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Abstract—Connected and automated vehicles (CAVs) are sup-
posed to share the road with human-driven vehicles (HDVs) in a
foreseeable future. Therefore, considering the mixed traffic envi-
ronment is more pragmatic, as the well-planned operation of
CAVs may be interrupted by HDVs. In the circumstance that
human behaviors have significant impacts, CAVs need to under-
stand HDV behaviors to make safe actions. In this study, we
develop a driver digital twin (DDT) for the online prediction
of personalized lane-change behavior, allowing CAVs to predict
surrounding vehicles’ behaviors with the help of the digital twin
technology. DDT is deployed on a vehicle-edge—cloud architec-
ture, where the cloud server models the driver behavior for each
HDYV based on the historical naturalistic driving data, while the
edge server processes the real-time data from each driver with
his/her digital twin on the cloud to predict the personalized lane-
change maneuver. The proposed system is first evaluated on a
human-in-the-loop co-simulation platform, and then in a field
implementation with three passenger vehicles driving along an
on/off ramp segment connecting to the edge server and cloud
through the 4G/LTE cellular network. The lane-change intention
can be recognized in 6 s on average before the vehicle crosses the
lane separation line, and the Mean Euclidean Distance between
the predicted trajectory and GPS ground truth is 1.03 m within
a 4-s prediction window. Compared to the general model, using a
personalized model can improve prediction accuracy by 27.8%.
The demonstration video of the proposed system can be watched
at https://youtu.be/5chbsabglOdM.

Index Terms—Connected and automated vehicle (CAV), digital
twin, driver behavior modeling, field implementation, lane-
change prediction.

I. INTRODUCTION

A. Motivation
HE RAPID development of connected and automated
T vehicles (CAVs) provides a new perspective on address-
ing the safety, mobility, and environmental sustainability issues
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of our transportation systems [1]. However, our transporta-
tion systems cannot achieve full automation/connectivity in a
foreseeable future, where CAV's have to interact with human-
driven vehicles (HDVs) in a mixed traffic environment. To
deal with complex interactions, CAVs need to predict HDVs’
behaviors, make decisions in response to the actions (in
presence or to be taken), and execute the right maneuvers
through the planner and controller. Particularly, the prediction
of HDVs’ behaviors is challenging due to the uncertainties of

human drivers. As a result, many researchers [2], [3], [4], [5]

include driving behavior modeling in the prediction and plan-
ning stage, where driver type classification and identification
play an important role. Nevertheless, the improvement of inte-
grating the collective driving behavior is limited, because
driving behavior can be diverse among different drivers.
Therefore, there is an increasing amount of literature that
recognizes the importance of personalized driving behaviors.

To study personalized driving behavior, this article deploys

the driver digital twin (DDT) in the real world. DDT is a dig-
ital replica of a driver with his or her naturalistic driving data
and driving behavior models. Based on real-world data, DDT
system in the virtual world provides both online and offline
micro services, €.g., interactive prediction, driving style analy-
sis, etc. In addition, to capture the driving preference variation,
the evolving driver model will be updated in a certain period
(e.g., every five new trips) by consuming the driving data from
the real-world vehicle.

In our previous work, the vehicle digital twin is built on
an edge server [6], allowing the planning and control of the
connected vehicles. However, only using an edge server is
sometimes insufficient to fulfill the requirements of personal-
ized behavior study, such as data storage, modeling, learning,
simulation, and prediction [7]. Therefore, DDT in this study
is performed on a cloud—edge architecture, leveraging cloud
computing and personalized profiling, enabling both real-time
and bulk-batch ingestion, processing, and analytics of personal
data.

As a typical example of personalized driver behavior that
can be modeled by DDT, lane changing is a fundamental but
challenging task in our daily driving, especially in mandatory
lane change situations (such as ramp merging) where the open
areas are very limited and levels of risk are higher, compared
to discretionary lane changes. In these situations, it is particu-
larly important to accurately predict lane-change intention as
well as when and where the lane change occurs, because the
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lane-change maneuver will have a significant impact on the
safety and efficiency of the road network. Moreover, online
prediction of the lane-change maneuver provides inputs to the
motion planner and controller of ego vehicle, allowing it to
better cooperate with surrounding vehicles (including HDV5s).
By building the personalized lane-change model, CAVs can
have a better understanding of the specific human drivers and
provide a more accurate prediction.

In this study, learning-based algorithms for personalized
behavior modeling and online lane-change prediction are
developed, and field implementations are carried out on a
customized vehicle-edge—cloud platform under the digital
twin framework. In the field implementation, the cloud (i.e.,
Amazon Web Services) analyzes the personalized behavior
of HDVs with connectivity (e.g., by cellphone) and stores
the learned driver models and historical data, while the edge
(i.e., local server) is responsible for the computation of online
lane-change prediction.

Compared to the existing literature on prediction and behav-
ior modeling, this study has the following main contributions.

1) A hierarchical learning-based system is developed for
personalized driving behavior modeling, online lane-
change prediction, and trajectory likelihood estimation.

