑒𝑟𝑝𝑝𝑟𝑜𝑔, which is like a com-
piled program for 𝑝𝑟𝑜𝑔, because 𝑖𝑛𝑡𝑒𝑟𝑝𝑝𝑟𝑜𝑔 (𝑑𝑎𝑡𝑎) can
compute the result of 𝑖𝑛𝑡𝑒𝑟𝑝 (𝑝𝑟𝑜𝑔, 𝑑𝑎𝑡𝑎) more effi-
ciently.

2. 𝑃𝐸 (𝑃𝐸, 𝑖𝑛𝑡𝑒𝑟𝑝) yields 𝑃𝐸𝑖𝑛𝑡𝑒𝑟𝑝 , which is like a com-
piler, because 𝑃𝐸𝑖𝑛𝑡𝑒𝑟𝑝 (𝑝𝑟𝑜𝑔) can compute the result
𝑖𝑛𝑡𝑒𝑟𝑝𝑝𝑟𝑜𝑔 of 𝑃𝐸 (𝑖𝑛𝑡𝑒𝑟𝑝, 𝑝𝑟𝑜𝑔) more efficiently..

3. 𝑃𝐸 (𝑃𝐸, 𝑃𝐸) yields 𝑃𝐸𝑃𝐸 , which is like a compiler gen-
erator, because 𝑃𝐸𝑃𝐸 (𝑖𝑛𝑡𝑒𝑟𝑝) can compute the result
𝑃𝐸𝑖𝑛𝑡𝑒𝑟𝑝 of 𝑃𝐸 (𝑃𝐸, 𝑖𝑛𝑡𝑒𝑟𝑝) more efficiently..

Interestingly, incremental computation and partial eval-
uation were related physically in 1993, at the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), as two tutorials with those names,
even with articles in the proceedings [23, 110]. I think it was
the first time that POPL had any tutorials and many years
before it had any again.
It is also interesting that the earliest work I could find

that proposes a general form of partial evaluation calls it
“incremental computer” and “incremental computation” [92,
93], although “partial evaluation” is also mentioned for one
case. On the other hand, the earliest work I could find on
a form of incremental computation in database by moni-
toring changes and avoiding recomputation calls it “partial
evaluation” [10], and no “incremental” or “propagation” was
mentioned.

There are actually interesting exact relationships between
incremental computation and partial evaluation, going both
ways;

• On the one hand, partial evaluation can be viewed as
a special case of incremental computation.
Consider any program 𝑓 whose input has two parts
(𝑥1, 𝑥2). Define ⊕ as: (𝑥1, 𝑥2) ⊕ 𝑦 = (𝑥1, 𝑦) Then an in-
cremental program will aim to reuse computed values
on the 𝑥1 part of the input as much as possible and thus
compute with the new parameter𝑦 as the changed part
more efficiently. This is exactly what partial evaluation
aims to do.

• On the other hand, incremental computation can be
viewed as a special case of generalized partial
evaluation [37, 38].
Generalized partial evaluation aims to evaluate asmuch
as possible on any given information about program
𝑓 and input 𝑥 , not limited to 𝑥 being a given value of
one part of the input. For a simple example, the infor-
mation may be 𝑥 > 5, so any computation in 𝑓 in a
branch with condition, say, 𝑥 < 3 can be removed.
With that, consider the given information
𝑥 = 𝑥𝑝𝑟𝑒𝑣 ⊕ 𝑦 and 𝑓 (𝑥𝑝𝑟𝑒𝑣) = 𝑟 . Using this information
to compute efficiently is exactly what incremental com-
putation does.

Note that generalized partial evaluation essentially aims to
optimize any program to the best using any given informa-
tion, which is an undecidable problem in general. However,
powerful methods can be developed for special kinds of
input information such as that for partial evaluation and
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incremental computation. In fact, systematic incrementali-
zation described in Section 4 uses specialization of 𝑓 (𝑥) in
a specific context, which can also be regarded as a special
case of generalized partial evaluation.

