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Abstract 19 

Where there are bacteria, there will be bacteriophages. These viruses are known to be 20 

important players in shaping the wider microbial community in which they are embedded, 21 

with potential implications for human health. On the other hand, bacteria possess a range 22 

of distinct immune mechanisms that provide protection against bacteriophages, including 23 

the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive 24 

immunity. While our previous work showed how a microbial community may impact phage 25 

resistance evolution, little is known about the inverse, namely how interactions between 26 

phages and these different phage resistance mechanisms affect the wider microbial 27 

community in which they are embedded. Here, we conducted a 10-day, fully factorial 28 

evolution experiment to examine how phage impact the structure and dynamics of an 29 

artificial four-species bacterial community that includes either Pseudomonas aeruginosa 30 

wild type or an isogenic mutant unable to evolve phage resistance through CRISPR-Cas. 31 

Additionally, we used mathematical modelling to explore the ecological interactions 32 

underlying full community behaviour, as well as to identify general principles governing 33 

the impacts of phage on community dynamics. Our results show that the microbial 34 

community structure is drastically altered by the addition of phage, with Acinetobacter 35 

baumannii becoming the dominant species and P. aeruginosa being driven nearly extinct, 36 

whereas P. aeruginosa outcompetes the other species in the absence of phage. 37 

Moreover, we find that a P. aeruginosa strain with the ability to evolve CRISPR-based 38 

resistance generally does better when in the presence of A. baumannii, but that this 39 

benefit is largely lost over time as phage is driven extinct. Finally, we show that pairwise 40 

data alone is insufficient when modelling our microbial community, both with and without 41 
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phage, highlighting the importance of higher-order interactions in governing multi-species 42 

dynamics in complex communities. Combined, our data clearly illustrate how phage 43 

targeting a dominant species allows for the competitive release of the strongest 44 

competitor whilst also contributing to community diversity maintenance and potentially 45 

preventing the reinvasion of the target species, and underline the importance of mapping 46 

community composition before therapeutically applying phage. 47 

 48 

Introduction 49 

Microbiome research is a dynamic and growing field in microbiology, producing an 50 

incredible amount of sequence data from a wide range of clinical and environmental 51 

samples. Humans, for instance, are colonised by a large number of microorganisms and 52 

research continues to implicate microbial communities as potential drivers behind multiple 53 

important biological processes [1–3]. These processes may play important roles in human 54 

health and disease, with some work focusing on correlations based on microbiome 55 

composition [4–8] while other look more closely for direct causality [9–12]. Still, the 56 

challenge to move beyond descriptive and correlative approaches remains, and there is 57 

a need to develop bottom-up mechanistic and quantitative understanding of the forces 58 

acting upon and shaping microbial communities. To this end, synthetic polymicrobial 59 

communities are being designed, and are gaining traction in both pure and applied 60 

microbiome studies [13–16]. Synthetic microbiomes allow for precise and malleable 61 

experimental testing of the basic rules that govern both microbial organisation and 62 

functioning on molecular and ecological scales [17–20], as well as allowing for exploration 63 
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of causal roles connecting specific microbiome structures to potential outcomes of 64 

interest. 65 

 66 

Bacteria and their viral predators, bacteriophages (phages), have long been of interest in 67 

microbiological research, in part due to being the most abundant biological entity on the 68 

planet [21,22]. Phages are highly diverse in terms of their morphology, genetics, and life 69 

histories [21,23], with a clear distinction between obligatory killing lytic phages and 70 

temperate phages that can either cause a dormant infection (lysogenic cycle) or cell lysis 71 

to release new phage particles (lytic cycle). Phages are thought to play a key role in 72 

shaping both the taxonomic and functional composition of microbial communities as well 73 

as their stability, ecology and evolution [23–27]. For example, lytic replication will per 74 

definition cause a reduction in the density of the bacterial host strain or species, which in 75 

turn can have knock-on effects for the microbial community composition through the 76 

enabling of invasion and/or co-existence of competitor species. Despite the large potential 77 

impact of lytic phage, only a very limited number of experimental studies have explored 78 

the ecology and evolution of bacteria-phage interactions in a microbial community context 79 

[28,29], and it remains unclear if and how interactions between different species in more 80 

complex communities shape the effects of lytic phages on microbial eco-evolutionary 81 

dynamics. Consequently, we lack the stepping stones to understand how phages shape 82 

microbial community dynamics (reviewed in [23]), which are urgently needed to 83 

understand potentially causal relationships between natural phage communities and a 84 

variety of human diseases [30–35], and for optimising the therapeutic application of 85 

phages in the clinic. 86 
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 87 

A key consideration in this context is that bacteria can overcome phage infection through 88 

a range of different means [36,37], with varied underlying molecular mechanisms and 89 

which can act during different stages of phage infection [38–41]. Through the 90 

modification, masking or complete loss of phage-binding surface receptors for example, 91 

bacteria can prevent phage adsorption and injection [40,42]. Systems such as CRISPR-92 

Cas on the other hand work by inserting short DNA sequences from phage and other 93 

invasive mobile genetic elements into the host genome to provide future immunological 94 

memory [43]. Unlike CRISPR-based resistance [15], phage resistance through receptor 95 

mutation can be associated with substantial phenotypic shifts and fitness trade-offs, 96 

through changes to virulence [44,45], biofilm formation [46], or antibiotic resistance [47]. 97 

 98 

While our previous work asked how interspecific competition shapes phage resistance 99 

evolution in P. aeruginosa [15], we here sought to answer the inverse and complimentary 100 

question of how host-phage interactions shape the composition and stability of the wider 101 

microbial community. To this end, we combined exploratory and hypothesis driven 102 

approaches, applying experimental evolution to examine how a phage impacts the 103 

dynamics of an artificial bacterial community. This community consisted of Pseudomonas 104 

aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Burkholderia 105 

cenocepacia, all of which are opportunistic pathogens that can cause severe infection 106 

and may co-infect with one another [48–51]. Firstly, we hypothesised that the addition of 107 

a P. aeruginosa specific phage would promote species coexistence by limiting P. 108 

aeruginosa dominance through competitive release (expansion of phage resistant 109 
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competitors, following removal of phage susceptible competitor) in a way akin to what is 110 

commonly observed with antibiotics [14,52–55]. Secondly, we hypothesised that blocking 111 

the ability of P. aeruginosa to evolve CRISPR-based immunity would reduce P. 112 

aeruginosa persistence due to community dependent fitness costs of surface-113 

modification [15]. Finally, we asked if we could quantitatively capture community 114 

dynamics using mathematical modelling. We found that the addition of a P. aeruginosa 115 

targeting phage resulted in the general maintenance of community diversity and 116 

coexistence, but also a shift in dominant species from P. aeruginosa to A. baumannii – 117 

with the former being unable to reinvade even after the phage was driven extinct. The 118 

impact of the type of phage resistance was limited or transient, however: While a P. 119 

aeruginosa wild-type with the ability to evolve CRISPR-based phage resistance initially 120 

had a slight fitness advantage in the presence of A. baumannii over its CRISPR-negative 121 

isogenic mutant, this effect was lost over time as the phage was driven extinct. 122 