2) Under the digital twin framework, a vehicle-edge—cloud
platform is constructed and demonstrated, enabling real-
world data collection and algorithms development.

3) Personalized driver models are trained and validated
using the vehicle-edge—cloud platform, as one of the first
real-world deployments of DDT in transportation.

4) To validate the proposed algorithm in the field experi-
ments, a portable vision-based human—machine interface
(HMI) system is designed to provide the prediction
information to the driver supported by edge computing
and cloud computing.

B. Specifications and Assumptions

In this article, the target predicted vehicle is a connected
HDV, whose historical/real-time data and the trained driver
model are accessible through the digital twin. When other
connected vehicles detect and recognize this target vehicle,
they can download the driver model of the target vehicle to
assist in the prediction. Specifically, our prediction algorithm is
designed for the on/off-ramp scenario to predict the maneuver
and trajectory of the on-ramp vehicle.

To expedite field implementation, some reasonable spec-
ifications and assumptions are made in the current stage
of online lane-change prediction and personalized driving
behavior modeling, as follows.

1) When the target vehicle comes into view, if ego vehicle
is able to recognize it (e.g., by computer vision or V2X
communications), the associated driver model is then
acquired from the cloud server (with permission). Before
target vehicle is recognized, a general driver model will
be used instead.

2) The driving preference of the same driver is assumed to
be long lasting and will not be affected by the mood on
the testing day.
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3) As designing the perception system (e.g., LIDAR, radar,
and camera) is outside the scope of this article, the nec-
essary vehicle information (e.g., location and yaw angle)
is uploaded by the target vehicle and shared by the edge
server.

C. Organization of This Article

The remainder of this article is organized as follows. In
Section II, state-of-the-art research on lane-change prediction,
personalized driver behavior modeling and digital twin plat-
form design are reviewed. Section III explains the methodol-
ogy of the proposed system, including personalized behavior
modeling, online lane-change prediction, and map matching
for real-world implementation. Section IV elaborates on the
field experiment design using the vehicle-edge—cloud archi-
tecture. In Section V, we analyze the driving styles of two
drivers and evaluate the performance of the proposed algo-
rithm. Finally, this article is concluded with future directions
in Section VI.

II. BACKGROUND AND RELATED WORK
A. Lane Change Prediction

Hidden Markov model (HMM) was widely used to infer the
lane-change intention [8], [9], [10] and is usually integrated
with the Bayesian network [11] to recognize the lane-change
behavior. As lane-change intention prediction can be mod-
eled as a classified problem, the multilayer perceptron (MLP)
was used as a discriminator [12] in long-term lane-change
prediction. Moreover, deep-learning methods, such as long
short-term memory (LSTM) model, achieved a precision of
90.5% on time-series problems [14]. To find out relevant fea-
tures for lane changing in a time series, Scheel et al. [15] inte-
grated a temporal attention mechanism with LSTM to improve
the prediction accuracy to 92.6% and provide understand-
ability on feature importance. Besides lane-change intention
prediction, lane-change trajectory prediction is also a critical
problem. Based on the beam search technique, Park et al. [16]
adopted sequence-to-sequence (Seq2seq) LSTM to produce K
most likely trajectories on an occupancy grid map. By adding
information on traffic level and vehicle types, Xue et al. [17]
adopted XGBoost for lane-change decision prediction and
LSTM for trajectory prediction, achieving a mean-square error
of 6.62 m for trajectory prediction.

However, most of the algorithms ignored vehicular
interaction with the surroundings. Furthermore, supervised
learning methods were limited by the lack of enough labeled
data sets to cover each possible scenario, and very little online
validation was carried out as well as real-world validation.

B. Personalized Driver Behavior Modeling

A personalized driver model is usually learned based on the
data set from a specific driver (i.e., learning from demonstra-
tion) and is mainly used for prediction, planning, and con-
trol [18]. Drivers’ preferences in their vehicle states are well
studied. A personalized driving assistant system developed by
Lefevre et al. [19] could identify the current driving maneuver
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and predict the steering and acceleration, facilitating control
assistance. Considering the occupants’ preference for lateral
and longitudinal comfort, Bae et al. [20] proposed a personal-
ized control system enabling autonomous vehicles to drive like
human beings. Also, algorithms based on Gaussian Mixture
Model and HMM are popular for prediction of personalized
driving behavior and are deployed in a variety of applica-
tions, such as personalized lane-departure prediction [21] and
personalized car-following behavior prediction [22].

Not only the vehicle states but also the surroundings and
vehicular interaction should be considered in drivers’ pref-
erence. To integrate the interaction into behavior modeling,
Huang et al. [23] included the awareness of the effect of
the ego vehicle on the surrounding vehicles into the cost
function. The driver’s preference over vehicle states and inter-
actions can be expressed by the cost function recovered by
inverse reinforcement learning (IRL), which assumed that
human behavior was motivated by optimizing the unknown
reward function [24]. In [25], the interaction behavior under
different conditions was formulated as a cost function with
different linear combinations of features and learned by con-
tinuous IRL. The cost function with interpretable weights on
features opens the black box of behavior modeling, by show-
ing the diversity of feature attention in different scenarios.
Furthermore, the cost function can be adjusted as needed to
reflect changing driving conditions and can always provide a
solution aligning with driver preference in unseen scenarios.

