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Two common definitions of the spatially local rate of kinetic energy cascade at some scales
` in turbulent flows are (i) the cubic velocity di↵erence term appearing in the “scale-
integrated local KH” (Kolmogorov-Hill) equation (structure function approach), and (ii)
the subfilter-scale energy flux term in the transport equation for subgrid-scale kinetic
energy (filtering approach). We perform a comparative study of both quantities based on
direct numerical simulation data of isotropic turbulence at Taylor-scale Reynolds number
of 1250. While observations of negative subfilter-scale energy flux (backscatter) have
in the past led to debates regarding interpretation and relevance of such observations,
we argue that the interpretation of the local structure function-based cascade rate
definition is unambiguous since it arises from a divergence term in scale space. Conditional
averaging is used to explore the relationship between the local cascade rate and the local
filtered viscous dissipation rate as well as filtered velocity gradient tensor properties such
as its invariants. We find statistically robust evidence of inverse cascade when both the
large-scale rotation rate is strong and the large-scale strain rate is weak. Even stronger net
inverse cascading is observed in the “vortex compression” R > 0, Q > 0 quadrant where
R and Q are velocity gradient invariants. Qualitatively similar, but quantitatively much
weaker trends are observed for the conditionally averaged subfilter scale energy flux. Flow
visualizations show consistent trends, namely that spatially the inverse cascade events
appear to be located within large-scale vortices, specifically in subregions when R is large.
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1. Introduction

The classic description of the energy cascade in turbulence postulates that kinetic en-
ergy originates from forcing large-scale eddies, is subsequently transferred to smaller-scale
eddies (forward cascade), and is eventually dissipated due to viscous e↵ects (Richardson
1922; Kolmogorov 1941). In a statistical sense, the sign and magnitude of third-order
moments of velocity increments confirm this general direction of the energy cascade, as
described by the 4/5 law governing the global average of the third-order longitudinal
velocity increment (Kolmogorov 1941; Frisch 1995), h�uL(`)3i ⌘ h([u(x + `) � u(x)] ·
`/`)3i = � 4

5 ` h✏i, where h...i denotes global averaging, �uL(`) is the longitudinal velocity
increment and ✏ is the viscous dissipation rate, while the displacement ` = |`| is assumed
to be well inside the inertial range of turbulence. In this sense, the quantity� 5

4 h�uL(`)3i/`
is often interpreted as a measure of the energy flux going from scales larger than ` to all
smaller scales. Because turbulence is known to be highly intermittent in space and time
(Kolmogorov 1962; Frisch 1995; Meneveau & Sreenivasan 1991) there has also been much
interest in characterizing the local properties of the energy cascade, i.e. the fluctuations
of the energy flux before averaging. However, without statistical averaging, the 4/5-law
is less meaningful, e.g., the quantity � 5

4�u
3
L/` cannot simply be interpreted as an energy

flux locally in space and time. To enable such interpretation, it is necessary to consider
explicit angular averaging over all possible directions of the vector `. Such formulations
have been developed in prior works by Duchon & Robert (2000), Eyink (2002) and
Hill (2001, 2002a). Duchon & Robert (2000) and Eyink (2002) use such equations to
study the energy cascade and energy dissipation in the limit of zero viscosity. A review
about extensions to the classic Kolmogorov equation is presented by Dubrulle (2019),
specifically focusing on the Duchon & Robert (2000) local formulation.

Hill (2001, 2002a) developed a local version of the Kolmogorov equation in which the
reference position x is symmetrically located halfway between the two points x + r/2
and x � r/2 separated by r over which the velocity increment is computed. This
equation, which we shall denote as the Kolmogorov-Hill (KH) equation (sometimes
also called Karman-Howarth-Monin-Hill (Danaila et al. 2012; Yasuda & Vassilicos 2018)
or Generalized Kolmogorov (Marati et al. 2004) equation), describes the evolution of
the second-order (squared) velocity di↵erence, a measure of energy content of all scales
smaller than |r| at a specific physical position x. As will be reviewed in §2, scale-space
integration over r of the KH equation up to some scale ` in the inertial range and
without additional statistical averaging provides a localized description of the energy
cascade process (Hill 2002b; Yasuda & Vassilicos 2018). The KH equation also includes
e↵ects of viscous dissipation, viscous di↵usion, advection, and pressure. A number of
prior works have studied various versions of the KH equation. For isotropic turbulence,
Yasuda & Vassilicos (2018) quantified the variability of the energy flux that arises in
this equation, while Carbone & Bragg (2020) considered a definition of mean energy
flux approximated based on a solenoidal filtered velocity increments and examined its
connections to average vortex and strain stretching rates. Besides applications to isotropic
homogeneous flow, numerous studies have investigated the application of the statistically
averaged KH equation to spatially non-homogeneous flows. For instance, in wall bounded
flows, researchers have explored the energy cascade using a Reynolds decomposition to
isolate e↵ects of mean shear and non-homogeneity (Antonia et al. 2000; Danaila et al.
2001, 2004, 2012; Marati et al. 2004; Cimarelli et al. 2013). Investigations have also
studied the energy cascade rates in boundary layer bypass transition (Yao et al. 2022),
and flow separation (Mollicone et al. 2018). Furthermore, specific attention has been given
to the study of inverse cascade in wake flows (Gomes-Fernandes et al. 2015; Portela et al.
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2017) and at turbulent/non-turbulent interfaces (Zhou & Vassilicos 2020; Cimarelli et al.
2021; Yao & Papadakis 2023).

The notion of transfer, or flux, of kinetic energy across length-scales is of particular
practical interest also in the context of large eddy simulation (LES). There the rate of
energy cascade is commonly referred to as the subgrid or subfilter-scale (SGS, SFS) rate
of dissipation. It is defined as the contraction between the subgrid stress tensor and
the filtered strain-rate tensor and arises as a source term in the transport equation for
subgrid/subfilter-scale kinetic energy (Piomelli et al. 1991; Meneveau & Katz 2000). This
quantity characterizes the energy transfers between the resolved scale and the residual
scale within the inertial range, which is also a local property (Eyink & Aluie 2009).
The SGS dissipation is highly intermittent (Cerutti & Meneveau 1998), and can be both
positive and negative locally, but on average, energy is known to be transferred from
large scales to the residual scales (forward cascade). There is considerable literature on
the subject starting from the seminal papers by Lilly (1967), Leonard (1975) and Piomelli
et al. (1991). Some reviews include Meneveau & Katz (2000); Meneveau (2010); Moser
et al. (2021).

Without averaging, it has been a common observation that the SGS/SFS dissipation
can be negative which has often been interpreted as indicative of local inverse cascading
of kinetic energy, i.e., energy transfer from small to large scales of motion (“backscatter”
(Piomelli et al. 1991)). Borue & Orszag (1998) noted that the forward cascade occurs
predominantly in regions characterized by strong straining, where the magnitude of
negative skewness of the strain tensor and vortex stretching are large. Conversely,
backscatter was observed in regions with strong rotation. The relationship between SGS
dissipation and stress topology and stress strain alignment geometry was discussed and
measured based on 3D PIV measurements by Tao et al. (2002). In a more recent study,
Ballouz & Ouellette (2018) investigated the SGS tensor by considering the relative
alignment of the filtered shear stress and strain tensors. They found that the energy
cascade e�ciency is quite low, a trend they attributed to energy being transferred
largely between positions in physical space. Quantitatively, in expressing the subgrid-
stress tensor as a superposition of all smaller scale Gaussian-filtered velocity gradients,
Johnson (2020, 2021) was able to isolate the relative contributions of small-scale strain
self-stretching and vortex stretching, finding both to be important.

