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We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent
to which the transient part of the stress strain curves is invariant when the thermodynamic state
point is varied along an isomorph. Shear deformations were carried out on glass samples of varying
stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass.
Density changes up to and exceeding a factor of two were made. We investigated several different
methods for generating isomorphs but none of the previously developed methods could generate
sufficiently precise isomorphs given the large density changes and non-equilibrium situation. Instead,
the temperatures for these higher densities were chosen to give state points isomorphic to the starting
state point by requiring the steady state flow stress for isomorphic state points to be invariant in
reduced units. In contrast to the steady state flow stress, we find that the peak stress on the stress
strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase
in density, although the differences decrease with increasing density. Analysis of strain profiles and
non-affine motion during the transient phase suggests that the root of the changes in peak stress is
a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities.
We suggest that this reflects the effective steepness of the potential; a higher effective steepness
gives a greater tendency to form shear bands.

I. INTRODUCTION

In recent years it has been realized that many model
systems for simulating liquids and glasses have a hidden
scale invariance, whereby curves in the phase diagram
can be identified along which many structural and dy-
namical properties are invariant when expressed in an
appropriate scaled-unit system. These curves are called
isomorphs [1]. Isomorphs have been studied extensively
using computer simulations [1–5] of many different model
systems [6, 7], and experimental consequences have also
been tested [8, 9]. Reviews of the overall theoretical
framework and the many interesting consequences arising
from its basic assumptions can be found in Refs. 10–12.
An example of the use of isomorph concept as a theoret-
ical tool is a method for efficient calculation of melting
curves [13, 14]. While exact isomorphs exist only in cer-
tain model systems, they can nevertheless help to explain
a great deal of the behavior of realistic systems.

More recently, the consequences of hidden scale in-
variance in non-equilibrium situations, especially aging,
have begun to be studied [15]. An important class of
non-equilibrium phenomena involves shear deformation
and plastic flow. The first study of isomorphs in a
sheared system was already in 2013 [16], where the single-
component Lennard-Jones fluid and the Kob-Andersen
binary fluid[17–19] were studied in planar Couette flow
in steady-state conditions. In 2019 we published work
studying deformation of Kob-Andersen glasses under
steady state flow with relatively modest density changes,
up to 10% [20]. There we showed that the statistics of
the steady state rheology are isomorph invariant: the flow

stress, its fluctuations and autocorrelation, as well as dis-
tributions of stress changes over small strain intervals, at
varying strain rates.

The aim of the present work is to study isomorphs in
a true out-of-equilibrium context, focussing on the tran-
sient behavior of sheared glasses, specifically the initial
part of the stress strain curve, characterized by an (ap-
proximately) linear stress rise corresponding to (approx-
imately) elastic behavior, followed by a stress peak, and
then relaxation towards the steady state. The transition
from non-flowing to a flowing state represents complex,
non-linear behavior, while the steady state flow is also
non-linear in that it exhibits shear-thinning (the flow
stress rises more slowly than linearly with strain rate),
as discussed in Appendix A. Plasticity of glasses is thus
both highly non-linear and highly non-equilibrium and
thus offers a stringent test of isomorph invariance. Iso-
morph invariance of linear transport coefficients has al-
ready been investigated in detail, at least in the liquid
state, see for example Refs. 21 and 22. We are inter-
ested in to what extent the stress-strain curve collapses
along a given isomorph (with given cooling and strain
rates), and will focus particularly on the peak stress in
the transient phase, and the flow stress for comparison.
These two quantities (in reduced form) are convenient
to plot as a function of density along isomorphs, giving
a quick overview of the degree of invariance. We are
also interested in attempting larger density changes than
before. The model studied is the usual Kob-Andersen
binary Lennard-Jones system [17–19].

For the prior work on the steady-state behavior the
main thermodynamic parameters were density, tempera-
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ture and strain rate. Since the first two were linked along
an isomorph, there were effectively two parameters: a
parameter labelling the isomorph (in principle the excess
entropy[1]), and the reduced-unit strain rate. A feature
of the transient state regime is that the thermal history
of the glass prior to deformation becomes relevant. Our
glasses are prepared by cooling at a fixed cooling rate,
from a temperature near the melting point at the lowest
density considered. Each deformation simulation is thus
characterized by four parameters: the density ρ, temper-
ature T , cooling rate Rc,0 and strain rate ε̇. Since we
focus on trying to identify isomorphs, density and tem-
perature are varied according to the (putative) isomorph,
and cooling rate always refers to the initial (low) density
in real units (hence the subscript 0), while strain rate
is referred to using reduced units (see Sec II; isomorph
invariance can only be expected when the strain rate is
fixed in reduced units [16]). For shearing simulations at
densities higher than that of the cooling runs, configura-
tions were scaled uniformly to the desired density (after
cooling but before shearing) and the kinetic energy set
to that appropriate for the corresponding (isomorphic)
temperature. In this way the thermal histories of start-
ing configurations at different points along the isomorph
are identical by construction.