 123 

Results 124 

To measure the effect of phage on microbial community dynamics, we carried out a fully 125 

factorial 10-day in vitro evolution experiment using all possible combinations of one, two, 126 

three or four competitor species: S. aureus, A. baumannii, B. cenocepacia, and P. 127 

aeruginosa PA14 in the presence or absence of lytic phage DMS3vir. We previously 128 

applied the same model community to explore the effect of interspecific competition on 129 

phage resistance evolution in the P. aeruginosa wild-type (WT) over 3 days in the 130 

presence of phage [15]. Here, we include both the WT P. aeruginosa PA14 strain, which 131 

can evolve CRISPR-based phage resistance, and an isogenic mutant lacking a functional 132 
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CRISPR system to examine the impact of CRISPR-Cas vs surface modification on these 133 

dynamics. Following inoculation, we tracked the microbial community dynamics for all 134 

experimental treatments at regular intervals over a period of 10 days. All experiments 135 

were conducted in Lysogeny Broth (LB) at 37˚C (see methods for details). 136 

 137 

P. aeruginosa dominates in the absence of phage 138 

Without P. aeruginosa present in the community, S. aureus was primarily the dominant 139 

species – with the ability to co-exist with A. baumannii while outcompeting B. cenocepacia 140 

(Figs 1 and S1). This, however, was not reflected once P. aeruginosa was introduced to 141 

the community. In the absence of phage, P. aeruginosa quickly became the dominant 142 

species in the microbial community, regardless of starting composition and the P. 143 

aeruginosa genotype (PA14 WT vs CRISPR-KO) (Figs 2 and S3). Consistent with this, 144 

the densities of the competitor species rapidly declined during these co-culture 145 

experiments (Fig 2). Yet there was a clear difference in the rate at which competitor 146 

species declined in frequency, which was highest for S. aureus and lowest for A. 147 

baumannii (Fig 2, ANOVA: effect of treatment on S. aureus; F = 2.2, p = 0.09 ; overall 148 

model fit; adjusted R2 = 0.60, F20,171 = 15.45, p < 2.2 x 10-16: effect of treatment on A. 149 

baumannii; F = 0.52, p = 0.67; overall model fit; adjusted R2 = 0.66, F20,171 = 19.89, p < 150 

2.2 x 10-16: effect  of treatment on B. cenocepacia; F = 1.36, p = 0.26; overall model fit; 151 

adjusted R2 = 0.69, F20,171 = 22.45, p < 2.2 x 10-16). 152 



 8 

 153 

Fig 1. S. aureus and A. baumannii both perform well in the absence of P. 154 

aeruginosa. Showing the community composition and bacterial densities in cfu/mL over 155 

time for the microbial communities in the absence of P. aeruginosa. The community 156 

composition was estimated by qPCR at days 0, 1, 3, 7 and 10 of the experiment. The 157 

coloured bars represent the relative abundance of each species (left y axis), while the 158 

white line represents total abundance in cfu/mL (right y axis). Each panel represents 159 

average composition across six replicates for each treatment over time. SA = S. aureus, 160 

AB = A. baumannii, BC = B. cenocepacia. For individual replicates of species abundance, 161 

see Fig. S1. 162 
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 163 

Fig 2. Pseudomonas aeruginosa becomes the dominant species in the absence of 164 

phage. Showing the community composition and bacterial densities in cfu/mL over time 165 

for the microbial communities in the absence of phage for the communities with either the 166 

A PA14 WT or B CRISPR-KO mutant. The community composition was estimated by 167 

qPCR at days 0, 1, 3, 7 and 10 of the experiment. The coloured bars represent the relative 168 

abundance of each species (left y axis), while the white line represents total abundance 169 

in cfu/mL (right y axis). Each panel represents average composition across six replicates 170 

for each treatment over time. PA14 = P. aeruginosa, SA = S. aureus, AB = A. baumannii, 171 

BC = B. cenocepacia, MC = microbial community. For individual replicates of species 172 

abundance, see Fig. S3.  173 
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While the microbial community dynamics were relatively similar for the WT and CRISPR-174 

KO strains, some significant differences were observed. For example, the densities of the 175 

CRISPR-KO strain were slightly lower in the presence compared to the absence of S. 176 

aureus on its own (Fig 2, linear model: t = 2.048, p = 0.0413; overall model fit; adjusted 177 

R2 = 0.21, F36,345 = 3.77, p < 6.03 x 10-11). Moreover, S. aureus and A. baumannii reached 178 

higher densities in the presence of the PA14 WT compared to the CRISPR-KO strain, 179 

particularly at the earlier timepoints (Fig 2). In contrast to this, densities of B. cenocepacia 180 

over time were similar in the presence of both P. aeruginosa genotypes (Fig 2). 181 

Regardless these minor differences, P. aeruginosa consistently and readily outcompeted 182 

the other community members in the absence of phage, with all three being extinct or 183 

close to extinction by day 10 (Fig 2). For visualisation purposes, the data from Figure 2 is 184 

also presented as an ordination plot (Fig S2). 185 

 186 

Phage affects microbial community dynamics 187 

Whereas P. aeruginosa dominated in the absence of phage, we hypothesised this would 188 

change once a PA14 targeting phage (DMS3vir) was introduced, largely by a virulent 189 

phage reducing the susceptible host population, facilitating expansion of other species 190 

through competitive release [14,52–55]. As expected, phage DMS3vir initially reached 191 

high titres due to replication on sensitive P. aeruginosa hosts, followed by a rapid decline 192 

in phage densities due to the evolution of phage resistance, regardless of whether the 193 

host had a functional CRISPR-Cas system or not (Fig 3C). Crucially however, the 194 

presence of phage caused microbial communities to no longer be dominated by P. 195 

aeruginosa, as when compared to the no phage treatments, very few to none of the 196 
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experimental repeats had one or more bacterial species go extinct, with A. baumannii 197 

reaching particularly high abundance (Figs 3A, 3B and S5). It is here worth noting that 198 

while B. cenocepacia is not visible at later timepoints in the compositional plot due to low 199 

relative abundance of <0.1 (Fig 3A and 3B), we consistently observed persistence of B. 200 

cenocepacia at an average of ~104 cfu/mL across all treatments (see Fig S4). For 201 

visualisation purposes, the data from Figure 3 is also presented as an ordination plot (Fig 202 