It has been questioned whether it is the local quantity �⌧ijS̃ij (where ⌧ij and S̃ij are
the subgrid-scale stress and resolved strain-rate tensors, respectively), or the work done
by the SGS/SFS force, ũi@j⌧ij (where ũi is the resolved velocity), that should be the
genuine definition of local energy cascade rate. For instance Kerr et al. (1996) use the
latter in their study of correlations of cascade rate and vorticity, and more recently Vela-
Mart́ın & Jiménez (2021) use both quantities in their analysis. Moreover the SGS force
plays a central role for optimal LES modeling (Langford & Moser 1999). The SGS force
is invariant to divergence-free tensor fields which therefore do not a↵ect the large-scale
dynamics but addition of such a tensor field to ⌧ij can certainly a↵ect the usual definition
of subgrid-scale dissipation�⌧ijS̃ij . By re-expressing the SGS stress and dissipation terms
using an optimization procedure, Vela-Mart́ın (2022) provided arguments that the often
observed backscatter does not actually contribute to the energy cascade between scales
but rather to the energy flux in the physical space, also suggesting that backscatter does
not need to be explicitly modeled in LES.

As can be seen from this partial summary of the literature on backscatter and inverse
cascade in the LES filtering approach, no consensus has been reached regarding the
possible importance and physical interpretation of local backscatter using the definition
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based on the inner product of the subgrid stress and filtered strain-rate tensors. Also, the
question of inverse cascade has not received much attention from the point of view of the
local versions of the Kolmogorov equation in the structure function approach. Therefore,
in this paper we first revisit the generalized local structure function formulation (§2.1).
We argue that in this formulation the term responsible for the energy cascade can be
unambiguously interpreted as a flux of kinetic energy between scales since it appears
inside a divergence in scale space. In this sense it di↵ers from the filtering formulation
used in LES (reviewed in §2.2) in which typically a fixed filter scale is used and no
change in scales is considered, thus making the concept of a “flux in scale space” less
clearly defined and open to various interpretations.

With the definition of local cascade rate or energy flux clarified for the structure
function approach, we perform a comparative study of both the structure function and
the filtering approaches’ energy flux terms in a relatively high Reynolds number DNS
database of forced isotropic turbulence at a Taylor-scale Reynolds number of 1,250. The
data analysis is greatly facilitated by the availability of these data in a new version of
the Johns Hopkins Turbulence Database (JHTDB) System, in which python notebooks
access the data directly (see appendix A). The comparisons involve various statistical
properties of the energy flux. First, in §3 we provide comparisons of both quantities
by means of simple statistical measures such as their mean values, joint probability
density distributions and correlation coe�cients, comparing both the two definitions of
kinetic energy and kinetic energy cascade rate or flux. We then comparatively examine
conditional averages based on the local molecular dissipation rate averaged over a ball of
size `, specifically re-examining the Kolmogorov refined similarity hypothesis (KRSH) in
§4. Then, in §5, we present comparative conditional averages of kinetic energy flux based
on properties of the large-scale velocity gradient field such as the strain and rotation
magnitudes, and the Q and R invariants. Particular attention is placed on events of local
negative energy flux and whether or not such events can be considered to be of statistical
significance. Overall conclusions are presented in §6.

2. Local energy flux in the structure function and filtering approaches

In this section, both the structure function based (KH equation) and filtering (LES)
energy equations are reviewed. We focus on the term representing energy cascade (energy
flux) in each equation, and describe some of the prior e↵orts in the literature relating
the structure function and filtering approaches.

2.1. Energy cascade rate/flux in the scale-integrated local KH equation

The KH equation is a generalized Karman-Howarth equation that is directly derived
from the incompressible Navier-Stokes equations without any modeling. Before averaging,
the instantaneous KH equation with no mean flow and neglecting the forcing term reads
(Hill 2001, 2002b):
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where �ui = �ui(x, r) = u
+
i � u

�
i is the velocity increment vector in the i

th Cartesian
direction over displacement vector r. The superscripts + and � represent two points
x+ r/2 and x� r/2 in the physical domain that have a separation vector ri = x
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and middle point xi = (x+
i + x

�
i )/2 (see Fig. 1 (a)). The superscript ⇤ denotes the

average value between two points, e.g., the two-point average dissipation is defined as
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✏
⇤(x, r) = (✏+ + ✏

�)/2, and ✏
± here is the “pseudo-dissipation” defined at every point as

✏ = ⌫(@ui/@xj)2 (in Hill (2002b), an alternate expression involving the real dissipation
was introduced (his Eq. 2.13) at the cost of including an additional pressure term). Note
that throughout this paper, when referring to “dissipation” we will mean the pseudo-
dissipation. Also, we will use rs = r/2 to denote the radial coordinate vector from the
local “origin” x.

As remarked by Hill (2001, 2002b) it is then instructive to apply integration over a
sphere in rs-space up to a radius `/2, i.e. over a sphere of diameter `. The resulting
equation is divided by the sphere volume V` = 4

3⇡(`/2)
3 and a factor 4, and Gauss’

theorem is used for the r-divergence terms (recalling that @r = 2@rs), yielding
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(2.2)
where S` represents the bounding sphere’s surface of area S` = 4⇡(`/2)2 and n̂j is the

unit normal vector. Eq. 2.2 suggests defining a structure-function based kinetic energy
at scale ` according to

ksf,`(x, t) =
1
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rs, (2.3)

so that the first term in Eq. 2.2 corresponds to @ ksf,`/@t. The 1/2 factor in front of the
integral is justified since the volume integration over the entire sphere will double count
the energy contained in �u

2
i = (u+

i � u
�
i )

2. Equation 2.2 thus describes the transport
of two-point, structure function energy ksf,`, which represents energy within eddies with
length scales up to ` (Davidson 2015) in both the length scale ` and physical position x

spaces. The last term in equation 2.2 represents r-averaged rate of dissipation with the
radius vector rs = r/2 being integrated up to magnitude `/2,

✏`(x, t) ⌘
1

V`

ZZZ

V`

✏
⇤(x, r) d3rs. (2.4)

As remarked by Hill (2001, 2002b) this quantity corresponds directly to the spherical
average of local dissipation at scale ` and plays a central role in the celebrated Kolmogorov
Refined Similarity Hypothesis, KRSH (Kolmogorov 1962).
The local energy cascade rate in the inertial range at position x and time t is defined

as

�`(x, t) ⌘ � 3

4 `
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where [..]S` indicates area averaging over the sphere of diameter `. We note that in this
definition, �`(x, t) represents the surface average of a flux that is defined positive if energy
is flowing into the sphere in the r-scale space. The position is fixed at x and thus the
quantity �`(x, t) does not contain possible confounding spatial transport e↵ects.

In terms of the overall average of Eq. 2.2, under the assumptions of homogeneous
isotropic flow and statistical steady-state conditions, and for ` in the inertial range of
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Figure 1. (a): Sketch showing local domain of integration over a ball of diameter ` used in
the symmetric Hill (2002b) structure function approach in which pairs of points separated by
distances r = 2rs up to ` are used. (b) shows integration up to a ball of radius ` in which pairs
of points separated by distances r up to ` are used as in the approach of Duchon & Robert
(2000). For volume averaging, in (a) 3D integration over the vector rs is performed at fixed x
while in (a) 3D integration over the vector r is performed at fixed x. For surface integrations,
in (a) integration is done over the spherical surface of radius `/2 while in (b) is is done over a
spherical surface of radius `.

turbulence, the unsteady, transport and viscous terms vanish. The pressure term is also
zero due to isotropy and incompressibility. Therefore, Eq. 2.2 can be simplified and yields
as expected

h�`i = h✏`i = h✏i, (2.6)

or equivalently [�u2
i �uj n̂j ]S` = �4/3 ` h✏i, the 4/3-law Frisch (1995).

In this paper the focus will be mainly on the flux term �` with some attention also
on the dissipation term ✏`. Analysis of the time derivative, spatial advection terms and
pressure terms is left for other ongoing studies. The viscous flux terms (in both spatial
and scale spaces) are also not considered, since our present interest concerns the inertial
range.