Our primary interest is to determine whether the
stress-stress curve in its entirety is invariant along iso-
morphs. A crucial part of this is the question of how to
determine isomorphs in non-equilibrium situations: that
is, given an initial temperature and density (Ti, ρi), we
need to find a new temperature Tf for a desired ρf for
which the system properties are isomorphic. There are
several ways identified in prior work to find Tf , and
here we show that these methods all identify similar
but nonetheless different values for Tf when the den-
sity change (ρf/ρi) is large. More troubling, these meth-
ods lead to slightly different values of the (reduced) flow
stress and peak stress, that is, these quantities are not
isomorphically invariant using these prior methods for
finding Tf . In order to proceed we therefore adopt a
pragmatic approach and identify an isomorph candidate
by requiring the flow stress to be invariant. The temper-
ature Tf thus identified falls in the middle of those pre-
dicted by the prior methods. Having an isomorph candi-
date defined this way we then investigate the full stress-
strain curves, and find that an invariant flow stress does
not ensure that the whole curve is invariant: the peak
stress tends to decrease with increasing density along
the isomorph candidate. This is our main result: that
there do not exist ρ, T curves along which the reduced
stress-strain curves are invariant. Analysis of the parti-
cle motions suggests a cause: a tendency to develop shear
bands despite the use of a SLLOD algorithm which fa-
vors homogeneous flow. This tendency varies according
to density.

II. THE ISOMORPH APPROACH

The heart of the existence of isomorphs is that a phase
space trajectory at one density and temperature can be
scaled to another density (corresponding to a scaling
of space) and another temperature (corresponding to a
scaling of time, and thereby velocities and kinetic en-
ergy) and be, in fact, a valid trajectory at the new state
point. Alternatively, trajectories can be found at the two
isomorphic state points which are identical apart from
rescaling space and time, and equally probable in their re-
spective ensembles. This means considering the reduced
position coordinates r̃i ≡ ρ1/3ri; i.e., scaling essentially
by the average interparticle spacing, using ρ = N/V ,
the number density of the system with N particles in a
volume V . The reduced time is t̃ = tρ1/3

√

kBT/〈m〉;
i.e., scaling essentially by the time for a particle with
the mean mass 〈m〉 to cross an interparticle spacing with
the thermal velocity. This is sometimes called the “same
movie” principle [23]. It follows that a correct compari-
son of isomorphic trajectories involves putting all quanti-
ties into dimensionless form, called “putting into reduced
units,” by scaling lengths and times as above, and con-
sistent with these, energies by kBT . Masses are simply
scaled by the average particle mass (a non-dynamical,
non-thermodynamic quantity, which in our model is set
to unity). This unit system was introduced by Rosenfeld
[24]; the scaling for all other quantities can be derived
from these [1]. As an example the flow stress, having
units of energy density, has the reduced form

σ̃f ≡ σf

ρkBT
. (1)

When we talk of “invariant flow stress” or small devi-
ations therefrom, it must be remembered that we refer
always to the dimensionless, reduced-unit form. The real
flow stress in our simulations varies by over a factor of a
hundred (2 from the density and 50 from the tempera-
ture).
In practice, it is well known that isomorphic invariance

is imperfect in many situations [11]. Inverse power law
(IPL) systems are notable for which isomorphic curves
(ρ, T ) can be analytically calculated and the isomor-
phic properties are exact; here the phase space trajec-
tories are mathematically identical along the isomorph
curves. However, in systems like the Kob-Andersen bi-
nary Lennard-Jones system that we study, isomorphic in-
variance is not exact. As one moves along the isomorph
curve ρ, T , even in reduced units the peak height of the
pair correlation function g(r) could vary by 1-2%, for
example. The definition of a successful isomorph, then,
is similar to many physics theories and approximations:
while not exact, one wants the isomorph description to
“explain” most of the observed behavior. Rather than
needing to understand a system at all values of ρ, T ,
one could know the properties of a system at a given
ρ and a variety of T and then know, to some degree
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units [16] to the value 10−3, 10−4, or 10−5. We also
choose the time step to be fixed in reduced units, which is
practical–it automatically ensures that a time step which
is stable at one density and temperature will be stable
along the isomorph. We choose a real time step of 0.004
(LJ units) at the lowest density 1.183 and temperature
0.3; thus the real time step is smaller at higher densities
and temperatures, proportional to ρ−1/3T−1/2. Note, the
Reynolds number of the flow in our simulations is ex-
tremely low, of order 5×10−4 for our highest strain rate.
Thus problems associated with highly sheared liquids,
such as non-linear profiles and string phases[35], non-
unique or anisotropic temperature[36], and anisotropic
stress[37], are not relevant here and more advanced tech-
niques such as profile-unbiased thermostats [35, 38] are
not required. As an extra check, though, we have re-
peated some of our simulations with a modified thermo-
stat which does not couple to the velocities in the flow
(x) direction, and found essentially identical results.

