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Drag for wall-bounded flows is directly related to flux of spanwise vorticity outward from the
wall. In turbulent flows a key contribution arises from wall normal vorticity flux by nonlinear
advection and stretching of vorticity, which can also be interpreted as a cascade. We study
this process using numerical simulation data of turbulent channel flow at Re, = 1000. The
net transfer from the wall of fresh spanwise vorticity created by downstream pressure drop
is due to two large opposing fluxes, one which is “down-gradient” or outward from the wall,
where most vorticity concentrates, and the other which is “up-gradient” or toward the wall
and acting against strong viscous diffusion in the near-wall region. We present evidence that
the up-gradient transport occurs by a mechanism of correlated inflow and spanwise vortex
stretching that was proposed by Lighthill. This mechanism is essentially Lagrangian, but
we explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence
for the mechanism we study (i) statistical correlations of the wall-normal velocity and
of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra that identify eddies
involved in nonlinear vorticity transport in the two opposing directions, and (iii) visualizations
of coherent vortex structures which contribute dominantly to the transport. The “D-type”
vortices contributing dominantly to down-gradient transport in the log-layer are found to
be attached, hairpin-type vortices. However, the “U-type” vortices contributing dominantly
to up-gradient transport are detached, wall-parallel, pancake-shaped vortices with strong
spanwise vorticity, as expected by Lighthill’s mechanism. We discuss modifications to the
attached eddy model and implications for turbulent drag reduction.

1. Introduction

Most current approaches to wall-bounded turbulence are based on momentum conservation
and the concept of “momentum cascade” to the wall (Tennekes & Lumley 1972; Jiménez
2012; Yang et al. 2016). However, vorticity conservation may arguably be of equal or
even greater importance. One of the earliest advocates of this point of view was Taylor
(1932), although his “vorticity transfer hypothesis” was justly criticized for neglect of vortex-
stretching. Nevertheless, Taylor arrived at an important exact result that pressure drop in
turbulent flow down a pipe is directly related to flux of spanwise vorticity across the flow.
Lighthill (1963) was an even more forceful champion for vorticity-based approaches, positing
that “to explain convincingly the existence of boundary layers ...arguments concerning
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vorticity are needed” and further that “vorticity considerations ... illuminate the detailed
development of the boundary layers just as clearly as do momentum considerations.” In
particular, Lighthill (1963) argued that vorticity is uniquely suited to a causal description
of fluid flows, as it is the only variable whose effects propagate at finite speeds in the
incompressible limit.

Lighthill made in fact substantial concrete contributions to the program of explaining
turbulent boundary layers by means of vorticity dynamics. One key idea introduced by
Lighthill (1963) which is now widely recognized is that vorticity generation at solid walls is
due to tangential pressure gradients, with wall-normal vorticity flux given by

oc=nX vV xw)=-nx(Vp+du), (1.1)

where n is the unit normal vector at the boundary pointing inward to the fluid. The term d,u
which accounts for tangential acceleration of the wall was introduced by Morton (1984), who
emphasized further the inviscid character of such vorticity production. Although generally
well accepted, the relations (1.1) have been the subject of some minor controversy, since they
were first derived by Lighthill (1963) only for flat walls and were generalized subsequently to
curved walls in the form (1.1) by Lyman (1990) and in an alternative form o’ = —v(n - V)w
by Panton (1984). The subsequent debate over which of these two forms is “correct” is
reviewed by Terrington et al. (2021), who conclude that the two expressions measure slightly
different things and have each their own (overlapping) domains of applicability. See also
Wang et al. (2022). Lyman’s version (1.1) uniquely describes the creation of circulation at
the boundary (Eyink 2008) and we use that form in our theoretical discussion here (but note
the two coincide in our concrete application to channel flow). In either guise, the Lighthill
source reveals that the solid walls are the ultimate origin of all vorticity in the flow, whereas
for momentum the walls act instead as the sink. In consequence, the profound sensitivity of
fluid flows to the nature of the solid boundary is better revealed by vorticity considerations.

Lighthill (1963) made another essential contribution to wall-bounded turbulence which
seems, however, to have been less appreciated. To introduce Lighthill’s basic insight, we can
do no better than to quote at length from his own paper:

“The main effect of a solid surface on turbulent vorticity close to it is to correlate
inflow towards the surface with lateral stretching. Note that only the stretching of
vortex lines can explain how during transition the mean wall vorticity increases
as illustrated in Fig.I1.21; and only a tendency, for vortex lines to stretch as they
approach the surface and relax as they move away from it, can explain how the
gradient of mean vorticity illustrated in Fig.I1.21 is maintained in spite of viscous
diffusion down it — to say nothing of any possible ‘turbulent diffusion’ down it,
which the old ‘vorticity transfer’ theory supposed should occur. It is relevant to
both these points that Fig.I1.21 relates to uniform external flow, which implies zero
mean rate of production of vorticity at the surface; but, even in an accelerating
flow, the rate of production UU’ is too small to explain either.

A simplified illustration of how inflow towards a wall tends to go with lateral
stretching, and how outflow with lateral compression, is given in Fig.I1.22. Doubtless
some longitudinal deformation is usually also present, which reduces the need for
lateral deformation (perhaps, on average, by half). However, there is evidence (from
attempts to relate different types of theoretical model of a turbulent boundary layer
to observations by hotwire techniques; see, for example, Townsend 1956) that the
larger-scale motions (which push out ‘tongues’ of rotational fluid discussed above)
are elongated in the stream direction, as if their vortex lines had been stretched
longitudinally by the mean shear; in such motions, the correlation between inflow
and lateral stretching illustrated in Fig.I1.22 would be particularly strong. We may
think of them as constantly bringing the major part of the vorticity in the layer
close to the wall, while intensifying it by stretching and, doubtless, generating new
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Figure 1: Close facsimiles of figures from Lighthill (1963). (a) An adaptation of Fig.I.21,
with the original caption reading: “Distribution of mean vorticity in a boundary layer with
uniform external flow; (i) at the beginning, (ii) at end, of transition”, using data from
JHTDB ( Li et al. (2008); Zaki (2013)). (b) An adaptation of Fig.I1.22, original caption
reading: “Correlation of inflow with lateral stretching, and outflow with lateral
compression, of vortex lines (the mean flow is normal to the plane of the paper)”.

vorticity at the surface; meanwhile, they relax the vortex lines which they permit
to wander into the outer layer. Smaller-scale movements take over from these to
bring vorticity still closer to the wall, and so on. Thus, the ‘cascade process’, which
in free turbulence (see, for example, Batchelor 1953) continually passes the energy
of fluctuations down to modes of shorter and shorter length-scale — because at
high Reynolds numbers motions in a whole range of scales may be unstable, which
implies that motions of smaller scale can extract energy from them—this cascade
process has the additional effect in a turbulent boundary layer of bringing the
fluctuations into closer and closer contact with the wall, while their vortex lines are
more and more stretched.” —From Lighthill (1963), pp.98-99.

We find in this remarkable passage four key ideas: (i) First, the correlation between
turbulent inflow and lateral vortex stretching illustrated by Lighthill (1963) with his Figure
I1.22 acts to magnify principally spanwise vorticity and to drive it nearer the wall as shown in
his Figure I1.21 (both reproduced here as our Figure 1). Quoting again from Lighthill (1963),
p-96, “it concentrates most of the vorticity much closer to the wall than before, although at the
same time allowing some straggling vorticity to wander away from it farther.” The validity
of this mechanism for a transitional boundary-layer flow has been verified recently by Wang
et al. (2022). One would expect on the basis of this argument to find spanwise-extended vortex
structures as principal elements of wall-bounded turbulent flows. Conversely, turbulent up-
flow is correlated with lateral vortex compression, weakening the mainly spanwise vorticity as
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it is driven away from the wall. (ii) The mechanism of correlated inflow and vortex-stretching
is powerfully up-gradient, acting against both viscosity and “eddy-viscosity” effects which
attempt to smooth the very sharp gradients of vorticity created near the wall. As remarked
by Lighthill (1963),p.96, “turbulence redistributes the vorticity in such a way that viscous
diffusion becomes more effective in countering the amplitude of the disturbances.” (iii) This
intense competition between up-gradient vortex-stretching on the one hand and diffusion
away from the wall by molecular and turbulence effects on the other is narrowly won by
the latter, since the net vorticity produced at the wall by the Lighthill source (1.1) must
be transferred away under statistically steady conditions. Note that Lighthill’s argument
presumes that the total pressure p + (1/2)|u|? is continuous across accelerating turbulent
boundary layers, so that the mean vortex production at the wall with steady, external mean
velocity U = (u) is given by Ud,U. (iv) Finally, Lighthill saw this up-gradient transport of
vorticity toward the wall as a scale-by-scale cascade process, proceeding by the successive
stretching, straightening, and strengthening of spanwise vorticity through a hierarchy of eddy
scales. Among the chief results of the present work will be direct empirical confirmation of
these insights of Lighthill.

Closely related ideas were developed somewhat after Lighthill’s work in the adjacent field
of quantum superfluids, where Josephson (1965) for superconductors and Anderson (1966)
for neutral superfluids recognized the relation between drops of voltage/pressure in flow
through wires/channels and the cross-stream flux of quantized magnetic-flux/vortex lines.
Their ideas closely mirror those of Taylor (1932) and Lighthill (1963) for classical fluids,
but Josephson (1965) and Anderson (1966) were seemingly unaware of those earlier works
and the two literatures have subsequently developed in parallel. In quantum superfluids the
Josephson-Anderson relation has become the paradigm to explain drag and dissipation in
otherwise ideal superflow (Packard 1998; Varoquaux 2015). This understanding is based
in particular on the work of Huggins (1970), who derived a “detailed Josephson-Anderson
relation” that exactly relates energy dissipation to vortex motions. Interestingly, although the
target application of Huggins (1970) was quantum superfluids, his mathematical model was
the incompressible Navier-Stokes equation for a classical viscous fluid. In fact, somewhat
later Huggins (1994) applied his ideas to classical turbulent channel flow.

More precisely, Huggins (1970, 1994) considered a classical incompressible fluid at
constant density p and with kinematic viscosity v flowing in a channel with accelerations
due both to a conservative force —VQ and to a non-conservative force —g (with V X g # 0),
described by

du=uxw-vV Xw-V(p/p+u?*2+0)-g (1.2)

For example, Q might be the gravitational potential energy density pgy for vertical height y
(with acceleration due to gravity g), and g might be —V - 7, with 7, the stress of a polymer
additive. Huggins (1970, 1994) noted that this equation for the momentum balance may be
rewritten as

Oui = (1/2)€jkZjk — O;h, (1.3)
with anti-symmetric vorticity flux tensor
dw; Ow;
S = Uiw; —ujwi+v(6xjf - a—x’) — €K&k (1.4)
and fotal pressure or enthalpy
h=p/p+u*/2+0. (1.5)

Here the total pressure 4 includes both the hydrostatic and the dynamic pressures, and the
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tensor X;; represents the flux of the jth vorticity component in the ith coordinate direction.
The latter interpretation is made clear by taking the curl of the momentum equation (1.2),
which yields a local conservation law for vector vorticity:

6twj + 6L-Zl-j =0. (1.6)

The first term in (1.4) for X;; represents the advective transport of vorticity, the second
represents transport by nonlinear stretching and tilting, the third represents viscous transport,
and the fourth represents transport of vorticity perpendicular to an applied, non-conservative
body-force g akin to the Magnus effect. The stretching /tilting term in the Helmholtz equation
is not ordinarily understood as representing a space transport of vorticity but it can be
interpreted in that sense (see section 2). The equation (1.3) thus shows the deep connection
between momentum balance and vorticity transport, and this equation is the most elementary
version of the classical Josephson-Anderson relation. See also the more recent work of
Terrington et al. (2021), who discuss at length the meaning and applications of the anti-
symmetric vorticity flux tensor (1.4), which they call the “Lyman-Huggins tensor”.

A first attempt was made by Eyink (2008) to unify these parallel theories in the context
of two canonical turbulent flows, plane-parallel channels and straight pipes. He discussed
the physical significance of the observation by Taylor (1932) and by Huggins (1994) that
there is a mean cross-stream vorticity flux driven by the downstream pressure gradient. In
the context of channel flow, with x the streamwise direction, y the wall-normal direction, and
z the spanwise direction, this average relation takes the form

<2yz> = (vwy — Wy — V(aywz - az“’y)) =0x(p) = _ui/h’ (L.7)

where X, is the wall-normal flux of spanwise vorticity, & is the channel half-height, and u .
is the friction velocity. The standard result that d,0,(p) = 0 (Tennekes & Lumley (1972),
section 5.2) is seen to be a consequence of vorticity conservation dy (X ) = 0. Eyink (2008)
noted that Huggins’ vorticity flux tensor (1.4) and Lighthill’s vorticity source (1.1) in the
form of Lyman (1990) are simply related by o = n - X, so that the origin of the constant
mean flux is the vorticity created at the wall, which flows toward the channel center to be
annihilated by opposite-sign vorticity from the facing wall. Eyink (2008) referred to this
phenomenon as an “inverse vorticity cascade”, but note that the vorticity transport involved
here is down-gradient, opposed by the up-gradient cascade mechanism proposed by Lighthill
(1963). The term “inverse cascade” was used by Eyink (2008) because the vorticity flux is in
the opposite direction as the flux of momentum, that is, out from the wall and via eddies of
increasing size at further distances from the wall. Just like momentum flux in wall-bounded
turbulence is also called a cascade (Tennekes & Lumley (1972); Jiménez (2012)) because it
involves momentum transfer in space and scale, we follow Eyink (2008) and refer to vorticity
flux as a cascade as well since it involves vorticity transfer in space and in scale.