2.2. Energy cascade rate/flux in the filtering approach

In this section, we review the transport equation of the subgrid-scale kinetic energy
(Germano 1992) for ksgs,` ⌘ 1

2⌧ii, where ⌧ij = guiuj � ũiũj is the subgrid-scale stress
tensor, where the tilde symbol (⇠) denotes spatial filtering of variables. The transport
equation for ksgs,` reads (Germano 1992)
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(2.7)
The last term is called the subgrid-scale rate of dissipation at position (x), and is often
denoted as

⇧`(x, t) ⌘ �⌧ij
eSij . (2.8)

For filtering, in the present work we consider a spherical-shaped sharp top-hat filter in
physical space with a diameter equal to `. Therefore, for any field variable A(x), we
define the filtered variable as Ã(x) = V`

�1 RRR

V`

A(x + rs) d3rs. Note that each term in
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Equation 2.2 and in Equation 2.7 are thus evaluated at the same length scale. Terms in
Equation 2.7 can be compared directly to terms in Equation 2.2, in particular the local
dissipation terms are exactly the same, i.e,

�⌫

^@ui

@xj

@ui

@xj
= � 1

V`

ZZZ

V`

⌫
@ui

@xj

@ui

@xj
d
3
rs = ✏`(x, t). (2.9)

Again, for homogeneous steady state turbulence in the inertial range (neglecting viscous
di↵usion and resolved dissipation terms), upon averaging Eq. 2.7 simplifies to

h⇧`i = h✏`i = h✏i (2.10)

which is similar to Equation 2.6 and thus on average certainly both definitions of energy
cascade rate/flux agree with each other, i.e., h⇧`i = h�`i.

It is also of interest to compare the average value of the two definitions of kinetic
energy used in both definitions of energy cascade rate/flux. In the inertial range of high
Reynolds number turbulence, both hksf,`i and hksgs,`i can be evaluated based on the
Kolmogorov r

2/3 law and k
�5/3 spectrum, respectively. The result is (see Appendix B

for details), hksf,`i ⇡ 1.6 h✏i2/3`2/3 and hksgs,`i ⇡ 1.2 h✏i2/3`2/3. In other words, they are
of similar order of magnitude but the SGS kinetic energy is slightly smaller.

2.3. Other relationships between structure function and filtering approaches

In the present paper, we shall perform the data analysis and comparisons using the
two approaches mentioned above (scale-integrated local KH and filtering formulations).
However, it is useful at this stage to include some remarks regarding other structure
function and energy definitions used in earlier works by Vreman et al. (1994), Constantin
et al. (1994), Duchon & Robert (2000), Eyink (2002) and Dubrulle (2019). Those
approaches typically focus on the structure function written at one of the endpoints
instead of the midpoint. Duchon & Robert (2000) and Dubrulle (2019) focus on the
two-point correlation quantity C(x, r) = ui(x)ui(x+ r) (see Fig. 1 (b)). Local averaging
over all values of r from r = 0 up to scale |r| = ` at any given x then corresponds to
the “mixed” energy quantity uiũi/2 (denoted as E` in Dubrulle (2019)), and where the
filtering is over a sphere of diameter 2` so as to combine two points with separation
distances up to `. The quantity C(x, r) combines filtered and unfiltered velocities and
hence it is more di�cult to interpret for comparisons of structure function and LES
filtering approaches. In its transport equation, Duchon & Robert (2000) show that a
term similar to the third-order structure function term of Eq. 2.5 arises. However, in
order for the structure function to correspond to scale `, one has to choose to integrate
over a sphere of diameter 2` (the locally integrated dissipation rate would then be ✏2`). In
a spherical integration over r of powers of the velocity di↵erence [ui(x+ r)�ui(x)], only
the first term is a↵ected by filtering or averaging over the spherical shell, while the center
velocity ui(x) remains fully local. Note that in the scale-integrated local KH equation, the
averaging a↵ects both end-point velocities in the same way, and both become averaged
at scale ` in a formally symmetric way.

An early connection between structure functions and filtering approaches was devel-
oped by Vreman et al. (1994). In the Vreman analysis, the structure function is defined
based on the di↵erence of velocity ui(x+ r) and the locally filtered velocity ũi centered
at x. Spherical integration of (ui(x + r) � ũi)2 over a sphere of radius `/2 then yields
equivalence with the SGS kinetic energy at scale `. But (ui(x+ r)� ũi)2 does not equal
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the usual structure function definition, now due to a mixture of filtered and unfiltered
quantities at two points even before local filtering.
Another interesting approach was presented in Constantin et al. (1994) and connected

to the LES filtering approach by Eyink (1995), Eyink (2006) (equations 2.12-2.14). In
fact as recounted in the review by Eyink & Sreenivasan (2006), early unpublished work
by Onsager anticipated such expressions half a century prior. Written in terms of the
sharp spherical filter we use here, the expression for the trace of the SGS stress reads
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This equation represents an exact relationship between two-point structure functions and
the subgrid-scale kinetic energy. But for the RHS to correspond to structure functions
up to scale `, the integration must be done over a sphere of radius ` and thus a filtering
scale of 2` for the stress tensor in the filtering formulation. The suggested relationship
then appears to be between subgrid-scale stress kinetic energy at scale 2` and structure
functions up to two-point separations ` but averaged over a local domain of size 2`,
similarly as in the Duchon & Robert (2000) approach. Note that while each of the terms
in Eq. 2.11 is also a mixture of filtered and unfiltered velocities, the subtraction cancels
the local term and restores the fully filtered property inherent in the definition of ⌧ii.
While not expecting qualitatively di↵erent results (except perhaps using the diameter

instead of the radius as a name for “scale”), we here continue our focus on the more
“symmetric” formulation by Hill, with fixed position x specified at the midpoint between
two points separated by vector r whose magnitude then spans up to scale ` (or integration
radius rs up to radius `/2).

3. Comparisons between kinetic energies and cascade rates/fluxes

In this section, we provide comparisons of local kinetic energies in the structure function
formalism, ksf,`, with that in the filtering formalism, ksgs,`. We also compare the local
energy cascade rates �` and ⇧`. We consider data from a direct numerical simulation
(DNS) of forced isotropic turbulence at R� = 1,250 (the Taylor-scale Reynolds number)
that used 8,1923 grid points (Yeung et al. 2012) in a computational domain of size
equal to (2⇡)3. The integral scale of the flow is L = 1.24, the velocity root-mean-square
is u

0 = 1.58 and the mean dissipation is h✏i = 1.36. More details about the data and
simulation parameters are available as supplementary material. The analysis is performed
at four length-scales in the inertial range, ` = {30, 45, 60, 75}⌘ where ⌘ = (⌫3/h✏i)1/4
is the Kolmogorov length scale, the value of which is 4.98 ⇥ 10�4. Comparing to the
transverse Taylor microscale (Pope 2000) �g = u

0 (15⌫/2h✏i)1/2 ⇡ 0.024, the four length
scales are ` = {0.62, 0.93, 1.24, 1.55}�g, respectively.

