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Abstract

Where there are bacteria, there will be bacteriophages. These viruses are known to be
important players in shaping the wider microbial community in which they are embedded,
with potential implications for human health. On the other hand, bacteria possess a range
of distinct immune mechanisms that provide protection against bacteriophages, including
the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive
immunity. While our previous work showed how a microbial community may impact phage
resistance evolution, little is known about the inverse, namely how interactions between
phages and these different phage resistance mechanisms affect the wider microbial
community in which they are embedded. Here, we conducted a 10-day, fully factorial
evolution experiment to examine how phage impact the structure and dynamics of an
artificial four-species bacterial community that includes either Pseudomonas aeruginosa
wild type or an isogenic mutant unable to evolve phage resistance through CRISPR-Cas.
Additionally, we used mathematical modelling to explore the ecological interactions
underlying full community behaviour, as well as to identify general principles governing
the impacts of phage on community dynamics. Our results show that the microbial
community structure is drastically altered by the addition of phage, with Acinetobacter
baumannii becoming the dominant species and P. aeruginosa being driven nearly extinct,
whereas P. aeruginosa outcompetes the other species in the absence of phage.
Moreover, we find that a P. aeruginosa strain with the ability to evolve CRISPR-based
resistance generally does better when in the presence of A. baumannii, but that this
benefit is largely lost over time as phage is driven extinct. Finally, we show that pairwise

data alone is insufficient when modelling our microbial community, both with and without
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phage, highlighting the importance of higher-order interactions in governing multi-species
dynamics in complex communities. Combined, our data clearly illustrate how phage
targeting a dominant species allows for the competitive release of the strongest
competitor whilst also contributing to community diversity maintenance and potentially
preventing the reinvasion of the target species, and underline the importance of mapping

community composition before therapeutically applying phage.

Introduction

Microbiome research is a dynamic and growing field in microbiology, producing an
incredible amount of sequence data from a wide range of clinical and environmental
samples. Humans, for instance, are colonised by a large number of microorganisms and
research continues to implicate microbial communities as potential drivers behind multiple
important biological processes [1-3]. These processes may play important roles in human
health and disease, with some work focusing on correlations based on microbiome
composition [4—8] while other look more closely for direct causality [9-12]. Still, the
challenge to move beyond descriptive and correlative approaches remains, and there is
a need to develop bottom-up mechanistic and quantitative understanding of the forces
acting upon and shaping microbial communities. To this end, synthetic polymicrobial
communities are being designed, and are gaining traction in both pure and applied
microbiome studies [13—16]. Synthetic microbiomes allow for precise and malleable
experimental testing of the basic rules that govern both microbial organisation and

functioning on molecular and ecological scales [17-20], as well as allowing for exploration
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of causal roles connecting specific microbiome structures to potential outcomes of

interest.

Bacteria and their viral predators, bacteriophages (phages), have long been of interest in
microbiological research, in part due to being the most abundant biological entity on the
planet [21,22]. Phages are highly diverse in terms of their morphology, genetics, and life
histories [21,23], with a clear distinction between obligatory killing lytic phages and
temperate phages that can either cause a dormant infection (lysogenic cycle) or cell lysis
to release new phage particles (lytic cycle). Phages are thought to play a key role in
shaping both the taxonomic and functional composition of microbial communities as well
as their stability, ecology and evolution [23—-27]. For example, lytic replication will per
definition cause a reduction in the density of the bacterial host strain or species, which in
turn can have knock-on effects for the microbial community composition through the
enabling of invasion and/or co-existence of competitor species. Despite the large potential
impact of lytic phage, only a very limited number of experimental studies have explored
the ecology and evolution of bacteria-phage interactions in a microbial community context
[28,29], and it remains unclear if and how interactions between different species in more
complex communities shape the effects of lytic phages on microbial eco-evolutionary
dynamics. Consequently, we lack the stepping stones to understand how phages shape
microbial community dynamics (reviewed in [23]), which are urgently needed to
understand potentially causal relationships between natural phage communities and a
variety of human diseases [30-35], and for optimising the therapeutic application of

phages in the clinic.
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A key consideration in this context is that bacteria can overcome phage infection through
a range of different means [36,37], with varied underlying molecular mechanisms and
which can act during different stages of phage infection [38-41]. Through the
modification, masking or complete loss of phage-binding surface receptors for example,
bacteria can prevent phage adsorption and injection [40,42]. Systems such as CRISPR-
Cas on the other hand work by inserting short DNA sequences from phage and other
invasive mobile genetic elements into the host genome to provide future immunological
memory [43]. Unlike CRISPR-based resistance [15], phage resistance through receptor
mutation can be associated with substantial phenotypic shifts and fitness trade-offs,

through changes to virulence [44,45], biofilm formation [46], or antibiotic resistance [47].