4 Systematic Incrementalization---Using
Previous Result, Intermediate Results,
and Auxiliary Values

We give a highly distilled overview of a general and system-
atic method for incrementalization, first developed in my
Ph.D. work [64]. The method is general in that it applies to
any language for writing 𝑓 and ⊕. It is systematic in that it
consists of systematic program analysis and transformations.
Note, however, that higher-level languages allow easier

and better analysis and transformations, and thus better
incrementalization, enabling more drastic optimization by
incrementalization discussed in Section 5.
The transformational approach was inspired by the use

of systematic analysis and transformations in partial evalu-
ation [57], and made possible by focusing on the problem
of incrementalization, not general program improvement
using general unfold-fold transformations that require “eu-
reka” [11].

We conclude the section by relating incrementalization to
differentiation and furthermore to integration in calculus.

4.1 A Systematic Transformational Method for
Incrementalization

The overall method was developed incrementally, by solving
three key and increasingly harder problems, but with each
next problem better understood after the previous problems
were solved, and also more easily solved by reducing to the
previous problems, giving increasingly greater incremental-
ity.

The key idea for solving all three problems is exactly to an-
alyze and transform 𝑓 (𝑥 ⊕ 𝑦)—expanding it and separating
computations that depend on 𝑥 from those that depend on
𝑦, and then storing and reusing values that were computed
on 𝑥 .

P1. Exploiting the previous result. The problem is to
use the return value 𝑟 of 𝑓 (𝑥) in computing 𝑓 (𝑥 ⊕ 𝑦).
The most straightforward use is: after transforming
𝑓 (𝑥 ⊕ 𝑦) to separate computations on 𝑥 and on 𝑦, if
there is a computation on 𝑥 that is exactly 𝑓 (𝑥), then
replace it with 𝑟 .
More powerful uses are by exploiting data structures
and control structures in 𝑓 (𝑥):
If 𝑟 is a structured data, e.g., a tuple whose first com-
ponent is 𝑓1 (𝑥), then a computation 𝑓1 (𝑥) in 𝑓 (𝑥 ⊕ 𝑦)
can be replaced with a retrieval from 𝑟 , e.g., 1𝑠𝑡 (𝑟 ).
If 𝑓1 (𝑥) is computed only inside a branch with a condi-
tion, e.g., 𝑥 ≠ 𝑛𝑢𝑙𝑙 , in 𝑓 (𝑥), then replacement of 𝑓1 (𝑥)
in 𝑓 (𝑥 ⊕ 𝑦) must be in a branch where 𝑥 ≠ 𝑛𝑢𝑙𝑙 holds.

P2. Caching intermediate results. The problem is to
use helpful values computed while computing 𝑓 (𝑥),
not just the return value. But, which values and how
to use them?
With P1 solved, the conceptually simplest solution is
cache-and-prune: (1) transform 𝑓 to cache all inter-
mediate values in the return value. yielding 𝑓𝑐𝑎𝑐ℎ𝑒 , (2)
use P1 to incrementalize 𝑓𝑐𝑎𝑐ℎ𝑒 , yielding 𝑓 ′

𝑐𝑎𝑐ℎ𝑒
, and (3)

prune 𝑓 ′
𝑐𝑎𝑐ℎ𝑒

and 𝑓𝑐𝑎𝑐ℎ𝑒 to retain only values needed
for obtaining the original return value.
Alternatively, selective caching can (1) use and extend
solutions to P1 to identify, in 𝑓 (𝑥 ⊕ 𝑦), computations
on 𝑥 that are intermediate computations in 𝑓 (𝑥), (2)
transform 𝑓 to cache such computation results in the
return value, and (3) use P1 to incrementalize the trans-
formed program.

P3. Discovering auxiliary information. The problem
is to use also values not computed in 𝑓 (𝑥) at all but
that can help in computing 𝑓 (𝑥 ⊕ 𝑦). But, where to
find such values, and how to use them?
With P1 and P2 solved, the simplest solution is to (A)
use and extend P1 to identify, in 𝑓 (𝑥 ⊕ 𝑦), computa-
tions on 𝑥 that are not computed at all in 𝑓 (𝑥) as
candidate auxiliary values, and (B) use and extend P2
to extend 𝑓 to also return the candidate auxiliary val-
ues.
This process may repeat, because computing the aux-
iliary values after ⊕ may need other auxiliary values.
Also, because these values are not computed in the
original program, cost analysis is needed to use only
auxiliary values that help incremental computation.
This enables the use of a general class of auxiliary
information that can be found systematically.