To compute volume spherically filtered quantities such as ksgs,` and ⌧ij (and filtered
velocity gradient tensor to be discussed in §5), we fix the middle point coordinate x

in the physical domain. Subsequently, we download data in a cubic domain using the
JHTDB’s cutout service in a cube of size equal to `

3. The data are then multiplied
by a spherical mask (filter) to evaluate local filtered quantities. Other quantities are
obtained by utilizing pre-computed Getfunctions from the Johns Hopkins Turbulence
database (JHTDB) including spatial interpolation and di↵erentiation, as explained in
more detail in Appendix A. For surface averages such as �`, we discretize the outer
surface of diameter ` into 500 points (for the largest `/⌘ = 75 case, 2000 points are
used) that are approximately uniformly distributed on the sphere. The accuracy of this
method of integration has been tested for the `/⌘ = 45 case by comparing the results
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Figure 2. Panel (a) shows normalized mean kinetic energies and mean cascade rates as function
of four filter scales for the R� = 1250 DNS isotropic turbulence dataset. Specifically, closed
squares show hksf,`i/(h✏i`)2/3 while closed circles show hksgs,`i/(h✏i`)2/3. Open squares show
h�`i/h✏i while open circles show h⇧`i/h✏i. The horizontal lines show the expected asymptotic
values in the inertial range for mean kinetic energies in the structure function formulation (1.6)
and in the filtering formulation (1.2), while the expected energy cascade rates equal unity. Panel
(b) shows the correlation coe�cients between kinetic energies (⇢kk, downward triangles) and
between cascade rates (⇢�⇧ ,upward triangles).

from using 500 points to those using 2000 points, for a smaller testing subsample of 500
randomly chosen spheres. We verified that the di↵erence between the mean values of �
as well as the average of the absolute value of di↵erences were less that 1%. For volume
averages such as ✏` and ksf,`, we use 5 shells for `/⌘ = 30, 45, 60. The outermost shell
comprises 500 uniformly distributed points, with a reduction in number of points towards
the inner shells approximately maintaining the density. We tested 500 randomly chosen
spheres to calculate ✏` at `/⌘ = 45 using 5 shells and 10 shells. The di↵erence between
the mean values of ✏` as well as the average of the absolute value of di↵erences were
less that 2%. For the larger length scale `/⌘ = 75, the number of shells was increased to
6; the accuracy is tested using the same method as employed for `/⌘ = 45. For all the
calculations, data on the specified points are obtained from the database using 8th-order
Lagrange spatial interpolation. We tested di↵erent spatial interpolation methods even
without interpolation (using the closest grid point values), verifying that the averaged
values of interest were essentially unchanged.

Overall mean values are obtained at the four scales and are plotted in Fig. 2 (a).
The results for kinetic energy for the structure function approach are consistent with the
analytical evaluation (see Appendix B). For the SGS kinetic energy, the numerical results
fall below the theoretical inertial range prediction, due to the transfer function of top-hat
filtering having a very di↵erent spectral signature compared to the structure function,
and it emphasizes more the viscous range when integrating than the structure function
operation, reducing the amount of SGS kinetic energy even at scales much larger than
the Kolmogorov scale (see discussion in Appendix B).

Figure 3(a) shows the joint PDF of ksf,` and ksgs,` at scale ` = 45⌘. The correlation
coe�cient between both quantities is ⇢kk = 0.97 (Fig. 2 (b)). The correlation coe�cient
is defined as ⇢xy = h(x � hxi)(y � hyi)i/(�x�y) where � represents the variable’s root
mean square value. Similarly, Figure 3(b) shows the joint PDF of ⇧` and �`, also at
scale ` = 45⌘ for the same dataset. The correlation coe�cient between both quantities
is measured to be ⇢�⇧ = 0.58 (Fig. 2 (b)), significantly lower than for the energies
but still appreciable. It can be seen that negative values occur for both ⇧` and �`,
although it appears that �` has more variability and larger negative excursions than ⇧`.
As summarized in §1, the relevance of locally negative values of ⇧` to the flow physics
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Figure 3. Joint PDFs of (a) ksgs,` and ksf,` with values 0.01, 0.03, 0.1, 0.3, 1, 3 (b)⇧` and �` with
values 0.001, 0.003, 0.01, 0.3, 0.1, 0.3, at scale ` = 45⌘ measured in DNS of isotropic turbulence
at R�=1250. The red dash line represents a 45 degree slop line. The data and the editable
notebook can be found at: https://cocalc.com/.../Figure3.

remains unclear, especially given the fact that upon averaging, the quantity becomes
positive. Conversely, the quantity �` has a clearer local interpretation, in the sense that
locally negative values can clearly be interpreted as kinetic energy (local �u2

i /2)) showing
a net flux out of a sphere of diameter ` in scale space, i.e. becoming associated with energy
at larger `, while its overall average is positive. An interesting question is whether negative
values of ⇧` or �` survive under some type of statistical averaging. In the next sections
we use conditional averaging to quantify the importance of negative values (inverse local
cascade, or backscatter).

4. Conditional averaging based on local dissipation

Motivated by KRSH and the fact that local viscous dissipation (small-scale) appears in
both scale-integrated local KH equation and subgrid-scale kinetic energy equation, i.e.,
Eqn. 2.4 is identical to Eqn. 2.9, in this section, we compare conditionally averaged cas-
cade rates/fluxes for both the structure function and filtering formulations, conditioned
on ✏`, i.e, h�`|✏`i and h⇧`|✏`i. According to KRSH (Kolmogorov 1962), the statistical
properties of velocity increments depend on the local average dissipation within a sphere
of scale `, rather than being determined by the globally averaged dissipation. Written in
terms of the quantities of present interest, the KRSH would read h�`|✏`i = ✏` since �` is
fully determined by the velocity increments envisioned in the KRSH. Loosely extending
the KRSH arguments to the filtering formalism would suggest h⇧`|✏`i = ✏`.

In order to assess this hypothesis, we evaluate the conditional averages based on the
same dataset described before. Results for h�`|✏`i and h⇧`|✏`i are shown in Figure 4(a).
Results for the four scales considered are included. As can be seen, the plot shows a close
agreement between both h�`|✏`i and h⇧`|✏`i, with ✏`. It is important to note that �`

and ⇧` are conditioned on the exact same values of ✏`. The similarities and di↵erences
observed in Figure 4 indicate that �` and ⇧` share many properties (same conditional
averages) but they are not identical. For instance, it is clear from Fig. 3 (b) that the
variance of �` exceeds that of ⇧`, even though their mean values are the same.

In general, the behaviors of both h�`|✏`i and h⇧`|✏`i confirm the validity of the KRSH
in the present context. More detailed analysis of the KRSH for �` and connections to
Eq. 2.2 are reported in Yao et al. (2023). We also tested KRSH using the full viscous
dissipation ⌫(@ui/@xj)(@ui/@xj+@uj/@xi) instead of the pseudo-dissipation ⌫(@ui/@xj)2

https://cocalc.com/share/public_paths/312ef94617087a1dba68a6aa90b21a24fd22983f/figure3
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Figure 4. (a) Conditional averages of Z = �` (black symbols and lines) and Z = ⇧` (open
symbols and lines) based on local dissipation ✏`. The red dashed line indicates the value of ✏`.
Di↵erent symbols denote di↵erent scales `/⌘ = 30 (squares), 45 (triangles), 60 (circles) and
75 (diamond). All values are normalized with the globally averaged rate of dissipation h✏i. (b)
Log-log plot of conditional averages of Z = ksf,` (black triangles) and Z = ksgs,` (open triangles)
based on local dissipation ✏` for the case ` = 45⌘. Black stars show the conditional average of
the longitudinal velocity increments Z = �u2

L where �uL = �uj n̂j . The magenta dashed line has
a slope of 2/3 according to Kolmogorov theory.

when computing ✏`. The largest di↵erence for h�`|✏`i is less than 1%. Additionally, the
correlation coe�cient between the two types of dissipation is 0.996.

Similarly, we evaluate the kinetic energies ksf and ksgs conditionally averaged on ✏`.
Results for ksf and ksgs are essentially indistinguishable, except for a constant o↵set
consistent with the ratio of their mean values. In terms of their dependence on dissipation,
we observe power-law scaling ⇠ ✏

�
` with � ⇠ 0.79, slightly larger than the value 2/3

implied by standard Kolmogorov scaling. To verify the present data and analysis methods,
we also evaluate the traditional longitudinal second order structure function conditioned

on ✏`, h�u2
L|✏`i (where �uL = �uj n̂j), for which the Kolmogorov scaling ⇠ ✏

2/3
` according

to the RKSH is well established (Stolovitzky et al. 1992). The result (shown as stars in
Fig. 4(b)) indeed confirms the 2/3 scaling for this quantity. A more in-depth analysis and
possible reasons for non-Kolmogorov scaling of ksf with ✏` is left for future studies. At
this stage, we simply note the similarity in scaling and overall behavior of ksf and ksgs.