While our previous work asked how interspecific competition shapes phage resistance
evolution in P. aeruginosa [15], we here sought to answer the inverse and complimentary
question of how host-phage interactions shape the composition and stability of the wider
microbial community. To this end, we combined exploratory and hypothesis driven
approaches, applying experimental evolution to examine how a phage impacts the
dynamics of an artificial bacterial community. This community consisted of Pseudomonas
aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Burkholderia
cenocepacia, all of which are opportunistic pathogens that can cause severe infection
and may co-infect with one another [48-51]. Firstly, we hypothesised that the addition of
a P. aeruginosa specific phage would promote species coexistence by limiting P.

aeruginosa dominance through competitive release (expansion of phage resistant
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competitors, following removal of phage susceptible competitor) in a way akin to what is
commonly observed with antibiotics [14,52—55]. Secondly, we hypothesised that blocking
the ability of P. aeruginosa to evolve CRISPR-based immunity would reduce P.
aeruginosa persistence due to community dependent fithess costs of surface-
modification [15]. Finally, we asked if we could quantitatively capture community
dynamics using mathematical modelling. We found that the addition of a P. aeruginosa
targeting phage resulted in the general maintenance of community diversity and
coexistence, but also a shift in dominant species from P. aeruginosa to A. baumannii —
with the former being unable to reinvade even after the phage was driven extinct. The
impact of the type of phage resistance was limited or transient, however: While a P.
aeruginosa wild-type with the ability to evolve CRISPR-based phage resistance initially
had a slight fitness advantage in the presence of A. baumannii over its CRISPR-negative

isogenic mutant, this effect was lost over time as the phage was driven extinct.

Results

To measure the effect of phage on microbial community dynamics, we carried out a fully
factorial 10-day in vitro evolution experiment using all possible combinations of one, two,
three or four competitor species: S. aureus, A. baumannii, B. cenocepacia, and P.
aeruginosa PA14 in the presence or absence of lytic phage DMS3vir. We previously
applied the same model community to explore the effect of interspecific competition on
phage resistance evolution in the P. aeruginosa wild-type (WT) over 3 days in the
presence of phage [15]. Here, we include both the WT P. aeruginosa PA14 strain, which

can evolve CRISPR-based phage resistance, and an isogenic mutant lacking a functional
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CRISPR system to examine the impact of CRISPR-Cas vs surface modification on these
dynamics. Following inoculation, we tracked the microbial community dynamics for all
experimental treatments at regular intervals over a period of 10 days. All experiments

were conducted in Lysogeny Broth (LB) at 37°C (see methods for details).

P. aeruginosa dominates in the absence of phage

Without P. aeruginosa present in the community, S. aureus was primarily the dominant
species — with the ability to co-exist with A. baumannii while outcompeting B. cenocepacia
(Figs 1 and S1). This, however, was not reflected once P. aeruginosa was introduced to
the community. In the absence of phage, P. aeruginosa quickly became the dominant
species in the microbial community, regardless of starting composition and the P.
aeruginosa genotype (PA14 WT vs CRISPR-KO) (Figs 2 and S3). Consistent with this,
the densities of the competitor species rapidly declined during these co-culture
experiments (Fig 2). Yet there was a clear difference in the rate at which competitor
species declined in frequency, which was highest for S. aureus and lowest for A.
baumannii (Fig 2, ANOVA: effect of treatment on S. aureus; F = 2.2, p = 0.09 ; overall
model fit; adjusted R? = 0.60, F20,171 = 15.45, p < 2.2 x 10-'6: effect of treatment on A.
baumannii; F = 0.52, p = 0.67; overall model fit; adjusted R? = 0.66, F20,171 = 19.89, p <
2.2 x 107'6: effect of treatment on B. cenocepacia; F = 1.36, p = 0.26; overall model fit;

adjusted R? = 0.69, F20,171=22.45, p < 2.2 x 107°).
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Fig 1. S. aureus and A. baumannii both perform well in the absence of P.
aeruginosa. Showing the community composition and bacterial densities in cfu/mL over
time for the microbial communities in the absence of P. aeruginosa. The community
composition was estimated by qPCR at days 0, 1, 3, 7 and 10 of the experiment. The
coloured bars represent the relative abundance of each species (left y axis), while the
white line represents total abundance in cfu/mL (right y axis). Each panel represents
average composition across six replicates for each treatment over time. SA = S. aureus,
AB = A. baumannii, BC = B. cenocepacia. For individual replicates of species abundance,

see Fig. S1.
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A PA14 WT or B CRISPR-KO mutant. The community composition was estimated by

gPCR atdays 0, 1, 3, 7 and 10 of the experiment. The coloured bars represent the relative

abundance of each species (left y axis), while the white line represents total abundance

in cfu/mL (right y axis). Each panel represents average composition across six replicates

for each treatment over time. PA14 = P. aeruginosa, SA = S. aureus, AB = A. baumannii,

BC = B. cenocepacia, MC = microbial community. For individual replicates of species

abundance, see Fig. S3.
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While the microbial community dynamics were relatively similar for the WT and CRISPR-
KO strains, some significant differences were observed. For example, the densities of the
CRISPR-KO strain were slightly lower in the presence compared to the absence of S.
aureus on its own (Fig 2, linear model: t = 2.048, p = 0.0413; overall model fit; adjusted
R?2=0.21, F36,345=3.77, p < 6.03 x 10-""). Moreover, S. aureus and A. baumannii reached
higher densities in the presence of the PA14 WT compared to the CRISPR-KO strain,
particularly at the earlier timepoints (Fig 2). In contrast to this, densities of B. cenocepacia
over time were similar in the presence of both P. aeruginosa genotypes (Fig 2).
Regardless these minor differences, P. aeruginosa consistently and readily outcompeted
the other community members in the absence of phage, with all three being extinct or
close to extinction by day 10 (Fig 2). For visualisation purposes, the data from Figure 2 is

also presented as an ordination plot (Fig S2).