The resulting overall method is modular. The method can be
fully automated because the analysis and transformations
used can be conservative and fully automatic [130].
The method is described in more detail in an overview

paper [66] and in the last chapter of a book [67, Chapter
7], with references to detailed analyses and transformations
for P1 [62, 90], P2 [86, 89], and P3 [85, 87]. Thanks to Neil
Jones, Michel Sintzoff, and others for repeated suggestions
and encouragement for me to write the book, and to Olivier
Danvy for inviting me to write the overview article and
giving me detailed comments and suggestions for revisions.

4.2 Incrementalization---Differentiation in
Discrete Domains

It is easy to see that incrementalization corresponds to dif-
ferentiation in calculus, except that incrementalization takes
place in discrete domains as opposed to the continuous do-
main. We even use the same notation 𝑓 ′ for both the incre-
mental version of 𝑓 from incrementalization and the deriva-
tive of 𝑓 from differentiation.
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Both study changes in the output of functions given changes
in the input. While differentiation yields the derivative of a
function where input changes are infinitesimal, incrementali-
zation yields an incremental version of a function under an
input change operation. Note that in the precise definition
of incremental version, 𝑥 ⊕ 𝑦 captures exactly how the input
changes from the previous input 𝑥 , and 𝑓 ′(𝑥,𝑦, 𝑟 ) captures
exactly how the output changes from the previous output 𝑟 .
There are many correspondences. For example, to incre-

mentalize a function defined by composing two smaller func-
tions, an incremental version of the inner function acts as
the input change operation of the outer functions, enabled
by caching all intermediate results; this corresponds to the
chain rule for differentiation in calculus. For another exam-
ple, repeating incrementalization for discovered auxiliary
values as discussed in Section 4.1 corresponds to computing
higher-order derivatives.

In general, however, handling changes in discrete domains
makes incrementalization much more difficult than differen-
tiation, because functions must be continuous for differenti-
ation, but functions on discrete domains have mostly holes.
Thus significant additional effort is needed for incrementali-
zation. Consider the following simple example. We know
that:

if 𝑓 (𝑥) = 𝑥2, then its derivative is 𝑓 ′(𝑥) = 2𝑥

But if 𝑥 can only be integers, even for the smallest change
𝑥 ⊕ 𝑦 = 𝑥 + 12, and given 𝑓 (𝑥) = 𝑟 , additional care is needed:

• First, we have

𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥 + 1) = (𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1,
so 𝑓 ′(𝑥, 𝑟 ) = 𝑟 + 2𝑥 + 1

That is, the increment in output is not 2𝑥 but 2𝑥 + 1
because the change to 𝑥 is not infinitesimal.

• Second, maintaining 𝑟 depends on whether the main-
tenance is done before or after the update to 𝑥 :

if before 𝑥 += 1, we must do 𝑟 += 2𝑥 + 1
if after 𝑥 += 1, we must do 𝑟 += 2𝑥 − 1

Additional care is needed for other kinds of use, and for
more complex computations [67, Section 2.2]. Nevertheless,
a general and systematic method can handle these issues
correctly and automatically [67, 106], and because of the
complexities of the matter, is even more desirable.
Note that tabulating polynomials is a generalization of

this example, and incrementalization yields exactly the same
algorithm from finite difference [58] used by Babbage’s dif-
ference engine [43].

2𝑦 is a dummy unused variable in this example

4.3 Optimization by Incrementalization---
Integration by Differentiation

One of the big surprises at my Ph.D. thesis proposal exami-
nation, after I presented my P1 method for systematic incre-
mentalization, was that Anil Nerode said: “You are doing
integration by differentiation.”

I knew I was doing differentiation, and that was part of the
reason I used 𝑓 ′ to denote the incremental version. However,
I thought integration was the opposite of differentiation.
How could I be doing something by doing its opposite?
It took me three years of puzzling, until I was close to

finishing my dissertation. I had a neatly derived incremental
version of the Fibonacci function under the input change
operation of incrementing by 1—it only adds the value of
𝑓 𝑖𝑏 (𝑥 − 1) to the return value of 𝑓 (𝑥) and takes O(1) time to
maintain both. One day when I was wondering what to do
with it, I decided I could add a loop outside the incremental
version to compute the original Fibonacci function in linear
time instead of the original exponential time. How obvious!
There it dawned on me that this is like integration by

differentiation. Most excitingly, it clearly pointed to a gen-
eral method for optimization by incrementalization. Since
then, systematic incrementalization has enabled a systematic
method for program design and optimization, discussed in
Section 5.

