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Abstract

We study I.I.D. prophet inequalities for cost minimization, where the problem is to pick a cost from a
sequence X1, . . . , Xn drawn independently from a known distribution in an online manner, and compete against
the prophet who can see all the realizations upfront and select the minimum. In contrast to the well-studied
rewards maximization setting where a simple threshold strategy achieves a competitive ratio of ≈ 0.745 for all
distributions, the cost minimization setting turns out to be much more complex.

In our main result, we obtain a complete and nuanced characterization of the I.I.D. cost prophet inequality:
if the expected value of the given distribution is infinite, then the competitive ratio is also infinite. On the
other hand, when the expected value is finite, we show that the competitive ratio of the optimal stopping
strategy is a (distribution-dependent) constant, which we characterize precisely as the solution to a simple
inequality. Furthermore, we obtain a closed form for this constant for a broad class of distributions we call
entire distributions, we show that the constant is 2 for MHR distributions and obtain matching lower bounds
for all our results. To the best of our knowledge, these are the first optimal distribution-sensitive guarantees for
the prophet inequality setting.

We then focus on single-threshold strategies and design a single threshold that achieves a tight O (polylog n)-
factor approximation.

In terms of techniques, we characterize the expected value of order statistics using the hazard rate of the
distribution, which facilitates our analysis. Our results may also be used to design approximately optimal
posted price-style mechanisms. We believe both of these may be of independent interest.

Keywords: prophet inequalities, cost minimization, online algorithms, hazard rate, MHR distributions, order statistics

1 Introduction

The classical prophet inequality due to Krengel, Sucheston, and Garling [KS77] concerns the setting where one
is presented with take-it-or-leave-it rewards X1, . . . , Xn in an online manner, drawn independently from known
distributions, and can “stop” at any point and collect the last reward seen. Given that the distributions are
known, the inequality ensures the existence of a stopping strategy S (online algorithm) for any arrival order of
the random variables, with expected reward at least half that of a prophet who can see the realizations of all the
Xi’s upfront (offline optimum), i.e., E [S] ≥ 1

2 E [maxiXi]. This result, and its variations and generalizations, have
found extensive applications to online optimization and mechanism design, particularly, in the design of simple
yet approximately optimal sequential posted price mechanisms, both online and offline, for revenue (rewards)
maximization while selling items [HKS07, CHMS10, CHK07, KW19] (see Section 1.2 for a detailed discussion). A
fundamental special case is the setting in which X1, . . . , Xn are independent and identically distributed (I.I.D.).
The study of this setting, in the rewards maximization case, was initiated by Hill and Kertz [HK82]. Kertz [Ker86]
showed that the competitive ratio in the I.I.D. case approaches ≈ 0.745 as n goes to infinity, via a recursive
approach, and conjectured that this is the best bound possible. Later, the bound of ≈ 0.745 was shown to be tight
by Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld [CFH+21]. We refer the reader to two excellent surveys
[HK92] and [CFH+18] for more results about I.I.D. prophet inequalities.

However, what if the Xi’s are costs and the goal is cost minimization, like in the case of procuring items while
minimizing the payment? For example, consider a house buyer trying to decide when to buy a house in a sellers’
market, where houses are selling fast. When a house arrives with its price (cost) listed, she may have to decide the
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same day whether to buy it or not. Given that the buyer may have only distributional knowledge of future house
prices, the goal is to devise a buying strategy so that the price paid is minimized.

Towards this, we study the cost counterpart of the prophet inequality, where the Xi’s represent costs arriving
in an online manner, and one must “stop” at some point and select the last cost seen. Note that here the constraint
is upwards-closed, i.e., one of the Xi’s has to be selected. In particular, if one makes it to Xn, they are forced
to pick its realization regardless of how high it is. The goal is to design a stopping strategy (online algorithm)
ALG that minimizes the expected cost, and is comparable to the cost of an all-knowing prophet who can always
select the minimum realization and thus has expected cost E [miniXi]. For an α ≥ 1, we say that algorithm ALG
achieves an α-factor cost prophet inequality, or is α-competitive/approximate, if

(1.1) E [ALG] ≤ α · E
[
min
i
Xi

]
.

For the rewards maximization setting, the competitive ratio of 1/2 in the classical prophet inequality is
achievable through simple single-threshold algorithms [SC84, KW19] of the form “accept the first Xi ≥ τ for
some threshold τ”, and is known to be tight. Furthermore, there exist simple online algorithms that achieve
constant-factor approximations even for general multi-dimensional settings with complicated constraints (e.g.
matroids, matchings, etc) [KW19, Ala14, JMZ22a, GW23, EFGT22]. Motivated by these works, we ask:

For the cost minimization setting, can we obtain similar results to the rewards setting?
What is the factor achieved by the optimal online algorithm, i.e., the smallest possible α of any online algorithm in

(1.1)?
Is the factor achieved a constant? Is it achievable by simple single-threshold algorithms?

In this paper, we study the above questions for the case of independent and identically distributed (I.I.D.)
random variables. At first glance, one may wonder why the cost minimization is not equivalent to reward
maximization with negative Xi’s. The reason is that a strategy for rewards maximization is allowed to not pick
any of the Xi’s, namely downward closed constraints, and hence will pick nothing if Xi’s are negative. In contrast,
in the cost minimization setting, one of the Xi’s has to be selected. This difference turns out to be crucial, as we
demonstrate that upwards-closed constraints are harder, and lead to qualitatively different guarantees.