Collecting a personalized data set for interaction study is
another major limitation in interaction modeling and driving
personalization study. The difficulty of scenario reproduction
constrains the driver experiences in similar interactive condi-
tions and the collection of enough data for model training.

C. Digital Twins for Connected and Automated Vehicles

The recent emergence of digital twin technology has
attracted a significant amount of attention from both academia
and industry. The global digital twin market size was reported
to be valued at U.S. $5 billion in 2020, and will be expanded to
U.S. $86 billion in 2028, with a compound annual growth rate
of 43%. Among all end-users like manufacturing, energy, and
health care, the automotive and transportation industry took
one of the largest shares in the global digital twin market
in 2020 [26].

By a widely adopted definition (with some variations), a
digital twin is a digital replica of a living or nonliving phys-
ical entity [7]. This concept got to be known by most people
in the early 2010s, when NASA adopted it as a key element
in its technology roadmap [27]. During the past few years,
digital twins have been applied to different vehicular systems.
Particularly, Chen et al. [28] developed a “Driver Behavior
Twin” to allow driver behavioral models to be shared among
multiple connected vehicles to predict future actions of sur-
rounding vehicles. Although this study did not come up with
a solid network architecture, its concept did inspire a series of
subsequent studies by the authors of our paper.

In 2020, the authors first proposed a digital twin paradigm
for advanced driver-assistance systems (ADAS) with a cloud
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architecture, which enables the communication between real
vehicles and their digital twins deployed on the cloud server
in real time [29]. This cooperative ramp merging ADAS was
later validated in a field implementation with real passenger
vehicles and a private cloud server at University of California,
Riverside [6]. Later, the authors introduced edge computing to
this network architecture by proposing a mobility digital twin
framework, which includes not only vehicle digital twins but
also human and infrastructure digital twins [7]. Some of the
detailed aspects of digital twins for CAVs have also been stud-
ied by the authors, such as how to visualize the digital twin
information [30], how to leverage the digital twin information
for cooperative driving scenarios [31], and how to build a
simulation environment to model digital twins [32]. Many of
the aforementioned studies have been summarized in a survey
paper, where the role of digital twins in CAVs is also com-
pared with the roles of several similar technologies, such as
iteration, model-based design, and parallel driving [33].

III. METHODOLOGY
A. Personalized Behavior Modeling Process

Based on our previous work [34], we extend the lane-
change prediction algorithm into a real-world implementable
version and enable personalized behavior modeling. As shown
in Fig. 1, the algorithm consists of an offline learning process
and an online prediction process. The personalized driving
behavior for each driver is learned in the offline phase based on
the personalized data set collected from the specific driver. For
each driver, a neural network structure Seq2seq structure [35]
based on LSTM is adopted to predict the lane-change inten-
tion, while the cost functions inferring the driver preference
are learned by IRL for evaluating the prediction. In the online
prediction process, at each time step, the personalized Seq2seq
neural network recognizes the maneuver and selects a proper
cost function. Then, the driver’s cost function evaluates the
probability of candidate trajectories provided by the trajectory
generator. Finally, the system outputs are the most probable
trajectory and the respective lane-change probability.

B. Lane-Change Maneuver Prediction

In order to analyze the trajectory in detail, we need to
recognize the driver’s intention. We assume that before plan-
ning the trajectory, the human driver first considers high-level
tasks (e.g., lane change and lane keeping). Therefore, the
lane-change intention prediction is formulated as a time-
series classification problem, which predicts vehicle states
in future time steps, i.e., either lane change or lane keep-
ing. That is to classify the future T-step actions A4, . (+r into
{Achange , Akeep , given historical vehicle states and the map
information.

To model long-term temporal dependencies among time
series, LSTM network is chosen, as its time series prediction
capability is validated in many existing studies, e.g., [36], [37],
and [38]. Since each vehicle state in the time series is highly
correlated with its adjacent time steps, the Seq2seq neural
network using two LSTMs [39] is adopted for a multistep and
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Fig. 1. Personalized lane-change behavior modeling: offline learning and online prediction.

multivariable prediction., The neural ,petwork input is a tra-
jectory sequence & = (s, ; |,..., s; ) of the last T steps,
and the vehicle states s; consists of yaw angle, lateral speed,
longitudinal speed, and remaining distance for a mandatory

lane change, The output is jhe predicted lane-change action
sequence% Ai+1,+.., Ar+7+1) for the next 7' steps.

C. Probability Estimation and Trajectory Prediction Based
on IRL

The driver behavior and preference are usually represented
by the cost function, and rational drivers are assumed to behave
for optimizing their cost functions. Considering the continuity
of the trajectory space, this study adopts Continuous IRL with
locally optimal examples [40], [41] to recover this unknown
cost function from expert demonstrations.