A possible mechanism for this cascade (or flux) is lifting and growing hairpin-like vortex
structures in the inertial sublayer of the channel flow. It was shown by Eyink (2008) that
constant mean down-gradient flux of vorticity via the nonlinear dynamics can in fact be
explained by the attached-eddy model (AEM) of Townsend (1976) (see Marusic & Monty
(2019) for a recent comprehensive review). Since the AEM is not designed to describe the
statistics and dynamics of the fine-grained vorticity (Marusic & Monty (2019), section 4.1),
it is not entirely trivial that the model should account for the mean vorticity flux. However,
this flux can be deduced from the Reynolds stress by the standard relation (Taylor 1915;
Tennekes & Lumley 1972; Klewicki 1989)

(vw, —wwy) = =0y (u'v'), (1.8)

from which it can be shown that the AEM implies (vw, — wwy) ~ —u2/h fory 2 y,, where
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yp is the wall distance of the peak Reynolds stress (Eyink 2008). On the contrary, fory < y,,
it follows directly from (1.8) that (vw,—ww,) > 0, whose positive sign indicates up-gradient
nonlinear transport of (negative) spanwise vorticity. It was noted by Eyink (2008) that this
up-gradient transport is not obviously explained by attached eddies and we shall present
here strong evidence that the underlying mechanism is in fact that of Lighthill (1963). A
further impetus to our investigation comes from recent work of Eyink (2021), who showed
that the “detailed relation” of Huggins (1970) for energy dissipation in channel flows holds
also for flow around a uniformly moving solid body. In fact, this result holds much more
generally for bodies that are moving non-uniformly and even changing shape and volume
(Eyink, unpublished) and also for channel flows with periodic boundary conditions (Kumar
& Eyink 2023). In all of these situations, there is flux of vorticity away from the solid surface
and net drag is given instantaneously by the spatial integral of spanwise vorticity flux across
the streamlines of a background potential Euler flow.

The nonlinear flux of spanwise vorticity (vw, — ww,), also interpreted as a ‘turbulent
inertia (TI)’ term, defined as the wall-normal gradient of Re shear stress (0y(—u'v’)) , has
been studied in several previous works. Experimental measurements of (vw) and (wwy)
contributions were measured separately ( Klewicki (1989)). In addition, weighted PDFs of
fluctuations of v with vw, and w with ww,, were calculated (Klewicki et al. (1994)).A four-
layer structure for wall-bounded flows was proposed by Wei et al. (2005), based on the relative
magnitude of the viscous and TI term in the mean momentum equation (see also Klewicki
etal. (2007)). The wall-normal derivative of streamwise spectra of the Reynolds’ shear stress,
equal to the nonlinear flux co-spectra for periodic flows, was studied as the ‘Net Force Spectra’
for pipe flows(Guala et al. (2006)), channel flows and zero pressure gradient boundary
layers(Balakumar & Adrian (2007)). An in-depth study of the statistics and streamwise
spectral behavior of the velocity-vorticity products for turbulent boundary layers, at several
Re values, was carried out by Priyadarshana et al. (2007). They compared streamwise
spectra for velocity and vorticity with the corresponding co-spectra and plotted profiles of
the velocity-vorticity products and correlation coefficients. The correlations between velocity
and vorticity are seen to arise from a ‘scale selection’ associated with peaks in the velocity
and vorticity streamwise spectra. Monty et al. (2011) interpret the TI term as a momentum
source/sink (depending upon the sign) and carried out detailed calculations of the streamwise
and spanwise two-point correlations of v with w; and w with w,. They draw an important
conclusion that anticipates our own, that “the mean Reynolds stress gradient at any wall-
normal location is a direct result of a slight asymmetry in the characteristic vortical motions
of the flow”. Morrill-Winter & Klewicki (2013) carried out experimental investigations
along similar lines for flat plate boundary layers. They study streamwise co-spectra, scale
selection, two-point correlations, and Reynolds number effects, highlighting the fact that the
mean effect of TI can be expressed as a difference between two velocity vorticity correlations,
which can be related to change of scale effects (-wwy) and to advective transport (vw,).
Chin et al. (2014) continued work on this theme by conducting a detailed analysis of the TI
term for pipe flows using direct numerical simulations. They decompose the TI term into
advective transport and vorticity stretching and/or reorientation and carry out a detailed study
of the wall-normal variation of the respective streamwise co-spectra and the combined ‘Net
force spectrum’. Calculations of joint probability density functions (p.d.fs) are done and apart
from a focus on investigating the Reynolds number dependence of the Reynolds shear stress
peak location. Brown et al. (2015) are also motivated by the work of Taylor (1915, 1932)
which first drew attention to the connection between transport of vorticity and the Reynolds
stress and study vorticity flux in channel flows using Direct Numerical Simulation data for
channel flows over a range of Re. They highlight the fact that the total mean vorticity flux
is constant across every wall parallel plane for a turbulent pressure-driven channel flow and
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study the two nonlinear contributions to the flux. Of particular interest, is their calculation
of the p.d.fs of ww, close to the wall and their visualization of the vortex lines passing
through such a region. The work of Wu et al. (2012), primarily studied streamwise very
large-scale motions (VLSMs) and their relations to Re-stress in pipe flows. They made an
important contribution to the study of vorticity flux by plotting for the first time (with brief
discussions), 2-D ‘Net force spectra’ at four wall-normal locations, scaled with outer units.
Since they were mainly focused on streamwise spectra, they did not plot these scaled with
wall distance and were unaware of relations with Lightill’s mechanism. However, we follow
their work in calculating 2-D co-spectra here for channel flow and find that scaling with the
wall-normal distance, instead of inner or outer units, provides important insights into the
dynamics at play (see section 3.3 for further details). Experimental measurements for an open
channel flow by Chen et al. (2014) focused on the contributions of spanwise vortex filaments
to Reynolds shear stress and to vw,. Apart from measuring separate contributions to the
advection term from prograde and retrograde vortices, they observe that the movement away
from the wall yields the significant contribution of spanwise vortex filaments (identified by a
swirling strength-based criterion) to the ‘net force’. These ideas are further explored in Chen
et al. (2018b) where flow structures are classified into four groups based on vorticity and
swirling strength. Contributions made by the structures to the nonlinear vorticity fluxes are
measured, we follow a similar approach in the present study as well.

To gain further insight into the underlying fluid-dynamical mechanisms of turbulent vorticity
flux, we here carry out a detailed investigation of the turbulent vorticity dynamics in the
simplest case of turbulent channel flow. Although viscous diffusion plays a dominant role in
the mean vorticity transport out to the wall distance y,, (Klewicki et al. 2007; Eyink 2008;
Brown et al. 2015), its properties follow directly from the mean velocity profile and are
thus relatively easy to understand. We shall therefore be more concerned with the nonlinear
vorticity dynamics and the resulting statistics of the velocity-vorticity correlations (vw;),
(wwy) at various wall distances. We employ data for our study from the Johns Hopkins
Turbulence database (JHTDB) which stores the output of a direct numerical simulation of
turbulent channel flow at Re, = 1000 (Li et al. 2008; Graham et al. 2016). This simulation
was performed using the petascale DNS channel flow code PoongBack (Lee et al. 2013) with
driving force provided by a constant applied pressure gradient. The resulting online database
archives full space-time fields of velocity and pressure throughout the channel domain and
for about one flow-through time. The archived data permit us to calculate not only the
velocity-vorticity correlations but also their Fourier cospectra in streamwise wavenumber
ky, spanwise wavenumber k, and 2D wavenumber (k,, k). We discuss related prior results
by experiment, such as Klewicki (1989); Klewicki et al. (1994); Priyadarshana et al. (2007);
Morrill-Winter & Klewicki (2013); Chen et al. (2014) and also by numerical simulation,
including Bernard (1990); Crawford & Karniadakis (1997); Monty et al. (2011); Brown
et al. (2015); Yoon et al. (2016); Chen et al. (2018b); Vidal et al. (2018).

We compute 2D cospectra for channel flow, which prove particularly illuminating of the
physics. These cospectra, together with statistics conditioned on the sign of the wall-normal
velocity in conjunction with vortex visualizations, yield evidence to support Lighthill’s
mechanism.

The detailed contents of this paper are outlined as follows. In section 2 we discuss how
Lighthill’s Lagrangian mechanism is represented by the Eulerian vorticity flux tensor, a
necessary theoretical prelude so that our subsequent numerical results can be appropriately
interpreted. The main section 3 of the paper presents our numerical study. In section 3.1 we
study the mean vorticity flux and its component velocity-vorticity correlations, validating our
own numerical results against previously published results and illustrating the mean flow of
vorticity along isolines of total pressure. The next section 3.2 presents results on conditional
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averages of fluxes given the direction of the wall-normal velocity as inward or outward, in
order to investigate the proposed strong correlation. Section 3.3 presents results on cospectra
of the nonlinear vorticity flux and velocity-vorticity correlations, both 1D spectra in the
streamwise and spanwise wavenumbers and joint 2D spectra. Then in section 3.4 we use
the 2D cospectra to divide the velocity and vorticity fields into “down-gradient” and “‘up-
gradient” eddy contributions and we visualize the coherent vortices which dominate transport
in both of these components. Finally, in the conclusion section 4 we review our main results,
draw relevant lessons and discuss important future directions. Incidental numerical results
of various sorts are presented in Supplementary Materials.

2. Lighthill Mechanism and Huggins’ Vorticity Flux Tensor

In order to properly interpret the results of our numerical study, we must first discuss carefully
the physical and mathematical meaning of Lighthill’s arguments. This is necessary especially
because Lighthill’s dynamical picture is essentially Lagrangian whereas Huggin’s vorticity
flux tensor (1.4) is Eulerian. Thus, the relation between Lighthill’s mechanism and the
predicted behaviour of Huggins’ flux can be somewhat subtle and even counter-intuitive.

The basic picture behind Lighthill’s argument is sketched as a cartoon in Fig. 2. Shown
there is a representative vortex line carrying spanwise vorticity and also wall-normal vorticity
associated to a lifted arch. If the flow is inward toward the wall (v < 0) at this location, then, by
incompressibility, there must be diverging flow in the spanwise and/or streamwise directions.
This divergent flow should generate corresponding velocity gradients in those directions
which Lighthill argued should be strongest spanwise because the well-known longitudinal
organization of the near-wall structures would tend to reduce streamwise gradients. According
to the Helmholtz laws of ideal vortex dynamics, one would therefore expect the vortex line
to be, first, carried down by the flow closer to the wall, and, second, flattened and stretched
out, principally in the spanwise direction. This action of the Lagrangian flow is indicated
by the blue dashed arrows in Fig. 2 which depict typical particle trajectories. Since the
stretched vortex line should intensify, Lighthill suggested that the plausible result would be
increased spanwise vorticity concentrated closer to the wall. The opposite effect should occur
in regions of flow outward from the wall (v > 0), which corresponds to the same cartoon
but reversing all velocity vectors given by red arrows and all Lagrangian trajectories given
by blue dashed lines. In this case the vortex line according to ideal laws would be lifted away
from the wall, compressed in the spanwise direction and correspondingly weakened. Such
motions, according to Lighthill, would reduce the spanwise vorticity at further distances
from the wall, so that the net effect of both types of motion would be an increase in the
intensity of vorticity at the wall and a steepening of its wall-normal gradient. However, note
that according to the Kolmogorov theory of local isotropy (Tennekes & Lumley (1972)),
streamwise and spanwise velocity gradients may be of a similar magnitude at small enough
scales. Therefore, the association of inflow with stretching of spanwise aligned vortex lines
is expected to be primarily valid at scales that are large enough to possess the streamwise
organization associated with stronger spanwise gradients. Similar scales should also be
responsible for the down-gradient contribution associating outflow with the relaxation of
spanwise vortex lines.

An obvious concern with this picture is its neglect of viscous diffusion effects, which
certainly must be substantial in the near-wall buffer layer and viscous sublayer. In fact, as
noted above, viscous diffusion dominates the average wall-normal flux of spanwise vorticity
out to the location y,, of peak Reynolds stess (Klewicki ez al. 2007; Eyink 2008; Brown et al.
2015). The viscous modifications of ideal vortex dynamics can be incorporated by means
of a stochastic Lagrangian formulation of incompressible Navier-Stokes in vorticity-velocity



Figure 2: Cartoon of the “up-gradient” transport mechanism. For the “down-gradient”
mechanism, the dashed blue arrows and the thin red arrows are reversed
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Figure 3: Control volume analysis of Lighthill’s Mechanism (“vortex lines to stretch as
they approach the surface and relax as they move away from it”), showing (a) inward flow
(v < 0) and (b) outward flow (v > 0) from the wall, around a typical vortex line
occupying a wall normal region corresponding to the buffer and log layers.

representation (Constantin & Iyer 2011; Eyink et al. 2020a), which represents viscous
diffusion of vorticity by an average over stochastic Brownian perturbations of Lagrangian
particle motions. This approach was exploited by Wang et al. (2022) to investigate the
origin of the enhanced wall vorticity and skin friction in a transitional zero pressure-gradient
boundary layer, as discussed in the passage from Lighthill (1963) quoted in the Introduction.
This study used the Lighthill vorticity source o in (1.1) as Neumann boundary conditions,
so that the wall vorticity at points of local maximum amplitude could be expressed in
terms of two contributions: (i) the Lighthill source integrated over earlier times and (ii)
the initial conditions for the vorticity as modified by subsequent advection, stretching and
viscous diffusion. It was found that the dominant source of the high wall-vorticity is the
spanwise stretching of pre-existing spanwise vorticity, exactly as argued by Lighthill (1963).
In particular, as also suggested by Lighthill, the rate of production by the vorticity source o
was “too small to explain” the maxima. This contribution was found in general to be about
an order of magnitude smaller than that from spanwise stretching and also found to give
vorticity contributions of both signs with about equal probability, thus often reducing the
magnitude. The conclusion of Wang et al. (2022) from their analysis of the numerical data
was that, despite strong viscous effects in the near-wall region, the theory of Lighthill (1963)
explained well the origin of high wall-stress events observed in transitional flow.

The same stochastic Lagrangian methods can be applied also to fully-developed turbulent
channel flow, but here, motivated by recent work of Eyink (2021); Kumar & Eyink (2023) on
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the Josephson-Anderson relation, we instead aim to understand vorticity dynamics in terms
of Huggins’ vorticity current tensor (1.4). Because the vorticity conservation law (1.6) is
expressed in Eulerian form, its relationship to Lighthill’s Lagrangian picture is not entirely
self-evident. The physical meaning of Huggins’ tensor X;; has previously been discussed by
Terrington et al. (2021, 2022) using control volumes and control surfaces. To adapt their
arguments, we integrate (1.6) over a volume V to obtain

4a
da Jy

where m is the outward-pointing normal at the boundary 0V and each individual termin n;%;;
should represent a rate of change of w; integrated over V. The meaning of the nonlinear term
u;w; is transparent, as (72 - w)w ; just represents the advection of w ; across the boundary 9V
The other nonlinear contribution —u jw; to the flux upon taking taking its divergence yields
the term —(w « V)u in the Helmholtz equation associated to vortex stretching and tilting, so
that it must somehow express that physics. It is worth remarking that Huggins (1994), p.326
concluded that this term “does not appear to have a particularly simple interpretation” but
suspected that it is “a vortex stretching term”. The relation with stretching/tilting is clarified
by the Figure 3a which plots schematically the “up-gradient” configuration considered by
Lighthill (1963) with flow inward to the wall advecting and stretching/tilting a hairpin-like
vortex. We have drawn as control volume a rectangular box selected so that only the term
—Wwuwy in the flux X, contributes to growth of spanwise vorticity w, in the volume, whereas
the advection term vw, does not contribute. Because of the diverging flow, two contributions
with signs wy, > 0, w > 0 and w, < 0, w < 0 occur at the bottom face of the box and these
correspond indeed to an increase of (negative) spanwise vorticity in the pictured control
volume, due to the lengthening of the spanwise vortex line segment and the tilting of the
wall-normal vortex line segments.