S5). 203 

  204 



 12 

 205 

Fig 3. Phage allows for the maintenance of all microbial community members, with 206 

A. baumannii becoming the new dominant species.  Showing the community 207 

composition and bacterial densities in cfu/mL over time for the microbial communities in 208 

the absence of phage for the communities with either the A PA14 WT or B CRISPR-KO 209 

mutant. For A and B, the community composition was estimated by qPCR at days 0, 1, 210 
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3, 7 and 10 of the experiment. The coloured bars represent the relative abundance of 211 

each species (left y axis), while the white line represents total abundance in cfu/mL (right 212 

y axis). Each panel represents average composition across six replicates for each 213 

treatment over time. PA14 = P. aeruginosa, SA = S. aureus, AB = A. baumannii, BC = B. 214 

cenocepacia, MC = Microbial community. For individual replicates of species abundance, 215 

see Fig. S4. C Phage titres for phage DMS3vir over time across all experimental 216 

treatments (PA = P. aeruginosa, SA = S. aureus, AB = A. baumannii, BC = B. 217 

cenocepacia, MC = microbial community), infecting either the PA14 WT or the CRISPR-218 

KO strain as indicated by line type. Each data point represents a replicate, with lines 219 

following the mean and the error bars denoting 95% CI. Asterisks indicate a significant 220 

overall difference in phage density between the PA14 WT (n = 12 per timepoint) or 221 

CRISPR-KO clone (n = 6 per timepoint) (effect of P. aeruginosa clone; linear model: * p 222 

< 0.05). 223 

  224 
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Interestingly, the PA14 WT generally reached greater relative abundance than the 225 

CRISPR-KO strain when in the presence of A. baumannii, consistently doing so early in 226 

the experiment when phage remained in the population (Figs 3A, 3B and S2). This was 227 

in concordance with P. aeruginosa evolving higher levels of CRISPR-based immunity 228 

against phage DMS3vir in treatments including A. baumannii due to the increased fitness 229 

cost of surface modification (Fig 4 and [15]): At 3 days post infection, there was a 230 

significant effect of all treatments on the proportion of CRISPR-based resistance that had 231 

evolved compared to the PA14 monoculture, but this effect was strongest for treatments 232 

that contained A. baumannii. At timepoint 10 we only found an increased proportion of P. 233 

aeruginosa clones immune through CRISPR-Cas when the treatment included A. 234 

baumannii (GLM; A. baumannii; t = 2.637, p = 0.01; S. aureus and A. baumannii, t = 235 

2.283, p = 0.025; A. baumannii and B. cenocepacia, t = 2.689, p = 0.0087; polyculture, t 236 

= 2.141, p = 0.035). Overall, however, it was evident that mutation of the Type IV pilus 237 

became the dominant resistance mechanism even if P. aeruginosa has a functional 238 

CRISPR system (Fig 4), which might in part be why P. aeruginosa did not recover in the 239 

microbial community post phage exposure due to the associated fitness costs[15].  240 
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 241 

Fig 4. Interspecific competition affects the proportion of evolved CRISPR-based 242 

phage resistance. Proportion of P. aeruginosa PA14 WT at timepoints 3 and 10 that 243 

evolved phage-resistance either through surface modification (SM) or CRISPR immunity, 244 

or which remained sensitive to phage DMS3vir when grown in monoculture or different 245 

polycultures (SA = S. aureus, AB = A. baumannii, BC = B. cenocepacia). Data are mean 246 

± SE. Asterisks indicate a significant difference in proportion of CRISPR immunity evolved 247 

when compared to the PA14 monoculture within each timepoint (n = 12 per treatment) 248 

(generalised linear model, quasibinomial: * p < 0.05, ** p < 0.01, *** p < 0.001). 249 
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The type of evolved phage resistance does not have a knock-250 

on effect on microbial community dynamics 251 

Phage DMS3vir targets P. aeruginosa’s Type IV pilus (T4P), an important virulence factor 252 

[56]. We have previously shown that the evolution of phage resistance by mutation of the  253 

pilus  is associated with large fitness trade-offs in the same microbial community as used 254 

in this study, whereas evolution of CRISPR-based immunity is not associated with any 255 

detectable trade-offs [15]. We therefore predicted that the ability to evolve phage 256 

resistance through CRISPR-Cas would also have knock-on effects for the microbial 257 

community dynamics. However, measurement of the abundance of the competitors 258 

revealed that these were overall largely unaffected by the presence of a functional 259 

CRISPR-Cas immune system in P. aeruginosa with the exception of S. aureus: In the 260 

presence of the P. aeruginosa WT strain, S. aureus densities were significantly lower in 261 

two of the microbial communities compared to the same co-culture experiments with the 262 

CRISPR-KO strain (Figs 3 and S4, Effect of P. aeruginosa clone on S. aureus abundance, 263 

linear model: Treatment S. aureus; t = -2.363, p = 0.0216, adjusted R2 = 0.2659, F14,57= 264 

2.837, p = 0.002786; Treatment S. aureus and A. baumannii; t = -2.043, p = 0.0457, 265 

adjusted R2 = 0.3867, F14,57= 4.198, p = 5.3 x 10-5).  266 

 267 

A P. aeruginosa targeting phage results in the competitive 268 

release of A. baumannii and general diversity maintenance  269 

We hypothesised that the effect of phage on microbial community structure could largely 270 

be explained by the competitive release (increase in absolute abundance, following 271 
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removal of competitor) of A. baumannii, which then takes over to become the dominant 272 

species [57]. To assess this, we examined the fold change difference for the final 273 

abundance of all three community members in the presence versus absence of phage 274 

(Fig 5). Crucially, this revealed a strong increase in A. baumannii density in the presence 275 

of a phage, supporting the idea that it becomes the dominant and determinant community 276 

member when P. aeruginosa is inhibited by phage (Fig 3). By contrast, when phage was 277 

added, S. aureus only experienced a clear fold change increase if it was co-cultured with 278 

the CRISPR-KO strain and an additional competitor species. B. cenocepacia meanwhile 279 

seemed to be the species with the least benefit of phage, but still with a small fold change 280 

increase for some treatments (Fig 5). 281 
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 282 

