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Abstract—Connected and automated vehicles (CAVs) are sup- 

posed to share the road with human-driven vehicles (HDVs) in a 
foreseeable future. Therefore, considering the mixed traffic envi- 
ronment is more pragmatic, as the well-planned operation of 
CAVs may be interrupted by HDVs. In the circumstance that 
human behaviors have significant impacts, CAVs need to under- 
stand HDV behaviors to make safe actions. In this study, we 
develop a driver digital twin (DDT) for the online prediction 
of personalized lane-change behavior, allowing CAVs to predict 
surrounding vehicles’ behaviors with the help of the digital twin 
technology. DDT is deployed on a vehicle-edge–cloud architec- 
ture, where the cloud server models the driver behavior for each 
HDV based on the historical naturalistic driving data, while the 
edge server processes the real-time data from each driver with 
his/her digital twin on the cloud to predict the personalized lane- 
change maneuver. The proposed system is first evaluated on a 
human-in-the-loop co-simulation platform, and then in a field 
implementation with three passenger vehicles driving along an 
on/off ramp segment connecting to the edge server and cloud 
through the 4G/LTE cellular network. The lane-change intention 
can be recognized in 6 s on average before the vehicle crosses the 
lane separation line, and the Mean Euclidean Distance between 
the predicted trajectory and GPS ground truth is 1.03 m within 
a 4-s prediction window. Compared to the general model, using a 
personalized model can improve prediction accuracy by 27.8%. 
The demonstration video of the proposed system can be watched 
at https://youtu.be/5cbsabgIOdM. 

Index Terms—Connected and automated vehicle (CAV), digital 
twin, driver behavior modeling, field implementation, lane- 
change prediction. 

 
 

I. INTRODUCTION 
A. Motivation 

HE RAPID development of connected and automated 
vehicles (CAVs) provides a new perspective on address- 

ing the safety, mobility, and environmental sustainability issues 
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of our transportation systems [1]. However, our transporta- 
tion systems cannot achieve full automation/connectivity in a 
foreseeable future, where CAVs have to interact with human- 

driven vehicles (HDVs) in a mixed traffic environment. To 
deal with complex interactions, CAVs need to predict HDVs’ 

behaviors, make decisions in response to the actions (in 
presence or to be taken), and execute the right maneuvers 
through the planner and controller. Particularly, the prediction 
of HDVs’ behaviors is challenging due to the uncertainties of 
human drivers. As a result, many researchers [2], [3], [4], [5] 

include driving behavior modeling in the prediction and plan- 
ning stage, where driver type classification and identification 

play an important role. Nevertheless, the improvement of inte- 
grating the collective driving behavior is limited, because 
driving behavior can be diverse among different drivers. 

Therefore, there is an increasing amount of literature that 
recognizes the importance of personalized driving behaviors. 

To study personalized driving behavior, this article deploys 
the driver digital twin (DDT) in the real world. DDT is a dig- 
ital replica of a driver with his or her naturalistic driving data 
and driving behavior models. Based on real-world data, DDT 

system in the virtual world provides both online and offline 
micro services, e.g., interactive prediction, driving style analy- 
sis, etc. In addition, to capture the driving preference variation, 

the evolving driver model will be updated in a certain period 
(e.g., every five new trips) by consuming the driving data from 

the real-world vehicle. 
In our previous work, the vehicle digital twin is built on 

an edge server [6], allowing the planning and control of the 
connected vehicles. However, only using an edge server is 
sometimes insufficient to fulfill the requirements of personal- 
ized behavior study, such as data storage, modeling, learning, 
simulation, and prediction [7]. Therefore, DDT in this study 
is performed on a cloud–edge architecture, leveraging cloud 
computing and personalized profiling, enabling both real-time 
and bulk-batch ingestion, processing, and analytics of personal 
data. 

As a typical example of personalized driver behavior that 
can be modeled by DDT, lane changing is a fundamental but 
challenging task in our daily driving, especially in mandatory 
lane change situations (such as ramp merging) where the open 
areas are very limited and levels of risk are higher, compared 
to discretionary lane changes. In these situations, it is particu- 
larly important to accurately predict lane-change intention as 
well as when and where the lane change occurs, because the 
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lane-change maneuver will have a significant impact on the 
safety and efficiency of the road network. Moreover, online 
prediction of the lane-change maneuver provides inputs to the 
motion planner and controller of ego vehicle, allowing it to 
better cooperate with surrounding vehicles (including HDVs). 
By building the personalized lane-change model, CAVs can 
have a better understanding of the specific human drivers and 
provide a more accurate prediction. 

In this study, learning-based algorithms for personalized 
behavior modeling and online lane-change prediction are 
developed, and field implementations are carried out on a 
customized vehicle-edge–cloud platform under the digital 
twin framework. In the field implementation, the cloud (i.e., 
Amazon Web Services) analyzes the personalized behavior 
of HDVs with connectivity (e.g., by cellphone) and stores 
the learned driver models and historical data, while the edge 
(i.e., local server) is responsible for the computation of online 
lane-change prediction. 

Compared to the existing literature on prediction and behav- 
ior modeling, this study has the following main contributions. 

1) A hierarchical learning-based system is developed for 
personalized driving behavior modeling, online lane- 
change prediction, and trajectory likelihood estimation. 