It is notable that the contribution —ww, < 0 at the bottom face in Figure 3a corresponds to
an outward flux of spanwise vorticity into the control volume, with a sign which is formally
“down-gradient” or away from the wall. By contrast, for this inward flow configuration with
v < 0, the advection term has sign vw, > 0 which is “up-gradient”.

If we consider instead the outward flow configuration with v > 0 (Figure 3b), which
compresses and weakens the spanwise vorticity, then the signs would both reverse to vw, < 0
and —ww, > 0 (because of converging flow), but would remain opposite. The advective term
is now making a “down gradient” contribution and the stretching/tilting term is making an
“up gradient” contribution. The anti-correlated sign of the two flux contributions for inward
(v < 0, Figure 3a) and outward (v > 0, Figure 3b) flows will be important in interpreting our
numerical results below. It should be clear that this anti-correlation of signs depends upon
the geometry of the vortex line. For example, if the vortex line in Figure 3a were instead
bent inward into a U-shape and entered the control volume from the top face, then the sign
of the stretching/tilting term would have become —ww, > 0. This would represent inward
“up-gradient” flux into the control volume, positively correlated with the advection term
vw, > 0. Thus, the relative signs of these terms potentially contains some information about
the typical geometry of vortex lines.

To determine whether the net vorticity flux from nonlinearity is “up-gradient” or “down-
gradient”, it is important consider the combined term u;w ; — u jw;, which is anti-symmetric.
As stressed by Terrington et al. (2021), the anti-symmetry X;; = -ZX;; expresses the
fundamental property that vortex lines cannot end in the fluid so that flux of w; in the ith
direction is necessarily associated with an equal and opposite flux of w; in the jth direction.
This relation of flux anti-symmetry and non-termination of vortex lines is clearly illustrated
in Figure 3a. In the flow sketched there, the depicted spanwise flux X, of wy-vorticity
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Figure 4: Flowlines of mean spanwise vorticity flux ((Zx;), (Zy;)) obtained as the
isolines of mean total pressure (/).

implies that the w,-line must lengthen, because the vortex line which enters at one z-location
in the bottom face must exit at the other. The resulting growth of w,-vorticity in the interior
corresponds to a wall-normal flux X, = —X_, outward into the control volume. To determine
from our numerical data whether nonlinear flux of spanwise vorticity is “down-gradient” or
“up-gradient” it will therefore be crucial to consider the combined quantity vw, — ww,, that
contains both advection and stretching/tilting, since these two effects cannot be separated
physically without violating the kinematic condition of non-terminating vortex lines.

3. Numerical Study of Vorticity Flux in Pressure-Driven Channel Flow

We now report on our empirical study of the flux of spanwise vorticity, hereafter referred
to simply as “vorticity flux”. This component of the vorticity is crucial to drag and energy
dissipation, since its flux is directly related to streamwise pressure drop. As already mentioned
in the Introduction (Sec 1), we employ direct numerical simulation data of channel flow at
Re = 1000 from the Johns Hopkins Turbulence Database (JHTDB) (see Li et al. (2008);
Graham et al. (2016)). The right-handed Cartesian coordinate system for this data is the same
as shown in Figures 2 & 3a, with x streamwise, y wall-normal and z spanwise. Although the
database provides built-in tools to calculate velocity and vorticity gradients from Lagrange
interpolants, our study of vorticity dynamics required greater accuracy for these crucial
quantities. We have thus used the database cut-out service to download time snapshots of
data for the entire channel. Gradients in the spanwise and streamwise directions are then
calculated spectrally by FFT, and wall-normal gradients are calculated using seventh-order
basis-splines based on the collocation points of the original simulation ( Graham et al.
(2016)). All statistics are thereafter calculated by averaging over wall-parallel planes in the
x— and z—directions of homogeneity, as well as over multiple snaphots. The steady-state
statistics presented here were calculated with 38 time snaphots. We shall generally plot our
results only for the bottom half of the channel, with reflected results from the top half included
to double the sample-size of our averages.
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3.1. Mean vorticity flux and flow-lines

To provide an intuitive understanding of Huggins’ vorticity flux tensor (1.4) and of the
mean vorticity dynamics in turbulent channel flow, we first present numerical results on the
average flux (X;;). An important theoretical result which follows directly by averaging the
momentum balance equation (1.3) is the steady-state relation between vorticity flux and the
gradients of the total pressure:

(Zij) = €jkOk(h). (3.1
This general result implies immediately for channel flow that
<Zyz> = ax<h>’ <sz> = _6y<h>v <ny> =0, (3.2)

with all other components given by anti-symmetry. Since it is the flux of spanwise vorticity
only which enters into the Josephson-Anderson relation for plane-parallel channel flow
(Kumar & Eyink 2023) we shall focus on its dynamics in the (x, y)-plane (since 2., = 0). It
can be very instructive about the physics to trace the integral flow lines of mean fluxes for
transported quantities such as energy and momentum (Meyers & Meneveau 2013) and we
carry out this construction for the conserved spanwise vorticity. Here there is a substantial
simplification because, as a simple consequence of (3.2), the integral lines of the mean flux
vector ((Zx;),(Zy;)) coincide with the isolines of mean total pressure (h) = P + %Uz +
%(lu’l2 + v/ |> + [w’]?). We follow the usual notations, U = (u), u’ = u — U, P = (p), etc.
In Figure 4 we plots these isolines resulting from numerical computation of (/). Consistent
with the remark of Lighthill (1963) that “tangential vorticity created is in the direction
of the surface isobars,” the mean vorticity generated at the wall is spanwise and flows
outward from points of constant (k) = P at y = 0. The vorticity flux is about three orders
of magnitude larger streamwise than wall normal, mainly because of the large term U,
contributing to (X.), with Q, = =9, U. Thus, the mean vorticity flow lines extend about 250
channel half-widths downstream as they cross from the wall to the channel center, reflecting
the strong streamwise advection of vorticity. It is, however, the much smaller wall normal
vorticity flux which is directly related to drag and energy dissipation, since (X,.) = 0,P
by (3.2). As earlier remarked by Eyink (2008), the latter takes on the y-independent value
(Zy7) = —u%/H because of the conservation relation dy(Zy,) = 0,(Zy;) + 0x(Zx;) = 0 and
the Lighthill (1963) relation for wall-generation of vorticity by tangential pressure gradients.
This argument assumes as well the x-independence of steady-state averages such as (Z,.),
which is evident in the parallel vorticity flux lines of Figure 4.

Exact results of Klewicki et al. (2007); Eyink (2008); Brown et al. (2015) for the nonlinear
(vw; —wwy) and viscous (—v[dyw; — d;wy]) contributions to the mean vorticity flux (Z,,)
provide a further check of the reliability of our numerics. Our numerical data are plotted in
Fig 5 and show good agreement with the theoretically required behavior. First, we observe
that the magnitude of the mean vorticity flux is constant in y to a very good approximation,
except for small numerical oscillations very close to the wall (y* < 10), and it matches quite
well the average streamwise pressure gradient. This means that, on average, negative spanwise
vorticity (the same sign as the mean vorticity) is being transported away from the wall and
that overall, the flux is down-gradient. As in the Introduction, we shall refer to flux of vorticity
away from the wall as “down-gradient,” since the vorticity is already highly concentrated
at the wall (Lighthill 1963), and flux in the opposite direction will be referred to as “up-
gradient”. It was also shown by Klewicki er al. (2007); Eyink (2008); Brown et al. (2015)
that, while viscous flux should be expected to be always down-gradient, the net nonlinear flux
will be down-gradient above the height of the peak Reynolds’ stress (y* = yj, = 53 for the
data at Re; = 1000) but up-gradient below that height and opposing the large viscous flux
there. These theoretical results are well confirmed by our empirical data in Fig 5. In addition,
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Figure 5: Vorticity flux in a pressure driven periodic channel, averaged in time as well as
in the streamwise and spanwise directions. A good agreement is found with expected
constant behaviour across the height of the channel. For y* < y; (= 53), the nonlinear
term gives a strong up-gradient contribution to the flux which is balanced by a larger

down-gradient viscous contribution. As y increases above y,, the nonlinear term
contributes an increasing share of the down-gradient flux while the viscous contribution
decreases as y grows, so that for y* > 250, the nonlinear contribution carries nearly the
entire vorticity flux.
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Figure 6: Contributions to nonlinear vorticity flux averaged over time and wall parallel
planes, computed from channel flow data at Re; = 1000 from JHTDB( Graham et al.
(2016)) and from the earlier numerical simulation of channel flow at Re = 1000 by
Brown et al. (2015), Re+ = 934 by Del Alamo et al. (2004), as reported in Monty et al.
(2011), and from experimental measurements for an open channel flume at Re = 740 by
Chen et al. (2014).

we have calculated the separate contributions of the advective (vw,) and stretching/tilting
(—=wwy ) terms to the nonlinear flux, for which no exact predictions exist. However, our results
for these two quantities plotted also in Fig. 6 agree well with those earlier reported by Monty
et al. (2011); Brown et al. (2015); Chen et al. (2018b) from the channel-flow simulation
of Del Alamo et al. (2004) at Re, = 934 and also with the experimental results of Chen
et al. (2014) for an open channel flume at somewhat lower Re, = 740. Similar observations
have been made both at lower and at higher Reynolds numbers, but we postpone until our
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Figure 7: Contributions from regions where turbulent flow is outward (v/ > 0) and inward
(v' < 0), to the (a) nonlinear flux , (b) convection/advection and (c) stretching/tilting ,
averaged over time and wall parallel planes, plotted as a function of wall distance.

conclusions section the discussion of the important issue of Re-dependences. Confirming
those earlier studies, we find that both contributions are down-gradient in the outer range
(y* 2 300) and both up-gradient in the near-wall (y* < 10), but have opposite signs in the
intermediate range corresponding roughly to the logarithmic mean velocity profile (30 <
y* < 300). Note that we use the term “log layer” for this range rather than the frequent term
“inertial sublayer” because, as pointed out by Klewicki et al. (2007); Eyink (2008); Brown
et al. (2015), viscous diffusion dominates mean vorticity transport at least up to y,,. In this
logarithmic layer the nonlinear advection term is also down-gradient but the stretching/tilting
term up-gradient, with advection dominating for y > y, and stretching/tilting dominating
for y < y,. The importance of the stretching/tilting term in the range y < y, is suggestive
of Lighthill’s mechanism and the anti-correlation there is reminiscent of the opposite signs
found in the control volume analysis of Figure 3. However, to identify precisely whether the
vorticity up-gradient transport occurs by Lighthill’s mechanism, we must study the crucial
question of correlation with motion inward (v < 0) or outward (v > 0) from the wall.

3.2. Evidence for Lighthill’s mechanism from flux-velocity correlations

A crucial feature of the theory of Lighthill (1963) is the proposed correlation between
vorticity-strengthening and inward motion toward the wall, and likewise vorticity-weakening
and outward motion away from the wall. To test for this key correlation we consider partial
averages depending upon the two conditions v/ > 0 and v < 0, where the wall-normal
velocity fluctuation is v/ = v since V = 0. Note that by “partial average subject to X we
mean the average conditioned upon the event X but further multiplied by the probability
of X. Defined in this manner, the sum of the partial averages for the two exclusive events
v/ > 0 and v/ < 0 yields the total average. In Fig. 7a we plot these partial averages for
the total nonlinear flux vw, — ww,,. Although Lighthill’s proposed mechanism is essentially
Lagrangian, we see a clear correlation in the Eulerian vorticity flux, with outflow (v > 0)
associated at all wall distances to down-gradient mean vorticity flux and inflow (v < 0)
associated to up-gradient mean flux, except possibly very near the center of the channel. The
inflow contribution appears to prevail for y < y,,, where the net nonlinear flux is up-gradient.
To gain further insight into the vorticity dynamics, we consider next the partial averages of
the separate flux contributions from advection and stretching/tilting.

The partial averages of advective vorticity flux vw, are plotted in Fig. 7b, which exhibit
the same correlation as the total: down-gradient flux is associated to outflow and up-gradient
flux to inflow (except at the channel center). This correlation is essentially obvious in the
near-wall region since instantaneous vorticity has the sign w, < 0 nearly always there, the
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same sign as the mean vorticity €, < 0. Note that the partial average from outflow prevails
above the buffer layer, where the combined average is down-gradient. The dominance of
outflow over inflow can be easily understood if the wall-normal velocity magnitudes |v|
are roughly comparable for the two events, but if spanwise vorticity magnitudes |w,| are
generally greater for flows originating near the wall. We can thus have net advection of
vorticity away from the wall, even though there is no net advection of mass. In contrast to
this down-gradient behaviour in the log layer, we note that net mean advection is up-gradient
for y* < 10. This result is plausibly explained if inflow events are correlated with locally
higher spanwise vorticity due to stretching of spanwise aligned vortex lines in the near-wall
region and outflow events with locally weaker vorticity due to relaxation and attenuation of
vortex lines.

These conclusions and interpretations agree with earlier work of Klewicki et al. (1994),
who measured experimentally the joint PDF P(v’, w’) of the fluctuations of wall-normal
velocity v" and spanwise vorticity w’, in a turbulent zero pressure-gradient boundary-layer.
Their results showed for y* = 5.3 that the mean (v'w) gets most of its contribution from
quadrants Q1 and Q4 where v’ and w, are positively correlated, consistent with Lighthill’s
mechanism. Klewicki et al. (1994) interpreted this result apparently somewhat differently in
terms of low-speed streaks with u” < 0, w’, > 0 moving upward with v’ > 0, and high-speed
streaks with u’ > 0, w’z < 0 moving downward with v/ < 0. However, these observations
are not inconsistent with Lighthill’s argument (see especially the remarks at the end of
this subsection and Figs. A.1-A.2 in the Supplementary Materials). Klewicki et al. (1994)
observed also that (v'w’) < 0 for y* > 10 with the main contributions from quadrants Q4
and especially Q2 of the PDF P(v’, w’), and they explained this down-gradient transport in
essentially the same manner as we have.