Phage affects microbial community dynamics

Whereas P. aeruginosa dominated in the absence of phage, we hypothesised this would
change once a PA14 targeting phage (DMS3vir) was introduced, largely by a virulent
phage reducing the susceptible host population, facilitating expansion of other species
through competitive release [14,52-55]. As expected, phage DMS3vir initially reached
high titres due to replication on sensitive P. aeruginosa hosts, followed by a rapid decline
in phage densities due to the evolution of phage resistance, regardless of whether the
host had a functional CRISPR-Cas system or not (Fig 3C). Crucially however, the
presence of phage caused microbial communities to no longer be dominated by P.

aeruginosa, as when compared to the no phage treatments, very few to none of the

10
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experimental repeats had one or more bacterial species go extinct, with A. baumannii
reaching particularly high abundance (Figs 3A, 3B and S5). It is here worth noting that
while B. cenocepacia is not visible at later timepoints in the compositional plot due to low
relative abundance of <0.1 (Fig 3A and 3B), we consistently observed persistence of B.
cenocepacia at an average of ~10* cfu/mL across all treatments (see Fig S4). For
visualisation purposes, the data from Figure 3 is also presented as an ordination plot (Fig

S5).
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3, 7 and 10 of the experiment. The coloured bars represent the relative abundance of
each species (left y axis), while the white line represents total abundance in cfu/mL (right
y axis). Each panel represents average composition across six replicates for each
treatment over time. PA14 = P. aeruginosa, SA = S. aureus, AB = A. baumannii, BC = B.
cenocepacia, MC = Microbial community. For individual replicates of species abundance,
see Fig. S4. C Phage titres for phage DMS3vir over time across all experimental
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cenocepacia, MC = microbial community), infecting either the PA14 WT or the CRISPR-
KO strain as indicated by line type. Each data point represents a replicate, with lines
following the mean and the error bars denoting 95% CI. Asterisks indicate a significant
overall difference in phage density between the PA14 WT (n = 12 per timepoint) or
CRISPR-KO clone (n = 6 per timepoint) (effect of P. aeruginosa clone; linear model: * p

<0.05).
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Interestingly, the PA14 WT generally reached greater relative abundance than the
CRISPR-KO strain when in the presence of A. baumannii, consistently doing so early in
the experiment when phage remained in the population (Figs 3A, 3B and S2). This was
in concordance with P. aeruginosa evolving higher levels of CRISPR-based immunity
against phage DMS3vir in treatments including A. baumannii due to the increased fithess
cost of surface modification (Fig 4 and [15]): At 3 days post infection, there was a
significant effect of all treatments on the proportion of CRISPR-based resistance that had
evolved compared to the PA14 monoculture, but this effect was strongest for treatments
that contained A. baumannii. At timepoint 10 we only found an increased proportion of P.
aeruginosa clones immune through CRISPR-Cas when the treatment included A.
baumannii (GLM; A. baumannii; t = 2.637, p = 0.01; S. aureus and A. baumannii, t =
2.283, p = 0.025; A. baumannii and B. cenocepacia, t = 2.689, p = 0.0087; polyculture, t
= 2.141, p = 0.035). Overall, however, it was evident that mutation of the Type IV pilus
became the dominant resistance mechanism even if P. aeruginosa has a functional
CRISPR system (Fig 4), which might in part be why P. aeruginosa did not recover in the

microbial community post phage exposure due to the associated fithess costs[15].
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The type of evolved phage resistance does not have a knock-

on effect on microbial community dynamics

Phage DMS3vir targets P. aeruginosa’s Type IV pilus (T4P), an important virulence factor
[56]. We have previously shown that the evolution of phage resistance by mutation of the
pilus is associated with large fitness trade-offs in the same microbial community as used
in this study, whereas evolution of CRISPR-based immunity is not associated with any
detectable trade-offs [15]. We therefore predicted that the ability to evolve phage
resistance through CRISPR-Cas would also have knock-on effects for the microbial
community dynamics. However, measurement of the abundance of the competitors
revealed that these were overall largely unaffected by the presence of a functional
CRISPR-Cas immune system in P. aeruginosa with the exception of S. aureus: In the
presence of the P. aeruginosa WT strain, S. aureus densities were significantly lower in
two of the microbial communities compared to the same co-culture experiments with the
CRISPR-KO strain (Figs 3 and S4, Effect of P. aeruginosa clone on S. aureus abundance,
linear model: Treatment S. aureus; t = -2.363, p = 0.0216, adjusted R? = 0.2659, F14,57=
2.837, p = 0.002786; Treatment S. aureus and A. baumannii; t = -2.043, p = 0.0457,

adjusted R? = 0.3867, F1457= 4.198, p = 5.3 x 10°).