Fig 5. Fold change between no phage and phage treatments at the end of the 283 

experiment. The fold change difference of the individual community species not targeted 284 

by phage when comparing absolute densities in the presence of phage to the absence at 285 

the final experimental timepoint. Asterisks indicate higher final absolute density in the 286 

presence versus absence of phage (Wilcoxon signed rank exact test: * p < 0.05, ** p < 287 

0.01, *** p < 0.001). 288 
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The substantial fold increase in A. baumannii given the presence of phage (Fig 5) reflects 290 

a sustained divergence in the trajectory of A. baumannii in the phage treatments, despite 291 

the attenuation of phage titre by day 7 (Fig 3C). We hypothesised that the lack of P. 292 

aeruginosa rebound after phage clearance was due to a frequency-dependent shift in 293 

competitive dominance. To test this hypothesis, we competed ancestral A. baumannii, S. 294 

aureus and B. cenocepacia against increasingly rare P. aeruginosa challenge, and found 295 

no barrier to P. aeruginosa invasion in pairwise experiments, down to a frequency of 1 in 296 

10,000 cells (Fig 6). This result suggests that the failure of P. aeruginosa to return to 297 

dominance following phage clearance is due to more complex community-mediated 298 

interactions. 299 

 300 

Additionally, we tested if it was A. baumannii that could have gained an advantage 301 

through natural selection when competing against P. aeruginosa over time, with phage 302 

allowing A. baumannii to better adapt to the environment and explain the inability of PA14 303 

to reinvade. Yet our data demonstrated that there was no difference in competitive 304 

performance of evolved A. baumannii relative to its ancestral strain, and both the ancestor 305 

and the evolved clonal populations of A. baumannii were outcompeted by the PA14 wild-306 

type (Fig. 7). 307 
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 308 

Fig 6. P. aeruginosa can invade from low initial frequency against all community 309 

members.  310 

Showing P. aeruginosa density in cfu/mL from competition experiments between PA14 311 

wild-type with variable starting densities against either S. aureus (SA), A. baumannii (AB) 312 

or B. cenocepacia (BC). The species densities were estimated by qPCR at time-point 0 313 

and 24 h post co-culture. Box plots show the median, 25th and 75th percentile, and the 314 

interquartile range. Raw values from each biological replicate are shown as points (n= 6 315 

per pairwise competition). 316 
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 317 

Fig 7 | P. aeruginosa and A. baumannii fitness levels remained unaffected during 318 

the 10-day evolution experiment. A Selection rate [58,59] of evolved and ancestral 319 

PA14 (PA = P. aeruginosa) in pairwise competition with the A. baumannii wild-type. B 320 

Selection rate of evolved and ancestral A. baumannii (AB = A. baumannii) in pairwise 321 

competition with wild-type PA14. Ancestor represent wild-type strain; T3 and T3 + φ 322 

correspond to clones recovered at 3 days post co-culture from 10-day evolution 323 

experiment with PA14 and A. baumannii without or with DMS3vir phage, respectively; 324 

0.01% 50.00%

Anc
es

tor T3

T3 +
 Φ

T10
 + 
Φ

Anc
es

tor T3

T3 +
 Φ

T10
 + 
Φ

0.0

2.5

5.0

7.5

10.0

12.5

P. aeruginosa

S
el

ec
tio

n 
ra

te
 o

f P
A

A

0.01% 50.00%

Anc
es

tor T3

T3 +
 Φ

T10
 + Φ

Anc
es

tor T3

T3 +
 Φ

T10
 + 
Φ

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

A. baumannii

Se
le

ct
io

n 
ra

te
 o

f A
B

B

P. aeruginosa starting percentage

P. aeruginosa starting percentage

ns

ns

ns

ns



 22 

T10 + φ represent competition with clones recovered at 10 days post co-culture with A. 325 

baumannii and phage DMS3vir. Selection rate is the difference of Malthusian growth 326 

parameters of PA14 or A. baumannii against competitor [58,59]. The line at zero indicates 327 

no difference in density change (i.e. both are equally fit). Data shown are the mean ± 95% 328 

CI and individual biological replicates are plotted as symbols (n = 6). ns = not significant, 329 

using one-way ANOVA test for multiple comparison.  330 



 23 

To quantitatively assess changes in community diversity, we calculated Shannon diversity 331 

indexes for all experimental treatments. We hypothesised that the addition of phage not 332 

only results in competitive release of one other bacterium (Fig 5), but facilitates general 333 

maintenance of microbial diversity. Plotting these diversity scores over time shows that 334 

without phage there is a rapid loss of diversity over time, whereas community complexity 335 

persists in the presence of phage (Fig 8: ANOVA: PA14 WT effect of phage; F = 27.57, p 336 

= 2.3 x 10-7; CRISPR-KO effect of phage; F = 89.19, p < 2.2 x 10-16; Overall model fit for 337 

PA14 WT: adjusted R2 = 0.64, F38,465 = 24.87, p < 2.2 x 10-16; Overall model fit for CRISPR-338 

KO: adjusted R2 = 0.56, F32,303 = 14.56, p < 2.2 x 10-16). This was true for treatments for 339 

both P. aeruginosa genotypes, but the trend became most pronounced for the CRISPR-340 

KO strain when applying direct comparisons using Tukey contrasts, in which case we 341 

found phage to significantly increase diversity over time in nearly all treatments (Fig 8, 342 

indicated by asterisks). 343 

 344 
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 345 

Fig 8. Shannon diversity over time illustrating the diversity maintaining effects of 346 

phage. The change in diversity over time, illustrated using Shannon diversity indexes, for 347 

both the PA14 WT and CRISPR-KO strains across all treatments (SA = S. aureus, AB = 348 

A. baumannii, BC = B. cenocepacia, MC = microbial community). Data are mean ± 95% 349 

CI, and asterisks indicate a significant difference over time in Shannon diversity between 350 

treatments with phage or no phage (n = 6 per timepoint for all expect the PA14 WT with 351 

phage treatments, where n = 12) (effect of P. aeruginosa clone; linear model with Tukey 352 

contrasts: * p < 0.05, ** p < 0.01, *** p < 0.001). 353 
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 354 