Our main contribution is a complete and nuanced characterization of the best-possible competitive ratio, namely
the one achieved by the optimal stopping strategy. Contrary to the rewards maximization setting, in which the
optimal online algorithm achieves a tight ≈ 0.745-competitive ratio for all distributions [HK82, Ker86, CFH+21],
bounding the competitive ratio for cost minimization depends on whether the distribution has a finite expected
value or not.

First, if the expected value of the given distribution is infinite, e.g. the equal-revenue distribution1, then there
exists a family of instances, one for every n ≥ 2, for which the competitive ratio is infinite (Proposition A.1 due to
Lucier [Luc]). This is because, for any algorithm, regardless of which realization it selects, their expected cost will
be infinite, whereas the expected minimum cost is finite. This prevents any bounded factor approximation for all
distributions.

Second, for distributions with finite expected value, we provide a characterization of the tight competitive
ratio, and show it is a (distribution-dependent) constant. We demonstrate how to easily calculate it for any
distribution and also show it has a closed form for a broad class of distributions which we call entire distributions.
This class contains several well-known distributions, including the uniform, exponential, Gaussian, arcsine, beta,
gamma, Rayleigh and Weibull distribution, among others. Moreover, we show that the competitive ratio for all
entire MHR distributions is 2, and is tight, providing a uniform bound to complement our distribution-dependent
main result. Our optimal distribution-sensitive guarantees may be of interest in initiating a similar analysis for
the rewards maximization and other settings.

We then focus on single-threshold strategies and design a single threshold that achieves a tight O (polylog n)-
factor approximation for entire distributions, where, the exponent of the logarithm depends on the distribution.
We also briefly discuss how our results may also be used to design approximately optimal posted price-style
mechanisms.

1The CDF of the equal-revenue distribution is F (x) = 1− 1/x and is supported on [1,+∞).
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In what follows, we give an overview of our approach and techniques, which in turn provides several
characterizations of the first moment of order statistics via the hazard rate of their distribution. These may be of
independent interest.

1.1 Overview of our Approach and Techniques: Analysis through Hazard Rate In the I.I.D. cost
prophet inequality setting, all the Xi’s are drawn from a common non-negative known distribution D. Since
single-threshold algorithms have proven very successful in providing constant-factor approximations in the rewards
setting, we start by asking whether we can achieve similar results for cost prophet inequalities. The intuition
behind this is that if n is very large, one could set a single threshold close to E[miniXi] and with good probability
there will be at least one realization below the threshold.

Unfortunately, this intuition turns out to be wrong, even for simple distributions, like the exponential. We
present an example in Appendix A explaining why this intuition fails. In fact, in Section 4 we show that no single
threshold can achieve a constant competitive ratio; we discuss what one can achieve by a single threshold later.

Thus, in our search for a constant-factor competitive algorithm, we study optimal online algorithms, i.e.,
algorithms that achieve the smallest possible α in (1.1). It follows that, much like the classical I.I.D. prophet
inequality [HK82, CFH+21, LLP+21], it suffices to only consider threshold-based algorithms with oblivious
thresholds: set thresholds τ1, . . . , τn upfront, and accept the first Xi ≤ τi. Intuitively, this is because the process is
memory-less, i.e. the decision in the i-th round is independent of the past realizations and depends only on the
realization of Xi and the distribution of the future costs.

Since there cannot be a bounded competitive ratio for all distributions, as discussed earlier (unbounded ratio
for the equal revenue distribution), the natural next step is to search for the largest class of tractable distributions.

As it turns out, the analysis of the optimal online algorithm is quite tricky, a fact that mirrors the involved
analysis in the rewards maximization setting [CFH+21]. We tackle this issue via a new technique that utilizes the
hazard rate of the given distribution.

Hazard Rate. For a given distribution D supported on [a, b) (where a ≥ 0 and b can be infinite), with
probability density and cumulative distribution functions f and F respectively, the hazard rate of D is defined

for all x in the support of D as h(x) ≜ f(x)
1−F (x) . Also referred to as the failure rate, it is a fundamental quantity

within several fields of economics and mathematics and has found a lot of applications in survival analysis [KP02],
reliability theory [RH04], pricing [HR09, GPZ21, BBDS17, BGGM12, CD15, DW12, DRY15, GKL17] and even
forensic analysis [KAnA11]. For our results, we utilize the antiderivative of the hazard rate, H(x) =

∫ x

0
h(z) dz,

often called the cumulative hazard rate of D.

Analysing the Optimal Online Algorithm. Via the cumulative hazard rate of D, we are able to bridge
the gap between the expressions of the prophet’s cost and the cost of the optimal online algorithm. Let Pn and An

denote the cost of the prophet and the optimal online algorithm on n random variables, respectively. In particular,
we show that

E[Pn’s cost] = a+

∫ b

a

e−nH(x) dx

whereas

E[An’s cost] = a+

∫ E[An−1’s cost]

a

e−H(x) dx.

The main difficulty then is to show that

∃ a constant λ, independent of n, for which
a+

∫ E[An−1’s cost]

a
e−H(x) dx

a+
∫ b

a
e−nH(x) dx

≤ λ.

Since to achieve our objective, we need to analyze E[Pn’s cost], it is useful to introduce some terminology from
extreme value theory (for more information see [HF06]). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the non-decreasing
rearrangement of X1, X2, . . . , Xn. The X(i) is called the ith order statistics of D. Let µn denote the expected
value of X(1), i.e., the expected minimum of n I.I.D. random variables drawn from D.