The partial averages of the stretching contribution —ww, to vorticity flux plotted in Fig. 7c
show diametrically opposite correlations with wall-normal velocity as those for the advection
term in the buffer layer, the log layer, and some of the outer layer. The plot shows that in and
above the buffer layer inflow is associated with down-gradient flux, while outflow is associated
with up-gradient flux (except very near the channel center). This opposite correlation may
be explained by the control-volume analysis in the previous section 2 (and Fig. 3), which
associates down-gradient flux with the line-stretching mechanism for v/ < 0 (shown in
Fig. 3a) and up-gradient flux with the corresponding line-compressing mechanism for v’ > 0
(shown in Fig. 3b). Here, the outflow (v’ > 0) prevails in the combined average, implying
that the stretching/tilting term contributes a net up-gradient flux across the buffer and log
layers.

We may explain this once again as a consequence of the near-equality of spanwise velocity
magnitudes |w/| for the two conditions but with wall-normal vorticity magnitude |w, | larger
nearer the wall and smaller further away. Note that inflow and outflow are both associated
with up-gradient vorticity flux from the stretching/tilting term for y* < 15. The outflow term
makes the larger contribution, which is now augmented by a smaller contribution from the
inflow.

It may be relevant here that all nonlinear vorticity flux terms vanish identically at the
channel wall. Thus, growth on average of spanwise vorticity in this very near-wall region
must be due to nonlinear flux of vorticity inward, because the nonlinear flux outward must
be small. The vortex lines in this region tend also to be strongly aligned in the spanwise
direction, so that the geometry assumed in the control-volume argument is not typical here.
Brown et al. (2015) investigated the buffer-layer statistics of ww,, by a DNS nearly identical
to ours and their Figure 4 plots vortex lines originating at y* = 10 in the vicinity of a quasi-
streamwise vortex. They argued that such coherent streamwise vortices are responsible for
creating the “up-gradient” correlation (ww,) < 0 in the buffer layer, because vortex lines
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on the side where v > 0 are lifted into A-shape with converging legs, while lines on the
v < 0 side are depressed into U-shape with diverging legs. Note that this explanation agrees
with our observation in Fig. 7c that partial averages of ww, are negative both for v > 0 and
for v < 0 in the buffer layer. Brown et al. (2015) anticipated also our result that the partial
average for v > 0 should exceed that for v < 0, arguing that w, magnitudes for v < 0 will
be weakened by creation of image vorticity at the wall. It is worth emphasizing a further
numerical finding of Brown ez al. (2015) that the pointwise values of ww, at y* = 5 have a
strongly non-Gaussian PDF giving high probability to events with magnitudes ~ 25 larger
than the mean, so that the overall negative value (ww,) < 0 in the buffer layer results from
near-cancellation between much larger contributions of opposite signs.

A key conclusion of all three of our Figs. 7a-7c is that the net effects seen in the partial
averages of the total nonlinear flux in Fig. 7a are due to the dominance of the advection term.
Thus, of the two effects considered in the control-volume analysis in section 2, the advective
contribution generally outweighs the stretching/tilting contribution. The opposing nature of
the partial averages for the advection and stretching/tilting terms in the buffer and log layers, in
addition to the correlations with inflow and outflow, strongly support Lighthill’s idea of inflow
being correlated with stretching/strengthening and outflow with compression/weakening of
vortex lines, thereby providing a posteriori validation of the theory.

It might appear paradoxical at first glance that inflow dominates in the total nonlinear
flux for the region y < y,, while outflow dominates in the two separate flux contributions
from advection and stretching/tilting in and above the buffer layer, including a region where
y < yp. However, the advection and stretching/tilting contributions oppose each other in this
region and the outflow contributions suffer more cancellation in the combined flux than do
the inflow contributions. In particular, the down-gradient flux from the stretching term during
inflow is comparatively weak. In the viscous sublayer, where the control volume analysis of
section 2 does not apply, the inflow contribution to the stretching/tilting term is again weaker
than the outflow contribution but both are now up-gradient, together with the net advective
flux. The Lighthill (1963) mechanism is consistent with these observations. In order to make
an objective assessment of the evidence we have investigated other possible correlations
as well. However, none of these alternative correlations presented such a clear picture as
the correlations with outflow/inflow. Thus, we present these alternative correlations in the
Supplementary Materials for completeness. For example, we considered partial averages of
the three flux terms vw, — wwy, vw;, and —ww, conditioned on “low-speed” (1’ < 0)
and “high-speed” (u’ > 0) events (Meinhart & Adrian 1995; Kim & Adrian 1999; Hwang
et al. 2016; Hwang & Sung 2018), as shown in Fig. A.1 of the Supplementary Materials.
While there is a clear correlation of the advective term (down-gradient for low speed and
up-gradient for high speed, consistent with Klewicki et al. (1994)), the stretching term is
found to be insensitive to the conditions #’ > 0 and u’ < 0. Perhaps the most interesting of
these additional correlation studies involved the standard quadrant analysis of the Reynolds
stress (Willmarth & Lu 1972; Lu & Willmarth 1973; Bogard & Tiederman 1986; Pope
2000; Lozano-Durén et al. 2012). As shown in Fig. A.2 of the Supplementary Materials, the
partial averages of the flux terms conditioned on Q2-events (1’ < 0,v" > 0) or “ejections”
are very similar to those conditioned on v/ > 0 alone, and those conditioned on Q4 events
(u’ >,v’ < 0) or “sweeps” are very similar to those for v/ < 0 alone. By contrast, the partial
averages for Q0 and Q3 events are distinctly smaller in magnitude. The relevant conclusion is
that much of the vorticity flux correlations observed in this section with outflow and inflow
events arise from the corresponding “active’” regions of the flow, Q2 and Q4, which contribute
also to the Reynolds shear stress. See Vidal er al. (2018) for related results discussed more
in the Supplemental Materials, section A.
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3.3. Velocity-vorticity cospectra

The main prediction of the Lighthill (1963) theory is up-gradient vorticity transport toward
a solid wall, with eddy contributions naturally depending upon the size of eddies relative to
the wall distance y. Since the theory posits strong spanwise stretching, the vorticity transport
effects should be particularly sensitive to the spanwise extent of eddies. This motivates
us to consider the 1-D spanwise vorticity-flux co-spectrum ¢, -wew, (k;) which gives
the net contribution of eddies with spanwise wavenumber magnitude k., or corresponding
wavelength A, = 27/k,. Such a co-spectrum may defined for any direction of homogeneity
(x, z, or a linear combination thereof) by taking FFTs of velocity and vorticity, followed by an
inner product, and averaging in time over snapshots and along the orthogonal homogeneous
direction. The cospectrum so defined yields a spectral decomposition of the nonlinear
vorticity flux:

/ ¢vwz_wwy(k,~,y)dk,- = (vwz; —wwy)(y), ki = kx or k. (3.3)
0

The co-spectra are closely related to the “net force spectra”, defined as the wall-normal
derivative of the Reynolds shear stress co-spectra discussed in prior works of Guala et al.
(2006), Balakumar & Adrian (2007) and Wu et al. (2012). Similar cospectra ¢, ,_(k;,y),
Pwew, (ki y) can be defined for the individual velocity-vorticity correlations (vw_)(y) and
(wwy)(y), with prior empirical studies of Priyadarshana et al. (2007) and Morrill-Winter &
Klewicki (2013) having calculated individual streamwise cospectra as well. Azimuthal co-
spectra were calculated by Wu et al. (2012) for pipe flows. These were calculated as a function
of the azimuthal angle and are somewhat similar to spanwise co-spectra for pressure-driven
channel flows. However, we are aware of no prior studies which directly compute this quantity
for channel flows. Therefore, we have validated our calculations by comparing our results with
the corresponding spatial two-point velocity-vorticity correlations in the spanwise direction
obtained from channel flow DNS at Re,; = 934 by Del Alamo et al. (2004), as reported in
Monty et al. (2011). This comparison, shown in Fig B.3 in the Supplementary Materials,
confirms our own data presented here.

We plot in Fig. 8 the spanwise flux cospectra for several y values each in the buffer layer,
log-layer and outer layer. To make the results more physically intuitive, we have plotted the
cospectra versus A, /y in log-scale and then compensated by the factor k, = 27/A, necessary
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to yield the correct total integrals. We have further normalized by the asymptotic value
—u2 /H achieved by the mean nonlinear flux (vew, — wwy)(y) for y > y,. With the latter
normalization, positive values of the cospectra count as “down-gradient” and negative as
“up-gradient.” The most striking feature of the results plotted in Fig. 8 is the existence of a
precise spanwise length scale A7 such that the cospectrum is “down- gradient” forA, < A} and

“up-gradient” for 4, > A7. Furthermore A7 is proportional to y, A7 = yy with a prefactor
v = 3 ~ 4 over the entrre range of y- Values see also the plot of A7 vs. y in Figure 9.
Physically, it is the eddies with spanwise wavelengths A, greater than yy that are subjected
to the correlated inflow and spanwise stretching proposed by Lighthill (1963), whereas the
eddies with A, less than yy instead transport vorticity down-gradient away from the wall.
To compare A7 with other relevant length scales in wall-bounded flow, note that the integral
length given nominally by ¢ = «y for von Kdrmén constant « = 0.4 is about 10 times smaller.
Nickels et al. (2005) have estimated that the “production range” of attached eddies with k!
energy spectrum occurs for 15.7y < A, < 0.3H. If we adopt the relation A, ~ A, /7 suggested
by results for 2D energy spectra in (ky, k) (Chandran et al. 2017), then this production range
corresponds to A, > 2.24y and includes the “up-gradient” scales 1, > (3 ~ 4)y identified by
our results. However, we shall present concrete evidence later that the up-gradient vorticity
flux is not associated to wall-attached eddies. Although the normalized flux cospectra plotted
in Figure 8 all pass through zero at 1,/y = 3 ~ 4, their integrals over log(1,/y) must shift
from negative values for y in the buffer layer, pass through zero at y = y,,, and then approach
1 for y >y, consistent with the results for (vw, —ww,)(y) plotted in Figure 5. This change
in the integrated values occurs via a shift between the two halves of the cospectrum with
increasing y, whereby the negative “up-gradient” branch at A, > A} dominates in the buffer
layer but diminishes with increasing y as the positive “down gradlent” branch at 1, < A}
increases. This increase of the down-gradient branch relative to the up-gradient branch
continues in the log-layer, with the two coming into exact balance at y = y,, = 53. However,
unlike the buffer layer, increasing distance from the wall in the log layer sees a decrease in the
magnitude of both down-gradient and up-gradient branches. For y further increasing into the
outer layer, the up-gradient branch at A, > A7 continues to diminish and the down-gradient
branch at 4, < A} stabilizes to a positive cospectrum independent of y. At the extremes,
for y* < 10 there is essentially no down-gradient branch and for y* > 500 no up-gradient
branch. Physically, the eddies for y* > 500 (or y = 0.5H) no longer feel the effect of the
wall. These results for the flux cospectrum highlight the delicate balance between competing
fluxes proposed by Lighthill (1963) and restated in Sec 1. The remarkable persistence of
A;/y = 3 ~ 4 lends credence to Lighthill’s idea that the up-gradient transport of vorticity
towards the wall is a scale-by-scale cascade process (see Sec 1), since A} can be viewed as
the “smallest” up-gradient spanwise scale which gets smaller oc y as vorticity is transported
nearer to the wall.

The intense competition between nonlinear vorticity transport in opposite directions arising
from different scales of motion, vividly illustrated in Figure 8, implies that the net “down-
gradient” transport for y > y,, must arise from scales much smaller than y and likewise the
net “up-gradient transport” for y < y, must arise from scales much larger than y. In order
to quantify the extent of cancellation between co-spectral regions with opposing fluxes, we
define the fractional cumulative flux

m f;,:/,\ Pvw.-way (ke y)dkz, ify <yp
1

T ) (3.4)
Tar—way) o) /0 Pvew.-way (kg y)dkz, iy >y,

f(y,A)={

which for y <y, measures the fraction of nonlinear vorticity flux arising from wavelengths
A; < Aand for y > y, measures the fraction arising from 4, > A. One important spanwise
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Figure 9: Characteristic spanwise wavelengths relevant to nonlinear vorticity transport,
defined based on Eq. 3.4, for (a) y < yp and (b) y > yp.

scale which may be defined in the range 10 < y* < 500 where two opposite-signed branches
of the cospectrum co-exist is the “break-even” wavelength /l(z) satisfying f(y, /l(z)) = 0. For
y <y, spanwise scales as large as 12 > A% must be included to get exactly cancelling flux,
and for y > y, spanwise scales as small as 12 < A% must be included to get cancelling
flux. Perhaps even more relevant is the “99%” wavelength /199 satisfying f(y, /199) = 0.99.
According to this definition, spanwise scales as large as /129 > /lg must be included to get
99% of the net up-gradient flux for y < y,,, and spanwise scales as small as /129 < /lg must
be included to get 99% of the net down-gradient flux for y > y,,. Note thatat y = y,, the co-
spectrum integrates to zero, and hence /12 — oo and /129 —ocoasy — yp,, fory <y,. And,
A% - 0and /129 — o0asy — yp,fory > y,. Therefore, these scales do not have meaningful
physical interpretations close to y,, while they provide useful information viz. the scales
yleldlng nonzero nonlinear flux. All of the length-scales A7, /10 and /199 are plotted together
versus y* for 10 < y* < 40 in Fig. 9a and for 75 < y* < 500 in Fig. 9b corresponding to
y <ypandy >y, respectively. For y <y, (9a) the plotted results show that /129 begins as
40y in the buffer layer and increases to more that 100y approaching y* = 40, making manifest
the very large spanwise scales involved in Lighthill’s “up-gradient” mechanism. We have also
added for reference to Fig. 9 two characteristic turbulent small scales, the Kolmogorov scale
77 and the Taylor scale Ar. Here we have followed standard definitions n = v3/#¢~1/4 and
= [5v (U2, + V25 + W2e)/€]'/?, estimating energy dissipation as € = P /a in terms
of turbulence production Px = —(u’v’)d,U and the factor a from Figure 7 of Lee & Moser
(2015). Note, that the scales associated with up-gradient flux (X A}) are at least one order of
magnitude larger than the Kolmogorov scale, where streamwise organization associated with
stronger spanwise scales can be expected. Remarkably, for y > y,, (9b) in the log layer we see
that /129 = Ar to a very good approximation and in the outer layer /lggis only a factor of a few
times larger than A7. Thus, we conclude that fine-scale eddies with spanwise wavelength A,
down to nearly the Taylor microscale contribute significantly to the down-gradient transport
of vorticity at y > y,. Similar observations were made previously by Priyadarshana et al.
(2007) based on streamwise cospectra ¢y, (kx,y), Pwey (Kxs y) (see further below). The
sensitivity of the nonlinear vorticity transport to such small scales for y > y, has important
implications for physical phenomena such as polymer drag-reduction since modifications of
the flux cospectrum at very small scales can alter the delicate balance between down-gradient
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and up-gradient transport and lead to a drastic reduction of drag (cf. Crawford & Karniadakis
(1997); Monty et al. (2011)).