2) Under the digital twin framework, a vehicle-edge–cloud 
platform is constructed and demonstrated, enabling real- 
world data collection and algorithms development. 

3) Personalized driver models are trained and validated 
using the vehicle-edge–cloud platform, as one of the first 
real-world deployments of DDT in transportation. 

4) To validate the proposed algorithm in the field experi- 
ments, a portable vision-based human–machine interface 
(HMI) system is designed to provide the prediction 
information to the driver supported by edge computing 
and cloud computing. 

 
B. Specifications and Assumptions 

In this article, the target predicted vehicle is a connected 
HDV, whose historical/real-time data and the trained driver 
model are accessible through the digital twin. When other 
connected vehicles detect and recognize this target vehicle, 
they can download the driver model of the target vehicle to 
assist in the prediction. Specifically, our prediction algorithm is 
designed for the on/off-ramp scenario to predict the maneuver 
and trajectory of the on-ramp vehicle. 

To expedite field implementation, some reasonable spec- 
ifications and assumptions are made in the current stage 
of online lane-change prediction and personalized driving 
behavior modeling, as follows. 

1) When the target vehicle comes into view, if ego vehicle 
is able to recognize it (e.g., by computer vision or V2X 
communications), the associated driver model is then 
acquired from the cloud server (with permission). Before 
target vehicle is recognized, a general driver model will 
be used instead. 

2) The driving preference of the same driver is assumed to 
be long lasting and will not be affected by the mood on 
the testing day. 

3) As designing the perception system (e.g., LiDAR, radar, 
and camera) is outside the scope of this article, the nec- 
essary vehicle information (e.g., location and yaw angle) 
is uploaded by the target vehicle and shared by the edge 
server. 

 
C. Organization of This Article 

The remainder of this article is organized as follows. In 
Section II, state-of-the-art research on lane-change prediction, 
personalized driver behavior modeling and digital twin plat- 
form design are reviewed. Section III explains the methodol- 
ogy of the proposed system, including personalized behavior 
modeling, online lane-change prediction, and map matching 
for real-world implementation. Section IV elaborates on the 
field experiment design using the vehicle-edge–cloud archi- 
tecture. In Section V, we analyze the driving styles of two 
drivers and evaluate the performance of the proposed algo- 
rithm. Finally, this article is concluded with future directions 
in Section VI. 

 
II. BACKGROUND AND RELATED WORK 

A. Lane Change Prediction 
Hidden Markov model (HMM) was widely used to infer the 

lane-change intention [8], [9], [10] and is usually integrated 
with the Bayesian network [11] to recognize the lane-change 
behavior. As lane-change intention prediction can be mod- 
eled as a classified problem, the multilayer perceptron (MLP) 
was used as a discriminator [12] in long-term lane-change 
prediction. Moreover, deep-learning methods, such as long 
short-term memory (LSTM) model, achieved a precision of 
90.5% on time-series problems [14]. To find out relevant fea- 
tures for lane changing in a time series, Scheel et al. [15] inte- 
grated a temporal attention mechanism with LSTM to improve 
the prediction accuracy to 92.6% and provide understand- 
ability on feature importance. Besides lane-change intention 
prediction, lane-change trajectory prediction is also a critical 
problem. Based on the beam search technique, Park et al. [16] 
adopted sequence-to-sequence (Seq2seq) LSTM to produce K 
most likely trajectories on an occupancy grid map. By adding 
information on traffic level and vehicle types, Xue et al. [17] 
adopted XGBoost for lane-change decision prediction and 
LSTM for trajectory prediction, achieving a mean-square error 
of 6.62 m for trajectory prediction. 

However, most of the algorithms ignored vehicular 
interaction with the surroundings. Furthermore, supervised 
learning methods were limited by the lack of enough labeled 
data sets to cover each possible scenario, and very little online 
validation was carried out as well as real-world validation. 

 
B. Personalized Driver Behavior Modeling 

A personalized driver model is usually learned based on the 
data set from a specific driver (i.e., learning from demonstra- 
tion) and is mainly used for prediction, planning, and con- 
trol [18]. Drivers’ preferences in their vehicle states are well 
studied. A personalized driving assistant system developed by 
Lefevre et al. [19] could identify the current driving maneuver 



LIAO et al.: DRIVER DIGITAL TWIN FOR ONLINE PREDICTION OF PERSONALIZED LANE-CHANGE BEHAVIOR 13237 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 31,2024 at 18:34:14 UTC from IEEE Xplore. Restrictions apply. 

 

 

{
 
 

and predict the steering and acceleration, facilitating control 
assistance. Considering the occupants’ preference for lateral 
and longitudinal comfort, Bae et al. [20] proposed a personal- 
ized control system enabling autonomous vehicles to drive like 
human beings. Also, algorithms based on Gaussian Mixture 
Model and HMM are popular for prediction of personalized 
driving behavior and are deployed in a variety of applica- 
tions, such as personalized lane-departure prediction [21] and 
personalized car-following behavior prediction [22]. 