1) Continuous IRL: The cost funct on is a lipe ombi—
natl)on of a set of features, i.e., é,,%)l él fi( Z;c | =

a ,a , where 87
change  keep ; 1s the weights vector emphasmng

the features, and fi(§) = *fi(s1, s2,..., s:)*2. The goal of

the IRL is to figure out the optimal weights 8,* to describe
each driver’s preference, which maximizes the likelihood of

the driver’s historical trajectories S = {&}, shown in

6;*_ argmax P(S 6,).
6

;1

M

According to the principle of maximum entropy, as shown
in (2), a trajectory with a low cost has a higher probability,
which is proportional to the exponential of its cost

T
e Ci(6:;§) e~ 6 fi()
26) o

P(§16) = @)

where Z(6) = f e0'1i(%) d€ is the partition function integrat-
ing all arbitrary trajectories &. To handle the computational
complexity in solving the partition function, the continuous
IRL approximates (1) and reformulates the problem as a
minimization of —log P(S | 6,)

1
6* = argmin “g"(&H (&g (&)
i 6 5 6 6i 6i
k=1
1
— , log He, (&) ©)

where g’ and H are the gradient and Hessian, respectively.
This formula indicates that along the expert demonstration,
the recovery cost function should have small gradients and
large positive Hessians.

2) Cost Function Feature Selection: The selected features
present the vehicle state in an interpretable way and can cap-

frgaths RyelsicntaeOtnthe L VEn H6h, Selestdths fallowdng.

able inertial measurement units (IMUs) and global navigation
satellite systems (GNSSs) information.

1) Lane-Change Risk fu: Ego vehicle is projected to its
adjacent lane and calculates the time headway to its
potential leading vehicle and the time headway from its
following vehicle.

2) Lane-Change Urgency fug: If the ego vehicle needs to
perform a mandatory lane change, the remaining time
distance should be considered.

3) Mobility f,,: Drivers have different preferences on mobil-
ity. The difference between current speed and the speed
limit (vim) is used to evaluate this preference.
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Fig. 2. Polynomial trajectory generator.

4) Comfort f; and fw: The absolute value of the longitudinal
acceleration ajn and the yaw rate @ is used to gauge
comfort preference.

5) Lane Deviation fz.,: We also include lateral distance into
the cost function to evaluate the imperfection of driving
along the centerline of the lane even in the lane-keeping
stage.

3) Trajectory Evaluation: To execute the decision of lane
change or lane keeping, planning the trajectory is essential.
Considering the real-time performance, instead of exploring
arbitrary trajectory, we adopt a polynomial trajectory gener-
ator [23] to plan the candidate trajectories &; as in Fig. 2,
at each time step, this trajectory generator takes the vehi-
cle’s state f, y, v, a, yaw, as inputs and generates multiple
trajectories within a prediction window. With integrated vehi-
cle kinematics, the trajectory generation ensures that the
prediction result is realistic and reachable. In this study, we
set the planning time window as 4 s.

Based on (4), the cost function Ci(6;, &) is used to evaluate
the probability of each possible trajectory &, and select the
most probable trajectory. The probability of the lane-change
maneuver prediction is evaluated by (5), i.e., the probability of
lane change equals the sum of the probabilities of all sampled
lane-change trajectories

e_Ci(ei*/Ek)
.* -
e 16, K o= (67,81) @
k=1
P(a)= PE|6". ®)
k=1

D. Hidden Markov Model Map Matching

Map matching is an important component in a field imple-
mentation to reduce the effect of noisy GPS measurements.
HMM exploits the road connectivity information and time-
sequence feasibility to solve the problem. As shown in
Algorithm 1, we briefly introduce the HMM map-matching
algorithm, which was proposed by Newson and Krumm [42].
For the HMM map-matching process, we first predefine a
road network with a set of geographical coordinate pairs (i.e.,
latitude and longitude) of the road segments based on the real-
world situation. The input is the GPS measurement points from
the current time step and the last time step. The goal of map
matching is to find the best-fitted road segment from all candi-
date road segments. The candidate road segments are selected
by the great-circle distance between the measurement points
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Algorithm 1 HMM Map-Matching Algorithm

Input: 1. Current GPS point (z;). 2. Road segments on map (7i)
Output: 1. Matching point (¥pesz). 2. Distance to road

1:if (t = 0) Initialize z; 1

2: Find candidate road segments (7;) based on z

3: Calculate the projection yy,; of z; on each r;
4: Calculate the probabilityZ)f the measurement (z|ri) by \
1, _ 1 ) 2
\/# \ ! L1 great circle /
ztlri) = — —-0.5
(z|ri) o exp o
5: Calculate the transition probability p(ds) by
p(d)
1, — 1 1y, . — 1
_ lexp 2t T 21 great circle X1 T Y= 1j" route
B - B

6: Find the best-fitted road segment by

rhest = argmax(p(zi|ri) * p(di))

1

7: Find the projection x; pess of 2 on 7peg
8: Calculate the distance between z; and X pess by

1z

17 Xt,best great circle
9: Update state fo;lneit comir}g measurement z; | = z¢

Return rpegr and Lz — Xy pest “oreat circle

and projection points on the road segments. Among candi-
dates, we find the one which maximizes the product of the
measurement probability and transition probability. Then, we
output the projection point of the current GPS measurements
on the best-fitted road segment as the matching point and the
distance between them.