Via an upper bound on E[An’s cost] that depends on H
←(x), the (generalized) inverse of H(x), we reduce the

problem of calculating λ to the analysis of the tail behaviour of µn

µn−1
, as n→∞ and this ratio converges to 1. We

capture this tail behaviour via a function ϕ(λ, n).
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Utilizing the hazard rate again, we derive in Lemma 3.4 a simple expression for ϕ(λ, n) and show in Lemma 3.3
that ϕ(λ, n) is increasing in λ. We then use the fact that the moments of order statistics, and in particular the
expected minimum, of a distribution satisfy nice recurrence properties (Lemma 3.6). Using this, we precisely
characterize λ via a simple inequality that needs to be satisfied (Lemma 3.5), namely

(1.2) n ϕ(λ, n) ≥ µ2:n

µn
− 1,

where µ2:n denotes the expected value of the second smallest random variable, out of n random variables following
D, i.e. the first moment of the second order statistic of D. Finally, notice that µ2:n

µn
−1 is upper bounded by

µ2,2

µ2
−1,

a constant. By analyzing the hazard rate of the first order statistic, we utilize the fact that it is concentrated
around its expected value to show that the competitive ratio is a constant independent of n, it is equal to the
infimum among all λ > 1 that satisfy (1.2) and satisfies this, simplified, version of (1.2):

(1.3) λ−
F←

(
c(1+ 1

λ−1 )
n

)
F←

(
1
n

) ≥ 0,

where F←(x) denotes the generalized inverse of the CDF F of D, otherwise known as the quantile function (see
Section 2 for its definition).

This leads us to our main theorem.

Theorem 1.1. Let D be a distribution supported on [a, b] or [a,+∞), where a ≥ 0, with cdf F , quantile function

F← and for which µ1 =
∫ b

a
(1− F (x)) dx < +∞. There exist constants n0 ∈ N and λ such that, for every n ≥ n0,

there exists a λ-factor cost prophet inequality for the I.I.D. setting under D. λ can be characterized as

λ := inf
λ′>1

λ
′

∣∣∣∣∣∣∣∣∣ λ
′ −

F←
(

c
(
1+ 1

λ′−1

)
n

)
F←

(
1
n

) ≥ 0, ∀n ≥ n0

 , for c =
µ2:2

µ2
− 1.

And this bound is tight.

The hazard rate function is known to be useful in quantifying how “heavy-tailed” a distribution is [BPH96].
Thus, the observant reader might wonder whether λ is related to the extreme value index γ from the celebrated
Fisher-Tippett-Gnedenko theorem in the field of extreme value theory (for more information see [HF06]), which is
also known to capture information about the tail of a distribution. We demonstrate that this is not the case, and
the extreme value index cannot characterize the competitive ratio on its own, in Proposition A.2, which can be
found in Appendix A.

We present, in Table 1 the explicit competitive ratios computed via Theorem 1.1 for a selection of common
distributions.

Distribution Class F (x) H(x) Competitive Ratio

Exponential 1− e−x x 2

Uniform x log
(

1
1−x

)
2

Weibull 1− e−x2

x2
√

6
π

Pareto (α > 1) 1−
(
c
x

)α
α log x

c
1a

Pareto (α ≤ 1) 1−
(
c
x

)α
α log x

c
+∞b

Table 1: A summary of the competitive ratio for several common distributions.

aBy λ = 1, we denote the fact that asymptotically, as n → ∞, E[An’s cost]

E[Pn’s cost]
goes to 1, i.e. for any c > 0, there exists a n0 ∈ N such

that one can obtain a (1 + c)-approximation to the prophet’s cost for any n ≥ n0.
bThe Pareto distribution has infinite expected value for α ≤ 1.
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Entire Distributions and Closed Form. Interestingly, we are able to strengthen Theorem 1.1, providing a
closed form of the optimal competitive ratio, for a broad class of distributions, which we call entire2. A distribution
D is called entire if the cumulative hazard rate function H of D has a series expansion3 H(x) =

∑∞
i=1 aix

di ̸= 0,
where 0 < d1 < d2 < . . . , and this series is convergent everywhere in the support of D. This class includes almost
all commonly used distributions, including the uniform, exponential, Gaussian, Weibull, Rayleigh, arcsine, beta
and gamma distributions, among many others.

In particular, we show that the competitive ratio is λ(d1), a function that depends only on d1. Furthermore,
λ(d1) is a decreasing function, a fact which is intuitive since, as d1 increases, H grows rapidly, and thus D has a
less heavy tail which leads to a better approximation.

Theorem 1.2. Let D be an entire distribution supported on [a, b] or [a,+∞), where a ≥ 0, with cdf F . There
exists n0 ∈ N such that, for every n ≥ n0, there exists a λ(d)-factor cost prophet inequality for the I.I.D. setting
under D, where

λ(d) =
(1 + 1/d)

1/d

Γ (1 + 1/d)
,

d is the smallest degree of the series expansion of H, and Γ(·) is the Gamma function.
Moreover, this constant is tight for the distribution with cumulative hazard rate H(x) = xd.

For completeness and to assist the reader, we have included some relevant background on the Gamma function in
Appendix C.

To understand how λ(d) grows with d, consider Stirling’s approximation for the Gamma function, Γ(z) ≈√
2π
z

(
z
e

)z
. Replacing this in the expression of λ(d), we have

λ(d) =
(1 + 1/d)

1/d

Γ (1 + 1/d)
≈ (1 + 1/d)

1/d

√
2π

1+1/d

(
1+1/d

e

)1+1/d
=

e√
2π

e1/d.