Not only the vehicle states but also the surroundings and 
vehicular interaction should be considered in drivers’ pref- 
erence. To integrate the interaction into behavior modeling, 
Huang et al. [23] included the awareness of the effect of 
the ego vehicle on the surrounding vehicles into the cost 
function. The driver’s preference over vehicle states and inter- 
actions can be expressed by the cost function recovered by 
inverse reinforcement learning (IRL), which assumed that 
human behavior was motivated by optimizing the unknown 
reward function [24]. In [25], the interaction behavior under 
different conditions was formulated as a cost function with 
different linear combinations of features and learned by con- 
tinuous IRL. The cost function with interpretable weights on 
features opens the black box of behavior modeling, by show- 
ing the diversity of feature attention in different scenarios. 
Furthermore, the cost function can be adjusted as needed to 
reflect changing driving conditions and can always provide a 
solution aligning with driver preference in unseen scenarios. 

Collecting a personalized data set for interaction study is 
another major limitation in interaction modeling and driving 
personalization study. The difficulty of scenario reproduction 
constrains the driver experiences in similar interactive condi- 
tions and the collection of enough data for model training. 

 
C. Digital Twins for Connected and Automated Vehicles 

The recent emergence of digital twin technology has 
attracted a significant amount of attention from both academia 
and industry. The global digital twin market size was reported 
to be valued at U.S. $5 billion in 2020, and will be expanded to 
U.S. $86 billion in 2028, with a compound annual growth rate 
of 43%. Among all end-users like manufacturing, energy, and 
health care, the automotive and transportation industry took 
one of the largest shares in the global digital twin market 
in 2020 [26]. 

By a widely adopted definition (with some variations), a 
digital twin is a digital replica of a living or nonliving phys- 
ical entity [7]. This concept got to be known by most people 
in the early 2010s, when NASA adopted it as a key element 
in its technology roadmap [27]. During the past few years, 
digital twins have been applied to different vehicular systems. 
Particularly, Chen et al. [28] developed a “Driver Behavior 
Twin” to allow driver behavioral models to be shared among 
multiple connected vehicles to predict future actions of sur- 
rounding vehicles. Although this study did not come up with 
a solid network architecture, its concept did inspire a series of 
subsequent studies by the authors of our paper. 

In 2020, the authors first proposed a digital twin paradigm 
for advanced driver-assistance systems (ADAS) with a cloud 

architecture, which enables the communication between real 
vehicles and their digital twins deployed on the cloud server 
in real time [29]. This cooperative ramp merging ADAS was 
later validated in a field implementation with real passenger 
vehicles and a private cloud server at University of California, 
Riverside [6]. Later, the authors introduced edge computing to 
this network architecture by proposing a mobility digital twin 
framework, which includes not only vehicle digital twins but 
also human and infrastructure digital twins [7]. Some of the 
detailed aspects of digital twins for CAVs have also been stud- 
ied by the authors, such as how to visualize the digital twin 
information [30], how to leverage the digital twin information 
for cooperative driving scenarios [31], and how to build a 
simulation environment to model digital twins [32]. Many of 
the aforementioned studies have been summarized in a survey 
paper, where the role of digital twins in CAVs is also com- 
pared with the roles of several similar technologies, such as 
iteration, model-based design, and parallel driving [33]. 

 
III. METHODOLOGY 

A. Personalized Behavior Modeling Process 
Based on our previous work [34], we extend the lane- 

change prediction algorithm into a real-world implementable 
version and enable personalized behavior modeling. As shown 
in Fig. 1, the algorithm consists of an offline learning process 
and an online prediction process. The personalized driving 
behavior for each driver is learned in the offline phase based on 
the personalized data set collected from the specific driver. For 
each driver, a neural network structure Seq2seq structure [35] 
based on LSTM is adopted to predict the lane-change inten- 
tion, while the cost functions inferring the driver preference 
are learned by IRL for evaluating the prediction. In the online 
prediction process, at each time step, the personalized Seq2seq 
neural network recognizes the maneuver and selects a proper 
cost function. Then, the driver’s cost function evaluates the 
probability of candidate trajectories provided by the trajectory 
generator. Finally, the system outputs are the most probable 
trajectory and the respective lane-change probability. 

 
B. Lane-Change Maneuver Prediction 

In order to analyze the trajectory in detail, we need to 
recognize the driver’s intention. We assume that before plan- 
ning the trajectory, the human driver first considers high-level 
tasks (e.g., lane change and lane keeping). Therefore, the 
lane-change intention prediction is formulated as a time- 
series classification problem, which predicts vehicle states 
in future time steps, i.e., either lane change or lane keep- 
ing. That is to classify the future T-step actions At : t+T into 
achange , akeep  , given historical vehicle states and the map 

information. 
To model long-term temporal dependencies among time 

series, LSTM network is chosen, as its time series prediction 
capability is validated in many existing studies, e.g., [36], [37], 
and [38]. Since each vehicle state in the time series is highly 
correlated with its adjacent time steps, the Seq2seq neural 
network using two LSTMs [39] is adopted for a multistep and 
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Fig. 1.  Personalized lane-change behavior modeling: offline learning and online prediction. 
 

multivariable prediction. The neural network input is a tra- where Z(θ) = 
f 

e−θT f i (~ξ ) d~ξ is the partition function integrat- 
lstm lstm 

jectory sequence ξ (st T 1 , . .. ,  st ) of the last T steps, 
and the vehicle states st consists of yaw angle, lateral speed, 
longitudinal speed, and remaining distance for a mandatory 
lane change. The output is the predicted lane-change action 
sequence (At+1,..., At+T+1) for the next T steps. 