5. Conditional averaging based on large-scale velocity gradients

In this section, motivated by large-scale properties of the flow that would be available in
LES, we explore correlations between properties of the velocity gradient tensor filtered at
scale ` and the two definitions of energy cascade rate/flux. It is useful to cast the present
comparative study of � and ⇧ using analyses of the type that have been performed
before in the context of LES. The velocity gradient tensor encapsulates information
about fluid deformation and rotation and connections to the energy cascade have been
studied extensively. Already Bardina et al. (1985) examined the impact of rotation
on homogeneous isotropic turbulence (HIT) and observed that rotation decreases the
dissipation (cascade) rate while increasing the length scales, suggestive of inverse energy
cascade e↵ects. Goto (2008) investigated physical mechanisms underlying forward energy
cascade and argued that forward cascade can be triggered in regions characterized by
strong strain between two large-scale tubular vortices. The role of the filtered gradient
tensor for energy cascade was first explored numerically in Borue & Orszag (1998)
and experimentally in Van der Bos et al. (2002) building on the “Clark model” that
approximates features of the subgrid-scale tensor using Taylor-series expansion. Recent
studies by Johnson (2020, 2021) and Carbone & Bragg (2020) have significantly expanded
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on such analyses and examined the roles of self-strain amplification and vortex stretching
driving the forward energy cascade process. For inverse cascade, a vortex thinning
mechanism may be at play (Johnson 2021).
A first level of characterization of the properties of the velocity gradient tensor are its

invariants. To characterize deformation and rotation, we evaluate the strain and rotation
invariants from data, defined according to

S
2
` (x, t) = S̃ijS̃ij , ⌦

2
` (x, t) = ⌦̃ij⌦̃ij , (5.1)

where Sij and ⌦ij are the symmetric and antisymmetric parts of the velocity gradient
tensor Aij = @ui/@xj and the tilde denotes, as before, spherical tophat filtering over a
ball of diameter `. For consistency with prior literature, these values will be normalized
by the overall average hQwi = 1

2 h⌦
2
` i (equal to 1

2 hS
2
` i in homogeneous turbulence).

A more detailed characterization of the statistics of velocity gradients involves the
invariants Q and R (Vieillefosse 1982). It is well-known that the joint probability density
function (JPDF) of Q-R exhibits a characteristic tear-drop shape (Chong et al. 1990;
Meneveau 2011), from which flow topology information such as vortex stretching and
compression can be inferred (Chong et al. 1990; Borue & Orszag 1998; Lüthi et al. 2009;
Danish & Meneveau 2018). These two invariants (at scale `) are defined as usual according
to

Q`(x, t) = �1

2
ÃijÃji, R`(x, t) = �1

3
ÃijÃjkÃki. (5.2)

Under the assumption of restricted Euler dynamics (Meneveau 2011), the transport
equation for the velocity gradient tensor leads to dQ`/dt = �3R` and dR`/dt = � 2

3Q
2
`

(Cantwell 1992). The quantity R` can thus be considered as the (negative) rate of change
of Q` and contains both vortex stretching and strain self-stretching mechanisms (Johnson
2021). In our comparative investigation of energy cascade rates, conditional averaging
based on the four invariant quantities S2

` , ⌦
2
` , Q` and R` will be undertaken.

We begin with qualitative visualizations of the fields in small subsets of the domains
analyzed. Panel (a) and (b) of Figure 5 depict a sample instantaneous field of �` and
⇧` respectively, highlighting regions of strong local forward cascade (indicated by solid
red circles) and strong inverse cascade (indicated by dashed circles). The correlation
between these two variables is evident, the computed correlation coe�cient between the
snapshots is 0.64. On both panels (a) and (b) the fluxes are normalized by the global
averaged dissipation h✏i. As already noted based on the joint PDFs, there are di↵erences
between �` and ⇧`. The maximum magnitude of the positive cascade rate in �` is about
twice that of ⇧`, while the magnitude of the negative cascade rate in �` is about 3 to
4 times larger. Since h�`i ⇠ h⇧`i ⇠ h✏`i ⇠ h✏i, the significant di↵erent maximum values
indicates �` is more variable and intermittent than ⇧`. Also, �` exhibits somewhat
finer-scale spatial features.

5.1. Conditional statistics based on strain rate (S2
` ) and rotation rate (⌦2

` )

Panels (a) and (b) in figure 5 show distinct regions including both local forward (red
area) and inverse (blue area) cascade rates. It is visually apparent that the presence
of a strong local forward energy cascade is associated with increased local strain rate,
as indicated by the solid red circle in both panels (a) and (b) of Figure 5 and the
corresponding black solid circle in panel (c). Similarly, a strong local inverse energy
cascade is observed alongside a significant local rotation rate, depicted by the dashed red
circle in panels (a) and (b) of Figure 5 and the corresponding red dashed circle in panel
(d). The strong correlation between forward cascade and local straining is consistent
with multiple earlier observations and prior works in the literature (e.g. Borue & Orszag
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Figure 5. Panels (a), (b), (c), (d) are instantaneous �`, ⇧`, S
2
` and ⌦2

` field with ` = 45⌘ in a
750⌘⇥750⌘ domain (500⇥500 points of the DNS grid. The black solid circles in (a) and (b) are
located at strong local forward cascade region, which is correlated to the strong local strain rate
marked in the black circle in panel (c). The red dashed circles in (a) and (b) are located at strong
local inverse cascade regions (negative energy fluxes), which appear qualitatively correlated to
relatively strong local rotation rates marked in the red dashed circles in panel (d).

(1998) and recently Johnson (2021); Carbone & Bragg (2020)). We focus attention on
the regions with negative energy cascade rates. Conditional averaging can elucidate the
statistical significance of these regions. Specifically, we inquire whether there are large-
scale flow local features as characterized by the filtered velocity gradient invariants that
are systematically accompanied by inverse cascade, i.e., negative �`. Thus we perform
conditional averaging of �` based on the invariants S

2
` and ⌦

2
` and repeat the analysis

for the SGS energy flux quantity ⇧`.
Figure 6 shows the joint conditionally-averaged �` and⇧` based on S

2
` and ⌦

2
` , denoted

as h�`|S2
` ,⌦

2
` i and h⇧`|S2

` ,⌦
2
` i, respectively. The analysis is performed by computing

averages over two million randomly distributed points x. In the presented results, �`

is normalized by h✏i, while S
2
` and ⌦

2
` are normalized by hQwi = 1

2 h⌦
2
` i. Panels (a),

(b), (c) and (d) of figure 6 present the joint conditionally-averaged h�`|S2
` ,⌦

2
` i at four

di↵erent length scales, namely ` = {30, 45, 60, 75}⌘, highlighting the dominance of the
forward cascade by the extensive red region. This magnitude is many times larger than
the maximum magnitude observed in the blue region, representing the inverse cascade.
The red region covers a wide range of S2

` and ⌦
2
` values, consistent with the expectation

that the global average would favor a forward cascade (h�` > 0i). The highest positive
values of h�`|S2

` ,⌦
2
` i correspond to high strain rates and low rotation rates, and they
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Figure 6. Panels (a), (b), (c), (d) are h�`|S2
` ,⌦

2
` i; panels (e), (f), (g), (h) are h⇧`|S2

` ,⌦
2
` i at

` = {30, 45, 60, 75}⌘. The black dashed line in panel (d) represent iso-line of Q` ⌘ � 1
2 (S

2
` �⌦2

` ).
�` and Pi` are normalized by h✏i; S2

` and ⌦2
` are normalized by hQwi = 1

2 h⌦
2
` i.

decrease as the strain rate decreases. Interestingly, the inverse cascade appears explicitly
in the lower-right corner of the plots, where the rotation rate is strong but the strain
rate is weak. It is worth noting that the conditionally averaged values shown in Figure
6 reflect the combined outcome of the forward and inverse cascades. Consequently, in
specific regions characterized by distinct strain and rotation rates, events with forward
and inverse cascades can cancel each other out. Only in the lower right corner is there
an indication of net inverse cascade when the cascade rate is defined using the structure
function approach.
In panel (d), we superimpose dashed lines representing the isolines of Q`, with the

Q` = 0 line indicating the condition of equal strain and rotation rates. The parallel
dashed lines correspond to Q` = �10, �5, 0, 5, 10, and 15, respectively. The Q` = 15 line
appears near the boundary separating the red and blue regions. However, the boundary
of the blue region does not appear to align well with the Q` isoline. This observation
suggests that Q` might be not enough to provide an adequate threshold for distinguishing
the net forward and inverse cascade regions.