E. Algorithm Validation in Simulation
Before modeling the personalized driving behavior in the
real world, the prediction capability of the proposed algo-

rithm is validated on a general driving behavior model in
simulation [34]. In the human-in-the-loop co-simulation plat-
form [43], a real-world test track is programmed in the Unity
game engine as the digital version of the real-world testbed to
be introduced in Section IV. In the simulation, a mixed traffic
flow is generated by SUMO, and human input is consumed
by Unity with Logitech driving set, as shown in Fig. 3(a),
allowing various drivers to conduct human-in-the-loop simu-
lations in an immersive traffic environment, where drivers can
experience mixed traffic with different CAV penetration rate
and congestion levels. To model the general lane-changing and
lane-keeping behavior, 59 trips are collected from ramp drivers
within the on-ramp/off-ramp area, under a volume-to-capacity
(V/C) ratio of 0.6.

The real-time predicted lane-change probabilities and trajec-
tories are visualized in Fig. 3(b), and the proposed algorithm
recognizes the lane-change maneuver in 3 s before the vehicle
crosses the lane-separation line. Moreover, the mean Euclidean
distance (MED) [44] is used to quantify the accuracy of trajec-
tory prediction. This general model achieves a mean MED of
0.39 m on average within a 4-s prediction window for ten test
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Driver View

(b)

Fig. 3. Algorithm validation on UCR’s human-in-the-loop co-simulation
platform: (a) major elements in the platform and (b) predictions for lane
change and most probable trajectory.

trips, outperforming the IRL-based prediction method in [41],
which achieves a mean MED of 0.62 m in a 3-s prediction
window. In the field implementation, we further study how
the personalized model improves the prediction.

IV. DESCRIPTION OF FIELD OPERATIONAL SYSTEM
A. System Setup

The vehicle-edge—cloud architecture is explained in Fig. 4,
including key components, hardware for the real-world imple-
mentation, and the information flow between them. Under this
architecture, vehicles are considered service consumers who
store their personalized data set on the cloud server and share
the real-time perception information with the edge server, from
which vehicles receive driving assistance and support services
to facilitate automation. The edge server creates the vehi-
cle digital twin and serves as the bridge between the cloud
server and vehicles. DDT is created on a cloud server by the
offline-modeling algorithms described in Fig. 1.

To be specific, the first step of building the vehicle digi-
tal twin on the edge server is to know the position of each
vehicle in the network. After building the connection between
edge and vehicles, the perception information and GPS coor-
dinates of each vehicle are uploaded to the edge server, where
the map-matching algorithm updates the vehicle’s positions
in real time. Furthermore, algorithms for predictions, plan-
ning, and control can be provided upon request for different
purposes. With the connection to the cloud server, the edge
server receives service requests from vehicles and passes on
those requests and the unique login information to the cloud.
In response to the request, the cloud can feed back edge server
with personalized driving behavior models of specific drivers.
Due to the high communication latency between the cloud
and vehicles, it is hard to implement real-time services pro-
vided directly from the cloud to customers. To address this
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problem, edge gateway is adopted to handle the data exchange
and provide services to vehicles in real time.

The concern of privacy is also addressed, as only unidenti-
fiable information is transmitted. Cloud server is responsible
for driver model training, storage of personalized data and
models, and microservices support (e.g., energy consumption
analysis). Therefore, we take advantage of the strong compu-
tational power, high-speed data processing, and secure data
storing features of AWS. Historical personal driving data are
archived in the personal folder and can only be accessed by
the personal login information. Service consumers can also
request post-processed driving behavior reports, (e.g., energy
consumption analysis, to better understand or improve their
driving skills.

Hardware for the real-world implementation is shown in
Fig. 4. All three vehicles are 2012 Corolla LE models, with
1.8-liter internal combustion engines. Each vehicle is equipped
with a Wi-Fi hotspot (Netgear MiFi) to establish a wireless
connection with edge server, a GPS unit to collect accurate
position information of vehicles, and a portable HMI device
using Galaxy A7 tablet. The U-blox C102-F9R is adopted
as the GPS unit, which is a multiband GNSS with real-time
kinematic positioning (RTK) function and sensor fusion tech-
nologies. It can achieve a 2-D (horizontal) accuracy of 46.7 cm
and 4.0 cm with the “RTK Fixed” mode [6].