Four species community dynamics are predictable from two 355 

and three species community data, in the absence of phage 356 

Mathematical modelling provides a platform to quantify ecological interactions that 357 

determine community level behaviours, as well as identify rules governing qualitative 358 

system behaviour [60–63]. However, a major challenge in synthetic community research 359 

is developing robust modelling frameworks that are capable of predicting community 360 

dynamics [64]. In a final set of analyses, we sought to parameterise and assess the 361 

predictive performance of generalized Lotka Volterra (gLV) competition equations, trained 362 

on just 2-species data or a combination of 2- and 3-species data. Our results showed that 363 

fitting gLV models with pairwise only datasets led to predictive failures when applied to 3- 364 

or 4-species datasets (Fig S6), consistent with the presence of higher order interactions 365 

effects (when the effect of species A on species B is dependent on the presence of 366 

species C [65]). In contrast, fitting gLV models to 2- and 3-species data and using the 367 

resulting interaction terms to predict 4-species dynamics reasonably fit the data in the 368 

absence of phage (Fig 9; fitted model coefficients are in Fig. S8). 369 
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 370 

Fig 9. Model for no phage data. Model fit predictions for two-, three-, and full four 371 

species community dynamics (solid lines) compared to experimental data (dashed lines) 372 

(PA = P. aeruginosa, SA = S. aureus, AB = A. baumannii, BC = B. cenocepacia). 373 

Models of 2- and 3- species dynamics were parameterized via optimization with least-374 

squares to fit to a system of ODEs (defined as a generalized Lotka-Volterra competition 375 

model with n species, where n=1,2,3,4). Only single species maximal growth rates (𝑟𝑖 376 
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for species 𝑖 = 1, … , 𝑛) were fixed from fitting mono-culture data, all interaction 377 

coefficients (𝛽𝑖,𝑗 describing the inhibitory effect of species 𝑗 on species 𝑖 for all 𝑖, 𝑗 = 1,2 378 

in the 2-species case, for all 𝑖, 𝑗 = 1,2,3 in the 3-species case) were open for fitting. We 379 

construct the full 4-species community interaction matrices (one for PA14—shown in 380 

Fig. S8—and one for CRISPR-KO) by averaging corresponding 𝛽𝑖,𝑗 interaction terms 381 

from the fit 2- and 3- species models (see Text S1), and use this matrix to simulate 382 

dynamics in the respective polyculture cases. See Methods and Text S1 for detailed 383 

description of mathematical modelling.  384 

 385 

In the presence of phage (Fig 10), we again utilised the gLV framework where the impact 386 

of phage is implicit (quantified by how interaction coefficients change as compared to the 387 

no-phage case). The gLV model framework could adequately describe 2- and 3-species 388 

data, but the interaction coefficients did not generalise quantitatively to 4-species data – 389 

likely reflecting the structural limitation of a gLV competition model that does not explicitly 390 

capture phage predation dynamics. However, the model parameterised with 1-, 2- and 3-391 

species data did capture a qualitative shift in ecological outcomes from sole P. aeruginosa 392 

survival to competitive release of A. baumannii and S. aureus when P. aeruginosa is 393 

targeted by phage (Fig S7). 394 
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 395 

Fig 10. Model for phage data. Model fit predictions for two-, three-, and full four 396 

species community dynamics (solid lines) in the presence of phage compared to 397 

experimental data (dashed lines) (PA = P. aeruginosa, SA = S. aureus, AB = A. 398 

baumannii, BC = B. cenocepacia). Here, models were parameterized via optimization 399 

with least-squares to fit a system of ODEs (defined as a generalized Lotka-Volterra 400 

competition model with n species, where n=1,2,3,4), where we don’t explicitly track the 401 
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phage population dynamics. Instead, we assume that the phage acts as some external 402 

perturbation that leads to changes in the interactions between community members (𝛽𝑖,𝑗 403 

values differ from values in Fig 9). Only single species maximal growth rates were fixed 404 

from fitting mono-culture data (𝑟𝑖 for species 𝑖 = 1, … , 𝑛), all interaction coefficients were 405 

open for parameterizing 2- and 3- species models (𝛽𝑖,𝑗 describing the inhibitory effect of 406 

species 𝑗 on species 𝑖 for all 𝑖, 𝑗 = 1,2 for the 2-species case, for all 𝑖, 𝑗 = 1,2,3 for the 3-407 

species case). We then construct the full 4-species community interaction matrices (one 408 

for PA14 and one for CRISPR-KO) by averaging corresponding 𝛽𝑖,𝑗 interaction terms 409 

from the fit 3- species models (treatments: PA+AB+SA, PA+BC+SA, PA+AB+BC with 410 

phage), and use this matrix to simulate dynamics in the respective polyculture cases. 411 

See Methods and Text S1 for detailed description of mathematical modelling. 412 

 413 

Discussion 414 

The advent of deep sequencing has dramatically increased our knowledge of the 415 

composition and functioning of microbiomes both in and around us. The role of microbial 416 

communities in human health has consequentially received increasing attention, with 417 

research focusing on how changes in microbiome composition over time may affect 418 

human health and define patient outcomes (reviewed in [66]). In addition, an increasing 419 

number of correlational studies find associations between virome composition and the 420 

health status of their host [23,67–70], likely mediated by changes in the microbiome that 421 

could be either cause or effect. A deeper understanding of the impact of phages on 422 

microbiomes is likely to help to infer causal relationships between viromes and human 423 

health, and to design optimal therapeutic phage interventions (phage therapy). 424 
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 425 

Here, we expanded on our previous work on how interspecific competition can shape the 426 

evolution of phage resistance in a focal species (P. aeruginosa)[15], to study how the 427 

interaction between phage and bacterial immune mechanisms affects the broader 428 

microbial community dynamics. We found that whereas P. aeruginosa dominated in the 429 

absence of a phage, the presence of phage resulted in microbial diversity maintenance 430 

and A. baumannii becoming the dominant species (Figs 3 and 5). Interestingly, the 431 

competitive release of A. baumannii occurred in all treatments and was virtually 432 

independent of whether P. aeruginosa had a functional CRISPR-Cas immune system or 433 

not. This showed that the amplification of the fitness cost of P. aeruginosa receptor 434 

mutation in the presence of competitor species [15] has limited impact on the overall 435 

community dynamics. Overall, our experimental data align with the notion of phages 436 

having the potential to increase diversity and microbiome stability [27,71,72], and support 437 

the idea that phages can be useful in the designing of synthetic microbial communities 438 