5 Systematic Design and Optimization:
Iterate, Incrementalize, Implement

Iterate-Incrementalizer-Implement (III) is a systematic
method for design and optimization. We present a vastly
distilled overview of III and how it applies to different core
language features. The method has three key steps, centered
around incrementalization:

I1. Iterate: determine a minimum increment to take re-
peatedly, iteratively, to arrive at the desired output.

I2. Incrementalize: make expensive operations incre-
mental in each iteration by using and maintaining
useful additional values.

I3. Implement: design appropriate data structures for
efficiently storing and accessing the values maintained.

Thanks to Tom Rothamel for picking the name III out of a
combination of choices I had in my Advanced Programming
Languages course in Spring 2003.
The method was first developed for recursive functions,

in the order of Steps I2 [85, 89, 90], I1 [72, 73], and I3 [74].
Since then, it has been used extensively in general settings,
and has proved to be drastically more powerful when used
on high-level abstractions, especially with sets and relations
as high-level data abstractions.
In particular, when applied to set expressions extended

with fixed-point operations [105], Steps I1, I2, and I3 corre-
spond to what Paige et al called dominated convergence [13,
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15], finite differencing [101, 102, 106], and real-time simu-
lation [14, 44, 104], respectively. Interestingly, those were
developed in the same order as Steps I2, I1, and I3.
Table 1 summarizes how the III method applies to differ-

ent language features that provide different data, control,
and module abstractions—loops, sets, recursion, rules, and
objects—in different programming paradigms. In particular,
Step I1 is essential when recursion as high-level control ab-
straction is used, Step I3 is essential when sets as high-level
data abstraction is used, and Step I2 is essential in all cases,
Note that while loops, sets, functions, and rules can ex-

press all computations and updates, objects are essential for
building large applications with modular components. One
can of course program with all these key language features
in one language, e.g., [88].

Details of the III method appear in [67], with a respective
chapter for each of the main features [67, Chapters 2-6].
Incrementalization, as done in Step I2, is the core for all
these features, where the analysis and transformations in
Section 4 are based on the semantics and properties of the
features used.

Loops with primitives and arrays—imperative pro-
gramming. For programs written using loops with prim-
itives and arrays, there are no high-level abstractions for
either data or control.

• Loops already encode ways to iterate, and primitives
and arrays already have direct mappings to hardware
for implementation. So there is little to do for Steps I1
and I3 but to adopt those.

• Step I2 makes expensive computations on primitives
and arrays in loop bodies incremental, using incremen-
talization exploiting properties of primitive operations
and aggregate array computations.
Note that variables holding the values of expensive
computations in loops automatically form loop invari-
ants.

Examples of these transformations include classical
strength reduction that replaces multiplications with addi-
tions [21, 24] for compiler optimization, more general incre-
mentalization for primitives [56, 65] for hardware design,
incrementalizing aggregate array computations [71, 82] for,
e.g., image processing, and incrementalizing more or differ-
ent kinds of aggregate array computations, e.g., [40, 127],
including for probabilistic inference [127].
Note, however, that if the given ways to iterate and im-

plement do not lead to an efficient program, it is generally
too difficult to find better ways to do those, because doing
so requires understanding what the loops are computing at
a higher level, which is an undecidable problem in general.
This is why we advocate higher-level data abstractions in
problem specifications when lower-level details are unnec-
essary.

Set expressions—database programming. For programs
that use expressions over sets, which provide high-level data
abstractions that must be mapped to low-level data struc-
tures, Steps I2 and I3 are essential. The programs may still
use loops or use fixed-point operations over sets. Note that
relations as in relational databases are just sets of tuples,

• Fixed-point operations, if used, are first transformed
into while-loops. Here, Step I1 simply
chooses to iterate at the minimum increment to a set,
i.e, adding or removing a single element.