Thus the dependence of λ(d) on d is (approximately) inversely exponential.
An interesting question is whether this phenomenon of the competitive ratio being arbitrarily large is due to

some technicality that exists for distributions with unbounded support. We answer this negatively in Appendix A.4,
where, for any α > 0, we provide a family of distributions, each supported on [0, 1], for which the competitive ratio
of the optimal algorithm is exactly λ(α).

MHR Distributions. Distributions with monotonically increasing hazard rate have been extensively
studied in the mechanism design literature due to their sought after properties and applications (e.g., see
[GPZ21, BBDS17, BGGM12, CD15, DW12, DRY15, GKL17, HR09]). These are known as monotone hazard rate
(MHR) distributions. For entire MHR distributions, we are able to show that d ≥ 1, and since λ(1) = 2, we
show that the optimal algorithm is 2-factor competitive. In addition, we show that the factor of 2 is tight for the
exponential distribution, which has constant hazard rate.

Theorem 1.3. For every entire MHR distribution, there exists a 2-competitive cost prophet inequality, for large
enough n.

This factor is tight, since there is no (2− ε)-cost prophet inequality for any ε > 0 for the exponential distribution,
which has constant hazard rate.

Single-Threshold Algorithms. Given the success of single-threshold algorithms in the rewards maximization
setting, where they are able to achieve the best-possible competitive ratio for non-I.I.D. random variables and they
are only a small constant away from the best-possible competitive ratio in the I.I.D. case, we ask whether there
exists a single-threshold algorithm that achieves a constant-factor competitive ratio for the cost prophet inequality
setting as well. The answer turns out to be negative.

We show that, for entire distributions, no single-threshold algorithm can achieve a better than poly-logarithmic
competitive ratio. We also obtain a matching upper bound. In particular, given an entire distribution D, by

2The term is analogous to the notion of entire functions, which are functions that are analytic everywhere, i.e. their series expansion
converges everywhere.

3Notice that the exponents di need not be integers.
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analyzing how the competitive ratio of a single-threshold algorithm grows as n increases, we design a threshold T
such that the algorithm that selects the first Xi ≤ T for i < n and Xn otherwise, yields a O (polylog n)-factor cost
prophet inequality. Here, the power in the poly-logarithmic factor inversely depends on the smallest degree of the
series expansion of H.

Theorem 1.4. Given X1, . . . , Xn drawn independently from a non-negative entire distribution D, there exists a
single-threshold algorithm that is O(polylog n)-competitive, for large enough n. Moreover, this factor is tight, i.e.
there exist distributions for which no single-threshold algorithm is o (polylog n)-competitive.

Application to Mechanism Design. Finally we note that, similar to the extensive application of classical
prophet inequalities in designing simple yet approximately optimal posted-price mechanisms for selling items (see
Section 1.2), our algorithms and results for the cost prophet inequality can be used for the design and analysis of
posted-price-style mechanisms for procuring items.

Consider a procurement auction (also known as a reverse auction), in which the auctioneer (buyer) wants to
procure a single item sold by n different sellers, with an I.I.D. distribution governing the sellers’ valuation for
selling the item to the auctioneer or, in other words, the sellers’ costs/price. If the sellers arrive in an online manner
with take-it-or-leave-it offers, for example as is the case in a seller’s housing market, then the standard reduction
of a posted-price mechanism to a prophet inequality due to Hajiaghayi, Kleinberg and Sandholm [HKS07] applies
directly to the cost setting, if one wants to minimize the social cost.

To minimize the procurement price paid by the buyer (auctioneer), one simply needs to use the virtual costs

ϕ(c) = c+ F (c)
f(c) , since Myerson’s optimal auction [Mye81] applies to any single-parameter environment. This holds

only if D is a regular distribution (a class of distributions which includes MHR distributions among others). For
non-regular D, one simply needs to “iron” the social cost function, just as in the classical rewards setting, and
proceed similarly afterwards. For more details on this see [MS83] (Theorem 1).

1.2 Related Work Given the intractability of the optimal (revenue-maximizing) mechanisms for selling items
[BCKW15, HN19, DDT15, DDT14], the focus turned to designing approximately optimal yet simple mechanisms
where prophet inequalities for reward maximization have been extensively studied. The works of Hajiaghayi,
Kleinberg and Sandholm [HKS07] and Chawla, Hartline, Malec and Sivan [CHMS10] pioneered the use of prophet
inequalities to analyze (sequential) posted price mechanisms for selling items. Specifically, [HKS07] observed that
the problem of designing posted price mechanisms that maximize welfare can be reduced to an appropriate optimal
stopping theory problem, and this was extended to revenue-maximizing posted price mechanisms in [CHMS10].
This result led to a significant effort to understand how the expected revenue of an optimal posted price mechanism
compares to that of the optimal auction [CHK07, Yan11, BH08, ABF+17, Ala14, FGL15, DFKL20, BBK21, Dob21,
DV16, AKS21, AS20, DKL0]. In a surprising result, Correa, Foncea, Pizarro and Verdugo [CFPV19] showed that
the reverse direction also holds, establishing an equivalence between finding stopping rules in an optimal stopping
problem and designing optimal posted price mechanisms – for more information on these applications see a survey
by Lucier [Luc17]. Recently, [CCD+23] initiated the study of buy-and-sell prophet inequalities, named trading
prophets, and obtains constant factor guarantees even with single-threshold algorithms.