ing all arbitrary trajectories ξ . To handle the computational 
complexity in solving the partition function, the continuous 
IRL approximates (1) and reformulates the problem as a 
minimization of − log P(S | θi) 

K 
θ ∗ = arg min 

X 1 
gT (ξk)H−1(ξk)g (ξk) 

C. Probability Estimation and Trajectory Prediction Based 
on IRL 

i θi
 2 θi θi θi 

k=1 
1 

− log H (ξ ) (3) 

by the cost function, and rational drivers are assumed to behave 
for optimizing their cost functions. Considering the continuity 
of the trajectory space, this study adopts Continuous IRL with 
locally optimal examples [40], [41] to recover this unknown 
cost function from expert demonstrations. 

1) Continuous IRL: The cost function is a linear combi- 
nation of a set of features, i.e., Ci(θi,ξ) = θ T fi(ξ), i = 

where gT and H are the gradient and Hessian, respectively. 
This formula indicates that along the expert demonstration, 
the recovery cost function should have small gradients and 
large positive Hessians. 

2) Cost Function Feature Selection: The selected features 
present the vehicle state in an interpretable way and can cap- 
ture the preference of the driver. We select the following a , a , where θ T i features to calculate the cost function, based on the avail- 

change keep i  is the weights vector emphasizing 
the features, and fi(ξ) = ∗fi(s1, s 2,..., st)∗2. The goal of 
the IRL is to figure out the optimal weights θi

∗ to describe 
each driver’s preference, which maximizes the likelihood of 
the driver’s historical trajectories S = {ξk}, shown in 

θi
∗ arg max P(S θi). (1) 

θi 

According to the principle of maximum entropy, as shown 
in (2), a trajectory with a low cost has a higher probability, 
which is proportional to the exponential of its cost 

T 

able inertial measurement units (IMUs) and global navigation 
satellite systems (GNSSs) information. 

1) Lane-Change Risk fthw: Ego vehicle is projected to its 
adjacent lane and calculates the time headway to its 
potential leading vehicle and the time headway from its 
following vehicle. 

2) Lane-Change Urgency furge: If the ego vehicle needs to 
perform a mandatory lane change, the remaining time 
distance should be considered. 

3) Mobility fm: Drivers have different preferences on mobil- 

P(ξ | θi) = 
e−Ci(θi,ξ ) 

 

Z(θ) 
= f 

e−θi fi(ξ ) 

−θ fi(~ξ ) ~ (2) ity. The difference between current speed and the speed 
 limit (vlim) is used to evaluate this preference. 

The driver behavior and preference are usually represented θi 

e 
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Algorithm 1 HMM Map-Matching Algorithm 
Input: 1. Current GPS point (zt). 2. Road segments on map (ri) 
Output: 1. Matching point (rbest). 2. Distance to road 
1: if (t 0) Initialize zt 1 
2: Find candidate road segments (ri) based on zt 
3: Calculate the projection xt,i of zt on each ri 
4: Calculate the probability of the measurement (zt|ri) by 

  1  
⎛  1zt − xt,i1great circle

 2⎞
 

  
  

 

Fig. 2.  Polynomial trajectory generator. 5: Calculate the transition probability p(dt) by 
p(dt) 

4) Comfort fa and fω: The absolute value of the longitudinal 
acceleration alon and the yaw rate ω is used to gauge 
comfort preference. 

1 
= β exp 

⎛

⎝−

 
 1zt − zt−11

great circle − 1xt,i − xt−1,j1route 
⎞

⎠ 

5) Lane Deviation fdev: We also include lateral distance into 
the cost function to evaluate the imperfection of driving 
along the centerline of the lane even in the lane-keeping 
stage. 

3) Trajectory Evaluation: To execute the decision of lane 
change or lane keeping, planning the trajectory is essential. 
Considering the real-time performance, instead of exploring 
arbitrary trajectory, we adopt a polynomial trajectory gener- 
ator [23] to plan the candidate trajectories ξk; as in Fig. 2, 
at each time step, this trajectory generator takes the vehi- 
cle’s state x, y, v, a, yaw , as inputs and generates multiple 
trajectories within a prediction window. With integrated vehi- 
cle kinematics, the trajectory generation ensures that the 
prediction result is realistic and reachable. In this study, we 
set the planning time window as 4 s. 

Based on (4), the cost function Ci(θi, ξk) is used to evaluate 
the probability of each possible trajectory ξk, and select the 
most probable trajectory. The probability of the lane-change 
maneuver prediction is evaluated by (5), i.e., the probability of 
lane change equals the sum of the probabilities of all sampled 
lane-change trajectories 

e−Ci(θi
∗,ξk ) 

6: Find the best-fitted road segment by 

rbest = argmax(p(zt|ri) ∗ p(dt)) 

7: Find the projection xt,best of zt on rbest 
8: Calculate the distance between zt and xt,best by 

zt − xt,best great circle 

9: Update state for next coming measurement zt 1 = zt 
Return rbest and 1zt − xt,best1great circle 

 
 

 

 
and projection points on the road segments. Among candi- 
dates, we find the one which maximizes the product of the 
measurement probability and transition probability. Then, we 
output the projection point of the current GPS measurements 
on the best-fitted road segment as the matching point and the 
distance between them. 