In the following it turns out best to use the flow stress,
defined as the mean stress during the steady state regime,
to determine isomorphs. For this purpose we define
strains greater than 2 (200%) as the steady state for all
shear simulations. This choice originates from inspection
of the potential energy versus strain curve; we find that
the potential energy of the slowest cooled configuration
under slowest shear gradually reaches the steady state
value at a strain between 1 and 2, see Fig. 1 (and also
Fig. 14), which shows examples of stress-strain curves
and potential energy-strain curves. In this case the cool-
ing rate for the glasses was 10−7 in LJ units and the re-
duced shear rate was 10−5, corresponding to a real shear
rate of about 5.8×10−6. By eye the shear stress seems to
be essentially at its steady-state value by strain 0.5, but
for this slowly cooled system the potential energy has not
converged to the steady-state value until around strain
2.0[39].

We need to analyze the stress and strain data to ex-
tract mean values as well as uncertainties, so it is worth
briefly giving the details of these calculations. Given the
many independent runs, the total strain for each shear-
ing run can be relatively modest, specifically 4 (400%),
of which the last 200% is used for determining the flow
stress. We find the mean reduced stress in this steady
state strain regime for each shear simulation, giving 40
independent estimates. We then use the average of 40
shear runs as the flow stress at the corresponding den-
sity, temperature, strain rate, and cooling rate. Error
bars are computed using the usual formula for the stan-
dard error on the mean[40]: dividing the sample standard

deviation of the 40 data points by
√
40. For the stress

peak height (preceding the steady state), each individ-
ual stress-strain curve is too noisy to determine accurate
values; accordingly, we take the 40 independent runs and
average them 8 at a time to give five independent stress-
strain curves. We then find the peak stress height for one
curve by fitting the region of the averaged stress-strain
curve around the peak to a fourth-degree polynomial.

The interval for fitting is the strain with the numerically
largest shear stress, plus or minus 0.05. Taking these
five groups each averaged over 8 simulations, we average
those five stress peak values to define the measured peak
stress height. The uncertainty of this value is then the
sample standard deviation of the 5 estimates divided by√
5.

IV. IDENTIFYING CANDIDATE ISOMORPHS

Determining isomorphs, or candidates for isomorphs,
in non-equilibrium situations, is a crucial task and the
subject of the section. Dyre has presented a general
framework extending isomorph theory to non-equilibrium
situations [15]. The first ingredient is the concept of sys-
temic temperature, Ts which can be defined for an indi-
vidual configuration. Given the potential energy of that
configuration, Ts is the temperature at which (for the
same density) the equilibrium potential energy is that
configuration’s potential energy. Given a change in den-
sity, and assuming perfect hidden scale invariance, the
dynamics will be invariant as long as the ratio of the bath
(i.e. thermostat) temperature to the system temperature
is the same. Thus the question of identifying the correct
bath temperature at the new density is the question of
determining by what factor the systemic temperature of
the initial configuration changes when its density is scaled
uniformly.

The definition is not a practical way to determine Ts in
a glassy system because determining the equilibrium po-
tential energy as a function of temperature is not feasible.
Instead we turn to another recent work, by Schrøder, who
has developed a method for predicting isomorphic tem-
pratures by comparing the forces on particles in a con-
figuration before and after uniform scaling. This method
gives a temperature ratio corresponding to a change of
density of a single configuration from ρi to ρf as

Tf

Ti
=

(

ρi
ρf

)1/3 |Ff |
|Fi|

(2)

Moreover we can argue (see appendix B) that this corre-
sponds to the change in systemic temperature, and there-
fore is the factor by which the bath temperature should
be changed.

In the rest of this section we determine candidate iso-
morphic temperatures using the force method and other
methods based on those used for equilibrium isomorphs.
We show that none of them yield invariant flow stresses,
and instead we generate a candidate isomorph by con-
structing it to have an invariant flow stress. The starting
point in all cases is a shearing simulation with a cooling
rate Rc,0 = 10−5 and (reduced) strain rate 10−3, at the
lowest density (1.183), which is referred to as the refer-
ence density.
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A. Force method and fluctuation methods

In this subsection we show that the force method for
generating candidate isomorphs, along with other fluc-
tuation methods, give different temperatures from those
required for invariant flow stress. Different methods dis-
agree by increasingly large amounts as the density factor
increases, although the rate of increase decreases with
increasing initial density. To compare different meth-
ods, we use as a test case glasses cooled at Rc,0 = 10−5