Our work is most closely related to the long line of work that considers the case of I.I.D. random variables
drawn from a known distribution, which dates back to Hill and Kertz [HK82]. As stated previously, Kertz [Ker86]
showed that the competitive ratio in the I.I.D. case approaches ≈ 0.745 as n goes to infinity and conjectured its
tightness. A simpler proof of this can be found in [SM02]. The bound of ≈ 0.745 was shown to be tight by Correa,
Foncea, Hoeksma, Oosterwijk and Vredeveld [CFH+21]. The proofs of both the upper and lower bounds were
recently simplified, by [JMZ22b] and [LLP+21] respectively. Esfandiari, Hajiaghayi, Liaghat and Monemizadeh
[EHLM17] considered prophet inequalities for cost minimization in the non-I.I.D. setting, and showed that no
bound exists on the competitive ratio. Furthermore, the large market domain of our paper, where the distribution
is independent of the number of random variables, is well-established and has also been studied for the rewards
maximization setting [AEE+17, CFPV19, ABG+20].

The 1/2-competitive factor guaranteed by the classical prophet inequality for adversarial arrival order has been
shown to hold for more general classes of downwards-closed constraints, all the way up to matroids [KW19]. For

the special case of k-uniform matroids, where one can select up to k values, Alaei [Ala14] showed a
(
1− 1√

k+3

)
-

competitive ratio. This was recently improved for small k via the use of a static threshold [CDL21] and later
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made tight for all k [JMZ22a]. Ezra, Feldman, Gravin and Tang [EFGT22] showed a 0.337-prophet inequality
for matching constraints. Rubinstein [Rub16] considered general downwards-closed feasibility constraints and
obtained logarithmic approximations. The standard setting has been extended to combinatorial valuation functions
[RS17, CL21], where one can obtain a constant competitive ratio when maximizing a submodular function but
a logarithmic hardness is known for subadditive functions [RS17]. Recently, [CGKM20] studied non-adaptive
threshold algorithms for matroid constraints and gave the first constant-factor competitive algorithm for graphic
matroids. Qin, Rajagopal, Vardi and Wierman [QRVW19] study the related problem of convex prophet inequalities,
in which, instead of costs, one sequentially observes random cost functions and needs to assign a total mass of
1 across all functions in an online manner. Our work is a special case of their work, for constant cost functions
and identical distributions, which is why we are able to obtain constant competitive ratios compared to the ratio
obtained in [QRVW19], which is polynomial in the number of cost functions n.

Esfandiari, Hajiaghayi, Liaghat and Monemizadeh [EHLM17] introduced prophet secretary, in which the
arrival order of the random variables is chosen uniformly at random, instead of by an adversary. They gave an
adaptive-threshold algorithm that achieves a (1− 1/e)-competitive ratio and showed no algorithm can achieve
a factor better than 0.75. Ehsani, Hajiaghayi, Kesselheim and Singla [EHKS18] extend this result to matroid
constraints. The factor of 1− 1/e was recently beaten, first for the case where the algorithm is allowed to choose
the arrival order, called the free order setting [AEE+17] and later for random arrival order [ACK18]. The best
currently known ratio is obtained by Correa, Saona and Ziliotto [CSZ20], where they also improve the upper
bound to 0.732. When one can select up to k values, Arnosti and Ma [AM22] recently gave a surprising and quite

beautiful single-threshold algorithm that achieves the best competitive ratio of 1 − e−k kk

k! . More general feasibility
constraints have also been studied in the random arrival order case, i.e. for matroids [AW20] and matchings
[BGMS21, PRSW22].

Several of these results are described in the context of an online contention resolution scheme (OCRS), which is
an algorithm used to round a fractional solution of a linear program in an online manner. Originally introduced by
Chekuri, Vondrák and Zenklusen [CVZ14] for the offline case, Feldman, Svensson and Zenklusen [FSZ21] showed
the existence of constant-factor approximate OCRSs for several classes of interesting constraints and demonstrated
that an α-approximate OCRS for a constraint implies an α-competitive prophet inequality for the same constraint.
This connection was proved to be deeper, as Lee and Singla [LS18] used ex-ante prophet inequalities to design
optimal OCRSs for matroids. Recently, in a beautiful series of works, Dughmi [Dug20, Dug22] showed that the
design of particular (offline) contention resolution schemes is equivalent to another problem in optimal stopping
theory, the matroid secretary problem. Whether such connections exists between cost prophet inequalities and
OCRSs for upwards-closed constraints is an interesting open question.

Organization. Section 2 introduces the cost prophet inequality setting and contains relevant definitions as well
as important observations. Section 3 characterizes the optimal algorithm and contains our main characterization
results. In Section 4, we focus on single-threshold algorithms and design a fixed threshold that yields a tight
O (polylog n)-competitive cost prophet inequality for entire distributions. Finally, we conclude with some interesting
open problems in Section 5.

Due to space constraints and to improve the readability, all missing proofs can be found in Appendix B, several
examples which motivate our analysis can be found in Appendix A and some technical background about the
Gamma function that we use, can be found in Appendix C.

2 Preliminaries

In this section we formalize the I.I.D. cost prophet inequality setting, and define several important quantities. We
are given as input a distribution D supported on [a, b) ⊆ [0,+∞), where b can be infinite, and we sequentially
observe the independent realizations of n random costs X1, . . . , Xn ∼ D. We must “stop” at some point and take
the last cost seen. In particular, at any point after observing an Xi, we can choose to select or discard it. If we
select Xi, then the process ends and we receive a cost equal to Xi. Otherwise Xi gets discarded forever and the
process continues. An all-knowing prophet, who can see the realizations of all Xi’s upfront can always select the
minimum realized cost and hence their expected cost is

Offline-OPT = E
[
min
i
Xi

]
.