We have calculated as well the separate spanwise cospectra for the advective flux
bvw. (kz,y), and the stretching flux —¢y, (k2. y). These contain less information than the
cospectrum of the total nonlinear flux, so we just briefly summarize here the key observations
and relegate the plots of those cospectra to Fig C.4 and Fig C.5 in the Supplementary
Materials. Most significantly, the stretching cospectrum is predominantly “up-gradient” for
all y* values and the advective cospectrum predominantly “down-gradient” for y* > 5.
Intriguingly, ¢, (k.,y), switches sign for y* < 10, where it becomes almost entirely
“up-gradient”. These signs are all consistent with those of the mean values (vw,)(y) and
—(wwy)(y) plotted in Fig. 5 and the underlying physical mechanisms are presumably the
same as discussed in that connection. A relevant conclusion is that in Fig. 8 the “down-
gradient” branch in the nonlinear flux cospectrum ¢y -waw, (kz,y) arises mainly from
advection, whereas the “up-gradient” branch arises mainly from stretching.

We have studied in addition the streamwise cospectra ¢y _(kx,y), =Pwew, (kx,y), and
Pvw.-ww, (kx,y), but we have found that these present a much less clear physical picture
and are not as easily interpretable as the spanwise cospectra. We thus present here in Fig. 10
only the streamwise cospectra for the total nonlinear flux, which may be directly compared
with the spanwise cospectra in Fig. 8, and we relegate to the Supplementary Materials in
Figs. C.6, C.7 the cospectra for advective and stretching fluxes. The latter are shown to
agree qualitatively with prior experimental results of Priyadarshana er al. (2007); Morrill-
Winter & Klewicki (2013) at somewhat different Reynolds numbers and for boundary layers.
Referring briefly to the results plotted in Fig. 10, we remark that the streamwise cospectra
at y* = 5 and y* = 15 shown in Fig 10a are qualitatively similar to the corresponding
spanwise cospectra. However, as y* increases to 30, the streamwise cospectrum develops
a region of down-gradient behaviour (at 1, ~ 10y) sandwiched between regions of up-
gradient behaviour (at 1, ~ 4y and A, ~ 200y). Such behaviour persists into the log layer
until reaching y* = 53 (shown in Fig 10b) whereupon the behaviour changes again to
qualitatively resemble spanwise spectra with down-gradient contributions from A, < A% and
up-gradient contributions from A, > A% (as seen at y* = 75-250). Here, A7, is the streamwise



21

wavelength at which the co-spectrum crosses the x-axis. However, streamwise cospectra do
not possess the persistent and sharp boundary between competing fluxes across the log layer
seen in the spanwise case and A% /y varies significantly with y. At y* = 250 and into the
outer layer (Fig 10c),the streamwise cospectra are purely down-gradient. The streamwise
and spanwise cospectra are naturally similar near the center line due to the larger degree of
component isotropy there. We also remark that streamwise net force spectra have been the
subject of detailed study in prior works of Guala et al. (2006); Balakumar & Adrian (2007);
Wu et al. (2012).In these works, the wall-normal derivative of the Reynolds shear stress is
characterized as producing retardation of the mean flow above y,, and acceleration below,
associated in their study with a negative and a positive sign respectively. This retarding force
is produced by a down-gradient flux of spanwise vorticity while an accelerating force results
from an up-gradient flux, as discussed in Sec 1(see also, Eyink (2021)). A detailed study
by Wu et al. (2012) finds large positive (accelerating) values for the streamwise net force
spectrum concentrated below y* = 20, and observes that below the top of the buffer layer
(at y* = 30), all scales except the very smallest (1, < 0.15R, R* = 685) accelerate the
mean flow (or contribute an up-gradient flux). Conversely, for y > 0.2R, they find negative
(decelerating or contributing a down-gradient flux) values for all scales. In the wall-normal
region where y* > 20 and y < 0.2R, they find a complicated y variation of the spectra with
negative (decelerating or with a down-gradient flux) values sandwiched between positive
(decelerating or with an up-gradient flux) values, each occupying a varying range of scales.
These observations mirror our own, as illustrated particularly by Fig 10 .

Following the approach of Wu et al. (2012) for pipe flows, the somewhat complicated
picture arising from the streamwise cospectra is clarified by studying, the 2D cospectra in
(ky, k), which provide more detailed information about the different scales of motion in
streamwise and spanwise directions simultaneously. Cospectra are calculated by computing
2D FFTs of velocity and vorticity, followed by taking appropriate inner products and averaging
in time. We also added contributions reflected in the x- and z-axes so that the spectra
depend only on wavelength magnitudes k, > 0, k, > 0, yielding the following spectral
decomposition of the nonlinear vorticity flux:

‘/0 [) ‘vaz—wwy(km kz,y) dky dk; = (vw, - Wwy)()’) (3.5)

Because the 2D cospectra were obtained by averaging over only 38 snapshots, rather sizable
fluctuations remained in the results. Thus, to obtained more converged results, we smoothed
these cospectra using 2D running averages in Fourier space. The smoothing based on the
Principle of Minimal Sensitivity (Stevenson 1981) is discussed fully in the Supplementary
Materials, section D, but we note here that the smoothing employed preserves the total
integral in Eq.(3.5) and that the cospectra plotted in Fig. 11 are relatively insensitive to the
exact choice of filter width Ak in the range considered. We have also chosen to plot the 2D
spectra versus normalized wavelengths A, /y and A, /y, both in log-scale and compensated
by the factor k.k, to yield the correct double integral over (log(dy/y),log(1;/y)). We
have again normalized by the factor —u% /H, so that positive values represent down-gradient
transport and negative values up-gradient. We plot 2D cospectra for three y-values each in the
viscous sublayer and buffer layer (Fig. 11a-11c), the log layer (Fig. 11d-11f), and outer layer
(Fig. 11g-111)). The most important feature of the 2D spectra is that, like the 1D spanwise
spectrum but unlike the streamwise spectrum, there is a clear bipartite structure, with two
distinct branches or “lobes”, with clear spectral boundaries, corresponding to the competing
down-gradient and up-gradient transport. In fact, these boundaries are mainly along the line
Az/y = 3 ~ 4 but with also another boundary depending upon A for A,/y > 3 ~ 4. These
results illuminate why the 1D streamwise cospectra do not yield a clear bipartite structure
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Figure 11: Normalized compensated 2D co-spectra of the nonlinear flux
Py, —way (kx,kz,y), in the viscous & buffer layers (a,b,c), log layer (d,e,f), and outer
layer (g,h).The solid curves mark the iso-contour of the filter D (ky, k;,y) = 0.5,
described in Supplementary Materials F. The dotted, dashed and dashed-dot lines
represent A%, /l(z) and /129 respectively, as in Fig 9.Note that the range of a color-bar does
not reflect the actual range of values of the spectrum since only one color achieves
saturation while the other does not. For example, spectrum (c) ranges from -6.4 to 2.5
while (g) ranges from -0.11 to 0.36.

after integration over k,, while integration over k, preserves such structure. A main new
implication of the 2D cospectra is that up-gradient transport requires not only 1,/y = 3 ~ 4
but also A,./y = 3 ~ 4, or even larger.

We now comment briefly on significant features and consequences of the 2D cospectra for
the various wall distances.

In the viscous sublayer and buffer layer, the dominant up-gradient contribution to the
nonlinear flux corresponds to the blue region in Fig. 11a-11c, which is characterized roughly
by A;/y = 3 and A, = A,. The competing down-gradient contribution indicated by red color
is weaker and in the viscous sublayer at y* = 5 it is almost entirely negligible. The peak
negative value of the cospectra associated to up-gradient transport occurs around wavelengths
(Ax, ;) ~ (30y, 8y), whose ratio is indicative of sublayer streaks. These are the type of flow
structures “elongated in the stream direction” mentioned by Lighthill (1963) and whose
relevance to near-wall vorticity transport has been discussed in several previous studies
(Klewicki et al. (1994); Brown et al. (2015); Arosemena & Solsvik (2022)).

In the log-layer, the contributions to down-gradient and up-gradient transport from the
2D cospectra plotted in Fig. 11d-11f are more nearly in balance, with an exchange of
dominance at y = y,,. The blue portion associated with up-gradient transport occupies very
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crudely the region specified by the two constraints 1,/y > 4 and A,/y > 4, requiring large
wavelengths in both spanwise and streamwise directions. (The black curves in Fig. 11d-11f
plot more precise boundaries of this region. The aim to separate the flow into contributions
on either side of these lines motivates us to define a filter, termed the “dragonfly filter” due
to its shape once the black line is mirrored to all four quadrants. The dragonfly filter is
discussed in more detail in §3.4 and in the Supplementary Materials F.) The red portion of
the cospectrum associated to down-gradient transport obtains most of its contribution, on
the other hand, from the region with 1, /y < 4 but with A, /y ranging over values both much
smaller and larger than unity. As y increases, this down-gradient spectral region extends
to smaller A,/y and A,/y, and simultaneously the position of peakpositive cospectrum
shifts to smaller wavelengths. The negative, up-gradient portion of the cospectrum instead
peaks around (Ay/y,4;/y) ~ (10,10) for all y. These observations imply not only that
the down-gradient transport becomes more dominant with increasing y but also that it
originates from an increasing range of spanwise and streamwise scales, down to the Taylor
microscale Priyadarshana ef al. (2007). Meanwhile, the up-gradient contributions arise only
from spanwise and streamwise scales larger than the integral scale and with dimishing
magnitudes at greater wall distances.

These trends with increasing y continue for the 2D cospectra in the outer layer plotted in
Fig. 11g-11i. The up-gradient spectral region continues to be specified roughly by A, /y = 4
and 1, /y 2 4, but the cospectrum magnitudes in this sector drop rapidly with y. For y* > 500
the up-gradient contribution is essentially negligible and only the down-gradient contribution
from the small scales remains. The cospectra for the latter have furthermore shifted to even
smaller values of A,/y and A, /y. Additionally, we have marked A7, /lg and /129 on the co-
spectra, also plotted in Fig. 9. For y <y, (Fig.11b-11d), the part of the co-spectrum below
the dashed line (/l(z)) integrates to zero, and 99% of the (up-gradient) flux comes from the
region between the dashed and the dot-dashed line (/129). Similarly, Fory > y,, (Fig.11{-11h),
the part of the co-spectrum above the dashed line (/l(z)) integrates to zero, and 99% of the
(down-gradient) flux comes from the region between the dashed and the dot-dashed line
a2,

Wu et al. (2012) also observe a similar bipartite structure in their plots of 2D net
force spectra for pressure-driven pipe flows (shown in Figure 18 of their paper). They find
that the spectra at all considered y values are similar in that each posses an ellipse of
negative net force (decelerating or with a down-gradient flux contribution) below (at shorter
azimuthal wavelengths) an ellipse of positive net force (accelerating or with an up-gradient
flux contribution) while occupying similar streamwise scales. The combined effect of all
azimuthal scales leads to the complex behavior of the A, spectra, while integrating over
streamwise scales leads to azimuthal spectra (a function of 14, where 6 is the azimuthal
angle) with a consistent pattern of behavior, reflecting the structure of the 2D spectra. Since
their azimuthal spectra possess a negative (decelerating or down-gradient) region for small
scales and a positive(accelerating or up-gradient) region at larger scales, we can mark the
wavelength Ay at which a spectrum changes sign. We can then calculate A5 = (R — y)45,
where, A is the wavelength defined based on the azimuthal arclength (see also, Figure
11 from Wu et al. (2012) ). The values of A5/y are compared with A7 /y in Table 1. It is
interesting to note that both quantities have only small variations across the different y values
considered, especially within the log layer (y* = 50, 101, 200). The values of A%/y are at
most 22% smaller than A} /y. This is a high degree of agreement considering that they are
for different flow configurations and are at two different Reynolds numbers.

We have calculated also the separate 2D cospectra for the advective flux ¢, (kx, kz,y)
and stretching flux =y, o, (kx, k7, y). These are plotted in Fig. E.10 and Fig. E.11, respec-
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yvhooay A3y Aty
20 0.109 3.624 3.866
50 0.234 2.972 3.852
101 0.526 3.040 3.596
200 1.156 2.803 3.621

Table 1: Wavelengths /l’:9 (based on azimuthal angle) and A5 (based on azimuthal
arclength) at which the net force spectra change sign, calculated from the azimuthal spectra
plotted in Figure 18 of Wu et al. (2012), using DNS data of a pressure driven pipe flow
at R* = 685. Here /lz is the same as in Figure 9. Here, y is the wall normal distance.

tively, in the Supplementary Materials and here we just summarize their main features. These
cospectra have the same bipartite structure as the cospectra for the total nonlinear flux plotted
in Fig. 11. The most important difference is that the down-gradient contribution is greatly
reduced for the stretching cospectrum in Fig. E.11 and likewise the up-gradient contribution
is greatly reduced for the advective cospectrum in Fig. E.10. Thus, the stretching cospectrum
contributes primarily up-gradient transport and the advective cospectrum primarily down-
gradient transport. The only exceptions to the latter statements are for y* < 10 where the
advective cospectrum plotted in Fig. E.10a is almost entirely up-gradient and for y* > 500
where the stretching cospectrum plotted in Fig. E.11i is almost entirely down-gradient. The
other general change in the separate 2D cospectra is that the boundaries between up-gradient
and down-gradient transport are slightly shifted, upward to A,/y ~ 6 ~ 8 for the advective
cospectrain Fig. E.10 and downwardto A, /y ~ 1 ~ 2 for the stretching cospectrain Fig. E.11.
The relevant conclusion for the competing contributions to the nonlinear flux cospectra
plotted in Fig. 11 is that the down-gradient contribution arises mainly from advection and
the up-gradient contribution mainly from stretching/tilting.