(LJ units) and sheared at ˜̇ε = 10−3 (reduced units), and
consider mostly the case of a density increase of 10%
from 1.183 to 1.301. The results for the temperature ra-
tio (Tf/Ti) and corresponding estimated temperature at
the latter density are summarized in Table I. Since the
force method only requires a single configuration to give
a temperature ratio Tf/Ti, it can be applied repeatedly
throughout a simulation at the reference density, giving
an immediate estimate of statistical errors and possible
systematic changes (for example as a function of strain).
Figure 2(a) shows the temperature ratio for the force

method, along with that from a modified version

Tf = Ti

(

ρi
ρf

)1/3
Fi · Ff

Fi · Fi

(3)

The modified force method is based on simple linear re-
gression of the scaled forces as a function of the unscaled
forces, and gives a slightly lower temperature estimate.
In the figure, there is a clear but small systematic de-
crease in the estimated temperature ratio, (about 0.25%
and 0.6% for the force method and its modification, re-
spectively, as the strain increases from zero to steady
state conditions). It is also clear that the statistical fluc-
tuations are rather small in the steady state, so that the
estimate from a single configuration would indeed give a
precise estimate of the ensemble average. The estimate
from the modified force method is systematically lower
by about 0.7% in the steady-state.
The other panels in Figure 2 illustrate estimation

of isomorphic temperatures by other methods, based
on fluctuations in both NVT (unstrained) simulations,
and the steady state part of sheared simulations (SSS).
Fig. 2(b) shows U,W fluctuations, both NVT and SSS,
from which a density scaling exponent γ can be found as
the regression slope. For Lennard-Jones potentials an an-
alytic expression for the shape of isomorphs can be found;
as detailed in Appendix C 4, the single free parameter can
be fixed using the measured γ, allowing the temperature
ratio for a given density change to be determined. We
show data for a glass cooled at the fastest rate; using the
slowest cooled glasses gives a difference less than 0.1% in
the resulting temperature ratio. We refer to this method
in table and figure legends as UW/analytic. The NVT
value for γ is 2.5% lower than the value from the steady
state fluctuations, giving a temperature ratio 1% lower
for the 10% density increase; the difference will increase
with larger density jumps.

Method Ensemble T -ratio Tf

FM NVT 1.653 0.4959

FM SSS 1.649 0.4947

FM-mod NVT 1.647 0.4940

FM-mod SSS 1.637 0.4911

WU/analytic NVT 1.593 0.4779

WU/analytic SSS 1.609 0.4828

DIC-pe NVT 1.593 0.4779

DIC-pe SSS 1.609 0.4827

DIC-sts NVT 1.595 0.4786

DIC-sts SSS 1.597 0.4791

Matching flow stress SSS 1.623 0.4869

TABLE I: Comparison of methods for identifying isomorphic
temperature upon raising density by 10% from ρi =1.183 to
ρf =1.301, for glasses cooled at rate 10−5 to Ti = 0.3. SSS
refers to steady state shearing at ρi, Ti, data taken between
strains 2 and 4, with reduced strain rate 10−3; NVT refers
to NVT simulations of 107 steps at ρi, Ti. The temperature
ratio that best matches the flow stress is 1.623, listed in the
last line of the table.

Fig. 2(c) shows the direct isomorph check (DIC)
whereby potential energies from scaled configurations
are plotted against those from unscaled configurations
(i.e. drawn from the simulation at the reference den-
sity). Determining the slope gives a direct estimate of
the temperature factor, 1.609 from the steady-state and
1.593 in NVT. These are equal to the estimates from
UW/analytic, consistent with γ being essentially the DIC
in the limit of infinitesimal density changes[1]. Fig. 2(d)
shows a DIC-like method based on shear-stress fluctua-
tions. The observed slope when plotting the scaled versus
unscaled shear stresses is not the temperature ratio, but
includes also a factor of the density ratio ρf/ρi = 1.1.
After dividing the latter out, the temperature ratio es-
timate from steady state fluctuations is slightly lower
(0.7%) than the corresponding energy-based DIC esti-
mate, see Table I. Interestingly, the correlation is much
higher for the stress-based DIC than for the energy-based
DIC, and the difference between NVT and SSS estimates
is much smaller than for the energy-based DIC, at only
0.1%. These two estimates are also very close to the NVT
energy-based DIC estimate.