[73]. Surprisingly, our data do not support the hypothesis that bacterial adaptive immune 439 

systems play an important role in phage-mediated microbial community structuring under 440 

the experimental conditions tested here. 441 

 442 

Our mathematical analyses focused on the ability of generalised Lotka-Volterra (gLV) 443 

models to predict community dynamics. While our analyses showed reasonable 444 

predictive success when incorporating 3-species data, we note that our analyses pose 445 

two distinct questions: (1) how can we provide more accurate predictions? (2) what 446 

general lessons can we draw from our model analyses?  447 
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 448 

In agreement with a growing number of gLV-based analyses, we found that a simple 449 

‘bottom up’ model fitting approach (fitting single species growth, then all pairwise 450 

interactions, then predicting larger system behaviour [14]) performed poorly, indicating 451 

the presence of significant higher order interactions [65,74,75]. Consistent with this 452 

conclusion, we found that allowing pairwise interactions to vary (contingent on the 453 

presence of a third species) produced both qualitative and quantitative improvements in 454 

predicting community dynamics (Figs 9 and 10). In the presence of phage, our model 455 

successfully predicted the qualitative result of A. baumannii competitive release, but failed 456 

to quantitatively replicate observed community dynamics (Fig 10). This quantitative failure 457 

suggests that our underlying gLV model structure (the dominant framework in microbiome 458 

modelling studies [61,71,76]) excludes critical components, such as higher order and/or 459 

heterogeneous (in time or space) interactions as well as the explicit predatory effect of 460 

phage on P. aeruginosa (also likely time and spatially dependent). Additionally, it 461 

emphasises an ongoing need in microbiome modelling to evaluate functional forms that 462 

can efficiently – with respect to parameter number – and accurately capture the 463 

complexities of community dynamics. 464 

 465 

Our parameterised models are tuned to the data generated by our specific 4-species 466 

community, which raises the question of ‘can we learn more general lessons from our 467 

model?’ If we simplify our analysis to a 2-species context (focal pathogen, subject to 468 

phage, plus a second, non-focal species), we can translate recent analyses on the impact 469 

of (antibiotic) perturbations in a two species context [55]. This approach delivers a couple 470 
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of general messages. First, we can provide a general mathematical definition of 471 

‘competitive release’ mediated by phage predation (see Text S1) highlighting the 472 

importance of both demographic and species interaction parameters. Second, we can 473 

underline that phage control of a focal pathogen presents secondary ecological problems, 474 

if the pathogen is competing with other pathogens that are not targeted by the phage. In 475 

this scenario, phage therapy (or other ‘narrow spectrum’ treatment) can lead to 476 

competitive release of previously rare pathogens, as seen in our experimental data 477 

showing the replacement of P. aeruginosa by A. baumannii, following phage treatment. 478 

These results imply that ‘narrow spectrum’ anti-microbials, such as phages, may not 479 

always be the best option when multiple pathogen species are competing within a single 480 

polymicrobial infection. One counter-intuitive suggestion, grounded in the idea of 481 

‘beneficial resistance’ [55], is to co-administer probiotic competitors that are resistant to 482 

the treatment (i.e. phage or antibiotic resistant) and can therefore continue to exert 483 

ecological suppression on the focal pathogen during the course of treatment, while 484 

presenting minimal direct risk of disease. Alternatively, one could apply phage cocktails 485 

that target not just the dominant pathogen, but also other co-existing bacterial pathogens, 486 

to pre-emptively prevent their invasion. 487 

 488 

Materials and Methods 489 

Bacteria and phages 490 

The bacteria P. aeruginosa UCBPP-PA14 strain marked with streptomycin resistance, 491 

the PA14 csy3::LacZ strain (CRISPR-KO), and phages DMS3vir and DMS3vir+acrF1 492 

were used throughout this study and have all been previously described [77,78]. The 493 
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microbial community consisted of S. aureus strain 13 S44 S9 and A. baumannii clinical 494 

isolate FZ21 which were isolated at Queen Astrid Military Hospital, Brussels, Belgium, 495 

while B. cenocepacia J2315 was originally isolated from a person with cystic fibrosis in 496 

the UK in 1989 and was provided by Queen Astrid Military Hospital, Brussels, Belgium. 497 

 498 

Evolution experiment 499 

The evolution experiment was performed by inoculating 60 µl from overnight cultures, that 500 

were grown for 24 hours, into glass microcosms containing 6 ml fresh LB medium (60 µl 501 

of culture containing ca. 106 cfu). All polyculture mixes were prepared so that P. 502 

aeruginosa made up approximately 25% of the total inoculation volume (15 µl of 60 µl), 503 

with the rest being made up of one or equal amounts of the microbial community bacteria. 504 

In all monoculture controls, P. aeruginosa was diluted in LB medium to adjust starting 505 

densities for consistency across all treatments (n = 6 per treatment, unless indicated 506 

otherwise). Phage DMS3vir was added at 106 pfu. prior to inoculation. The experiment 507 

ran for ten days, with transfers of 1:100 into fresh LB medium being done every 24 hours. 508 

Throughout the experiment, the bacterial mixtures were grown at 37°C and shaking at 509 

180 r.p.m. Phage titres were monitored daily, and plaque counts were determined using 510 

chloroform-treated lysate dilutions which were spotted onto lawns of P. aeruginosa 511 

csy::LacZ. To determine which mechanism of phage-resistance had evolved, 24 512 

randomly selected clones per treatment replica from timepoints 3 and 10 were analysed 513 

using methods as detailed in Westra et al. 2015 [78]: In brief, whether and how bacteria 514 

evolved phage resistance was done by doing cross-streak assays on phages DMS3vir 515 

and DMS3vir+acrF1, as well as PCR, on 24 random clones from each replicate 516 
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experiment for both the PA14 and CRISPR-KO treatments. Further sequencing of 517 

receptor mutants was not done due to a clear morphological difference associated with 518 

modifications to the Type IV pilus, as well as mutants with the same evolved morphology 519 

from similar experiments having previously been sequenced [79]. 520 

 521 

DNA extraction and qPCR 522 

Bacterial densities, for both PA14 strains and the other individual microbial community 523 

bacteria, were determined using DNA extractions followed by qPCR analyses. DNA 524 

extractions were done using the DNeasy UltraClean Microbial Kit (Qiagen), following 525 

instructions from the manufacturer, but with an additional pre-extraction step where 526 

samples were treated with 15 µl lysostaphin (Sigma) at 0.1 mg ml-1 as previously 527 

described [15] to ensure lysis of S. aureus. The qPCR primers for P. aeruginosa, A. 528 

baumannii, and B. cenocepacia were the same as in Alseth et al. [15], whereas the S. 529 

aureus primers used are previously described [80]. All reactions were done in triplicates, 530 

using Brilliant SYBR Green reagents (Agilent) and the Applied Biosystems QuantStudio 531 