It is informative to compare our results for the 2D flux cospectra in the log layer with
those for 2D energy spectra obtained from channel-flow DNS (Del Alamo et al. 2004) in
the range of Reynolds numbers Re, = 547 ~ 1901, comparable to ours, and also from
boundary-layer experiments (Chandran et al. 2017, 2020) at much higher Reynolds numbers
Re, = 2430 ~ 26,090. It was found by Del Alamo et al. (2004) that the A, at the maximum
of the 2D energy spectrum for each A, corresponded to a ridge given by a power-law scaling

Az[y ~ (Ax/y)? (3.6)

with an exponent p = 1/2 that differed from the value p = 1 corresponding to the self-
similar structures assumed in the AEM. Chandran et al. (2017, 2020) verified this result
at their lowest Reynolds numbers but found that for higher Re, the spectral ridge is better
fit by a power-law with p > 1/2, especially in the large-scale range 1, = 20y. In the
limit of very large Reynolds numbers, they found that p — 1 and that 1, ~ A, /7, consistent
with the spectra arising from streamwise elongated but self-similar structures, such as hairpin
packets, as assumed in the AEM. Our results for the 2D flux cospectra are strikingly different,
becoming almost independent of A for A,/y 2 10. We have quantified this independence
by calculating three spanwise wavenumbers k¥, k¢, and k; for each streamwise wavelength
ky, corresponding respectively to the wavenumber where the pre-multiplied cospectrum
normalized by —u% /H has its minimum (most negative) value, its maximum value, and
its zero-crossing, respectively, for that k,-slice. The corresponding “ridges” are plotted in
Fig. 12a-12c¢ for y = 40, 53, 100 in the log-layer and we find that these are fit reasonably
well for A,/y > 30 by power-laws of the form (3.6), with linear best-fit values given in
Table 2. The small values of p quantify how the cospectra become nearly independent of
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together with the normalized 2D cospectra ¢y w_—ww, (kx, kz;y) for y in the log layer.
Power-law fits for the minimum, maximum and zero cospectral ridges at 1y 2 30y, are
given by cyan, yellow and green lines respectively.

Y pu Pd Ps

40 0.2025 0.0936 0.0491
53 0.2176 0.0078 0.0629
100 0.2291 0.0894 0.0236

Table 2: Linear fits for (1x/y) 2 30, A% /y = ay(Ax/y)PH, /l?/y =ag(Ax/y)Pd,
A7/y = ax(Ax/y)P+. Here, ay, agz and a, are constants.

Ay for wavelengths A, /y > 10. This finding seems to indicate that the eddies contributing
to nonlinear vorticity transport in the log layer are strongly non-self-similar, with A, nearly
independent of A,. This is one piece of evidence that the up-gradient transport proposed
by Lighthill (1963) does not arise from attached eddies that are usually assumed to be self-
similar. In addition, despite the arguments of Eyink (2008) to the contrary, the results in
Fig.12c suggest that for y > y,, the down-gradient vorticity transport is as well not provided
by the self-similar attached eddies assumed in the AEM, at least for Re, = 1000. In the next
section we shall try to clarify this issue by identifying the vortex structures in the flow which
are most relevant to the nonlinear vorticity transport.

3.4. Coherent vortices and their vorticity flux contributions

There has long been interest in the role of coherent vortex structures in turbulent flows
(Cantwell 1981; Hussain 1986; Robinson 1991; Adrian 2007), with new insights related to
exact Navier-Stokes solutions that represent such organized states (McKeon 2017; Graham
& Floryan 2021). One of the drivers of this sustained attention is the empirical fact that
coherent vortices contribute a disproportionate amount to turbulent transport, outsize relative
to their small volume fraction in the flow. These considerations have motivated extensive
efforts over many years to develop vortex identification methods, with classical methods
discussed in prominent reviews (Chakraborty et al. 2005; Kolaf 2007) and with improved
methods continuing to be developed (Haller et al. 2016) The bipartite character of the 2D
flux cospectrum discussed in the previous subsection provides the basis to investigate the
coherent vortex structures which contribute separately to up-gradient and down-gradient
vorticity transport. The straightforward idea is to decompose the flow at each y-level into
the contributions of two sets of eddies characterized by their support in the 2D Fourier
space (ky, k;), with one field coming from eddies with negative (up-gradient) sign of the
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normalized flux cospectrum and the other from eddies with positive (down-gradient) sign.
Methods of vortex visualization that have been applied to the full fields can then be applied
to the two (nearly) orthogonal fields in order to identify the coherent vortices that contribute
most significantly to up-gradient and down-gradient transport.

In Supplementary Materials, section F we devise a convenient low-pass filter function
D (ky, k;,y) that selects the spectral region of up-gradient flux, while its complement high-
pass function D€ (ky, k,,y) = 1 —D(ky, k., y) selects the region of down-gradient flux. The
filter functions were chosen to be graded to avoid Gibbs-type oscillations in physical space
due to sharp spectral cutoffs. The particular filter function D (k, k., y) that we employ is a
Gaussian function with elliptical level sets and with rotation angle relative to the Cartesian
axes that depend upon the wall distance y. When extended to the space of signed wavenumbers
by reflections in the Cartesian coordinate axes, the levels of this function (see Fig. F.13a)
resemble the crossed wings of a dragonfly and hence we have dubbed this function the
“dragonfly filter”. In the other panels of Fig. F.13 in the Supplementary Materials we illustrate
how this filter selects regions of negative normalized flux cospectrum. All spatial fields
q(x,y,z) such as velocity and vorticity are then filtered by taking 2D FFT’s, multiplying
by D(ky, k;,y) or D (ky, k;,y), and then taking a 2D inverse FFT to obtain two fields,
the contributions ¢Y (x, y, z) of “U-type eddies” and ¢? (x, y, z) of “D-type eddies”. We can
then calculate separate nonlinear fluxes 25Z = F wf - wk w§ for both F = U, D. Since
off-diagonal terms such as an)? are small after averaging over both x and z, this yields a
nearly additive decomposition for averages (Z’y’lzi") = (Z%) + (Zﬁ).

When can then visualize vortices for the two velocity fields u¥ and u”. We present results
here for the A,-criterion of Jeong & Hussain (1995) which is based on the intermediate
eigenvalue 1,(Vu) of the symmetric matrix 8> + Q> where S and Q are, respectively,
the symmetric and anti-symmetric parts of Vu. We can then define /lg = Ap(VuY) and
/lé) := 12(VuP) and visualize vortices by negative levels of these scalar fields. We have also
considered other vortex visualization schemes such as the Q-criterion of Hunt ef al. (1988)
but, consistent with other works (Chakraborty et al. 2005), we obtain very similar results from
the different visualization criteria when applied to turbulent fields and we thus present here
our results only for the A,-criterion. We follow the suggestion of Wu & Christensen (2006) to
visualize structures in inhomogeneous wall-bounded turbulence based on levels of the vortex
discriminant function normalized by its variance, here 1;/45™* = —f. Since the vorticity
magnitudes decrease rapidly with y, this normalization permits uniform visualization of
coherent vortices at all wall distances. The imposed level is somewhat arbitrary but we
choose here 8 = 1 which is in the range of earlier related studies (Wu & Christensen 2006;
Chen et al. 2014, 2018a,b), which we discuss at length below.

We begin with a discussion of the coherent vortices for the high-pass field u?, identified
based on the discriminant function Ap. These structures are plotted in Fig 13 and shall be
referred to here as “D-type vortices” since they arise from the field u” which accounts
for the down-gradient nonlinear vorticity flux away from the wall. We visualize here only
the vortices in the log-layer of the simulation, corresponding to 30 < y* < 300. The vortex
surfaces in the figure are colored based on the pointwise values of the down-gradient flux Z?Z
The most immediate observation about the D-type vortices is that they have a very similar
morphology to the well-known “hairpin vortices” that have been frequently visualized in the
full velocity field u of turbulent wall-bounded flows, not only by the A,-criterion (Jeong et al.
1997) but also by alternative methods such as swirling strength (Adrian & Liu 2002; Alfonsi
et al. 2011) and the Q-criterion (Wu & Moin 2009). We note that most of these vortices are
“prograde” with w, < 0 and “retrograde” vortices with w, > 0 are greatly outnumbered.
Many of the hairpins also appear to be strongly asymmetric, with one much weaker leg, in
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Figure 13: Vortices identified using the A,-criterion for the velocity field u? filtered using

DC. Isosurfaces are plotted for /12D = —AP-"™S and coloured by the nonlinear flux Z)?z.
The three dimensional figure is available at http://cocalc.com/.../D-vortices.html. The data
and code to generate such 3D vortices are available at http://cocalc.com/.../3D-vortices/.

agreement with some previous observations (Adrian 2007). Hairpin vortices or packets of
hairpins are often considered to be plausible candidates for the “attached eddies” in the AEM
(Adrian 2007; Marusic & Monty 2019). Although we attempt here no detailed statistical
analysis, the D-type vortices pictured in Fig 13 appear indeed to be wall-attached structures,
with feet of one or both legs planted in the near-wall region. These observations agree with
the suggestion of Eyink (2008) and others (Chen et al. 2014, 2018b) that the down-gradient
transport of vorticity should be supplied by attached hairpin-type structures, although we
recall the evidence from the previous subsection that D-type vortices are not self-similar at
Re; = 1000. An interesting fact that may be inferred from the color plot in Fig 13 is that Zfz
is not down-gradient (red color) at every point on the D-vortices. In fact, there are points
also of very large up-gradient transport (blue color), which is permitted because the filter
function D€ selects positive flux only in Fourier space not in physical space. We can see
furthermore that the regions of the two different signs of transport are organized, with red
(down-gradient) generally on the upstream side of the vortex and blue (up-gradient) generally
on the downstream side. This tendency is even more obvious in an interactive 3D version
of figure 13 that can be found at http://cocalc.com/.../D-vortices.html made available in the
JFM Notebook. This observation can be easily understood in terms of the direction of the
Lamb vector calculated from the vorticity vector and the local vortex-induced velocity in the
vicinity of a hairpin-type vortex.

The net vorticity flux of all D-type eddies is indeed down-gradient, however, as illustrated
by Fig 14a which plots (Zﬁ) normalized by —u2 /H versus y. Not only is the normalized flux

positive but in fact (ZyDZ) < —u?/H for all y and it approaches almost —~7u2 /H in the buffer
layer. These large values are possible because they (plus the viscous flux) are nearly cancelled
by the opposing up-gradient flux supplied by the complementary field uV. In addition to the
total (ZyDZ), we can also calculate the partial average (ZyDZ ) from the region of the vortex cores

characterized by 19 < —,B/lé) 7™ For B = 1 this may be considered the direct contribution
of the D-type vortices to the mean down-gradient flux. However, it is likely that this partial
average on the cores underestimates the true contribution of the coherent vortices, which
will also make an indirect contribution from a spatial neighborhood influenced by induced
motions from Biot-Savart (Wu & Christensen 2006; Chen et al. 2018b). As a crude estimate
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Figure 14: (a) Mean down-gradient vorticity flux and its contributions from D-type
coherent vortices. (b) Fractional contributions from D-type vortices. (c) Area fraction
occupied by D-type vortices.

of this larger contribution from the region influenced by the coherent vortices, we consider
the partial average (EyDz>0 over the region with /lg’ < 0. Both of these partial averages are
plotted also versus y in Fig 14a. The fractional contributions of the vortex cores and the
vortex neighborhoods are furthermore plotted in Fig. 14b. We can also calculate the area
fractions of these two regions in the wall-parallel planes at each distance y and these are
plotted in Fig. 14c. These plots show that the vortex cores contribute an increasing fraction
of the down-gradient flux for increasing y, starting from ~ 5% at y* = 30, reaching ~ 45% at
y* = 150, and remaining roughly constant then in the log layer, but vortex cores occupy only
about ~ 7% of the area at every wall distance. The flux fraction from the vortex-dominated
region behaves similarly but is even larger, with ~ 30% contribution at y* = 30, ~ 65%
at y* = 150, and remaining roughly constant thereafter, while occupying only about 40%
of the area. Thus, by either of the measures, the D-type vortices make a contribution to the
down-gradient flux out of proportion to their volume in the flow.

Our results closely mirror previous works which have studied the effects of coherent
vortices on the transport of spanwise vorticity. Following the pioneering work of Wu &
Christensen (2006) on spanwise vortex contributions to Reynolds stress, Chen et al. (2014)
experimentally studied open channel flume flows at Re; = 382 ~ 740 using particle image
velocimetry (PIV) in 2D vertical planes, which gave access to the velocities u(x,y) and
v(x, y). Identifying coherent vortices by the swirling strength with 8 = 1.5, they could then
analyze their contribution to the advective flux vw,. They found many such coherent vortices
with almost 97% prograde at y* ~ 50 and this percentage declining with y but still 65%
at y* = 600, and it was conjectured that the prograde vortices were the heads of hairpin
vortices. Chen et al. (2014) observed as well a bipolar distribution of flux near the vortex
cores, with v'w’, > 0 upstream and v'w}, < 0 downstream, which they explained also by
local induced velocities. Finally, Chen et al. (2014) found for the region 100 < y* < 0.9Re,
that coherent vortex cores contribute about 45% to (vw,) while occupying only 9% of the
area. All of these results for the total velocity field in 2D planes are quite similar to ours for
the high-pass filtered field component u? in 3D.

The following paper of Chen et al. (2018b) (see also Chen et al. (2018a)) verified the
results of Chen et al. (2014), but in the channel-flow simulation of Del Alamo et al. (2004)
at Re; = 934. Because of the availability of full 3D velocity fields, Chen et al. (2018b)
could apply the swirling strength criterion for various choices of 8 in both 2D planes and
in 3D and they found that comparable results were obtained for both, although the 3D
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criterion identified more coherent vortices than did the 2D criterion. Chen et al. (2018b)
could also study the stretching flux —ww, and the full nonlinear flux vw, — ww, and then
investigate the coherent vortex contribution to each of these. In fact, Chen ef al. (2018b)
decomposed the entire space domain into four exclusive point sets consisting of “filamentary
vortices” (FV), “non-filamentary vortices” (NFV), “non-swirling vortex structures” (NSVS),
and “irrotational structures” (IS), and all of these except the latter can contribute to vorticity
flux. The FV structures correspond to roughly to our vortex cores, but identified by swirling
strength and a region growing algorithm, and the other structure types are precisely defined
by Chen et al. (2018a,b). Thus, Chen et al. (2018b) determined the fractional contributions
of each of the first three types of structures (FV, NFV, NSVS) to the three fluxes (advective,
stretching, total nonlinear) and they emphasized the dominant role of the FV structures. For
the region y* > 300 of their simulation where (ww,) > 0 (down-gradient), FV structures
contribute more than 80% while occupying only 15% of the volume. Likewise, for the region
y* > 50 where (vw, — ww,) < 0 (down-gradient), FV structures contribute more than 60%
while occupying area less than 15%. They concluded that: “Compared with the other three
structures, FV play a very important role in velocity-vorticity correlations and the net force.”