Let F : [0,+∞) → [0, 1], where F (x) = PrX∼D [X ≤ x], and f : [0,+∞) → [0, 1] denote the Cumulative
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Distribution Function (CDF) and Probability Density Function (PDF) of D, respectively. Given D, the goal is to
design a stopping strategy that minimizes the expected cost. That is, design an (online) algorithm ALG to decide
when to “stop” and select the last cost seen, such that the expected cost incurred is minimized, and ideally is
comparable to the prophet’s cost. Formally, for α ≥ 1, we say that ALG is α-factor approximate/competitive, or
achieves an α-cost prophet inequality if

(2.4) E [ALG] ≤ α · E
[
min
i
Xi

]
= α ·Offline-OPT.

Given an algorithm A, let GA(i) denote its expected cost, when it observes i I.I.D. random variables drawn
from D. Thus, the expected cost of A is denoted by E [A] = GA(n). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order
statistics of X1, X2, . . . , Xn (i.e. the non-increasing rearrangement of X1, X2, . . . , Xn). We denote the expected
value of X(i) by µi:n. Since our main focus is the expected minimum of X1, . . . , Xn, i.e. X(1), we write µn := µ1:n

for brevity. Notice that µn is exactly the expected cost of the prophet who can always select the minimum of the

n realizations. Let RA(n) denote the competitive ratio of A against the prophet’s cost µn, i.e. RA(n) =
GA(n)
µn

.

Whenever the algorithm is clear from context, we drop the subscript and just use G(n) and R(n).
The following well-known observation characterizes µn.

Observation 2.1. For n ≥ 1,

µn = E
[

n
min
i=1

Xi

]
=

∫ ∞
0

(1− F (s))n ds.

Hazard Rate. All of our results make heavy use of the hazard (failure) rate of a distribution. We refer the
reader to [BPH96] for an extensive overview. Intuitively, for discrete distributions, the hazard rate at a point t
represents the probability that an event occurs at time t, given that the event has not occurred up to time t. For
continuous distributions, the hazard rate instead quantifies the instantaneous rate of the event’s occurrence at
time t.

Definition 2.1. (Hazard Rate) For a distribution D with cumulative distribution function F and probability
density function f , the hazard rate of D is defined as

h(x) ≜
f(x)

1− F (x)
,

for all x in the support of D. Furthermore, let H denote the antiderivative of h, which we call the cumulative
hazard rate of D,

H(x) ≜
∫ x

0

h(u) du.

Next, we express µn in terms of the hazard rate of D.

Observation 2.2.

µn =

∫ ∞
0

e−nH(u) du.

Proof. Notice that,

H(x) =

∫ x

0

h(u) du =

∫ x

0

f(u)

1− F (u)
du = −

∫ x

0

(ln (1− F (u)))′ du = − ln (1− F (x)) ,

which implies that 1− F (x) = e−H(x), and thus, from Observation 2.1, we have µn =
∫∞
0
e−nH(u) du.

Distributions with monotonically increasing hazard rate have found a special place within mechanism design
literature, originally introduced for the study of revenue maximization. They are known as MHR (or IFR)
distributions.

Definition 2.2. (Monotone Hazard Rate Distribution) A distribution D is called a Monotone Hazard
Rate (MHR) distribution if and only if the hazard rate function h (Definition 2.1) of D is monotonically increasing.
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Quantile Functions. For a monotone function f from (a, b) (where b may be infinite) to (c, d), its generalized
inverse f← : (c, d)→ (a, b) is defined as

f←(y) = inf {x : a < x < b, f(x) ≥ y} .

For more properties of this transformation, see [HF06]. In particular, if F denotes the cdf of a distribution D,
then F←(y) denotes the quantile function of D, i.e. F←(y) is the smallest value τ for which PrX∼D[X ≤ τ ] ≥ y.

Entire Distributions. While our main result holds for all distributions with finite expected value, we are
able to provide an explicit closed form of the competitive ratio for a broad class of distributions, which we call
entire distributions and define below. This class contains several well-known distributions, including the uniform,
exponential, Gaussian, arcsine, beta, gamma, Rayleigh and Weibull distribution, among others.

Before we proceed, we need a generalization of the concept of a Taylor series for a function.

Definition 2.3. (Puiseux Series) We say that a function f : R→ R has a Puiseux series expansion if there
exist integers n > 0 and i0 ∈ Z as well as coefficients a1, a2, . . . where a1 ̸= 0, such that

f(x) =
∞∑

i=i0

aix
i/n.

In other words, Puiseux series are a generalization of Taylor series in that they allow for fractional exponents in the
indeterminate, as long as they have a bounded denominator. For the remainder of the paper, we will use the simpler
form f(x) =

∑∞
i=1 aix

di to denote the Puiseux series of a function f , with the understanding that d1, d2, . . . have
a bounded denominator. Furthermore, we only focus on Puiseux series for functions f : [0,+∞)→ [0,+∞).

The smallest exponent of the indeterminate in the Puiseux series, d1 = i0/n is called the valuation of f and
plays a significant role in our results for entire distributions. The radius of convergence of a Puiseux series around
0 is the largest number r ≥ 0 such that the series converges if x is substituted for a non-zero real number t ≤ r. A
Puiseux series is convergent at a point x if x ≤ r.