7 Flex Real-Time PCR system. For reaction mixture and details on PCR programme, see 532 

ref. [15]. Bacterial cfu/mL were calculated from the quantities obtained by the standard 533 

curve method, adjusting for gene copy number (4, 1, 6, and 6, for P. aeruginosa, S. 534 

aureus, A. baumannii, and B. cenocepacia respectively). 535 

 536 

Competition experiments 537 

All strains were grown overnight at 37ºC with agitation in 30 ml glass universals containing 538 

6 ml of LB medium. For pairwise competition assays, bacteria from overnight cultures 539 
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were mixed thoroughly at different starting densities of PA14 (i.e., for 50% starting density 540 

of P. aeruginosa we would mix 30 µl of PA14 + 30 µl of competitor strain) and a total of 541 

60 µl inoculated into 6 ml of LB (each treatment contained n = 6 biological replicates). 542 

Bacteria were grown for 24 hours in a shaking incubator at 180 r.p.m at 37ºC. Samples 543 

of 500 µl were taken at 0 and 24 hours post competition and mixed with equal volume of 544 

60% glycerol and stored at -70ºC until further DNA extraction and qPCR analysis to 545 

quantify species densities.  546 

 547 

To assess the competitive fitness of evolved clones from the 10-day evolution experiment 548 

with and without phage DMS3vir we performed time-shift competition assays. Briefly, 549 

500µL of glycerol stock from each microcosm (n = 6 per treatment) were plated onto 550 

selective media (Cetrimide agar (Invitrogen) for PA14 selection and LB agar 551 

supplemented with 50 µg/mL of gentamicin to select for A. baumannii) and 6 randomly 552 

selected colonies from each replicate of indicated treatment/timepoint were pooled and 553 

inoculated overnight in 6 mL of LB medium at 37˚C with agitation (n = 6 per treatment, 554 

unless indicated otherwise). In parallel, 6 colonies from the ancestral strains were pooled 555 

and subject to the same overnight growth conditions. After 24h of growth, competition 556 

assay and sample treatments were performed as described above. 557 

 558 

To determine the competitive performance of the focal species relative to competitor 559 

strain we used the selection rate (r), defined as the difference in Malthusian parameters 560 

as follows: r = ( ln[density strain A at day t/density strain A at t−1] – ln[density strain B at 561 

day t/density strain B at t−1])/day) [58,59]. The data used for these calculations were the 562 
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bacterial quantities (cfu/mL) as estimated by qPCR as explained above, with two technical 563 

replicates per assay.  564 

 565 

Mathematical modelling  566 

Models were parameterized via optimization with least-squares regression to fit the 567 

generalized Lotka-Volterra competition model, 𝑑𝑁𝑖
𝑑𝑡

= 𝑟𝑖𝑁𝑖 − ∑ 𝛽𝑖𝑗𝑁𝑖𝑁𝑗
𝑛
𝑗=1 , where 𝑁𝑖(𝑡) is 568 

the density of the 𝑖th species, 𝑟𝑖 is the respective single species maximal growth rate, 𝛽𝑖𝑗 569 

describes the per capita effect of species 𝑗 on species 𝑖, and 𝑛 is the total number of 570 

species. We take a ‘bottom up’ approach [81] to determine the interaction coefficients 𝛽𝑖,𝑗. 571 

In all cases, we determine single species maximal growth rates 𝑟𝑖 from mono-culture time 572 

series data and fix them for 2-, 3-, and 4-species model parameterization. Initially, we fit 573 

pairwise interaction coefficients for all possible 2-species co-cultures and from here, 574 

construct an interaction matrix to predict the dynamics for the 3- and 4- species 575 

communities (Fig S6). This is done for both PA14 and CRISPR-KO strains, with and 576 

without phage, where phage effects are implicitly represented by changes in interaction 577 

parameters between the models with and without phage. To improve results, we 578 

additionally fit pairwise interaction parameters 𝛽𝑖,𝑗 using 3-species experimental data 579 

where all interaction parameters are open (only growth rates fixed). Using either the 580 

resulting interaction terms or averaging these coefficients with the 2-species coefficients 581 

(in PA14 no phage case, Text S1), we are again able to construct an interaction matrix to 582 

predict 4-species community dynamics (Fig 9 and 10).  583 

 584 
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See Text S1 for further description of above model parameterization methods, simulation 585 

methods (Fig S7), and mathematical analysis of phage dependent competitive release. 586 

All modelling and analysis was done using Matlab 2021b and the code is publicly available 587 

at: https://github.com/GaTechBrownLab/phage-community-dynamics.git.   588 

 589 

Statistical analyses 590 

Analysis of the effects of the various species compositions on P. aeruginosa densities in 591 

the absence (Fig 2) or presence (Fig 3) of phage were done using a generalised linear 592 

model (GLM) approach, with log10 cfu/mL set as the response variable. The explanatory 593 

variables used in the analyses were type of PA14 clone (PA14 WT or CRISPR-KO), 594 

treatment, timepoint, replica, and experimental repeat to account for potential pseudo-595 

replication. 596 

To explore the impact of interspecific competition on the evolution of phage resistance at 597 

timepoints 3 and 10 (Fig 4), we used a quasibinomial GLM where the proportion of 598 

evolved CRISPR-based phage resistance was the response variable, and treatment, 599 

replica, and experimental repeat were the explanatory variables. 600 

The analyses of fold-changes to assess competitive release by comparing absolute 601 

density differences of the individual community members in the absence v presence of 602 

phage (Fig 5; S. aureus, A. baumannii, and B. cenocepacia) was done through Wilcox 603 

signed rank exact tests. A non-parametric test was chosen after performing a Shapiro-604 

Wilk test for normality. 605 

Next, the diversity maintaining effects were examined through assessing the effect of 606 

phage DMS3vir on Shannon Diversity index scores over time (Fig 8). This was done 607 

https://github.com/GaTechBrownLab/phage-community-dynamics.git
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through a linear model where the Shannon Diversity index score (H) was the response 608 

variable, and treatment, timepoint, the presence of phage, PA14 clone (PA14WT and 609 

CRISPR-KO), experimental repeat, and replica were the explanatory variables. Shannon 610 