A P. aeruginosa targeting phage results in the competitive

release of A. baumannii and general diversity maintenance

We hypothesised that the effect of phage on microbial community structure could largely

be explained by the competitive release (increase in absolute abundance, following
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272 removal of competitor) of A. baumannii, which then takes over to become the dominant
273  species [57]. To assess this, we examined the fold change difference for the final
274  abundance of all three community members in the presence versus absence of phage
275 (Fig 5). Crucially, this revealed a strong increase in A. baumannii density in the presence
276  of a phage, supporting the idea that it becomes the dominant and determinant community
277 member when P. aeruginosa is inhibited by phage (Fig 3). By contrast, when phage was
278 added, S. aureus only experienced a clear fold change increase if it was co-cultured with
279 the CRISPR-KO strain and an additional competitor species. B. cenocepacia meanwhile
280 seemed to be the species with the least benefit of phage, but still with a small fold change

281 increase for some treatments (Fig 5).
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0.01, *** p < 0.001).
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The substantial fold increase in A. baumannii given the presence of phage (Fig 5) reflects
a sustained divergence in the trajectory of A. baumannii in the phage treatments, despite
the attenuation of phage titre by day 7 (Fig 3C). We hypothesised that the lack of P.
aeruginosa rebound after phage clearance was due to a frequency-dependent shift in
competitive dominance. To test this hypothesis, we competed ancestral A. baumannii, S.
aureus and B. cenocepacia against increasingly rare P. aeruginosa challenge, and found
no barrier to P. aeruginosa invasion in pairwise experiments, down to a frequency of 1 in
10,000 cells (Fig 6). This result suggests that the failure of P. aeruginosa to return to
dominance following phage clearance is due to more complex community-mediated

interactions.

Additionally, we tested if it was A. baumannii that could have gained an advantage
through natural selection when competing against P. aeruginosa over time, with phage
allowing A. baumannii to better adapt to the environment and explain the inability of PA14
to reinvade. Yet our data demonstrated that there was no difference in competitive
performance of evolved A. baumannii relative to its ancestral strain, and both the ancestor

and the evolved clonal populations of A. baumannii were outcompeted by the PA14 wild-

type (Fig. 7).
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T10 + ¢ represent competition with clones recovered at 10 days post co-culture with A.
baumannii and phage DMS3vir. Selection rate is the difference of Malthusian growth
parameters of PA14 or A. baumannii against competitor [58,59]. The line at zero indicates
no difference in density change (i.e. both are equally fit). Data shown are the mean + 95%
Cl and individual biological replicates are plotted as symbols (n = 6). ns = not significant,

using one-way ANOVA test for multiple comparison.

22



331

332

333

334

335

336

337

338

339

340

341

342

343

344

To quantitatively assess changes in community diversity, we calculated Shannon diversity
indexes for all experimental treatments. We hypothesised that the addition of phage not
only results in competitive release of one other bacterium (Fig 5), but facilitates general
maintenance of microbial diversity. Plotting these diversity scores over time shows that
without phage there is a rapid loss of diversity over time, whereas community complexity
persists in the presence of phage (Fig 8: ANOVA: PA14 WT effect of phage; F = 27.57, p
= 2.3 x 107; CRISPR-KO effect of phage; F = 89.19, p < 2.2 x 10-'; Overall model fit for
PA14 WT: adjusted R? = 0.64, F3s,465=24.87, p < 2.2 x 10-"6; Overall model fit for CRISPR-
KO: adjusted R? = 0.56, F32,303 = 14.56, p < 2.2 x 10-'6). This was true for treatments for
both P. aeruginosa genotypes, but the trend became most pronounced for the CRISPR-
KO strain when applying direct comparisons using Tukey contrasts, in which case we
found phage to significantly increase diversity over time in nearly all treatments (Fig 8,

indicated by asterisks).
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Fig 8. Shannon diversity over time illustrating the diversity maintaining effects of
phage. The change in diversity over time, illustrated using Shannon diversity indexes, for
both the PA14 WT and CRISPR-KO strains across all treatments (SA = S. aureus, AB =
A. baumannii, BC = B. cenocepacia, MC = microbial community). Data are mean + 95%
Cl, and asterisks indicate a significant difference over time in Shannon diversity between
treatments with phage or no phage (n = 6 per timepoint for all expect the PA14 WT with
phage treatments, where n = 12) (effect of P. aeruginosa clone; linear model with Tukey

contrasts: * p <0.05, ** p <0.01, *** p < 0.001).
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Four species community dynamics are predictable from two

and three species community data, in the absence of phage

Mathematical modelling provides a platform to quantify ecological interactions that
determine community level behaviours, as well as identify rules governing qualitative
system behaviour [60—63]. However, a major challenge in synthetic community research
is developing robust modelling frameworks that are capable of predicting community
dynamics [64]. In a final set of analyses, we sought to parameterise and assess the
predictive performance of generalized Lotka Volterra (gLV) competition equations, trained
on just 2-species data or a combination of 2- and 3-species data. Our results showed that
fitting gLV models with pairwise only datasets led to predictive failures when applied to 3-
or 4-species datasets (Fig S6), consistent with the presence of higher order interactions
effects (when the effect of species A on species B is dependent on the presence of
species C [65]). In contrast, fitting gLV models to 2- and 3-species data and using the
resulting interaction terms to predict 4-species dynamics reasonably fit the data in the

absence of phage (Fig 9; fitted model coefficients are in Fig. S8).
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371 Fig 9. Model for no phage data. Model fit predictions for two-, three-, and full four

372  species community dynamics (solid lines) compared to experimental data (dashed lines)
373  (PA = P. aeruginosa, SA = S. aureus, AB = A. baumannii, BC = B. cenocepacia).