Now we are ready to define the class of entire distributions.

Definition 2.4. (Entire Distribution) A continuous distribution D with support in [0,+∞) and cumulative
hazard rate H is called entire if EX∼D[X] < +∞, H has a Puiseux series around 0, i.e. H(x) =

∑∞
i=1 aix

di , the
Puiseux series is not identically zero and is convergent for every point in the support of D.

Since h is a non-negative function, H is a non-negative and monotonically non-decreasing function. Using this
we obtain the following observation.

Observation 2.3. Consider an entire distribution D supported on [0,+∞) with cumulative hazard rate H(x) =∑∞
i=1 aix

di , where d1 < d2 < . . . . Then, a1 > 0 and d1 > 0.

Gamma function. The Gamma (Γ) function – which is an extension of the factorial function over the reals
– and its relatives arise in our analysis of entire distributions. For x > 0, it is defined as Γ(x) =

∫∞
0
tx−1e−t dt.

Of particular interest to us is the lower incomplete Gamma function γ, which is defined for s > 0, x ≥ 0 as
γ(s, x) =

∫ x

0
ts−1e−t dt.

To assist the reader, we include a primer on the Gamma function and its relatives in Appendix C, along with
a few technical lemmas used in our analysis.

3 Optimal Algorithm: Constant Approximation via Multiple Thresholds

In this section, we focus on optimal algorithms for the cost prophet inequality (CPI) setting, i.e., algorithms
that achieve the smallest possible α in (1.1). We show that, if the distribution has finite expected value, these
algorithms achieve a (distribution-dependent) constant-factor CPI. Moreover, this factor is 2 for entire MHR
distributions.

We first observe that, just as in the rewards maximization setting, it suffices to focus on threshold-based
algorithms to achieve the optimal competitive ratio. A threshold-based algorithm decides thresholds τ1, . . . , τn
upfront using only the knowledge of the underlying distribution D, and selects the first Xi ≤ τi. Since the
thresholds do not depend on the realizations of the Xi’s, the optimal threshold-based algorithm is an oblivious
algorithm.
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Proposition 3.1. For any instance of the cost prophet inequality setting, one can achieve the optimal competitive
ratio with a threshold-based oblivious algorithm.

Intuitively, this is because the algorithm’s decision in round i is independent of past realizations and only
depends on the realization of Xi and the number of remaining random variables, i.e. it is a memoryless process.

Given Proposition 3.1, we focus on threshold-based algorithms. Let τ1, . . . , τn denote the thresholds of the
optimal algorithm. As it turns out, the optimal thresholds have a very natural interpretation: the algorithm
should select the next random variable Xi if and only if its value is smaller than the value it expects to receive by
ignoring Xi and continuing the process. That is, the optimal threshold for the next random variable when we have
k realizations left to see is exactly the expected cost incurred by an optimal algorithm when its input is k − 1
I.I.D. random variables.

We then analyze the performance of the optimal-threshold algorithm and show it attains a constant-factor
competitive ratio if D has finite expected value. For this, we identify each D by its cumulative hazard rate H(x)
and provide a characterization of the constant factor achieved by the optimal algorithm as the minimum constant
that satisfies a simple inequality. Moreover, we obtain a closed form for the constant for entire distributions, and
show that it only depends on the growth rate of H4.

Finally, we focus on the special case of MHR distributions and show that if D is an entire MHR distribution,
the competitive ratio is at most 2, a factor which is made tight by the exponential distribution for which the
competitive ratio is exactly 2.

3.1 Characterizing the Optimal Thresholds In this section we obtain an exact formulation for the optimal
thresholds and, using these, design an optimal threshold-based algorithm. In what follows, we use G(i) to denote
GOPTALG(i) for brevity, where OPTALG is an optimal algorithm.

Lemma 3.1. For the cost prophet inequality problem with random variables X1, X2, . . . , Xn, τn = +∞ for every
algorithm. For 1 ≤ i ≤ n− 1, the optimal threshold for the random variable Xi is

τi = G(n− i).

Lemma 3.1 implies that the following threshold-based algorithm is an optimal algorithm; it achieves the best
possible competitive ratio for the cost prophet inequality (CPI) problem.

Algorithm 3.1. Optimal Threshold Algorithm(D)
Set τn ← +∞ and τn−1 ← EX∼D [X].
for i← n− 2 to 1 do

τi ← F (τi+1)E [X |X ≤ τi+1)] + (1− F (τi+1)) τi+1.

for i← 1 to n do
Let zi be the realization of Xi.

if z1, . . . , zi−1 were not selected and zi ≤ τi then
Select zi.

Before we continue, we provide an expression for the expected cost of the optimal algorithm, based on
Lemma 3.1, in the following lemma.

Lemma 3.2. The expected cost incurred by Algorithm 3.1 is

G(n) = a+

∫ G(n−1)

a

e−H(u) du.

Proof. Recall that G(n) satisfies the recurrence relation in (B.1)

G(n) = F (τ1)E [X |X ≤ τ1] + (1− F (τ1))G(n− 1).