 
E. Algorithm Validation in Simulation 

Before modeling the personalized driving behavior in the 
real world, the prediction capability of the proposed algo- 

P
 
ξk | θi

∗ 
=  K 

e−c (θ ∗,ξ ) (4) 
rithm is validated on a general driving behavior model in 

 

 

P( ai) =
  

P
 ~ξ k  | θi

∗ 
. (5) 

 
D. Hidden Markov Model Map Matching 

Map matching is an important component in a field imple- 
mentation to reduce the effect of noisy GPS measurements. 
HMM exploits the road connectivity information and time- 
sequence feasibility to solve the problem. As shown in 
Algorithm 1, we briefly introduce the HMM map-matching 
algorithm, which was proposed by Newson and Krumm [42]. 
For the HMM map-matching process, we first predefine a 
road network with a set of geographical coordinate pairs (i.e., 
latitude and longitude) of the road segments based on the real- 
world situation. The input is the GPS measurement points from 
the current time step and the last time step. The goal of map 
matching is to find the best-fitted road segment from all candi- 
date road segments. The candidate road segments are selected 
by the great-circle distance between the measurement points 

 
game engine as the digital version of the real-world testbed to 
be introduced in Section IV. In the simulation, a mixed traffic 
flow is generated by SUMO, and human input is consumed 
by Unity with Logitech driving set, as shown in Fig. 3(a), 
allowing various drivers to conduct human-in-the-loop simu- 
lations in an immersive traffic environment, where drivers can 
experience mixed traffic with different CAV penetration rate 
and congestion levels. To model the general lane-changing and 
lane-keeping behavior, 59 trips are collected from ramp drivers 
within the on-ramp/off-ramp area, under a volume-to-capacity 
(V/C) ratio of 0.6. 

The real-time predicted lane-change probabilities and trajec- 
tories are visualized in Fig. 3(b), and the proposed algorithm 
recognizes the lane-change maneuver in 3 s before the vehicle 
crosses the lane-separation line. Moreover, the mean Euclidean 
distance (MED) [44] is used to quantify the accuracy of trajec- 
tory prediction. This general model achieves a mean MED of 
0.39 m on average within a 4-s prediction window for ten test 

z σ
 

K 

k=1 

β 

k=1 simulation [34]. In the human-in-the-loop co-simulation plat- 
form [43], a real-world test track is programmed in the Unity 
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Fig. 3. Algorithm validation on UCR’s human-in-the-loop co-simulation 
platform: (a) major elements in the platform and (b) predictions for lane 
change and most probable trajectory. 

 

 
trips, outperforming the IRL-based prediction method in [41], 
which achieves a mean MED of 0.62 m in a 3-s prediction 
window. In the field implementation, we further study how 
the personalized model improves the prediction. 

 
IV. DESCRIPTION OF FIELD OPERATIONAL SYSTEM 

A. System Setup 
The vehicle-edge–cloud architecture is explained in Fig. 4, 

including key components, hardware for the real-world imple- 
mentation, and the information flow between them. Under this 
architecture, vehicles are considered service consumers who 
store their personalized data set on the cloud server and share 
the real-time perception information with the edge server, from 
which vehicles receive driving assistance and support services 
to facilitate automation. The edge server creates the vehi- 
cle digital twin and serves as the bridge between the cloud 
server and vehicles. DDT is created on a cloud server by the 
offline-modeling algorithms described in Fig. 1. 

To be specific, the first step of building the vehicle digi- 
tal twin on the edge server is to know the position of each 
vehicle in the network. After building the connection between 
edge and vehicles, the perception information and GPS coor- 
dinates of each vehicle are uploaded to the edge server, where 
the map-matching algorithm updates the vehicle’s positions 
in real time. Furthermore, algorithms for predictions, plan- 
ning, and control can be provided upon request for different 
purposes. With the connection to the cloud server, the edge 
server receives service requests from vehicles and passes on 
those requests and the unique login information to the cloud. 
In response to the request, the cloud can feed back edge server 
with personalized driving behavior models of specific drivers. 
Due to the high communication latency between the cloud 
and vehicles, it is hard to implement real-time services pro- 
vided directly from the cloud to customers. To address this 

problem, edge gateway is adopted to handle the data exchange 
and provide services to vehicles in real time. 

The concern of privacy is also addressed, as only unidenti- 
fiable information is transmitted. Cloud server is responsible 
for driver model training, storage of personalized data and 
models, and microservices support (e.g., energy consumption 
analysis). Therefore, we take advantage of the strong compu- 
tational power, high-speed data processing, and secure data 
storing features of AWS. Historical personal driving data are 
archived in the personal folder and can only be accessed by 
the personal login information. Service consumers can also 
request post-processed driving behavior reports, (e.g., energy 
consumption analysis, to better understand or improve their 
driving skills. 