To summarize the above results, the largest tempera-
ture factor is given by the force method in the sheared
(NVT) system, while the smallest is given by either the
γ method or DIC using NVT data or the stress-based
DIC using either NVT or SSS data. The spread be-
tween highest and lowest SSS values is 3.5%. We next
consider how this variation depends on the size of the
density jump. Fig. 3(a) shows the temperature ratios
from the aforementioned methods versus density. For
small density changes, all these methods return simi-
lar results with little discrepancy. This discrepancy in-
creases with larger density spans, indicating the challenge
of identifying isomorphs in these situations. Other cool-
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˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

Rc,0 = 10−5 0.204± 0.011 0.213± 0.014 0.114± 0.009

Rc,0 = 10−6 0.211± 0.006 0.243± 0.008 0.236± 0.012

Rc,0 = 10−7 0.207± 0.010 0.242± 0.006 0.236± 0.008

TABLE III: Fractional change of σ̃p between the highest- and
lowest-density isomorph points for different Rc,0 and ˜̇ε com-
binations.

˜̇ε = 10−3 ˜̇ε = 10−4 ˜̇ε = 10−5

Rc,0 = 10−5 1.87 1.67 1.31

Rc,0 = 10−6 2.16 1.99 1.71

Rc,0 = 10−7 2.43 2.37 2.04

TABLE IV: Ratio of σ̃p to σ̃f for the lowest-density isomorph
points for different Rc,0 and ˜̇ε combinations.

clearly not invariant–it decreases systematically with in-
creasing density, by about 20%, as the density rises to 2.8.
Thus we have a clear deviation from isomorph invariance
when the transient response to shearing is considered.
We remind the reader that the real (i.e. non-reduced)
shear stress involves a factor of ρkBT which changes by
over two orders of magnitude over the density range stud-
ied here.
We find similar results for the other strain rates and

cooling rates (details given in Appendix D). Rather than
show all of those stress-strain curves here, we instead
extract the flow stress and peak stress from each stress
strain curve, and plot these as a function of density in
Fig. 7(a) and (b), respectively; the curves themselves can
be found in Appendix D. Before considering the isomor-
phic behavior, we note that as expected, slower strain
rates decrease both the peak stress and the flow stress;
and slower cooling rates increase the peak stress but leave
the flow stress unchanged. The isomorphic behavior is
evaluated through the dependence (or non-dependence)
of these quantities on density along the isomorph. In
part (a) of the figure we see that the flow stresses are
indeed flat within errors, as they have been constructed
to be (the errors are comparable to, though smaller than,
the symbol sizes). This plot also confirms our hypothesis
that the isomorph determined by requiring invariant flow
stress at one cooling rate and reduced strain rate is valid
also for the others.
Part (b) of the figure shows the evolution of the re-

duced peak stress as a function of density along the iso-
morph. The trend is similar for all cooling and strain
rates, with more or less similar relative drops of peak
stress as density increases. In all cases the bulk of the
drop occurs over densities ρ1 ' 1.3 to ρ5 ' 1.9, after
which the change in reduced peak stress for each 10%
increase in density is reduced. Interestingly the change
between densities ρ0 and ρ1 is also smaller. Above den-
sity 1.9, σ̃p apparently continues to decrease linearly, and
does not seem to have levelled off even at our largest den-
sity, though this must happen eventually as the Lennard-

Jones potential becomes dominated by the repulsive IPL-
term.
To summarize the influence of density on reduced peak

stress, Table III gives the magnitudes of the relative
stress drops over the full density range for all strain and
cooling rates. The only apparent trend here is that both
faster cooling and faster shearing tend to give slightly
smaller drops, around 20% instead of around 24%. An
apparent outlier is the value for the highest cooling rate
and the lowest strain rate (black triangles), where the
change in reduced peak stress is only 11%. This case
corresponds to the least stable glass being very slowly
deformed, and has the lowest peak stress to start with.
To provide a different view of the influence of cooling
rate and strain rate, Table IV shows the ratio between
peak stress and flow stress at the lowest density. This
indicates indeed that the same case of lowest strain rate
and fastest cooling has the lowest ratio of peak to flow
stress at the lowest density, 1.31. However there does not
seem to be, upon comparing Tables III and IV, a general
correlation between fractional drop of peak stress with
increasing density, and initial ratio of peak to flow stress.
The most that can be said probably is that when the lat-
ter ratio is very low, there is less contrast between the
non-flowing and flowing states, in the sense that the mi-
croscopic barriers to be crossed are not much different to
start with and therefore there is less room for variation
along the isomorph.
When quantifying the observed deviations in peak

stress, the crucial question is whether they are sufficiently
large to warrant declaring them a breakdown of the iso-
morph theory, or sufficiently small to be able to say that
approximate isomorph invariance is a good approxima-
tion for the observed behavior. We can compare the de-
viations along an isomorph to the differences visible in
Fig. 13 due to variations in cooling and strain rates. In
particular, the variation in peak stress along an isomorph
is comparable to the difference associated with an order
of magnitude change in cooling rate, as can be seen in
Figs. 15-17. In this sense the variations are not “small”
and therefore we can speak of a breakdown of approxi-
mate isomorph invariance.