374 Models of 2- and 3- species dynamics were parameterized via optimization with least-
375 squares to fit to a system of ODEs (defined as a generalized Lotka-Volterra competition

376  model with n species, where n=1,2,3,4). Only single species maximal growth rates (r;

26



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

for species i = 1, ..., n) were fixed from fitting mono-culture data, all interaction
coefficients (f; ; describing the inhibitory effect of species j on species i for all i,j = 1,2
in the 2-species case, for all i, j = 1,2,3 in the 3-species case) were open for fitting. We
construct the full 4-species community interaction matrices (one for PA14—shown in
Fig. S8—and one for CRISPR-KO) by averaging corresponding f; ; interaction terms
from the fit 2- and 3- species models (see Text S1), and use this matrix to simulate
dynamics in the respective polyculture cases. See Methods and Text S1 for detailed

description of mathematical modelling.

In the presence of phage (Fig 10), we again utilised the gLV framework where the impact
of phage is implicit (quantified by how interaction coefficients change as compared to the
no-phage case). The gLV model framework could adequately describe 2- and 3-species
data, but the interaction coefficients did not generalise quantitatively to 4-species data —
likely reflecting the structural limitation of a gLV competition model that does not explicitly
capture phage predation dynamics. However, the model parameterised with 1-, 2- and 3-
species data did capture a qualitative shift in ecological outcomes from sole P. aeruginosa
survival to competitive release of A. baumannii and S. aureus when P. aeruginosa is

targeted by phage (Fig S7).
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Fig 10. Model for phage data. Model fit predictions for two-, three-, and full four

species community dynamics (solid lines) in the presence of phage compared to

experimental data (dashed lines) (PA = P. aeruginosa, SA = S. aureus, AB = A.

baumannii, BC = B. cenocepacia). Here, models were parameterized via optimization
with least-squares to fit a system of ODEs (defined as a generalized Lotka-Volterra

competition model with n species, where n=1,2,3,4), where we don’t explicitly track the
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phage population dynamics. Instead, we assume that the phage acts as some external

perturbation that leads to changes in the interactions between community members (f; ;
values differ from values in Fig 9). Only single species maximal growth rates were fixed
from fitting mono-culture data (r; for species i = 1, ..., n), all interaction coefficients were
open for parameterizing 2- and 3- species models (B; ; describing the inhibitory effect of
species j on species i for all i,j = 1,2 for the 2-species case, for all i,j = 1,2,3 for the 3-
species case). We then construct the full 4-species community interaction matrices (one
for PA14 and one for CRISPR-KO) by averaging corresponding g; ; interaction terms
from the fit 3- species models (treatments: PA+AB+SA, PA+BC+SA, PA+AB+BC with
phage), and use this matrix to simulate dynamics in the respective polyculture cases.

See Methods and Text S1 for detailed description of mathematical modelling.

Discussion

The advent of deep sequencing has dramatically increased our knowledge of the
composition and functioning of microbiomes both in and around us. The role of microbial
communities in human health has consequentially received increasing attention, with
research focusing on how changes in microbiome composition over time may affect
human health and define patient outcomes (reviewed in [66]). In addition, an increasing
number of correlational studies find associations between virome composition and the
health status of their host [23,67—70], likely mediated by changes in the microbiome that
could be either cause or effect. A deeper understanding of the impact of phages on
microbiomes is likely to help to infer causal relationships between viromes and human

health, and to design optimal therapeutic phage interventions (phage therapy).
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Here, we expanded on our previous work on how interspecific competition can shape the
evolution of phage resistance in a focal species (P. aeruginosa)[15], to study how the
interaction between phage and bacterial immune mechanisms affects the broader
microbial community dynamics. We found that whereas P. aeruginosa dominated in the
absence of a phage, the presence of phage resulted in microbial diversity maintenance
and A. baumannii becoming the dominant species (Figs 3 and 5). Interestingly, the
competitive release of A. baumannii occurred in all treatments and was virtually
independent of whether P. aeruginosa had a functional CRISPR-Cas immune system or
not. This showed that the amplification of the fitness cost of P. aeruginosa receptor
mutation in the presence of competitor species [15] has limited impact on the overall
community dynamics. Overall, our experimental data align with the notion of phages
having the potential to increase diversity and microbiome stability [27,71,72], and support
the idea that phages can be useful in the designing of synthetic microbial communities
[73]. Surprisingly, our data do not support the hypothesis that bacterial adaptive immune
systems play an important role in phage-mediated microbial community structuring under

the experimental conditions tested here.

Our mathematical analyses focused on the ability of generalised Lotka-Volterra (gLV)
models to predict community dynamics. While our analyses showed reasonable
predictive success when incorporating 3-species data, we note that our analyses pose
two distinct questions: (1) how can we provide more accurate predictions? (2) what

general lessons can we draw from our model analyses?
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In agreement with a growing number of gLV-based analyses, we found that a simple
‘bottom up’ model fitting approach (fitting single species growth, then all pairwise
interactions, then predicting larger system behaviour [14]) performed poorly, indicating
the presence of significant higher order interactions [65,74,75]. Consistent with this
conclusion, we found that allowing pairwise interactions to vary (contingent on the
presence of a third species) produced both qualitative and quantitative improvements in
predicting community dynamics (Figs 9 and 10). In the presence of phage, our model
successfully predicted the qualitative result of A. baumannii competitive release, but failed
to quantitatively replicate observed community dynamics (Fig 10). This quantitative failure
suggests that our underlying gLV model structure (the dominant framework in microbiome
modelling studies [61,71,76]) excludes critical components, such as higher order and/or
heterogeneous (in time or space) interactions as well as the explicit predatory effect of
phage on P. aeruginosa (also likely time and spatially dependent). Additionally, it
emphasises an ongoing need in microbiome modelling to evaluate functional forms that
can efficiently — with respect to parameter number — and accurately capture the

complexities of community dynamics.