From our perspective, however, a very important result of Chen et al. (2018b) that was
never explicitly mentioned by them is the fact that the FV contributions to all three of the
fluxes are negative (down-gradient) everywhere, that is, (vw;)ry < 0, =(ww;)ry < 0 and
(vw;—ww;)ry < 0forall y. These signs can be inferred from the data plotted in Fig. 2(b) and
Fig. 9 of Chen et al. (2018b). Since however —(wwy) > 0for y* < 300 and (vw, —wwy) > 0
for y* < 50 in the simulation studied by Chen et al. (2018b), this means that the FV structures
are not only not dominant in these regions but in fact give a contribution of the wrong sign!
See Fig. 9(c)-(d) in Chen et al. (2018b). Put another way, the FV structures do not account
for the up-gradient vorticity transport in these regions. This is understandable if one can
essentially identify the FV structures of Chen ef al. (2018b) with our D-type vortices, which
contribute always a net down-gradient flux. This identification is plausible based on the
evidence of visualizations, since the D-type vortices shown in our Fig. 13 resemble quite
closely the vortex structures detected by the swirling strength criterion in the full velocity
field (Adrian & Liu 2002; Alfonsi et al. 2011). In any case, the important result of Chen et al.
(2018b) not emphasized by them is that it is the NFV and NSVS structures which account for
the up-gradient vorticity transport observed closer to the wall. Unfortunately, the works of
Chen et al. (2018a,b) did not attempt to visualize the NFV and NSVS structures or to clarify
their morphology and dynamics.

We can now illuminate the nature of such structures by vortex visualizations for the low-
pass field uY, using the discriminant function /lg and B = 1. These structures are plotted
in Fig 15 and shall be referred to here as “U-type vortices” since they arise from the field
uY which accounts for the up-gradient nonlinear vorticity flux toward the wall. As before,
we visualize only the vortices in the log-layer of our simulation and the vortex surfaces are
colored based on the values of the up-gradient flux Zgz. The U-type vortices visualized
in Fig 15 have a pancake structure, vertically flattened and elongated along the streamwise
direction but especially along the spanwise direction. Their characteristic shape becomes
even clearer in the interactive 3D version of Fig. 15 available at http://cocalc.com/../U-
vortices.html. These are exactly the type of vortex structures one would imagine to arise
from the Lighthill (1963) mechanism of correlated downflow and lateral stretching. In fact,
the roughly twice longer extents spanwise than streamwise correspond well to Lighthill’s
remark that “some longitudinal deformation is usually also present, which reduces the need
for lateral deformation (perhaps, on average, by half).” Note, that these structures, ultimately
based on the 2D co-spectra plotted in Fig.11, can be interpreted as evidence for a cascade
process similar to momentum, since these structures are responsible for transfer in scale
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D. Isosurfaces are plotted for /lg = —AY"™ and coloured by the nonlinear flux Zyz. The

three dimensional figure is available at http://cocalc.com/.../U-vortices.html. The data and
code to generate 3D vortices are available at http://cocalc.com/.../3D-vortices/.

and in space. However, there is no obvious self-similarity of these structures in scale and,
according to the results presented in our Fig. 8 and Table 2, one might expect the ratio
A/, to increase with scale. The U-type vortices show also no obvious attachment to the
wall, being mainly horizontal to it. Indeed, an extension of the AEM by Perry & Marusic
(1995); Marusic & Perry (1995) introduced in addition to the “Type-A” attached eddies
also “Type-B” eddies to represent the wake flow in the outer layer and small-scale “Type
C” eddies to represent the Kolmogorov range. The Type-B eddies were viewed as detached
vortex tubes which undulate in the spanwise direction, thus somewhat resembling our U-
type eddies (see Figure 3 of Perry & Marusic (1995)). More recently, Hu et al. (2020)
have attempted to decompose turbulent channel flow fields at Re; = 5200 into small-scale
eddies, attached eddies, and detached eddies, and their |u|-isosurfaces for the detached eddies
(see their Fig. 19(d)) have a similar pancake structure as our U-type vortices. We have also
checked that the vorticity in the U-type vortices is predominantly spanwise and prograde
consistent with lateral stretching of pre-existing vorticity. This is demonstrated by Fig. G.14
in the Supplementary Materials, where we colour these vortices by the cosine of the angle
made by the vorticity vector wY with the z-axis and find the prevalence of values close to
-1, denoting prograde spanwise aligned vortices. Finally, we observe flux-bipolarity of the
U-type vortices just as for the D-type, with red (down-gradient) generally on the upstream
side of the vortex and blue (up-gradient) generally on the downstream side. This tendency is
again more obvious in a 3D version of the figure available in the JFM Notebook.

Despite large contributions to the vorticity flux of both signs, however, the net flux supplied
by all U-type eddies is up-gradient. This is verified by the data in Fig 16a which plots <2§JZ)

normalized by —u2 /H versus y. Similar to the result for the D-type vortices, (Z$Z> > u>/H

across most of the log layer and approaches 10u2/H at the lower y range where it must
cancel most of the down-gradient flux from the D-type eddies and viscous diffusion. For the
largest y* ~ 300 in the log layer, (Z;Jz) ~ 0. lui /H and still cancels part of the contribution

from the D-type eddies. In addition to the total (Z;Jz), we can also calculate the partial

averages <2§’Z)/; for the condition 1Y < —,B/lg "M with B = 1 (vortex cores) and S = 0
(vortex neighborhoods). Both of these partial averages are plotted also versus y in Fig 16a,
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Figure 16: (a) Mean down-gradient vorticity flux and its contributions from U-type
coherent vortices. (b) Fractional contributions from U-type vortices. (c) Area fraction
occupied by U-type vortices.

the fractional contributions of the vortex cores and the vortex neighborhoods are plotted in
Fig. 16b, and the corresponding area fractions plotted in Fig. 16c. We observe that the cores
of the U-type vortices account for ~ 20% —30% of the up-gradient flux but occupy only about
10% of the area, while regions dominated by the U-type vortices provide ~ 60% — 70% of the
flux but occupy only about 45% of the area. The coherent U-type vortices thus contribute a
percentage of the up-gradient flux roughly twice their area in the flow. This is not as outsize as
the contribution of the D-type vortices to the down-gradient flux and the lower performance
may be due to our rote application of the A,-criterion for vortex identification in uV. This
criterion was designed by Jeong & Hussain (1995) to detect rapidly swirling vortex tubes
with low-pressure cores, whereas the U-type vortices clearly have a distinct structure. It is
also possible that our filter function D does not have spectral support optimally chosen. More
appropriate filter kernels and discriminant functions can probably be devised to characterize
better the coherent U-type vortices that contribute most to the up-gradient vorticity transport.

4. Discussion and Conclusions

The main objective of this work has been to elucidate the dynamics involved in turbulent
tranport of spanwise vorticity normal to a solid wall, motivated by the direct connection of
this vorticity flux to turbulent drag. We have carried out a numerical study for a canonical
case of pressure-driven Poiseuille flow in a channel with plane-parallel walls. We find that
the mean vorticity transfer is the result of two intensely competing processes: an up-gradient
transfer that concentrates spanwise vorticity strongly near the wall and a slightly greater
down-gradient transfer that disposes of the fresh spanwise vorticity generated at the wall by
the mean pressure-gradient. This is exactly the picture suggested by Lighthill (1963), who
proposed also a concrete mechanism for up-gradient transport by correlated inflow to the
wall and lateral stretching of vortex lines as well as outflow correlated with lateral relaxation.
We have presented here detailed evidence for the validity of Lighthill’s mechanism in the
case of turbulent channel flow based upon: (i) correlations of wall-normal velocity with
flux of spanwise vorticity, (ii) velocity-vorticity co-spectra that identify the eddies involved
in nonlinear vorticity transport in the two directions, and (iii) visualization of the coherent
vortex structures which contribute dominantly to the transport. All of the observations that
we have accumulated are consistent with the proposed mechanism. In addition, we have
provided evidence to support the interpretation of this vorticity flux as a cascade similar to
momentum cascade, in that the spatial transport of vorticity is associated also with a transfer
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in scale. This verification has consequences that extend far beyond channel flow, because
Lighthill (1963) suggested that the up-gradient transfer mechanism has very general validity
for all turbulent flows interacting with solid walls, e.g. high-Reynolds flows around bluff
bodies or airplane wings. In fact, Lighthill (1963) proposed this mechanism to explain why
turbulent boundary layers with concentrated vorticity form generally near solid walls. This is
the necessary prelude to another fundamental vortex interaction with solid walls, the violent
eruption of vorticity away from the wall (Doligalski et al. 1994; Smith et al. 1991), which
apparently underlies phenomena such as boundary-layer separation behind bluff bodies and
frequent ejections from the walls in turbulent flows over flat plates and in straight pipes.

Our work exposes also a limitation of the “attached eddy model” of Townsend (1976)
because we find considerable evidence that down-gradient vorticity flux out from solid walls
is provided indeed by attached eddies but that the competing up-gradient flux into the walls
is carried by detached eddies. Of course, many extensions of the AEM have been proposed
previously. We have already mentioned the early work of Perry & Marusic (1995); Marusic
& Perry (1995) and see also more recent papers of Chandran et al. (2020); Hu et al. (2020).
The spectral aspects of the extension by Perry & Marusic (1995); Marusic & Perry (1995)
focus on the streamwise spectrum ¢,,, (k), as summarised in Figure 16 of Marusic & Perry
(1995), reproduced in Figure 11 of Marusic & Monty (2019). Our present cospectral results
echo features of this model upon suitable interpretation. The model of Perry & Marusic
(1995); Marusic & Perry (1995) has an overlap in the streamwise scales of Type-A and Type-
B eddies, with the latter contribution dominating at larger streamwise scales. This type of
behaviour is seen also in our 2D flux co-spectra in the log layer, plotted in Fig 11 (d),(e),(f),
where the U-type eddies dominate at large streamwise scales but overlap with the support
of the D-type eddies at smaller streamwise scales. Note, however, that the effect of Type-B
eddies in the AEM extension of Perry & Marusic are supposed to diminish upon approaching
the wall, whereas the vorticity transport effects of the U-type eddies in our work increase
and dominate close to the wall. Unlike previous proposals to extend the AEM, our work has
revealed that detached eddies play a fundamental dynamical role in the near-wall region, with
direct importance to drag generation and reduction. The closest connection of our results
are with those of Chen ef al. (2018b), who found that “non-filamentary vortices” (NFV)
and “non-swirling vorticity structures” (NSVS) rather than “filamentary vortices” (FV) are
responsible for the dominant up-gradient nonlinear vorticity transport near the wall.

In this paper we have exploited a database of a turbulent channel flow at Re, = 1000
and we have compared with related experiments and simulations at comparable Reynolds
numbers. However, empirical data is available at a broader range of Reynolds numbers, both
lower-Reynolds simulation data (Bernard 1990; Crawford & Karniadakis 1997) and field
experiments at much higher Reynolds numbers (Priyadarshana er al. 2007; Morrill-Winter
& Klewicki 2013). We do not expect the main conclusions of our work to be Re-dependent
and we are aware of no data available at other Reynolds numbers which contradicts them.
However, some details of the story we have presented may change with Re. For example, it
is well-known that many predictions of the AEM are observable only for Re > 1 and, in
particular, Chandran et al. (2017) estimate that the similarity relation 1, ~ A, for attached
eddies and clear k~! energy spectra for both k, and k, should be observable only for
Re, > 60,000. Thus, our conclusion in section 3.3 that D-type and U-type eddies are non-
self-similar might be Reynolds-number dependent, especially since self-similarity for 2D
energy cospectra that is expected from attached eddies is not observed either at comparable
Re, (Del Alamo et al. 2004; Chandran et al. 2017). Thus, extending our analysis to higher
Reynolds numbers is an important direction for future research.

Another important direction is the investigation of turbulent vorticity dynamics by means
of stochastic Lagrangian methods (Constantin & Iyer 2011; Eyink et al. 2020a). The heuristic
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arguments of Lighthill (1963) are essentially Lagrangian and invoke the remarkable “frozen-
in” properties enjoyed by vortex-lines in smooth ideal Euler flows. In a physical turbulent flow,
however, these familiar properties of ideal vortex-lines suffer fundamental modifications by
viscous diffusion, which can be exactly captured by the stochastic Lagrangian representation
of vortex dynamics. These methods have already proved powerful to verify the validity
of Lighthill’s argument for origin of large magnitudes of wall-vorticity in a transitional
zero pressure-gradient boundary layer (Wang et al. 2022). The advantage of these methods
compared with the Eulerian analysis in the present work is that they provide a complete and
unambiguous account of the origin of the vorticity at any point in the flow, with precise and
quantitative information about the physical mechanisms involved. Such stochastic Lagrangian
methods have already been applied to “ejections’” and “sweeps” in the buffer layer of the same
Re, = 1000 turbulent channel flow studied in this paper, where it was demonstrated that the
spanwise vorticity in those events is not assembled abruptly from wall-vorticity but instead
over many hundreds of viscous times (Eyink et al. 2020b). It would be very illuminating
to apply these methods in the log layer of the channel flow, reconstructing the spanwise
vorticity under conditions of inflow and outflow and determining its origin unambiguously.
The existing numerical schemes for the stochastic Lagrangian approach are quite inefficient
in the log layer, however, because the Monte Carlo sampling errors grow exponentially in
time. New algorithmic approaches are probably therefore required.