B. Equivalent configurations in stress peak?

In attempting to understand the failure of the peak
stresses to collapse, an important question is whether the
configurations sampled near the stress peak at different
densities are equivalent. Equivalent means (statistically)
indistinguishable after scaling to match densities. The
simplest way to answer this question is to take configu-
rations from near the peak in a simulation at one den-
sity, scale them to a different density and calculate the
shear stress at the new density, thus generating a fic-
tional stress-strain curve based on scaling configurations
statically. This is similar to what is done in the stress-
DIC method proposed above, but rather than use it to
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one or two densities, other than the starting density, by
applying the analytic formulas that describe the shape
of isomorphs for Lennard-Jones systems, and moreover
doing this only for one combination of strain and cooling
rates, we save a lot of work. These assumptions were jus-
tified by the resulting flat plots of reduced flow stress as a
function of density. Further evidence of the quality of our
choice of determining isomorphic temperatures for given
density jumps is given by the invariance of microscopic
dynamics and structure, Fig. 9.

The fact that the force and fluctuation-based methods
diverge for large density jumps is in the end not surprising
since isomorph invariance is only approximate for most
potentials. Moreover, trying to understand the differ-
ences in terms of systematically different ways in which
different parts of the potential energy surface – for exam-
ple those relevant for vibrational motion versus barrier-
crossing flow events – would probably not be fruitful.
Some insight might be gained, however, by investigating
the barriers to flow explicitly using barrier finding tech-
niques on small systems to trace the way a typical energy
barrier scales with increasing density.

The second main result of this work is the failure of the
(reduced) peak stress under shear deformation to collapse
along the isomorph determined by forcing collapse of the
flow stress. Simply put, no temperature can match both
peak and flow stress, meaning that the relevant energy
barriers apparently scale differently with density. This
is despite that not just the flow stress (by construction)
but also the initial linear part of the stress-strain curve
are invariant, along with the particle motions and most
pair correlations during the steady state. The analysis
of section VB shows that the variation in peak stress
is not simply a question of the same trajectories (in re-
duced coordinates) experiencing different potential ener-
gies, forces and stresses, but rather the trajectories are
non-equivalent in the region of the stress peak, as evi-
denced by the analysis of non-affine motion. For differ-
ent (reduced-unit) trajectories to result, the (reduced-
unit) forces have to be different, of course. But subtle
differences in the forces can lead to macroscopic differ-
ences in the trajectories, in particular the degree of shear-
banding, which then leads to pronounced differences in
the observed stresses. A possible explanation for a vari-
ation in the tendency for shear-banding could be that it
depends sensitively on the steepness (effective IPL ex-
ponent) of the potential, something that has apparently
not been tested before in the literature. This could be
tested by running IPL simulations with different expo-
nents and studying the tendency to create shear bands.
A connection between shear banding and non-invariance
of the macroscopic stress strain curve would be analogous
to the case of the melting curve, which is only approxi-
mately an isomorph[13]. In that case the two co-existing
phases, having different densities, cannot be expected to
scale identically. Likewise here, one could the presence of
co-existing shear bands is a plausible source of a break-
down in isomorph invariance for the whole system. It is

not due to differing densities, though: We have not found
a significant difference in density between the differently
shearing coexisting regions.
The range of effective IPL exponents is quite limited

for Lennard-Jones systems, varying from around 18 at
low pressures to approaching 12 at the highest pressures.
Potentials which exhibit more dramatic variation of effec-
tive exponent include the exponential pair potential [48]
and the many-body effective medium theory potential
for metallic systems[49]. Studying these systems would
give additional insight, by potentially exhibiting an even
more pronounced variation in the peak stress along iso-
morphs; it might for example be noticeable at relatively
small density changes.
A technical point should be raised here. Our approach

using the SLLOD algorithm is predicated on an assumed
linear strain profile, i.e. a single global strain rate, and
is thus technically inconsistent with the occurrence in
practice of a certain degree of shear-banding. This is in
principle problematic because the velocities used to de-
fine the kinetic energy are defined with respect to the
assumed linear streaming velocity profile. Therefore in
principle some of the (fixed) total kinetic energy goes
into the deviations of the streaming velocity from a lin-
ear profile[35, 50] and less is available for thermal mo-
tion. We note, however, that the typical deviation of the
real streaming velocity from the linear profile is of or-
der 0.1% of the thermal velocity, so any effects on the
effective temperature are negligible. To confirm that the
observed behavior is not an artifact of the thermostat,
we have carried out some simulations with a modified
thermostat by which only the kinetic energy associated
with velocities in the non-flow directions (y and z) is
thermostatted, while the part associated with velocities
in the flow direction (x) is free to fluctuate. We find the
same behavior, in particular the trends noticed in Fig.
12 are even clearer with the modified thermostat.
Finally, we note that since Fig 12 indicates that shear