Panels (d), (e), (f), and (g) in Figure 6 present results for the joint conditionally-
averaged ⇧` based on S

2
` and ⌦

2
` , corresponding to the same filter scales as panels (a),

(b), (c), and (d). It is evident that trends for the positive cascade rate (red region) for
⇧` closely resemble those of �`, with the peak of the forward cascade occurring at a
high strain rate and low rotation rate. The magnitude of the maximum forward cascade
rate for ⇧` is slightly weaker compared to that of �`. The most significant di↵erence
is that only a few instances of blue squares are observed in regions characterized by
strong rotation and weak strain, indicating that the overall predominance of the forward
cascade persists regardless of the local values of S2

` and ⌦
2
` . These results highlight some

important statistical di↵erences between �` and ⇧`. We further evaluate the conditional
averages of the energy fluxes �` and ⇧`, conditioned on either S

2
` and ⌦

2
` individually.

This analysis is motivated by the work of Buaria & Pumir (2022), which highlighted
di↵erent scalings of conditional averages with respect to strain rate compared to rotation
rates even though one would expect similar results based on dimensional arguments. In
figure 7, panel (a), we demonstrate that both �` and ⇧` exhibit a power-law relationship
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Figure 7. Panel (a) shows h�`|S2
` i (black triangles and lines) and h⇧`|S2

` i (blue open triangles
and lines). Panels (b) shows h�`|⌦2

` i (black triangles and lines) and h⇧`|⌦2
` i (blue open triangles

and lines). The red dash line in both panels represents a line with slope 3/2 in the log-log plot.

Figure 8. Panels (a) and (b) present the conditional averages of cascade rates obtained
by sampling positive and negative signs, i.e, h�`|S2

` ,⌦
2
` ,�` > 0i and h�`|S2

` ,⌦
2
` ,�` < 0i,

respectively. Panel (c) and (d) display the logarithm base 10 of the number of samples on
the S2

` ,⌦
2
` map (out of a total of 2 ⇥ 106 samples). The isolines in panels (c) and (d) are the

values corresponding to the contour.

when conditioned on S
2
` , with a slope of 3/2. This scaling aligns with dimensional analysis

and Kolmogorov scaling, h�`|S2
` i ⇠ [S2

` ]
3/2 and h⇧`|S2

` i ⇠ [S2
` ]

3/2 . In contrast, when
conditioning �` and ⇧` on ⌦

2
` (panel (b)), a di↵erent trend emerges, with much weaker

dependence on rotation rate.
To develop a more detailed understanding of the inverse cascade region within

h�`|S2
` ,⌦

2
` i, we perform a further analysis by dividing the samples based on �` > 0 and

�` < 0 for ` = 45⌘. We then calculate the conditional average of these separated samples
considering S

2
` and ⌦

2
` , denoted as h�`|S2

` ,⌦
2
` ,�` > 0i and h�`|S2

` ,⌦
2
` ,�` < 0i. The

results are presented in Figure 8. From panel (a), it can be observed that the forward
cascade clearly increases with S

2
` , with the highest values of �` concentrated in the

upper-left corner. It increases also with ⌦
2
` but less rapidly. Combined, the trend seems



16 H. Yao, M. Schnaubelt, A.S. Szalay, T.A. Zaki and C. Meneveau

to be an increase roughly proportional to ⇠ S
2
` +0.75⌦2

` . Di↵erently, panel (b) illustrates
that the inverse cascade is roughly proportional to ⇠ S

2
` + 0.5⌦2

` , i.e. shallower isolines
extending more in the horizontal direction than in the vertical compared to the forward
cascade case shown in (a). This observation elucidates why the strongest red region in
panel (b) of Figure 6 emerges at the largest S2

` , while below this threshold, the forward
cascade events progressively weaken and are gradually canceled out by the inverse
cascade. Finally, in regions characterized by a weak strain rate and strong rotation rate,
the inverse cascade becomes the dominant contribution.
Panel (c) and (d) display the distribution of the number of samples corresponding to

positive and negative cascade rates in logarithmic scale (out of the 2 million samples
(balls) considered). Our focus is specifically directed towards the bottom-right corner of
the plots, which corresponds to the region where the inverse cascade is observed in panel
(b) of Figure 6. Interestingly, we observe that at ⌦

2
` /hQwi ⇡ 40 and S

2
` /hQwi < 10,

the number of samples representing both inverse and forward cascade rates is roughly
equivalent, falling within the range of 101 to 101.5. This implies that within this region,
the magnitude of the inverse cascade must be significant to achieve net negative values
for the conditional average. Still, for the conditions with net inverse cascade, the number
of occurrences for both forward and inverse cascade rates is quite small, on the order of
only 1/105 of the total samples, indicating a very low frequency. We point out that in
the extreme bins the conditionally averaged fluxes are unlikely to be fully converged.
Therefore our observations are meant to be mostly qualitative in these regions. In
particular, the inverse cascade regions depicted in Figure 6 are primarily attributed to
rare but intense events. In the following subsection, we will show that inverse cascade
can be better characterized by conditioning on Q` and R` invariants.

5.2. Conditional statistics based on Q` and R` invariants

In the context of the ⌦
2
` and S

2
` map shown in Figure 6, we observe the presence of a

distinct inverse energy cascade in the region characterized by strong rotation but weak
strain (corresponding to large Q values) for �`. However, such observations did not hold
for ⇧`. But these results do not preclude the possibility that net forward and inverse
cascade may be associated with other invariants of the filtered velocity gradient tensor
Ãij .
Figure 9 shows the joint conditional averaged h�`|Q`, R`i and h⇧`|Q`, R`i at four

di↵erent scales, namely, ` = {30, 45, 60, 75}⌘. Across all figures, we can observe the
distinctive teardrop shape pattern on the Q-R map, as reported in previous studies
(Chong et al. 1990; Meneveau 2011). The black solid lines are the boundaries, separating
the four quadrants based on the sign of Q and R. Notably, it becomes evident that both
� and ⇧ exhibit a strong and dominant inverse cascade in the quadrant characterized
by Q > 0 and R > 0. It is useful to recall that the variable R` is associated to the
rate of change of Q` (in fact assuming restricted Euler dynamics they are related by
dQ`/dt = �3R` (Cantwell 1992; Meneveau 2011). Therefore R` > 0 corresponds to a
decreasing trend of Q`, i.e. vortex compression. We find that such events are associated
to inverse energy cascade.. This observation is particularly interesting considering the
absence of an observable inverse cascade for ⇧` in the S

2
` and ⌦

2
` map. Hence, these

results indicate that the variables Q and R provide a more e↵ective characterization to
identify inverse cascade using conditional averaging.