• Step I2 transforms expensive set expressions in loop
bodies into incremental updates, using auxiliary maps
as needed. Set expressions are so high-level, that a
set of rules for transforming particular kinds of ex-
pressions suffices for excellent results [103, 106]. For
example, for set union𝑢 = 𝑠 ∪ 𝑡 under change 𝑠 ∪= {𝑦},
the rule gives the maintenance 𝑖 𝑓 𝑦 ∉ 𝑡 : 𝑢 ∪= {𝑦}.
A systematic method can also derive such rules auto-
matically [91], following P1-P3 for incrementalization
in Section 4.

• Step I3 designs a combination of linked lists, arrays,
and/or hash tables for all sets, so that each element-
wise operation on a set can be done in constant time.
For example, for various graph traversal algorithms,
this yields adjacency list representation.

These transformations have enabled new and better algo-
rithms to be developed, including those referenced in Sec-
tion 2 andmore, e.g., solving regular tree grammar based con-
straints [69], parametric regular path queries [70], and alias
analysis [45], as well as efficient implementation of tuple-
pattern based retrievals [112] that translate pseudocode al-
gorithms into efficient C++ implementations.
Note, however, that writing appropriate fixed-point ex-

pressions, even though they higher-level than writing while-
loops, is still non-trivial, compared with writing logic rules
with recursion, which is even higher level.

Recursive functions—functional programming. For
programs that use recursive functions, which provide high-
level control abstractions that must be transformed to itera-
tions, Steps I1 and I2 are essential.

• Step I1 determines a minimum increment for iteration,
by selecting arguments of a recursive call that change
minimally from the given function parameters, and
taking the opposite of the change. For example, for
the Fibonacci function 𝑓 𝑖𝑏 (𝑛) whose definition con-
tains calls 𝑓 𝑖𝑏 (𝑛 − 1) and 𝑓 𝑖𝑏 (𝑛 − 2), the increment
for iteration is 𝑛 += 1.

• Step I2 transforms recursive functions into incremental
versions, which are possibly also recursive, exactly by
following P1-P3 for incrementalization in Section 4.

• Step I3 selects recursive or indexed data structures,
i.e., trees or arrays, to store results of function calls:
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Table 1. III method applied to different language features and abstractions

Language features High-level abstractions Applying III steps
loops with primitives and arrays none I2

set expressions data I2, I3
recursive functions control I1, I2

logic rules data, control I1, I2, I3
objects with fields and methods module I2

the latter if the arguments of function calls can take
arbitrary values, and the former otherwise.

These transformations have enabled the systematic deriva-
tion of dynamic programming [72, 75] and transformation
of recursion to iteration [73], with interesting results even
on the well-known smallest functions: factorial, Fibonacci,
and Ackermann [67, Chapter 4].

Note, however, that lists and trees traversed in fixed order
by recursive functions are often unnecessarily lower-level
and thus limiting, compared with logic rules with recursion
over sets.

Logic rules—logic programming. Logic rules provide
both high-level data abstractions and high-level control ab-
stractions, because predicates are simply relations and thus
sets of tuples, and predicates can be defined recursively. All
three Steps I1–I3 are essential for efficient implementations.

• Step I1 first transforms rules into fixed-point opera-
tions over sets following the semantics of the rules,
and then into while-loops that add one inferred fact at
a time.

• Step I2 transforms expensive set expressions in loops,
essentially as for set expressions.

• Step I3 designs data structures for implementing set
operations, essentially as for set expressions.

These transformations have been developed for Datalog [76,
77] supporting also on-demand queries [122, 123] and vari-
ous extensions, e.g., [125], especially including precise time
and space complexity guarantees. They have led to new
and improved algorithms or improved complexities, e.g., for
model checking [52], secure information flow [53], trust
management [54], and pointer analysis [124].

Objects with fields and methods—object-oriented
programming. Finally objects provide module abstraction,
hiding both data and control, in representations of fields
and implementations of methods, respectively. Performing
Step I2 across modular components is essential, because ex-
pensive expressions may depend on data hidden in different
objects.

• Objects encapsulate both control structures, whether
low-level loops or high-level recursion, and data rep-
resentations, whether low-level arrays or high-level
sets. Steps I1 and I3 are generally the same as already

discussed, having little to do for loops and arrays and
transforming within objects for recursion and sets that
are encapsulated.