banding occurs also in the steady state, a varying ten-
dency towards shear banding depending on density (via
the effective IPL exponent) could actually be present in
the steady state. Since we have chosen the isomorph tem-
peratures to match the reduced steady-state shear stress
we do not see this in our data (essentially because tem-
peratures have been adjusted to compensate for it), but
it could potentially underlying the failure of the fluctua-
tion methods to predict the steady-state stress. Compar-
ing different IPL systems under steady state shear could
also shed light on this.
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To get a different expression for Ts, consider the deriva-
tive of U with respect to R̃, at fixed ρ. If we consider a
small change, at fixed density, of one of the reduced re-
duced coordinates, say atom i, spatial coordinate α, then
by the chain rule, we have

∂U(ρ, Sex)

∂R̃i,α

=
∂U(ρ, Sex)

∂Sex

∂Sex(ρ, R̃)

∂R̃i,α

(B2)

The first factor on the right is just Ts; but before we solve
for it we wish to involve all coordinates. Noting that Ts

is the same independent of which coordinate we choose,
we square Eq. (B2), sum over i and α, and finally take
the square root, giving
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So our new expression for Ts is

Ts =

√
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This is still an exact expression. Moreover the depen-
dence of U on Sex can be dropped by reinterpreting the
function U as the microscopic potential energy: thus, the
numerator can be written as ρ−1/3|F| where F is the 3N-
dimensional force vector for the whole system. If we now
consider the ratio of Ts at two different densities, ρ1 and
ρ2, for the same reduced coordinates, we have

T
(2)
s

T
(1)
s

=

[

(

ρ1
ρ2

)1/3 |F2|
|F1|
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The first factor (in square brackets) on the right side
is exactly the expression for the temperature ratio given
by Schrøder’s force method[53]. What about the second
factor, involving the derivatives of Sex, with respect to
reduced coordinates, at different densities? For perfect
hidden scale invariance where Sex does not depend on
ρ, this factor is unity, and in that case, not surprisingly,
the ratio of systemic temperatures is the ratio given by
the force method (or any other method). In the case of
imperfect scaling, we can argue that this factor is nearly
unity: we take a derivative with respect to R̃i,α, so even
if changes in Sex accumulate over large density changes,
these changes will almost all cancel when we compare
two nearby values of R̃i,α. Thus the derivatives depend
much less on density, and we can assume that this factor
is well approximated by unity, giving the desired result.

Appendix C: Methods for identifying isomorphs in

equilibrium

There are several methods currently in use for identi-
fying isomorphs in equilibrium. We review these meth-
ods here for two reasons. Firstly because we attempt
to extend these methods to the out-of-equilibrium sys-
tems of interest (discussed in Sec. IV). Secondly, because
our final procedure involved the use the analytic method
(Sec. C 4) to interpolate our isomorph curve in our out-
of-equilibrium system.

1. Integration using the density scaling exponent γ

In equilibrium the slope of isomorphs in the ln ρ, lnT
plane is given by the so-called density scaling exponent γ,
defined generally as the slope of configurational adiabats–
curves along which the excess entropy is constant[1]:

(

∂T

∂ρ

)

Sex

= γ(ρ, T ) =
〈∆U∆W 〉
〈(∆U)2〉 (C1)

where the second equality indicates how γ is determined
from fluctuations at a particular state point. Angle
brackets represent NVT ensemble averages, and the last
expression is simply the linear regression slope of a scat-
ter plot of W against U . The virial W can be defined
as the derivative of U for a configuration with respect to
ln ρ, where ρ ≡ N/V is the number density of the sys-
tem. When taking the derivative it should be understood
that the number and relative positions of the particles are
kept fixed and only a uniform scaling is involved. Thus
W contains information about how the potential energy
surface changes under (infinitesimal) uniform scaling and
therefore is naturally relevant for the identification of
isomorphs. From the same linear regression fit a cor-
relation coefficient R may be extracted, which is used to
gauge the expected quality of the isomorphs. By deter-
mining γ from fluctuations an isomorph in equilibrium
may be traced by simple numerical integration (explicit
Euler method) of Eq. (C1), taking small steps in den-
sity (typically 1%, although larger jumps are possible
with higher order integration techniques[54]). For sys-
tems with interactions described by an inverse power law
(IPL) with a particular exponent n, exact isomorphs ex-
ist and the density scaling exponent is n/3; otherwise
it depends mainly on density, though it does have some
temperature dependence[2].