The GPS unit and the HMI device are connected (wired)
with serial communications. The Wi-Fi hotspot handles the

wireless communications between the tablet and other infras-
tructures, such as the base station and edge server. Depending
on the request of the driver, the HMI device receives
and displays the speed guidance or lane-change prediction
information from the edge server. Moreover, to enable the
RTK function in the U-blox and get high-accuracy GPS mea-
surements, the HMI device shares the calibration correction
message received from the base station to its paired GPS unit.
The edge gateway is running on a customized edge server
installed at CE-CERT, University of California, Riverside,
which is 1.2 km away from the testing site. A Dell

R630 server, with two Xeon 2.4-GHz (6-core) CPUs, 64-GB
RAM, 1-TB solid-state drive, and 14-TB hard disk drive, is
adopted as the edge server in this implementation.

B. Experiment Plan

As shown in the vehicle level of Fig. 4, the real-world
implementation is conducted by three passenger vehicles
which are mainline vehicle 1 (MV1), mainline vehicle 2
(MV2), and ramp vehicle (RV), respectively. Specifically, RV
is the target predicted RV, MV1 is the conflicting vehicle with
RV. While MV2 drives behind MV 1 and is potentially affected
by the lane-change maneuver of RV, MV2 observes and pre-
dicts the whole lane-change process. To ensure MV1 and RV
can encounter each other, speed guidance is provided to MV1
only before reaching an observable point, from which MV1
and RV can see each other for the rest of the trip. The speed
guidance [6] is calculated by edge server, where RV has its
virtual projection on the mainline, and MV1 is assigned to
follow the virtual projection without an intervehicle gap. By
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Fig. 5. Vehicle HMI design. (a) Speed guidance and (b) detection for lane-
changing prediction.

following the speed guidance, MV1 can reach the observable
point at the same time as RV, and for each experiment, nearly
the same condition of merging conflict is guaranteed. Different
from MV, to collect naturalistic driving data of the RV driver,
RV receives no interference from the system during the whole
trip. During the conflict creation process, MV2 is not involved
since it plays the role of an observer and has no impact on
the lane change. If MV2 successfully detects and recognizes
RV, MV2 sends a request and downloads the driver behav-
ior model of RV from the cloud to facilitate the lane-change
prediction.

To meet the above demands, the HMI guides MV1 with
speed guidance which shows the current speed on the left
and the target speed on the right as shown in Fig. 5(a). For

User Interface

RV: target predicted vehicle

Base Station

GPS Unit GPS Unit

User Interface

MV1: conflicting mainline vehicle

Fig. 6. Bird-eye’s view application interface: digital twin of vehicles running
on the edge server in real time.

MV2, we leverage the benefits from TensorFlow Lite Object
Detection, an open-source Android application, to detect the
RV and visualize the predicted lane-changing probability with
a user ID on the top of a bounding box as indicated in
Fig. 5(b).

Before starting the vehicle, each driver logs in with a unique
ID and password to access his/her personalized digital twin.
In addition, to obtain personalized services, drivers need to
agree with sharing information with edge server.

A bird-eye view Android application is designed for visu-
alizing the vehicle Digital Twins running on the edge server.
MV1 and RV are the orange vehicles and the blue vehicle,
respectively, in Fig. 6. Moreover, the lane-changing probabil-
ity and the predicted trajectory of RV are provided for a better
understanding of the entire field implementation process.

To build DDT on a cloud server, a personalized data set
for each RV driver is collected. In total, 20 trips entering the
mainline and 20 trips driving off-ramp are used for behavior
modeling. The average duration of each trip is 35 s, with an
average update rate of 5 Hz. In each time step, both the tra-
jectories of MV1 and RV are recorded and synchronized at
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TABLE I
STATISTIC RESULT OF COMMUNICATION DELAY
AND COMPUTATION TIME
. 99th .
Average 75" Percentile . Maximum
= Percentile
Cloud-Edge 800 ms 915 ms 1221 ms 1261 ms
Edge-Vehicle 80 ms 88 ms 247 ms 3861 ms
Computation 28 ms 14 ms 36 ms 71 ms
TABLE I
WEIGHTS OF RECOVERED COST FUNCTIONS
Scene Driver fzr ftr‘u'u ff(u‘ f‘v'ﬂl‘»' fm fiuyt
i1 0.696 0.151 0 0 0.023 0.126
I.C #2 0.425 0.240 0 0 0.182 0.151
General 0.529 0.284 0 0 0.179 0.008
i1 0.388 0 0.246 0.348 0.017 0
LK #2 0.323 0 0222 0043 0412 0
General 0.356 0 0.311 0.309 0.023 0

edge server, and the data set on the cloud server is updated at
the end of the trip.

Moreover, the communication delay and computation time
are considered for real-world implementation. The back-and-
forth communication delays of cloud—edge communication
(model download), the edge-vehicle communication (speed
guidance and online prediction), and the computation time are
measured and shown, respectively, in Table 1.