The region characterized by Q < 0 and R > 0, which corresponds to the strain-
dominated region, exhibits the most pronounced forward cascade. This observation aligns
with the findings of many prior analyses in the literature Borue & Orszag (1998); Van der
Bos et al. (2002); Johnson (2021); Carbone & Bragg (2020) as well as those depicted
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Figure 9. Panels (a), (b), (c) (d) are h�`|Q`, R`i; panels (e), (f), (g) (h) are h⇧`|Q`, R`i
at ` = {30, 45, 60, 75}⌘. The black dotted lines separate four quadrants and the two lines
Q = �( 274 R2)1/3 (Vieillefosse lines) are also shown. �` and ⇧` are normalized by h✏i;
Q` are normalized by hQwi and R` are normalized by hQwi(3/2). The data and editable
analysis code that generated these joint PDFs (for the case at ` = 45⌘) can be found at:
https://cocalc.com/.../Figure9.

in Figure 9, further emphasizing that the strong local strain rate plays a crucial role
in driving the forward energy cascade. We note that Borue & Orszag (1998); Van der
Bos et al. (2002) display conditional averages weighted by the joint PDF of R and Q.
In their results, there was hardly any indication of backscatter/inverse cascade in the
Q > 0 and R > 0 “vortex compression” region, because the overall probability density
of that region is smaller than the other regions. However, the unweighted conditional
averaging represents the relevant values if the large-scale flow is in that particular state
(Q > 0 and R > 0), and is therefore relevant to our analysis. We also notice a small blue
region at Q` < 0, R` < 0 quadrant of h�`|Q`, R`i (but not seen for h⇧`|Q`, R`i). The
occurrence of inverse cascade in strain-dominated, strain self-stretching regions appears
intriguing. However the small number of samples ⇠ O(10) in the bin showing inverse
cascade precludes us from ascribing much significance to this observation for now.”
In a similar manner to Figure 8, we perform further conditional averaging also

distinguishing positive and negative cascade rates. Figure 10 (a) and (b) present
h�`|Q`, R`,�` > 0i and h�`|Q`, R`,�` < 0i at ` = 45⌘. In the case of the inverse
cascade, it is observed to occur in all four quadrants (panel (b)), with a more evenly
distributed and symmetric presence in the upper two quadrants associated with Q > 0,
i.e, the rotation-dominated regions. The characteristic teardrop shape is less prominent
and exhibits a shorter tail compared to the forward cascade (panel (a)). Regarding the
forward cascade, it is evident that it is most dominant in the Q < 0, R > 0 quadrant,
consistent with Figure 9. However, in the Q > 0, R > 0 quadrant, the forward cascade
is weaker and is overall canceled out by the stronger inverse cascade in that particular
region.
Panels (c) and (d) display the distribution of number of samples of forward and inverse

cascade rates, respectively. The shapes of the distributions align with Figure 10 (a) and

https://cocalc.com/share/public_paths/312ef94617087a1dba68a6aa90b21a24fd22983f/figure9
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Figure 10. Panels (a) and (b) show h�`|Q`, R`,�` > 0i and h�`|Q`, R`,�` < 0i. (c) and (d)
display the logarithm base 10 of the number of samples on the Q,R map. The isolines in panels
(c) and (d) are the values corresponding to the contour.

(b), but a majority of the samples are concentrated at the center, corresponding to small
values of Q and R. This observation confirms that the strong instances of inverse cascade
and forward cascade observed in Figure 9 are primarily determined by infrequent but
extreme events (intermittency). Note that the joint PDF in Fig. 10(d) is more left-right
symmetric than that in Figure 10(c), suggesting a less non-Gaussian behavior of the flow
in regions of inverse cascade than in the forward cascade regions.

Finally, to provide a visual impression of the spatial distribution of regions of negative
�` in the flow, in Fig. 11 we provide a 3D visualization of two instances in specific small
subdomains of size 1503 grid points (i.e. (225⌘)3 out of the overall 81923 DNS domain.
The selection of these subdomains was based on the condition that Q`/hQwi > 15 and
R`/hQwi(3/2) > 15 at the center of each subdomain such that the center is at a strong
vortex compression region. We then calculate the values of �`, ⇧`, Q` and R` at every
second grid point. In panel (a) and (b) of Figure 11, the light blue regions correspond to
isosurface of a large negative value of �`/h✏i = �60, indicating the presence of an inverse
cascade with significant magnitude. Clearly, we can see that the occurrence of strong
inverse cascade is closely associated with the presence of the vortices. Panel (a) depicts
that large negative �` appears near the center and not at the core of the yellow tube,
although one should recall that �`(x, t) is defined locally as centered at x but represents
the energy cascade into balls of diameter 45⌘, i.e. comparable to the diameter of the
vortex (yellow region) shown. The blue region is also largely connected with the black
isosurface, (R` = 20hQwi3/2) indicating a strong “vortex compression” region within the
yellow tube. Interactive 3D versions of the figure that can be accessed following the links
in the figure caption help elucidate the spatial structure. Panel (b) is an entirely di↵erent
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Figure 11. Panel (a) and (b) show isosurface of local �`/h✏i = �60 (light blue) and
Q`/hQwi = 20 (yellow), and R`/hQwi(3/2) = 30 (black) in two di↵erent 3D subdomains.
Panel (c) and (d) show isosurface of local ⇧`/h✏i = �20 (green-blue) in the same subdomains
and isosurface of Q`/hQwi and R`/hQwi(3/2) as panel (a) and (b). Interactive visualizations
are available for each panel at: Panel(a), Panel(b), Panel(c), Panel(d). The link to the
directory containing the visualization code and the 3D fields with these data can be found
at: https://cocalc.com/.../Figure11.

instance of similar conditions, showing a more broken up vortex and showing that �` can
also peak near the sides, and appear more scattered within the vortex. Coupled with
the results shown in Fig. 9, the visualizations suggest that the strong inverse cascade
occurs along the large scale vortices, in regions of these vortices in which R > 0, i.e. the
vortex compression regions. We can also observe some yellow tubes, within which inverse
cascade and compression are both absent. This is consistent to the statistics such that,
when conditionally averaging in terms of Q` but irrespective of R, the inverse cascade
becomes very week and almost non-existent. However, once one only considers R > 0
regions, inverse cascade can be clearly observed in high vortical regions.

We also show ⇧`/h✏i = �20 (green-blueish isosurface) in the corresponding 3D
subdomains shown as panels (c) and (d) of Figure 11. Clearly we can see that the green-
blueish and black regions largely overlap within the yellow region in panel (c). In panel
(d), the overlapping between green-blueish, yellow and black region occurs at the center
and right-top region of the subdomain, indicating strong negative ⇧` is also associated
with strong vortex compression within high vortical region, consistent with Figure 9.
However, the patterns of the green SGS flux regions are smoother, consistent to the 2D
visualisation in Figure 5.

Caution must be expressed that visualizations only provide qualitative impressions and
more quantitative analysis requires structure-based conditional averaging such as recently
undertaken in Park & Lozano-Duran (2023). While such analysis is beyond the scope of

https://cocalc.com/share/public_paths/37d00f34df9b5b2600ce89d2942f25efa1633068/Figure11_a.html
https://cocalc.com/share/public_paths/37d00f34df9b5b2600ce89d2942f25efa1633068/Figure11_b.html
https://cocalc.com/share/public_paths/37d00f34df9b5b2600ce89d2942f25efa1633068/Figure11_c.html
https://cocalc.com/share/public_paths/37d00f34df9b5b2600ce89d2942f25efa1633068/Figure11_d.html
https://cocalc.com/share/public_paths/312ef94617087a1dba68a6aa90b21a24fd22983f/figure11
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the present paper, the conditional statistics presented in Fig. 9 already by themselves
provide the strong statistically robust connection between cascade rate measures and
features of the large scale velocity gradient tensor.

6. Conclusions

In this paper we explore, based on a DNS dataset of isotropic forced turbulence at a
relatively high Reynolds number (R� = 1250), local features of the energy cascade. We
compare two common definitions of the spatially local rate of kinetic energy cascade at
some scale `. The first is based on the cubic velocity di↵erence term appearing in the
scale-integrated local KH equation, in the structure function approach. The second is the
subfilter-scale energy flux term in the transport equation for subgrid-scale kinetic energy,
i.e., as used in filtering approach often invoked in LES. Particular attention is placed
on interpretation and statistical robustness of observations of local negative structure-
function energy flux and subfilter-scale energy flux. The notion and relevance of local
inverse cascade or “backscatter” has been open to debates in the literature. We argue
that the interpretation of �`(x, t) as a spatially local energy flux appears unambiguous
because it arises naturally from a divergence term in scale space. And, the symmetric
formulation of Hill (2001, 2002b) leads to the spherically averaged third-order structure
function-based definition of a local cascade rate involving velocities at two points that
are treated equally via angular averaging over the sphere.