• Step I2 transforms expensive computations that use
data within the same object as already discussed, and
transforms across objects for expensive computations
using data encapsulated and updated in different ob-
jects [81]. The latter follows the principle that each
object hides its own data and provides methods for
others to observe needed information, and get notified
when changes happen so as to perform incremental
maintenance.

Objects help organize complex applications, and incremen-
talization allows high-level queries to be used and be op-
timized, as discussed for a large electronic health record
system [67, Chapter 6.4] and a robot game [67, Chapter 6.5].
Incrementalization across object abstraction [81] actually
yields the well-known widely used observer pattern [39].
For complex queries over nested objects and sets, a neat
translation into queries over sets of pairs allows incremental
queries to be generated fully automatically [68, 113].

Interestingly, studying concurrent and distributed objects
has led to a high-level languages for distributed algorithms
and a unified semantics for logic rules as discussed in Sec-
tion 6.

6 Conclusion---Raising the Level of
Abstractions

We have discussed that incrementalization is the essence
of incremental computation and, even more importantly,
the core of a systematic method for program design and
optimization, including algorithm design and optimization.

High-level abstractions. The key meta-level observa-
tion is that high-level abstractions enable drastically easier
and more powerful optimization. In particular:

• High-level data abstractions using sets, including re-
lations and predicates, enable high-level declarative
queries, leading to not only efficient incremental main-
tenance of sophisticated database views but also new
and better algorithms for challenging problems in com-
plex applications.
They also obviate unnecessary uses of error-prone
loops and tedious recursion over low-level data.
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• High-level control abstractions using recursion, es-
pecially when used with high-level data abstraction,
allow sophisticated analysis and queries over com-
plex transitive relations to be expressed clearly, and
be implemented efficiently using incrementalization
for fixed-point computations.
They furthermore enable automatic calculation of pre-
cise complexity guarantees that is impossible other-
wise.

• High-level module abstractions using objects, by en-
capsulating both data and control so that all queries
and updates on the data are in the same object, help
make the analysis and transformations more localized.
They also force objects that interact with each other
to follow established patterns for general extensibility.

Most interestingly, because objects can be concurrent and
distributed, studying distributed algorithms has led to the
creation of a powerful language, DistAlgo, for specifying and
programming distributed algorithms at a high level [83, 84],
extending the Python language and compiler. In particular,
expressing distributed algorithms using high-level queries of
message histories reveals substantial need of logic quantifi-
cations; and systematic incrementalization and optimization
for quantifications [83, 84] helped enable the support of high-
level queries in DistAlgo.

Most unexpectedly, efficient implementations of quantifi-
cations further led to the discovery and development of a
unified semantics for logic rules with unrestricted negation,
quantification, and aggregation [78, 80], including knowl-
edge units for using the semantics at scale [79]. The new
semantics not only unifies disagreeing previous semantics
but also is much simpler and exponentially more expressive.
Experiments with examples implemented with optimization
by incrementalization also show superior performance over
the best well-known systems when they can compute correct
answers, and that on some examples, none of those systems
can compute correct answers [80].

Limitation and futurework. Of course systematic incre-
mentalization will not be able to derive all best algorithms,
because it is in general an undecidable problem. However, by
making the design systematic and automated for everything
that can be automated, designers and developers can focus
on truly creative things.

Overall, tremendous effort is needed to support high-level
abstractions in widely-used languages, and implement pow-
erful analysis and transformations in real-world compilers.
The goal is to support rapidly developing algorithms and
generating programs with both correctness and efficiency
guarantees.
Additional technical questions include: Can we raise the

level of abstraction even higher and generate even better
algorithms and programs in better ways? In particular, can

we program with higher-level constraints and derive effi-
cient programs that find desired solutions with complexity
guarantees? Also, can distributed algorithms and programs
be derived systematically from desired global properties?

Practical implementation questions include: How can we
maintain compiler extensions and optimizations when pro-
gram representations in the compiler keep changing? Can
we make practical compiler construction for rich languages
much easier, supporting logic rules for analysis, and trans-
formation rules for optimizations, in an overall powerful
language?
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