Hardware for the real-world implementation is shown in 
Fig. 4. All three vehicles are 2012 Corolla LE models, with 
1.8-liter internal combustion engines. Each vehicle is equipped 
with a Wi-Fi hotspot (Netgear MiFi) to establish a wireless 
connection with edge server, a GPS unit to collect accurate 
position information of vehicles, and a portable HMI device 
using Galaxy A7 tablet. The U-blox C102-F9R is adopted 
as the GPS unit, which is a multiband GNSS with real-time 
kinematic positioning (RTK) function and sensor fusion tech- 
nologies. It can achieve a 2-D (horizontal) accuracy of 46.7 cm 
and 4.0 cm with the “RTK Fixed” mode [6]. 

The GPS unit and the HMI device are connected (wired) 
with serial communications. The Wi-Fi hotspot handles the 
wireless communications between the tablet and other infras- 
tructures, such as the base station and edge server. Depending 
on the request of the driver, the HMI device receives 
and displays the speed guidance or lane-change prediction 
information from the edge server. Moreover, to enable the 
RTK function in the U-blox and get high-accuracy GPS mea- 

surements, the HMI device shares the calibration correction 
message received from the base station to its paired GPS unit. 

The edge gateway is running on a customized edge server 
installed at CE-CERT, University of California, Riverside, 

which is 1.2 km away from the testing site. A Dell 
R630 server, with two Xeon 2.4-GHz (6-core) CPUs, 64-GB 

RAM, 1-TB solid-state drive, and 14-TB hard disk drive, is 
adopted as the edge server in this implementation. 

 
B. Experiment Plan 

As shown in the vehicle level of Fig. 4, the real-world 
implementation is conducted by three passenger vehicles 
which are mainline vehicle 1 (MV1), mainline vehicle 2 
(MV2), and ramp vehicle (RV), respectively. Specifically, RV 
is the target predicted RV, MV1 is the conflicting vehicle with 
RV. While MV2 drives behind MV1 and is potentially affected 
by the lane-change maneuver of RV, MV2 observes and pre- 
dicts the whole lane-change process. To ensure MV1 and RV 
can encounter each other, speed guidance is provided to MV1 
only before reaching an observable point, from which MV1 
and RV can see each other for the rest of the trip. The speed 
guidance [6] is calculated by edge server, where RV has its 
virtual projection on the mainline, and MV1 is assigned to 
follow the virtual projection without an intervehicle gap. By 
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Fig. 4.  Vehicle-edge–cloud architecture validated in the field experiment. 

 

 

 
 
 
 
 
 
 
 
 

 
Fig. 5. Vehicle HMI design. (a) Speed guidance and (b) detection for lane- 
changing prediction. 

 

 
following the speed guidance, MV1 can reach the observable 
point at the same time as RV, and for each experiment, nearly 
the same condition of merging conflict is guaranteed. Different 
from MV1, to collect naturalistic driving data of the RV driver, 
RV receives no interference from the system during the whole 
trip. During the conflict creation process, MV2 is not involved 
since it plays the role of an observer and has no impact on 
the lane change. If MV2 successfully detects and recognizes 
RV, MV2 sends a request and downloads the driver behav- 
ior model of RV from the cloud to facilitate the lane-change 
prediction. 

To meet the above demands, the HMI guides MV1 with 
speed guidance which shows the current speed on the left 
and the target speed on the right as shown in Fig. 5(a). For 

Fig. 6. Bird-eye’s view application interface: digital twin of vehicles running 
on the edge server in real time. 

 
 

 
MV2, we leverage the benefits from TensorFlow Lite Object 
Detection, an open-source Android application, to detect the 
RV and visualize the predicted lane-changing probability with 
a user ID on the top of a bounding box as indicated in 
Fig. 5(b). 

Before starting the vehicle, each driver logs in with a unique 
ID and password to access his/her personalized digital twin. 
In addition, to obtain personalized services, drivers need to 
agree with sharing information with edge server. 

A bird-eye view Android application is designed for visu- 
alizing the vehicle Digital Twins running on the edge server. 
MV1 and RV are the orange vehicles and the blue vehicle, 
respectively, in Fig. 6. Moreover, the lane-changing probabil- 
ity and the predicted trajectory of RV are provided for a better 
understanding of the entire field implementation process. 

To build DDT on a cloud server, a personalized data set 
for each RV driver is collected. In total, 20 trips entering the 
mainline and 20 trips driving off-ramp are used for behavior 
modeling. The average duration of each trip is 35 s, with an 
average update rate of 5 Hz. In each time step, both the tra- 
jectories of MV1 and RV are recorded and synchronized at 
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edge server, and the data set on the cloud server is updated at 
the end of the trip. 

Moreover, the communication delay and computation time 
are considered for real-world implementation. The back-and- 
forth communication delays of cloud–edge communication 
(model download), the edge-vehicle communication (speed 
guidance and online prediction), and the computation time are 
measured and shown, respectively, in Table I. 