The data confirm the presence of local instances where �`(x, t) is negative, i.e. in-
dicative of local inverse cascade events in 3D turbulence. Flow visualizations show that
spatially the inverse cascade events are often located near the core of large-scale vortex
structures. Comparable observations for the LES-based energy flux ⇧`(x, t) (which also
displays negative values at many locations in the flow as is well-known in the LES
literature on “backscatter”) show that ⇧`(x, t) displays smoother and more blob-like
features. Regarding the statistical significance of such observations, local observations
from single realizations are extended using conditional averaging. Attention is placed first
on relationships between the local cascade rate and the local filtered viscous dissipation
rate ✏`(x, t) that plays a central role in the classic KRSH Kolmogorov (1962). Results
show that conditional averaging of both �`(x, t) and ⇧`(x, t) eliminates negative values
and that the conditional averages in fact equate ✏`(x, t) to very good approximation,
entirely consistent with KRSH predictions.

The analysis then focuses on conditional averages of �` and ⇧` conditioned on prop-
erties of the filtered velocity gradient tensor properties, in particular four of its most
invariants (strain and rotation rate square magnitude and the two Q�R invariants). We
find statistically robust evidence of inverse cascade as measured with �` when both the
large-scale rotation rate is strong and the large-scale strain rate is weak. When defined
using ⇧`, the conditional averaging based on large-scale strain and rotation rates does
not lead to any significant average backscatter. When conditioning based on the R and Q

invariants, significant net inverse cascading is observed for �` in the “vortex compression”
R > 0, Q > 0 quadrant. Qualitatively similar, but quantitatively much weaker trends are
observed for the conditionally averaged subfilter scale energy flux ⇧`. We recall that a
multiscale decomposition of ⇧` in terms of velocity gradients at multiple scales Johnson
(2020, 2021) shows that ⇧` < 0 appears associated with a vortex-thinning mechanism
occurring at smaller scales interacting with large-scale strains.

In summary, present results show that locally negative values of kinetic energy fluxes at
scale ` are observed for both the structure function and filtering approaches, and at least
for the structure function approach, the interpretation as a flux in scale space appears
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unambiguous. Regarding statistical robustness and the potential net impact of such local
observations, conditional averaging reveals that both negative �` and ⇧` (representing
inverse cascade) become statistically dominant mechanisms in regions where turbulent
motions at scales larger than ` exhibit a “vortex compression” behavior (R` > 0 and
Q` > 0). However, the magnitude of inverse cascade in filtering approaches is weaker and
negligible on the (S2

` ,⌦
2
` ) map.

For future work, it would be of interest to explore the sensitivity of results to Reynolds
number, especially as it is expected that at higher Reynolds numbers the intermittency of
the variables would increase. It would be also interesting to extend conditional averaging
to more accurately reflect local energy distribution, entire flow structures and their
possible connections to local inverse cascade mechanisms. Other pointwise quantities such
as helicity can also be explored. It would also be instructive to connect present results
with the multiscale decomposition of Johnson (2020, 2021) and thus be able to identify
the small-scale mechanisms associated to local backscatter/inverse cascade events. And,
further theoretically obtained exact relations between structure function and filtering
approaches may yet be found.
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Appendix A. Turbulence database access tools

The high-resolution isotropic DNS data are accessible via new python-based tools
built upon the data housed in JHTDB (the Johns Hopkins Turbulence Database, (Li
et al. 2008)). JHTDB has been operating for over a decade and has led to hundreds of
peer-reviewed articles on turbulence. A new set of data access tools based on Jupyter
Notebooks has been developed that enables direct access to subsets of the data continuing
the “virtual sensors” concept (Li et al. 2008). The new notebooks provide fast and stable
operation on the existing turbulence data sets while enabling user-programmable, server-
side computations. To date, the new data access tools have been implemented and tested
on the high Reynolds number, forced isotropic turbulence data set on 8,1923 grid points
(the isotropic8192 datasets) of which 5 snapshots are at a Taylor microscope Reynolds
number of Re� = 1250 (Yeung et al. 2012) and one with very high spatial resolution at
Re� = 610.
The isotropic8192 data set has been partitioned into 4096 Zarr database files, each

of which is a 5123 volume cubelet of the 81923 data. Each Zarr file stores the velocity
and pressure variables in distinct Zarr groups, and the data in each group is further
broken down into chunks. The chunks are ijk-ordered such that cutouts and interpolation
buckets, the size of which are dependent on the interpolation or di↵erentiation method
selected by the user, can be cut out directly from the intersecting chunk(s).
The new Python-based data access tools, pyturb, are accessed via the SciServer

(sciserver.org) platform. Pyturb interfaces directly with the data files in Zarr format,
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stored on volumes mounted to each user’s SciServer container. The entirety of the
isotropic8192 data set (81923 volume, 6 snapshots) in Zarr format is publicly available
through Python Notebook on SciServer. Users can apply for a SciServer account freely
and download the demo Notebook. In the Notebook, users can get access to pre-coded
“Get” functions for arbitrary sets of points: GetPressure to retrieve and interpolate pres-
sures, GetPressureGradient to retrieve and interpolate pressure gradient, and similarly
GetPressureHessian, GetVelocity, GetVelocityGradient, GetVelocityHessian, GetVelocity-
Laplacian, and GetCutout to read raw data for a user-specified box.

Demo codes for accessing data at user-specified arrays of points (in various sample
geometrical configurations) are listed in the Notebook. The isotropic8192 datasets can
be also accessed via the web-portal cutout service where the pyturb GetCutout function
has replaced the legacy function for user queries (see https://turbulence.pha.jhu.
edu/newcutout.aspx). JHTDB still provides and maintains other datasets (https:
//turbulence.pha.jhu.edu/datasets.aspx) through legacy SQL systems with C, For-
tran, Matlab, Python, and .Net interface. However, the aim is to transfer the existing
datasets and any new coming datasets to the pyturb system in the future for faster and
more stable services.

Appendix B. Evaluating and comparing hksf,`i and hksgs,`i
The average values hksf,`i and hksgs,`i can be obtained from classical turbulence theory

and the Kolmogorov spectrum. To evaluate hksf,`i we use the general expression for the
structure function tensor in isotropic turbulence in the inertial range
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where rs = r/2. The integration yields
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when using the usual empirical Kolmogorov structure function constant C2 ⇡ 2.1.
In order to evaluate hksgs,`i we use (Pope 2000; Li & Meneveau 2004)
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where Ĝ`(k) = Ĝ`(k) is the Fourier transform of the filter function at scale ` and �ij(k) =
E(k)/(4⇡k2)(�ij � kikj/k

2) is the spectral tensor for isotropic turbulence, while E(k) =
CKh✏i2/3k�5/3 is the radial 3D energy spectrum of turbulence.
For the spherical top-hat filter, its Fourier transform can be shown to be
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where k = |k|. The definite integral needed to evaluate the RHS of Eq. B 4 exists (using

https://turbulence.pha.jhu.edu/newcutout.aspx
https://turbulence.pha.jhu.edu/newcutout.aspx
https://turbulence.pha.jhu.edu/datasets.aspx
https://turbulence.pha.jhu.edu/datasets.aspx
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WolframAlpha online) and is given by
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with  = k` and where � (..) is the Gamma function. Evaluating and using CK ⇡ 1.6,
the result is

hksgs,`i =
1

2
h⌧iii = 0.76CKh✏i2/3 `2/3 ⇡ 1.2 h✏i2/3 `2/3. (B 7)

As can be seen, the 3D integration needed to evaluate hksf i involves the radius to the
8/3 power while that for hksgsi involves the wavenumber to the -5/3 power. The former
is thus much more strongly dominated by the large scale limit of integration (`/2) than
the latter. As a result, the latter is more strongly a↵ected by the spectral behavior of
turbulence at smaller scales, including the viscous range. This explains why the values of
hksgsi measured from DNS are significantly smaller than the prediction in Eq. B7, while
the measurements of hksf i agree well with the prediction in Eq. B3.
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