Our parameterised models are tuned to the data generated by our specific 4-species
community, which raises the question of ‘can we learn more general lessons from our
model?’ If we simplify our analysis to a 2-species context (focal pathogen, subject to
phage, plus a second, non-focal species), we can translate recent analyses on the impact

of (antibiotic) perturbations in a two species context [55]. This approach delivers a couple
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of general messages. First, we can provide a general mathematical definition of
‘competitive release’ mediated by phage predation (see Text S1) highlighting the
importance of both demographic and species interaction parameters. Second, we can
underline that phage control of a focal pathogen presents secondary ecological problems,
if the pathogen is competing with other pathogens that are not targeted by the phage. In
this scenario, phage therapy (or other ‘narrow spectrum’ treatment) can lead to
competitive release of previously rare pathogens, as seen in our experimental data
showing the replacement of P. aeruginosa by A. baumannii, following phage treatment.
These results imply that ‘narrow spectrum’ anti-microbials, such as phages, may not
always be the best option when multiple pathogen species are competing within a single
polymicrobial infection. One counter-intuitive suggestion, grounded in the idea of
‘beneficial resistance’ [55], is to co-administer probiotic competitors that are resistant to
the treatment (i.e. phage or antibiotic resistant) and can therefore continue to exert
ecological suppression on the focal pathogen during the course of treatment, while
presenting minimal direct risk of disease. Alternatively, one could apply phage cocktails
that target not just the dominant pathogen, but also other co-existing bacterial pathogens,

to pre-emptively prevent their invasion.

Materials and Methods

Bacteria and phages

The bacteria P. aeruginosa UCBPP-PA14 strain marked with streptomycin resistance,
the PA14 csy3::LacZ strain (CRISPR-KO), and phages DMS3vir and DMS3vir+acrF1

were used throughout this study and have all been previously described [77,78]. The
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microbial community consisted of S. aureus strain 13 S44 S9 and A. baumannii clinical
isolate FZ21 which were isolated at Queen Astrid Military Hospital, Brussels, Belgium,
while B. cenocepacia J2315 was originally isolated from a person with cystic fibrosis in

the UK in 1989 and was provided by Queen Astrid Military Hospital, Brussels, Belgium.

Evolution experiment

The evolution experiment was performed by inoculating 60 ul from overnight cultures, that
were grown for 24 hours, into glass microcosms containing 6 ml fresh LB medium (60 pl
of culture containing ca. 10° cfu). All polyculture mixes were prepared so that P.
aeruginosa made up approximately 25% of the total inoculation volume (15 pl of 60 pl),
with the rest being made up of one or equal amounts of the microbial community bacteria.
In all monoculture controls, P. aeruginosa was diluted in LB medium to adjust starting
densities for consistency across all treatments (n = 6 per treatment, unless indicated
otherwise). Phage DMS3vir was added at 10° pfu. prior to inoculation. The experiment
ran for ten days, with transfers of 1:100 into fresh LB medium being done every 24 hours.
Throughout the experiment, the bacterial mixtures were grown at 37°C and shaking at
180 r.p.m. Phage titres were monitored daily, and plaque counts were determined using
chloroform-treated lysate dilutions which were spotted onto lawns of P. aeruginosa
csy::LacZ. To determine which mechanism of phage-resistance had evolved, 24
randomly selected clones per treatment replica from timepoints 3 and 10 were analysed
using methods as detailed in Westra et al. 2015 [78]: In brief, whether and how bacteria
evolved phage resistance was done by doing cross-streak assays on phages DMS3vir

and DMS3virt+acrF1, as well as PCR, on 24 random clones from each replicate
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experiment for both the PA14 and CRISPR-KO treatments. Further sequencing of
receptor mutants was not done due to a clear morphological difference associated with
modifications to the Type IV pilus, as well as mutants with the same evolved morphology

from similar experiments having previously been sequenced [79].

DNA extraction and qPCR

Bacterial densities, for both PA14 strains and the other individual microbial community
bacteria, were determined using DNA extractions followed by qPCR analyses. DNA
extractions were done using the DNeasy UltraClean Microbial Kit (Qiagen), following
instructions from the manufacturer, but with an additional pre-extraction step where
samples were treated with 15 pl lysostaphin (Sigma) at 0.1 mg ml' as previously
described [15] to ensure lysis of S. aureus. The qPCR primers for P. aeruginosa, A.
baumannii, and B. cenocepacia were the same as in Alseth et al. [15], whereas the S.
aureus primers used are previously described [80]. All reactions were done in triplicates,
using Brilliant SYBR Green reagents (Agilent) and the Applied Biosystems QuantStudio
7 Flex Real-Time PCR system. For reaction mixture and details on PCR programme, see
ref. [15]. Bacterial cfu/mL were calculated from the quantities obtained by the standard
curve method, adjusting for gene copy number (4, 1, 6, and 6, for P. aeruginosa, S.

aureus, A. baumannii, and B. cenocepacia respectively).