 
V. RESULT ANALYSIS 

A. Cost Function and Driving Pattern Analysis 
Personalized models are trained using drivers’ own data 

sets (i.e., 19 trips collected from Driver 1 and 20 trips from 
Driver 2). For two drivers, a general model is trained using the 
aggregated data set from both drivers, standing for collective 
driving behavior. The weights in the cost functions can reflect 
drivers’ preference when large weights penalize high values, as 
shown in Table II. For lane-change maneuvers, Driver 1 cares 
more about longitudinal comfort and penalizes large acceler- 
ation with 0.696 on fa, compared with 0.425 for Driver 2. 
Driver 2 prefers a smaller time gap during lane change as 
he/she puts a larger weight on fthw than Driver 1 to penalize 
the time headway. Driver 1 does not care about the mobility fm 
and drives slower than the speed limit, while Driver 2 prefers 
to drive faster with a weight of 0.182. For lane-keeping maneu- 
vers, two drivers show the same preference for longitudinal 
comfort fa but significant differences in lateral comfort and 
mobility. Driver 1 tends to keep the vehicle stable (i.e., putting 
a large weight on fyaw penalizing unstable yaw movements) 
and drives slowly. On the contrary, Driver 2 pays little atten- 
tion to the stability of the vehicle pose and seeks high speed. 
According to the analysis of cost function weights, Driver 1 
is more likely to be a cautious driver while Driver 2 tends 
to be more aggressive. For lane changing, the general model 
puts the least weight on urgency furge and penalizes large time 
headway. For lane keeping, the general model is sensitive to 
lane deviation fdev the most. 

 

 
 

Fig. 7. Driving pattern comparison during a lane-change process: (a) longi- 
tudinal speed of RV, (b) mandatory lane-change urgency, (c) lateral behavior, 
and (d) fuel consumption. 

 
 
 

Besides the cost function analysis, the driving pattern can 
also be recognized via the overall lane-change behavior, as 
shown in Fig. 7. 

The interaction with the mainline vehicle can be reflected by 
the longitudinal speed of the lane-change process in Fig. 7(a), 
which displays the median speed at each location. The observ- 
able point (at 320 m) is 100 m before the lane-change point, 
where mainline and ramp drivers can see each other for the 
first time during the lane change. After observing the conflict 
with MV1, Driver 1 chooses to slow down and yield to MV1 
for lane change behind, but Driver 2 accelerates to surpass 
in order to cut in front of MV1. The lane-change urgency 
in Fig. 7(b) is used to measure how the driver deals with 
a mandatory lane change. The urgency value grows when 
RV comes closer to the end of the lane-change area with- 
out changing the lane. Once the lane change is completed, 
the urgency will decrease shortly. Driver 1 has a smaller 
peak value than Driver 2 for lane-change urgency; however, 
the urgency pattern of Driver 2 is more consistent, as the 
urgency variation (red area) is smaller than the one of Driver 1 
(blue area). 

The lateral movement preference is captured by the lat- 
eral deviation shown in Fig. 7(c), where the lane change is 
completed once the lateral deviation reaches 4 m or above. 
Although two drivers have different preferences for lane- 
change sequences, their lane change starting points are close 
to each other. Moreover, two types of slopes (i.e., lane change 
speed) in the blue line are observed during the lane-change 
process of the driver. In the first segment, Driver 1 merely 
crosses the lane-separation line, and in the second segment, 
he/she approaches the center line slowly after confirming 
safety. 

A similar conclusion to cost function analysis can be made 
that Driver 1 is more cautious than Driver 2. As a result, as 
shown in Fig. 7(d), the average fuel consumption of Driver 1 



LIAO et al.: DRIVER DIGITAL TWIN FOR ONLINE PREDICTION OF PERSONALIZED LANE-CHANGE BEHAVIOR 13243 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 31,2024 at 18:34:14 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

 
 

Fig. 8. Field implementation for online lane-change prediction with visualization on camera and edge server: (a)–(c) Prediction for Driver 1, changing the 
lane behind MV1. (d)–(f) Prediction for Driver 2, changing the lane in front of MV1. 

 

(28.2 g) is 28.9% less than the one of Driver 2 (39.7 g), in 
each lane change. 

 
B. Case Study 

As presented in Fig. 8, the online prediction combines prob- 
ability estimation and trajectory prediction. In stage 1 see 
Fig. 8(a), RV enters the interacting zone and is recognized 
by MV2 (observer). At the same time, MV2 sends a request 
to edge server, and then edge server receives the driver 
model from the cloud. Then, the driver ID and lane-change 
probability are visualized on both observer’s view and edge. 
Meanwhile, the lane-change probability shown above the blue 
bounding box is low, and the predicted trajectory (visualized 
on edge in red dashed line) is straight, indicating the lane- 
keeping maneuver. In stage 2 see Fig. 8(b), RV slows down 
to yield MV1, which is captured by MV2. At the moment, the 
predicted trajectory points to the lane-separation line, and the 
lane-change probability increases with the color of the bound- 
ing box changing from blue to red for warning of a potential 
lane change. In stage 3 see Fig. 8(c), Driver 1 perceives that 
the gap is large enough, and the lane change begins. MV2 is 
more certain about the prediction, showing a high probability 
and a predicted trajectory pointing to the center of the main- 
line. Fig. 8(d)–(f) present a similar process for Driver 2’s lane 
change. One noticeable difference from Driver 1’s model is 
that Driver 2’s personalized model pays attention to speeding 
up rather than slowing down. 

Fig. 9 elaborates on the whole prediction process of the 
same trips in Fig. 8. Specifically, Fig. 9 (a) presents the 
prediction result of one lane change performed by Driver 1. 
The top subfigure depicts the prediction result and probability 

estimation of lane change during a trip, reflecting the inten- 
tion of the driver. In the bottom subfigure, each time step of 
the ground-truth trajectory is labeled by the neural network in 
real time as lane change (red dots) or lane keeping (blue dots), 
when the predicted trajectory of each time step is shown in 
the green line. 