Finally, the insights that we have obtained in this work about Eulerian vorticity dynamics
described by the Huggins vorticity flux tensor (1.4) can be exploited to understand drag
generation and reduction via the detailed Josephson-Anderson (JA) relation (Huggins 1970,
1994; Eyink 2008, 2021). Such work is already in progress (Kumar & Eyink 2023). We have
thus intentionally omitted in the present paper any discussion of the work of Yoon et al.
(2016) which directly relates velocity-vorticity correlations to mean drag by a version of the
so-called FIK identity (Fukagata et al. 2002). This discussion requires a careful comparison
with the JA-relation, which will be done by Kumar & Eyink (2023). The connections between
these two approaches is indeed not straightforward, e.g. down-gradient nonlinear vorticity
flux produces drag in the JA-relation but reduces drag in the identity of Yoon et al. (2016)!
Here we just mention the principal difference that, whereas the identity of Yoon et al. (2016)
represents the mean drag in a Reynolds averaging approach, the JA-relation connects the
drag instantaneously in time to the vorticity flux throughout the flow volume. The shift away
from ensemble flow statistics to recognize the dynamical heterogeneity and intermittency of
drag has proved important, for example, in the problem of polymer drag reduction (Xi 2019).
Our results here shed new light on the latter problem, because they imply that drag can be
reduced instantaneously either by decreasing the down-gradient flux of spanwise vorticity or
by increasing the up-gradient flux, or both. This will also be the subject of future work.
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SUPPLEMENTARY MATERIALS

A. Quadrant contributions

Partial averages of the flux terms vw, — wwy, vw; and —ww, conditioned on “low speed
(u’ < 0)”and “high speed (1’ > 0)” events are shown in Fig A.1a, A.1band A.lc respectively.
The plot in Fig A.lc shows that the stretching/tilting term (-wwy, ) is agnostic to the sign
of u’ for y* < 100, where both low speed and high speed streaks produce up-gradient
contributions. For 100 < y* < 500 low speed streaks make down-gradient contributions
while high speed streaks make up-gradient contributions to this stretching term. Close to the
centerline (y* = 500), both contributions are down-gradient. The convective term (shown
in Fig A.1b), on the other hand, shows strongly opposing behaviours for low speed and
high speed streaks across nearly the entire channel (for y* < 700), with low speed streaks
making down-gradient contributions but high speed streaks up-gradient contributions. By
contrast, both contributions to the convective flux are down-gradient close to the centerline
(y* 2 700). The total nonlinear flux (shown in Fig A.la), is dominated by the convective
term and behaves similarly across most of the channel (5 < y* < 700), with low-speed
streaks being down-gradient and high-speed streaks being up-gradient. Within the viscous
sublayer(y* < 5), low speed streaks make no contributions to the flux and the entire flux is
due to high speed streaks. Close to the centerline (y* > 700) both contributions are down-
gradient. The observed correlations of the separate flux terms with »” are plausibly explained
as a consequence of the primary correlation with v/ due to Lighthill’s mechanism and the
secondary correlation of v/ with u’.

This idea is illuminated by the quadrant correlations, discussed next. The contributions
from the four individual quadrants of the u”—v’ plane (see Pope (2000)) are shown for the total
nonlinear flux (Fig A.2a), the convection/advection term (Fig A.2b) and the stretching/tilting
term (Fig A.2c). Contributions from “active (Q2+Q4)” and “inactive (Q1 +Q3)” motions
are plotted as well. The latter show that active motions contribute nearly the entire flux for
the convective term, while inactive motions make a much a smaller contribution (Fig A.2b).
The stretching/tilting term is nearly agnostic to active/inactive motions for y* < 30 but also
dominated by active motions for y* > 30 (Fig A.2c). On the whole, the net nonlinear flux
(Fig A.2a)is dominated by contributions from active motions, with inactive motions making
a decidedly smaller contribution, and this effect is mainly through the convection term. These
observations are consistent with our explanation above that the observed correlations of the
flux contributions are due to the primary correlation with v’ and the strong anti-correlation
between u’ and v’ in Q2 + Q4

Further evidence for this picture is provided by the separate quadrant contributions. From
Fig A.2b for the convective term it may be seen that Q1 and Q2 where v/ > 0 both
make down-gradient contributions, while Q3 and Q4 where v/ < 0 both make up-gradient
contributions across the entire channel. On the other hand, the stretching/tilting term in Fig
A.2c exhibits opposite flux directions across most of the channel, with Q1 and Q2 up-gradient
and Q3 and Q4 down-gradient. Furthermore, for both convection and stretching terms, the
Q1 correlations while similar to the Q2 correlations are smaller in magnitude,and likewise
the Q3 correlations while similar to the Q4 correlations are smaller. This suggests again that
the primary correlation is with v, but that the dominant contribution arises from the “active”
quadrants Q2 + Q4 where u’ and v’ are anti-correlated.

Altogether, these results support our claim that the correlation most relevant to the physics
is that between the flux and regions of outflow (v' > 0) and inflow (' < 0), as shown in Fig
7 in the main text. The dominance of the “active” regions produces a secondary correlation
of vorticity flux with u’.



We note that contributions to vorticity flux from the four quadrants Q1—-Q4 were calculated
previously by Vidal et al. (2018), but for duct flow with sidewalls (both straight and curved)
at two constant z planes. We cannot compare our results with theirs, not only because of the
differences in the simulated flows but also because they considered products of fluctuating
terms v'w’, and w'w),. Since ww, = w’w’y, our results for this term agree well with theirs
for z away from sidewalls, but our results for vw, differ considerably from theirs for v’«w’,.
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B. Comparison with data from Del Alamo et al. (2004)

We compare the spanwise two point velocity-vorticity correlations computed from channel
flow data at Re, = 1000 from the Johns Hopkins Turbulence Database Li er al. (2008);
Graham et al. (2016) and at Re, = 934 from Del Alamo et al. (2004) reported in Monty
et al. (2011) in Fig B.3. The correlations are related to the respective spanwise co-spectra
as follows:

N _ Ry, (A Z) kA

Rl (09 = =2 T/a / Brow, (ko) K2k, (B.1)
"“’z(AZ) ik.Az

VwZ(A 7) = 7/61/ 7-/6 / ¢vwz(kz)e dk, (B.2)

We observe good agreement between correlations from both datasets.
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in Monty et al. (2011).
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C. Velocity-vorticity co-spectra

The co-spectrum of nonlinear flux is given by ¢, .. — ¢wew, With the spanwise co-spectra
shown in Fig 8 and the streamwise cospectrum in Fig. 10 of the main text. In this section,
we look at the constituent co-spectra, i.e., ¢y, and =@y, ., both spanwise and streamwise.
All of the mean features of these 1D spectra can be inferred from the corresponding 2D
cospectra plotted in Section E. However, we present the 1D cospectra here for completeness.
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D. Smoothing of 2D Spectra

Since the 2D cospectra in this study were obtained by averaging over only 38 snapshots,
we smooth the 2D co-spectra by a simple running average in Fourier space. Given that the
streamwise and spanwise domain size is L, and L,, and the number of corresponding grid
points are N, and N, (assuming both are even), the streamwise and spanwise wavenumbers
are given by k; = 2mi/L, and k; = 2nj /L, where i, j € Z. We demonstrate the smoothing
procedure by showing its application to obtain ¢, ,_(k;, k;), where i, j € {0, 1,2, ...} (shown
in Fig E.10). We start by defining the relevant 2D Fourier transforms and the cospectrum as,

D(ki,kj,y) = FFhp[v(x,y,2)], @;(ki, kj,y) = FFThp[w,(x,y,2)], and
@, . (kiskj,y) = (POL), where, i = {~Ny/2+1,-Ny/2+2,... = 1,0,1,..N,/2 - 1},

J={-N;/2+1,-N,/2+2,...-1,0,1,..N, /2 — 1}. (D.1)
We extend the co-spectrum to the full wavenumber space by defining,
D@y, (kiskj,y) =0, V|i| > % jl > % (D.2)
This spectrum satisfies the property,
i i D, (ki kj,y)AkxAk, = (vw,)(y), where, Aky = i—ﬂ,AkZ = i—” (D.3)
x z

i=—00 j=—00

We now introduce the smoothed co-spectrum, with streamwise window size 0k, = 2b, Ak
and spanwise window size 0k, = 2b;Ak as,

szy(kl,k],y) (2b, +1)(2b 1) Z Z q)vu)z(kwm’ j+nay) (D.4)

m=-by n=-b

This smoothing maintains the value of the integral over the full wavenumber space. We
then add contributions reflected in the x- and z-axes so that the spectra depend only on
wavenumber magnitudes k, > 0, k; > 0, yielding,

byx,b- by,b. by,b.
Qovw;(kiv kj»y) = q)vwz (kiv kj, Y) +¢sz (_kiv kj, y) "'q)vwZ (_kia _kj7 y)+
Ny N
V5P (kiy =k, y), i = {0,1,2,...,—2 +by — 1}, j= {0,1,2,...,—2Z +b, - 1}. (D.5)

This single quadrant co-spectrum satisfies the relation,

oo o0

DD Pve (ki kj ) AKAK, = (v ) (). (D.6)

i=0 j=0

To choose the appropriate window size b, = b, = b we use the Principle of Minimal Sen-
sitivity (Stevenson 1981). For this purpose, we calculate the L? distances between cospectra
filtered with consecutive window sizes (| |<blv)ﬂz’lftvlwy - dblv’fz_w wyllsb = 0,1,2,...) and
plot these versus b in Fig D.8. We find that the distance is least sensitive to window size for
2 > b > 4, so that we keep the window size at b = 3 for all 2D cospectra plotted in the main
text. Raw co-spectra, as well as those smoothed with two window sizes, b = 3 and b = 6,
are plotted in Fig D.9. We observe that smoothing the co-spectra removes some of the high
wavenumber noise present in the un-smoothed spectrum ( Fig D.9a). Increasing the window
size beyond b = 3 (Fig D.9b) does not lead to any appreciable noise reduction but begins to
smear out larger scale features (Fig D.9c)



10

[
o
D

| 0 yt_40
\ -8 -y*=53
y*=100

o
o

N

) /(2L L/ H)

— Dy
w

b+Lb+L
v, S,
n
=
U
-3

A(H@

o
[N
w |
IS
o

Figure D.8: The L2 distance between co-spectra filtered with consecutive window sizes.
We select wy = w = 3 for all 2D co-spectra, based on the Principle of minimal
sensitivity (see Stevenson (1981)).
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E. Individual Velocity-Vorticity 2D Cospectra

Corresponding to the 2D flux cospectra shown in Fig 11 of the main text, we plot the separate
2D cospectra for the advective flux (¢ . (kx, k7, y)) and stretching flux (=@, (kx, k2, ¥)),
in Fig E.10 and Fig E.11, respectively. These cospectra have a bipartite structure similar to
the total nonlinear flux cospectra plotted in Fig 11. However, the advective flux cospectra
(Fig E.10) make a largely down-gradient contribution, while the stretching flux cospectra
(Fig E.11) make a largely up-gradient contribution to the total nonlinear flux. An exception
to this trend is marked by the cospectra at y* < 10, where both contributions are up-gradient
and y* > 500 where both are down-gradient. Therefore, we can say that, by and large,
the advective flux makes a down-gradient contribution while the stretching flux makes an
up-gradient contribution to the nonlinear flux co-spectra, for 10 < y* < 500.
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F. Dragonfly Filter

The 2D nonlinear flux cospectra shown in Fig 11, particularly in the log layer, possess
a natural “boundary” in wave number space separating regions of down-gradient and up-
gradient transport . In this section, we propose a simple filter that allows us to distinguish
the two competing scales in the log layer. We chose the filter kernel to be graded in order to
reduce Gibbs-type oscillations in the spatial filtered fields. A simple choice which we dub
the “dragonfly” filter (D) is a product of two Gaussian filters. To capture the spectral region
of interest, the two Gaussians are chosen to have elliptical level curves centered at the origin
with principal axes of respective slopes +m :

(sl +mlkl)? (k| —m|kx|)2D

2 2
K2 k2

D(ky, kz,y) :=exp (— [ (F.1)

We then define also a complement filter (D€ := 1 — D). To choose the optimum parameters
m, k7, and k}, we minimize the flux value Zgz (largest negative value) separately for each
y* = 40,60, 80,...300. However, for computational convenience, it is useful to have an
explicit representation of these optimum parameters as functions of y. The optimum values
are shown in Fig F.12 and may be reasonably described by power laws. In fact, the optimum &,
fits a y~! power law (shown in Fig F.12¢c) very well. Parameters m and k, are not represented
as well by power laws and show a “kink” around y* = 100, which can be a subject of further
investigation. The best fits by power laws yield

m = 1.56(y*)"%22, (E2)
k} =92.76(y*) 1%, (E.3)
k= 1.49(y%") 0. (F.4)

which are plotted also in Fig F.12. These power-law relations were deemed adequate and
have been used for the results presented in the paper.

The velocity and vorticity fields are filtered using D (ky, k., y) and D€ (k, k., y) yielding
the up-gradient and down-gradient parts of the fields respectively. The procedure to obtain
the filtered fields (¢¥ and ¢”) from an unfiltered field ¢, at a given wall distance y, is as
follows:

Glkx,k;,y) =FFhplq(x,y,2)] (E.5)
gV (x,y,2) =iFFTap[D(ky, kz, )G (kx, k2, y)], (E.6)
qP (x,y,2) =iFFTop[ D (kx, kz, ¥)G (k. kzu y)]. (F.7)

Filtering with D selects low-wavenumber (large lengthscale) up-gradient scales and results
in the nonlinear flux plotted in Fig 16a. The complement D€ selects high wavenumber
(small lengthscale) down-gradient scales that result in the nonlinear flux plotted in Fig 14a.
We plot D for y* = 100 in Fig F.13a. Co-spectra resulting from filtering with 9 and
with D¢ are shown in Fig F.13c and Fig F.13d, respectively. These plots illustrate that the
constructed filters separate the cospectrum into mainly down-gradient and up-gradient parts.
The separation is not perfect, because of the graded nature of the filter kernel, but it was
deemed sufficient for our analysis.
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G. Orientation of U-type vortices

We here present evidence that vorticity vector orientation within U-type vortices is predomi-
nantly spanwise and prograde, consistent with lateral stretching of pre-existing vorticity. This
is demonstrated by Fig. G.14, which plots the same vortices visualized by the A,-criterion in
Fig. 15 in the main text but coloured now by the cosine of the angle between vorticity vector
wV and the z-axis. We observe a prevalence of values smaller than -0.7, denoting prograde
vortices forming angles smaller than /4 with the z-axis. We note also the presence of a few
retrograde vortices (shown in red) and a few which are not spanwise aligned (white).
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Figure G.14: Vortices identified using the A,-criterion for the velocity field uY filtered
using D. Isosurfaces are plotted for Ag = —/lg’rms and coloured by cosine of the angle
made by the vorticity vector wU with the z-axis, given by w? /|wY.
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