Competition experiments

All strains were grown overnight at 37°C with agitation in 30 ml glass universals containing

6 ml of LB medium. For pairwise competition assays, bacteria from overnight cultures
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were mixed thoroughly at different starting densities of PA14 (i.e., for 50% starting density
of P. aeruginosa we would mix 30 ul of PA14 + 30 ul of competitor strain) and a total of
60 pl inoculated into 6 ml of LB (each treatment contained n = 6 biological replicates).
Bacteria were grown for 24 hours in a shaking incubator at 180 r.p.m at 37°C. Samples
of 500 ul were taken at 0 and 24 hours post competition and mixed with equal volume of
60% glycerol and stored at -70°C until further DNA extraction and qPCR analysis to

quantify species densities.

To assess the competitive fitness of evolved clones from the 10-day evolution experiment
with and without phage DMS3vir we performed time-shift competition assays. Briefly,
500uL of glycerol stock from each microcosm (n = 6 per treatment) were plated onto
selective media (Cetrimide agar (Invitrogen) for PA14 selection and LB agar
supplemented with 50 pg/mL of gentamicin to select for A. baumannii) and 6 randomly
selected colonies from each replicate of indicated treatment/timepoint were pooled and
inoculated overnight in 6 mL of LB medium at 37°C with agitation (n = 6 per treatment,
unless indicated otherwise). In parallel, 6 colonies from the ancestral strains were pooled
and subject to the same overnight growth conditions. After 24h of growth, competition

assay and sample treatments were performed as described above.

To determine the competitive performance of the focal species relative to competitor
strain we used the selection rate (r), defined as the difference in Malthusian parameters
as follows: r = ( In[density strain A at day t/density strain A at t-1] — In[density strain B at

day t/density strain B at t—1])/day) [58,59]. The data used for these calculations were the
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bacterial quantities (cfu/mL) as estimated by gPCR as explained above, with two technical

replicates per assay.

Mathematical modelling

Models were parameterized via optimization with least-squares regression to fit the
generalized Lotka-Volterra competition model, % =1;N; — X7=1 BijN;N;, where N;(t) is
the density of the ith species, r; is the respective single species maximal growth rate, f;;

describes the per capita effect of species j on species i, and n is the total number of
species. We take a ‘bottom up’ approach [81] to determine the interaction coefficients f; ;.
In all cases, we determine single species maximal growth rates r; from mono-culture time
series data and fix them for 2-, 3-, and 4-species model parameterization. Initially, we fit
pairwise interaction coefficients for all possible 2-species co-cultures and from here,
construct an interaction matrix to predict the dynamics for the 3- and 4- species
communities (Fig S6). This is done for both PA14 and CRISPR-KO strains, with and
without phage, where phage effects are implicitly represented by changes in interaction
parameters between the models with and without phage. To improve results, we
additionally fit pairwise interaction parameters pij using 3-species experimental data
where all interaction parameters are open (only growth rates fixed). Using either the
resulting interaction terms or averaging these coefficients with the 2-species coefficients
(in PA14 no phage case, Text S1), we are again able to construct an interaction matrix to

predict 4-species community dynamics (Fig 9 and 10).
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See Text S1 for further description of above model parameterization methods, simulation
methods (Fig S7), and mathematical analysis of phage dependent competitive release.
All modelling and analysis was done using Matlab 2021b and the code is publicly available

at: https://github.com/GaTechBrownLab/phage-community-dynamics.qit.

Statistical analyses

Analysis of the effects of the various species compositions on P. aeruginosa densities in
the absence (Fig 2) or presence (Fig 3) of phage were done using a generalised linear
model (GLM) approach, with log10 cfu/mL set as the response variable. The explanatory
variables used in the analyses were type of PA14 clone (PA14 WT or CRISPR-KO),
treatment, timepoint, replica, and experimental repeat to account for potential pseudo-
replication.

To explore the impact of interspecific competition on the evolution of phage resistance at
timepoints 3 and 10 (Fig 4), we used a quasibinomial GLM where the proportion of
evolved CRISPR-based phage resistance was the response variable, and treatment,
replica, and experimental repeat were the explanatory variables.

The analyses of fold-changes to assess competitive release by comparing absolute
density differences of the individual community members in the absence v presence of
phage (Fig 5; S. aureus, A. baumannii, and B. cenocepacia) was done through Wilcox
signed rank exact tests. A non-parametric test was chosen after performing a Shapiro-
Wilk test for normality.

Next, the diversity maintaining effects were examined through assessing the effect of

phage DMS3vir on Shannon Diversity index scores over time (Fig 8). This was done
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through a linear model where the Shannon Diversity index score (H) was the response
variable, and treatment, timepoint, the presence of phage, PA14 clone (PA14WT and
CRISPR-KO), experimental repeat, and replica were the explanatory variables. Shannon
Diversity (H), was calculated as H = -%pi * In(pi), where Z is the sum and piis the proportion
of the entire community made up of species i.