The maneuver prediction can be corrected by probability 
estimation. In the top subfigure of Fig. 9(b), when the lane 
change has been completed, lane change is still predicted by 
LSTM (orange dashed line) for the time steps from 177 to 
180, but the probability of lane change (blue solid line) is esti- 
mated only 20%. According to the bottom subfigure, Driver 2 
has completed the lane change at the 177th step, and the 
cost function-based probability estimation corrects the neural 
network prediction. 

Personalized models can only be used on a specific person. 
Fig. 9(c) illustrates how will the prediction result be when the 
model is mismatched (using Driver 1’s model on Driver 2’s 
trip), where the predictions are not accurate for lane-change 
probability, action, and trajectory. 

The prediction needs to be evaluated for both maneu- 
ver and trajectory. For lane-change intention recognition, the 
predictive capability can be quantified as the time between 
the moment of recognizing the lane-change intention and the 
moment of the vehicle crossing the lane-separation line. The 
personalized model of Driver 1 recognizes the lane-change 
intention in 6.08 s on average, with a 1.96-s standard devi- 
ation (STD), while Driver 2’s model achieves an average 
of 3.73 s with an STD of 1.29 s. In this study, output of 
intention recognition layer can be corrected and modified by 
the downstream probability estimation. Therefore, we pro- 
pose a heuristic method to evaluate to accuracy of intention 
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Fig. 9. Prediction result analysis of using personalized models. (a) Online 
prediction process for Driver 1. (b) Online prediction process for Driver 2. 
(c) Offline prediction using a mismatched driver model. 

 
 

recognition based on the lane-change probability. It should be 
noted that the accuracy can be evaluated in a more sophisti- 
cated way. If the probability of the moment when the vehicle 
touches the lane-separation line (Ps) is significantly larger than 
the probability during lane keeping (Pk), i.e., σ Ps > Pk, the 
lane change is successfully predicted. The significant factor σ 
can be chosen as 0.5. The proposed general model predicts 
90.4% lane change events, while the personalized model for 
Driver 1 exhibits an even higher level of performance with a 
prediction accuracy of 95.2%. 

For trajectory prediction, the MED is measured to analyze 
the accuracy. Although we cannot decouple the GPS error 
and prediction error, the model achieves a good result. The 
quantitative evaluation is shown in Table III, which presents 
the MED of baseline, general model, and personalized model. 
Inspired by [16], we adopt Seq2seq LSTM as the baseline 
model for the entire pipeline, while the proposed method 
employs the Seq2seq LSTM solely for the intention recogni- 
tion part in the overall pipeline. Within a 4-s prediction win- 
dow, the general model of the proposed algorithm outperforms 
the baseline. 

Using either a general or personalized model, the prediction 
of Driver 1 is better than Driver 2. The MEDs between the 
predicted trajectory and GPS points are 1.03 m (STD: 0.4 m) 
for Driver 1 and 1.48 m (STD: 1.05 m) for Driver 2 in a 

TABLE III 
PREDICTION ACCURACY COMPARISON IN A 4-S PREDICTION WINDOW 

 

 

 

 
 

     
 

 

 
     

 

 
 

 

4-s prediction window. Compared to results from the general 
model, the personalized model improves Driver 2’s results the 
most, by 27.8% on average. Since Driver 1 is more predictable, 
the improvement of using a personalized model is limited (by 
1.9%), but the prediction variation is reduced by 42%. 

 
VI. CONCLUSION AND FUTURE WORK 

This article has proposed an online lane-change prediction 
algorithm based on personalized driving behavior modeling, 
which is validated on a vehicle-edge–cloud testbed under the 
DDT concept. Specifically, a Seq2seq LSTM neural network 
has been used to predict the lane-change intention, and per- 
sonalized driving behaviors have been modeled for different 
drivers, whose preferences are learned and analyzed by IRL 
based on the historical data stored on the cloud server. 
Supported by the personalized models, an online lane-change 
prediction system has been developed and validated with real- 
world field implementation. The system is able to recognize 
the target driver’s lane-change intention at 6.08 s before the 
vehicle crosses the lane-separation line, and the MED between 
the predicted trajectory and ground truth (based on the mea- 
surements from an RTK-enabled GPS unit) is 1.03 m within 
a 4-s prediction window. Using a personalized model can 
improve the prediction accuracy by 27.8%. 

As one of the first few research projects looking into per- 
sonalized driving behavior, there are still some limitations of 
this implementation, and improvements can be made alongside 
the future development. The prediction algorithm is specifi- 
cally designed for on/off-ramp mandatory lane changing. The 
mechanism behind discretionary lane-changing maneuvers can 
be different, which requires adjustment on feature selection of 
the cost function. Another major constraint on studying per- 
sonalized behavior is data availability, which can be relieved 
by transferring the model learned from simulation. Besides 
the research on personalized behavior modeling, incorporat- 
ing personalized prediction with planning is also an important 
future step, as it allows CAVs to drive like HDVs, and improve 
their user acceptance and trust. 
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