V. RESULT ANALYSIS
A. Cost Function and Driving Pattern Analysis

Personalized models are trained using drivers’ own data
sets (i.e., 19 trips collected from Driver 1 and 20 trips from
Driver 2). For two drivers, a general model is trained using the
aggregated data set from both drivers, standing for collective
driving behavior. The weights in the cost functions can reflect
drivers’ preference when large weights penalize high values, as
shown in Table II. For lane-change maneuvers, Driver 1 cares
more about longitudinal comfort and penalizes large acceler-
ation with 0.696 on f,, compared with 0.425 for Driver 2.
Driver 2 prefers a smaller time gap during lane change as
he/she puts a larger weight on fiw than Driver 1 to penalize
the time headway. Driver 1 does not care about the mobility f,,
and drives slower than the speed limit, while Driver 2 prefers
to drive faster with a weight of 0.182. For lane-keeping maneu-
vers, two drivers show the same preference for longitudinal
comfort f, but significant differences in lateral comfort and
mobility. Driver 1 tends to keep the vehicle stable (i.e., putting
a large weight on fi.w penalizing unstable yaw movements)
and drives slowly. On the contrary, Driver 2 pays little atten-
tion to the stability of the vehicle pose and seeks high speed.
According to the analysis of cost function weights, Driver 1
is more likely to be a cautious driver while Driver 2 tends
to be more aggressive. For lane changing, the general model
puts the least weight on urgency furee and penalizes large time
headway. For lane keeping, the general model is sensitive to
lane deviation fgey the most.
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Fig. 7. Driving pattern comparison during a lane-change process: (a) longi-
tudinal speed of RV, (b) mandatory lane-change urgency, (c) lateral behavior,
and (d) fuel consumption.

Besides the cost function analysis, the driving pattern can
also be recognized via the overall lane-change behavior, as
shown in Fig. 7.

The interaction with the mainline vehicle can be reflected by
the longitudinal speed of the lane-change process in Fig. 7(a),
which displays the median speed at each location. The observ-
able point (at 320 m) is 100 m before the lane-change point,
where mainline and ramp drivers can see each other for the
first time during the lane change. After observing the conflict
with MV 1, Driver 1 chooses to slow down and yield to MV1
for lane change behind, but Driver 2 accelerates to surpass
in order to cut in front of MV1. The lane-change urgency
in Fig. 7(b) is used to measure how the driver deals with
a mandatory lane change. The urgency value grows when
RV comes closer to the end of the lane-change area with-
out changing the lane. Once the lane change is completed,
the urgency will decrease shortly. Driver 1 has a smaller
peak value than Driver 2 for lane-change urgency; however,
the urgency pattern of Driver 2 is more consistent, as the
urgency variation (red area) is smaller than the one of Driver 1
(blue area).

The lateral movement preference is captured by the lat-
eral deviation shown in Fig. 7(c), where the lane change is
completed once the lateral deviation reaches 4 m or above.
Although two drivers have different preferences for lane-
change sequences, their lane change starting points are close
to each other. Moreover, two types of slopes (i.e., lane change
speed) in the blue line are observed during the lane-change
process of the driver. In the first segment, Driver 1 merely
crosses the lane-separation line, and in the second segment,
he/she approaches the center line slowly after confirming
safety.

A similar conclusion to cost function analysis can be made
that Driver 1 is more cautious than Driver 2. As a result, as
shown in Fig. 7(d), the average fuel consumption of Driver 1
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Fig. 8. Field implementation for online lane-change prediction with visualization on camera and edge server: (a)—(c) Prediction for Driver 1, changing the
lane behind MV 1. (d)—(f) Prediction for Driver 2, changing the lane in front of MV 1.

(28.2 g) is 28.9% less than the one of Driver 2 (39.7 g), in
each lane change.

B. Case Study

As presented in Fig. 8, the online prediction combines prob-
ability estimation and trajectory prediction. In stage 1 see
Fig. 8(a), RV enters the interacting zone and is recognized
by MV2 (observer). At the same time, MV2 sends a request
to edge server, and then edge server receives the driver
model from the cloud. Then, the driver ID and lane-change
probability are visualized on both observer’s view and edge.
Meanwhile, the lane-change probability shown above the blue
bounding box is low, and the predicted trajectory (visualized
on edge in red dashed line) is straight, indicating the lane-
keeping maneuver. In stage 2 see Fig. 8(b), RV slows down
to yield MV1, which is captured by MV2. At the moment, the
predicted trajectory points to the lane-separation line, and the
lane-change probability increases with the color of the bound-
ing box changing from blue to red for warning of a potential
lane change. In stage 3 see Fig. 8(c), Driver 1 perceives that
the gap is large enough, and the lane change begins. MV2 is
more certain about the prediction, showing a high probability
and a predicted trajectory pointing to the center of the main-
line. Fig. 8(d)—(f) present a similar process for Driver 2’s lane
change. One noticeable difference from Driver 1’s model is
that Driver 2’s personalized model pays attention to speeding
up rather than slowing down.

Fig. 9 elaborates on the whole prediction process of the
same trips in Fig. 8. Specifically, Fig. 9 (a) presents the
prediction result of one lane change performed by Driver 1.
The top subfigure depicts the prediction result and probability

estimation of lane change during a trip, reflecting the inten-
tion of the driver. In the bottom subfigure, each time step of
the ground-truth trajectory is labeled by the neural network in
real time as lane change (red dots) or lane keeping (blue dots),
when the predicted trajectory of each time step is shown in
the green line.