For the competition assay (Fig 6 and Fig 7), Graphpad Prism9 software (San Diego, CA)
was used for statistical analysis. We used one-way ANOVA with Tukey post hoc testing
for multiple comparisons, in which, p < 0.05 was considered statistically significant.
Throughout the paper, pairwise comparisons were done using the Emmeans package
[82], and model fits were assessed using Chi-squared tests and by comparing Akaike
information criterion (AIC) values, as well as plotting residuals and probability distributions
using histograms and quantile-quantile plots (Q-Q plots) respectively. All statistical
analyses were done using R version 4.3.0. [83], its built-in methods, and the Tidyverse

package version 2.0.0 [84]. All data is available at: 10.6084/m9.figshare.24187284.
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Supplemental Fig 1. Line plot of bacterial densities in the absence of P. aeruginosa
and its phage. Showing the bacterial densities in cfu/mL over time for SA (S. aureus),
AB (A. baumannii), and BC (B. cenocepacia) in various co-culture combinations in the
absence of P. aeruginosa and its phage. Dashed horizontal line at 102 cfu/mL marks the
threshold of reliable detection where the gPCR results indicate the bacteria has gone or

is close to extinction from a population. Data are mean £ 95% CI.

Supplemental Fig 2. Ordination plot in the absence of phage. PCA ordination of
relative bacterial abundance in the absence of phage DMS3vir, with grid layouts
separated into days post phage infection. Outer circle colour indicates which PA14 clone
is present in the population, while inner circle indicates community composition (SA = S.

aureus, AB = A. baumannii, BC = B. cenocepacia).

Supplemental Fig 3. Line plots of bacterial densities in the absence of phage.
Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO P.
aeruginosa strains, and b the other microbial community species (SA = S. aureus, AB =
A. baumannii, BC = B. cenocepacia, MC = microbial community) in the absence of phage
DMS3vir. Dashed horizontal line at 102 cfu/mL marks the threshold of reliable detection
where the gPCR results indicate the bacteria has gone or is close to extinction from a

population. Data are mean £ 95% CI.

Supplemental Fig 4. Line plots of bacterial densities in the presence of phage.

Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO P.

46



891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

aeruginosa strains, and b the other microbial community species (SA = S. aureus, AB =
A. baumannii, BC = B. cenocepacia, MC = Microbial community) in the presence of phage
DMS3vir. Dashed horizontal line at 102 cfu/mL marks the threshold of reliable detection
where the qPCR results indicate the bacteria has gone or is close to extinction from a

population. Data are mean + 95% CI.

Supplemental Fig 5. Ordination plots in the presence of phage. PCA ordination of
relative bacterial abundance in the presence of phage DMS3vir, with grid layouts
separated into days post phage infection. Outer circle colour indicates which PA14 clone
is present in the population, while inner circle indicates community composition (SA = S.

aureus, AB = A. baumannii, BC = B. cenocepacia).

Supplemental Fig 6. Model from no phage data, trained on only pairwise
experimental data. Model fit predictions for two-, three-, and full four species community
dynamics (solid lines) compared to experimental data (dashed lines) (PA = P. aeruginosa,
SA = S. aureus, AB = A. baumannii, BC = B. cenocepacia). Models were parameterized
via optimization with least-squares to fit a system of ODEs (defined as a generalized
Lotka-Volterra competition model with n species, where n=1,2,3,4). We parameterize the
models via fitting of 1- (for growth rates r;) and 2- (for all possible pairwise interaction
coefficients g; ; Vi, j = 1,2) species dynamics and use the resulting coefficients to predict
the 3- and 4-species community dynamics. For fitting co-culture data, growth rates r; were

fixed from mono-culture data and interaction parameters g; ; were all open. See Methods

and Text S1 for a detailed description of mathematical modelling.
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Supplemental Fig 7. Long time simulation of full community model shows shift in
ecological outcomes given inclusion of phage. Simulation of the 4-species community
gLV model over a long time scale reveals a qualitative shift in the outcome of the
community when phage is present (PA = P. aeruginosa, SA = S. aureus, AB = A.
baumannii, BC = B. cenocepacia). In the absence of phage (top), P. aeruginosa is the
dominant competitor and only surviving species. In the presence of phage (bottom), the
dominant competitor is eliminated, and we see competitive release of A. baumannii and
S. aureus — maintaining 2 of the 3 non-targeted species in the community. Growth and
interaction coefficients for simulation are from the model fits in Figures 9 and 10, and are
shown for the wild-type PA14, no phage case (top left) in Fig. S8. For a detailed
description of model parameterization and simulation methods, see Methods and Text

S1.

Supplemental Fig 8. Inferred interaction coefficients for the fitted gLV model describing
full community dynamics, using 2- and 3-species experimental data with wildtype PA14
in the absence of phage (Fig. 9) (PA = P. aeruginosa, SA = S. aureus, AB = A. baumannii,
BC = B. cenocepacia). Heat map depicts p; ; coefficients (also labelled) scaled by P.
aeruginosa intraspecific competition (8, ; = 1.2617 x 1078, top left) corresponding to the
wildtype PA14 case in Fig. 9 (see Fig. 9, Methods, and Text S1 for a description of model
fitting methods). The x-axis represents species j (the actor) and the y-axis represents

species i (the recipient) where g; ; describes the per capita inhibitory effect of species j
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on species i. Colour bar ranges from neutral (or no) interaction (5; ; = 0, white) to strong

inhibition (red).
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