2. Direct isomorph check

An early formulation of isomorphism involves the pro-
portionality of Boltzmann factors of corresponding mi-
croscopic states. Here “corresponding” means all par-
ticles being the same in reduced coordinates, i.e., one
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configuration is obtained from the other by a uniform
scaling. A consequence of this proportionality, obtained
simply by taking logarithms, is a proportionality between
scaled and unscaled potential energies

Uf (Rf ) =
Tf

Ti
Ui(Ri) + const., (C2)

where subscripts i and f indicate potential energies eval-
uated at initial and final densities, respectively for any
configuration with given reduced coordinates. Here we
use the upper case boldface R to represent the entire
3N -vector of particle coordinates, for convenience, and
the equality of scaled coordinates can be expressed as

R̃f ≡ ρ
1/3
f Rf = ρ

1/3
i Ri ≡ R̃i. Eq. (C2) was origi-

nally considered a simple check of the basic isomorph
concept of proportional energy fluctuations, hence the
name direct isomorph check (DIC)[1], but it also sug-
gests a method for identifying isomorphs: Given densi-
ties ρi and ρf , and the temperature Ti, the temperature
Tf such that state point ρf , Tf is isomorphic to state
point ρi, Ti may be identified by (1) sampling configura-
tions from an equilibrium simulation at ρi, Ti, (2) scaling
them to density ρf , (3) calculating the potential energies
of the scaled configurations, and (4) making a scatter plot
of the scaled versus unscaled potential energies. With-
out requiring proportionality of Boltzmann factors one
can also derive the DIC by considering configurational
adiabats[55]. Furthermore, when considering infinitesi-
mal density changes the DIC reduces to the method of
integrating Eq. (C1).

3. Stress-based direct isomorph check

One can interpret the DIC as choosing the tempera-
ture T2 by requiring the reduced-unit energy fluctuations
to be as close as possible between the two state points,
where “as close as possible” involves a linear regression
fit. One can in principle make a similar requirement for
other quantities, for example the virial, whose fluctua-
tions should also be related by being the same in reduced
units. Or indeed the shear stress (configurational part).
The latter leads to an alternative version of the direct iso-
morph check where the (configurational part of) the shear
stress for scaled configurations is plotted against that for
the unscaled ones. In this case, in view of Eq. (1), the
slope of the linear regression should be ρfTf/ρiTi. This
suggests an alternative method for identifying an isomor-
phic temperature which may be relevant in deformation
simulations. The shear stress given by our code includes
the (small) kinetic part by default; we have checked in
one case that its presence make a negligible difference to
the fitted slope.

4. Analytic isomorph formula for LJ potentials

For pair potentials an analytic formula describing the
shapes of isomorphs is available[56, 57], which for the
Lennard-Jones potential takes the form T (ρ) ∝ h(ρ),
where the density scaling function h(ρ) is given by

h(ρ) = Aρ4 −Bρ2 (C3)

The analytic form of h(ρ) is directly related to that of the
potential (indeed it is essentially the second derivative of
the pair potential, evaluated at r = ρ−1/3 and expressed
in reduced units)[57]. The overall normalization of h(ρ)
is undefined since there is a proportionality constant in
the relation between it and the temperature, so there is
in fact only one free parameter, which can be taken to be
the ratio B/A. If this is known then given two densities,
ρi and ρf , and a temperature Ti corresponding to density
ρi, the temperature Tf corresponding to density ρf is
given by

Tf = Ti
h(ρf )

h(ρi)
= Ti

ρ4f − (B/A)ρ2f
ρ4i − (B/A)ρ2i

(C4)

To fix the parameter B/A two options are available. One
can note that the logarithmic derivative of h(ρ) must also
be equal to the density scaling exponent γ,

γ(ρ) =
d lnh(ρ)

d ln ρ
=

4ρ4 − 2(B/A)ρ2

ρ4 − (B/A)ρ2
, (C5)

where we assume explicitly that γ depends only on den-
sity. Considering a particular reference density ρref at
which γ is to be evaluated (for example by simulation),
isolating B/A gives

B

A
=

(γ(ρref )− 4)ρ2ref
(γ(ρref )− 2)

(C6)

In principle, if isomorph theory was exact, one could
run a single simulation at the reference density, evalu-
ate γ from the U,W fluctuations there, use Eq. (C6) to
determine B/A and generate the whole isomorph using
Eq. (C4). This works reasonably well for small density
jumps, say 10% – so certainly better than the integration
method with steps of 1% – but it does not give accurate
temperatures for very large density jumps. Rather, the
greatest utility of the analytic isomorph expression is its
use in interpolating between points known to be isomor-
phic to get the points between[58]. That is, if both den-
sities and temperatures for two state points, ρi, Ti and
ρf , Tf are known, Eq. (C4) can be solved for B/A, giv-
ing

B

A
=

ρ4f − ρ4i
Tf

Ti

ρ2f − ρ2i
Tf

Ti

(C7)
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