The maneuver prediction can be corrected by probability
estimation. In the top subfigure of Fig. 9(b), when the lane
change has been completed, lane change is still predicted by
LSTM (orange dashed line) for the time steps from 177 to
180, but the probability of lane change (blue solid line) is esti-
mated only 20%. According to the bottom subfigure, Driver 2
has completed the lane change at the 177th step, and the
cost function-based probability estimation corrects the neural
network prediction.

Personalized models can only be used on a specific person.
Fig. 9(c) illustrates how will the prediction result be when the
model is mismatched (using Driver 1’s model on Driver 2’s
trip), where the predictions are not accurate for lane-change
probability, action, and trajectory.

The prediction needs to be evaluated for both maneu-
ver and trajectory. For lane-change intention recognition, the
predictive capability can be quantified as the time between
the moment of recognizing the lane-change intention and the
moment of the vehicle crossing the lane-separation line. The
personalized model of Driver 1 recognizes the lane-change
intention in 6.08 s on average, with a 1.96-s standard devi-
ation (STD), while Driver 2’s model achieves an average
of 3.73 s with an STD of 1.29 s. In this study, output of
intention recognition layer can be corrected and modified by
the downstream probability estimation. Therefore, we pro-
pose a heuristic method to evaluate to accuracy of intention
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Fig. 9. Prediction result analysis of using personalized models. (a) Online
prediction process for Driver 1. (b) Online prediction process for Driver 2.
(c) Offline prediction using a mismatched driver model.

recognition based on the lane-change probability. It should be
noted that the accuracy can be evaluated in a more sophisti-
cated way. If the probability of the moment when the vehicle
touches the lane-separation line (Ps) is significantly larger than
the probability during lane keeping (P, i.e., O. Py > Py, the
lane change is successfully predicted. The significant factor
can be chosen as 0.5. The proposed general model predicts
90.4% lane change events, while the personalized model for
Driver 1 exhibits an even higher level of performance with a
prediction accuracy of 95.2%.

For trajectory prediction, the MED is measured to analyze
the accuracy. Although we cannot decouple the GPS error
and prediction error, the model achieves a good result. The
quantitative evaluation is shown in Table III, which presents
the MED of baseline, general model, and personalized model.
Inspired by [16], we adopt Seq2seq LSTM as the baseline
model for the entire pipeline, while the proposed method
employs the Seq2seq LSTM solely for the intention recogni-
tion part in the overall pipeline. Within a 4-s prediction win-
dow, the general model of the proposed algorithm outperforms
the baseline.

Using either a general or personalized model, the prediction
of Driver 1 is better than Driver 2. The MEDs between the
predicted trajectory and GPS points are 1.03 m (STD: 0.4 m)
for Driver 1 and 1.48 m (STD: 1.05 m) for Driver 2 in a

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 15, 1 AUGUST 2023

TABLE 1l
PREDICTION ACCURACY COMPARISON IN A 4-S PREDICTION WINDOW

- Improvement
Seq2seq p

MED (m) LSTM General  Personalized  in the general
model
) Mean 6.76 1.05 1.03 1.9%
Driver 1
S1TD 1.16 0.69 0.4 42%
) Mean 8.28 2.05 1.48 27.8%
Driver2 g1 1.99 1.17 1.0 10%

4-s prediction window. Compared to results from the general
model, the personalized model improves Driver 2’s results the
most, by 27.8% on average. Since Driver 1 is more predictable,
the improvement of using a personalized model is limited (by
1.9%), but the prediction variation is reduced by 42%.

VI. CONCLUSION AND FUTURE WORK

This article has proposed an online lane-change prediction
algorithm based on personalized driving behavior modeling,
which is validated on a vehicle-edge—cloud testbed under the
DDT concept. Specifically, a Seq2seq LSTM neural network
has been used to predict the lane-change intention, and per-
sonalized driving behaviors have been modeled for different
drivers, whose preferences are learned and analyzed by IRL
based on the historical data stored on the cloud server.
Supported by the personalized models, an online lane-change
prediction system has been developed and validated with real-
world field implementation. The system is able to recognize
the target driver’s lane-change intention at 6.08 s before the
vehicle crosses the lane-separation line, and the MED between
the predicted trajectory and ground truth (based on the mea-
surements from an RTK-enabled GPS unit) is 1.03 m within
a 4-s prediction window. Using a personalized model can
improve the prediction accuracy by 27.8%.

As one of the first few research projects looking into per-
sonalized driving behavior, there are still some limitations of
this implementation, and improvements can be made alongside
the future development. The prediction algorithm is specifi-
cally designed for on/off-ramp mandatory lane changing. The
mechanism behind discretionary lane-changing maneuvers can
be different, which requires adjustment on feature selection of
the cost function. Another major constraint on studying per-
sonalized behavior is data availability, which can be relieved
by transferring the model learned from simulation. Besides
the research on personalized behavior modeling, incorporat-
ing personalized prediction with planning is also an important
future step, as it allows CAVs to drive like HDVs, and improve
their user acceptance and trust.
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