Diversity (H), was calculated as H = -Σpi * ln(pi), where Σ is the sum and pi is the proportion 611 

of the entire community made up of species i. 612 

For the competition assay (Fig 6 and Fig 7), Graphpad Prism9 software (San Diego, CA) 613 

was used for statistical analysis. We used one-way ANOVA with Tukey post hoc testing 614 

for multiple comparisons, in which, p < 0.05 was considered statistically significant. 615 

Throughout the paper, pairwise comparisons were done using the Emmeans package 616 

[82], and model fits were assessed using Chi-squared tests and by comparing Akaike 617 

information criterion (AIC) values, as well as plotting residuals and probability distributions 618 

using histograms and quantile-quantile plots (Q-Q plots) respectively. All statistical 619 

analyses were done using R version 4.3.0. [83], its built-in methods, and the Tidyverse 620 

package version 2.0.0 [84]. All data is available at: 10.6084/m9.figshare.24187284. 621 
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Supplemental Fig 1. Line plot of bacterial densities in the absence of P. aeruginosa 868 

and its phage. Showing the bacterial densities in cfu/mL over time for SA (S. aureus), 869 

AB (A. baumannii), and BC (B. cenocepacia) in various co-culture combinations in the 870 

absence of P. aeruginosa and its phage. Dashed horizontal line at 102 cfu/mL marks the 871 

threshold of reliable detection where the qPCR results indicate the bacteria has gone or 872 

is close to extinction from a population. Data are mean ± 95% CI. 873 

 874 

Supplemental Fig 2. Ordination plot in the absence of phage. PCA ordination of 875 

relative bacterial abundance in the absence of phage DMS3vir, with grid layouts 876 

separated into days post phage infection. Outer circle colour indicates which PA14 clone 877 

is present in the population, while inner circle indicates community composition (SA = S. 878 

aureus, AB = A. baumannii, BC = B. cenocepacia). 879 

 880 

Supplemental Fig 3. Line plots of bacterial densities in the absence of phage. 881 

Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO P. 882 

aeruginosa strains, and b the other microbial community species (SA = S. aureus, AB = 883 

A. baumannii, BC = B. cenocepacia, MC = microbial community) in the absence of phage 884 

DMS3vir. Dashed horizontal line at 102 cfu/mL marks the threshold of reliable detection 885 

where the qPCR results indicate the bacteria has gone or is close to extinction from a 886 

population. Data are mean ± 95% CI. 887 

 888 

Supplemental Fig 4. Line plots of bacterial densities in the presence of phage. 889 

Showing the bacterial densities in cfu/mL over time for the PA14 WT and CRISPR-KO P. 890 
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aeruginosa strains, and b the other microbial community species (SA = S. aureus, AB = 891 

A. baumannii, BC = B. cenocepacia, MC = Microbial community) in the presence of phage 892 

DMS3vir. Dashed horizontal line at 102 cfu/mL marks the threshold of reliable detection 893 

where the qPCR results indicate the bacteria has gone or is close to extinction from a 894 

population. Data are mean ± 95% CI. 895 

 896 

Supplemental Fig 5. Ordination plots in the presence of phage. PCA ordination of 897 

relative bacterial abundance in the presence of phage DMS3vir, with grid layouts 898 

separated into days post phage infection. Outer circle colour indicates which PA14 clone 899 

is present in the population, while inner circle indicates community composition (SA = S. 900 

aureus, AB = A. baumannii, BC = B. cenocepacia). 901 

 902 

Supplemental Fig 6. Model from no phage data, trained on only pairwise 903 

experimental data. Model fit predictions for two-, three-, and full four species community 904 

dynamics (solid lines) compared to experimental data (dashed lines) (PA = P. aeruginosa, 905 

SA = S. aureus, AB = A. baumannii, BC = B. cenocepacia). Models were parameterized 906 

via optimization with least-squares to fit a system of ODEs (defined as a generalized 907 

Lotka-Volterra competition model with n species, where n=1,2,3,4). We parameterize the 908 

models via fitting of 1- (for growth rates 𝑟𝑖) and 2- (for all possible pairwise interaction 909 

coefficients 𝛽𝑖,𝑗 ∀𝑖, 𝑗 = 1,2) species dynamics and use the resulting coefficients to predict 910 

the 3- and 4-species community dynamics. For fitting co-culture data, growth rates 𝑟𝑖 were 911 

fixed from mono-culture data and interaction parameters 𝛽𝑖,𝑗 were all open. See Methods 912 

and Text S1 for a detailed description of mathematical modelling. 913 
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 914 

Supplemental Fig 7. Long time simulation of full community model shows shift in 915 

ecological outcomes given inclusion of phage. Simulation of the 4-species community 916 

gLV model over a long time scale reveals a qualitative shift in the outcome of the 917 

community when phage is present (PA = P. aeruginosa, SA = S. aureus, AB = A. 918 

baumannii, BC = B. cenocepacia). In the absence of phage (top), P. aeruginosa is the 919 

dominant competitor and only surviving species. In the presence of phage (bottom), the 920 

dominant competitor is eliminated, and we see competitive release of A. baumannii and 921 

S. aureus – maintaining 2 of the 3 non-targeted species in the community. Growth and 922 

interaction coefficients for simulation are from the model fits in Figures 9 and 10, and are 923 

shown for the wild-type PA14, no phage case (top left) in Fig. S8. For a detailed 924 

description of model parameterization and simulation methods, see Methods and Text 925 

S1. 926 

 927 

Supplemental Fig 8. Inferred interaction coefficients for the fitted gLV model describing 928 

full community dynamics, using 2- and 3-species experimental data with wildtype PA14 929 

in the absence of phage (Fig. 9) (PA = P. aeruginosa, SA = S. aureus, AB = A. baumannii, 930 

BC = B. cenocepacia). Heat map depicts 𝛽𝑖,𝑗 coefficients (also labelled) scaled by P. 931 

aeruginosa intraspecific competition (𝛽1,1 = 1.2617 × 10−8, top left) corresponding to the 932 

wildtype PA14 case in Fig. 9 (see Fig. 9, Methods, and Text S1 for a description of model 933 

fitting methods). The 𝑥-axis represents species 𝑗 (the actor) and the 𝑦-axis represents 934 

species 𝑖 (the recipient) where 𝛽𝑖,𝑗 describes the per capita inhibitory effect of species 𝑗 935 
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on species 𝑖. Colour bar ranges from neutral (or no) interaction (𝛽𝑖,𝑗 = 0, white) to strong 936 

inhibition (red). 937 