Substituting the optimal thresholds from Lemma 3.1 into the recurrence above, we obtain

G(n) = F (G(n− 1))E [X |X ≤ G(n− 1)] + (1− F (G(n− 1)))G(n− 1)

4Recall that H is non-decreasing, since its derivative, the hazard rate function h, is non-negative.
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= F (G(n− 1))

∫ G(n−1)
a

uf(u) du

F (G(n− 1))
+ (1− F (G(n− 1)))G(n− 1)

=

∫ G(n−1)

a

uf(u) du+ (1− F (G(n− 1)))G(n− 1)

= [uF (u) du]
G(n−1)
a −

∫ G(n−1)

a

F (u) du+ (1− F (G(n− 1)))G(n− 1)

= G(n− 1)F (G(n− 1))−
∫ G(n−1)

a

F (u) du+G(n− 1)−G(n− 1)F (G(n− 1))

= a+G(n− 1)− a−
∫ G(n−1)

a

F (u) du−G(n− 1)F (G(n− 1))

= a+

∫ G(n−1)

a

(1− F (u)) du.

Next, recall that H(x) = − log (1− F (x)), and thus we obtain

G(n) = a+

∫ G(n−1)

a

e−H(u) du.

3.2 Constant Factor Competitive Ratio In this section, we show Theorem 1.1, restated below. Recall
that µi:n denotes the expected value of the i-th order statistic out of n draws from D and, for brevity, we write
µn = µ1:n.

Theorem 3.1. Let D be a distribution supported on [a, b] or [a,+∞), where a ≥ 0, with cdf F , quantile function

F← and for which µ1 =
∫ b

a
(1− F (x)) dx < +∞. There exist constants n0 ∈ N and λ such that, for every n ≥ n0,

there exists a λ-factor cost prophet inequality for the I.I.D. setting under D. λ can be characterized as

λ := inf
λ′>1

λ
′

∣∣∣∣∣∣∣∣∣ λ
′ −

F←
(

c
(
1+ 1

λ′−1

)
n

)
F←

(
1
n

) ≥ 0, ∀n ≥ n0

 , for c =
µ2:2

µ2
− 1.

And this bound is tight.

The goal of the proof of Theorem 1.1 is to show that λ is a finite constant independent of n. We begin with
certain lemmas about the tail behaviour of order statistics that are crucial in our analysis. Let

ϕ(λ, n) = 1− e−H(λµn−1) −
∫H(λµn−1)

0
H←(u)e−u du

λµn−1
.

Intuitively, ϕ(λ, n) captures the tail behavior of µn

µn−1
which converges to 1 as n → ∞, for specific values of λ.

Irrespective of this, we proceed to show that, for fixed n, as λ grows, ϕ(λ, n) approaches 1.

Lemma 3.3. ϕ(λ, n) is strictly increasing in λ for every n ≥ 1, and

lim
λ→∞

ϕ(λ, n) = 1.

Proof. To show that ϕ(λ, n) is strictly increasing in λ for every n ≥ 1, fix n and observe that

dϕ(λ, n)

dλ
= µn−1h(λµn−1)e

−H(λµn−1) −
λµ2

n−1e
−H(λµn−1)h(λµn−1) · λµn−1 − µn−1

∫H(λµn−1)

0
H←(u)e−u du

λ2µ2
n−1
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=
1

λ2µn−1

∫ H(λµn−1)

0

H←(u)e−u du,

where the last expression is strictly positive since both H and H← are increasing functions, and λµn−1 > a.
Next, we analyze limλ→∞ ϕ(λ, n). Notice that

lim
λ→∞

1− e−H(λµn−1) = 1,

since limx→∞H(x) = +∞ by definition. Also,

lim
λ→∞

−
∫H(λµn−1)

0
H←(u)e−u du

λµn−1
= 0,

since
∫ +∞
0

H←(u)e−u du converges, due to D having finite expected value.
Thus,

lim
λ→∞

ϕ(λ, n) = 1.

Next, we provide a surprisingly simple expression for ϕ(λ, n), which will be used to characterize the optimal λ.

Lemma 3.4.

ϕ(λ, n) =

∫ λµn−1

a
F (u) du

λµn−1
.

Proof. Let ψ(x) = 1− e−H(x) −
∫H(x)
0 H←(u)e−u du

x , and observe that ϕ(λ, n) = ψ(λµn−1).

Next, notice that 1− e−H(x) = [−e−u]H(x)
0 , and thus

ψ(x) =
[
−e−u

]H(x)

0
−
∫H(x)

0
H←(u)e−u du

x

=

∫H(x)

0

(
xd(−e−u)

du −H←(u)e−u
)
du

x

=

∫H(x)

0

(
xd(−e−u)

du −H←(u)d(−e
−u)

du

)
du

x

=

∫H(x)

0
d(−e−u)

du (x−H←(u)) du

x

=

∫ H(x)

0

d(−e−u)
du

(
1− H←(u)

x

)
du(3.5)

Next, let y = H←(u) ⇐⇒ u = H(y), which implies that du = h(y) dy and that d (−e−u) = h(y)e−H(y) dy, and
thus, (3.5) becomes

ψ(x) =

∫ x

a

h(y)e−H(y)
(
1− y

x

)
dy.

Finally, notice that

ψ(x) =

∫ x

a

d− e−H(y)

dy

(
1− y

x

)
dy

=
[
−e−H(y)

(
1− y

x

)]x
a
−
∫ x

a

e−H(y)

x
dy

= 1− a

x
−
∫ x

a

e−H(y)

x
dy
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=

∫ x

a

(
1− e−H(y)

)
dy

x

=

∫ x

a
F (y) dy

x
.(3.6)

Substituting x = λµn−1 into (3.6) yields

ϕ(λ, n) =

∫ λµn−1

a
F (y) dy

λµn−1
.

We continue by showing that ϕ(λ, n), for specific values of λ, can match the tail behaviour of a specific function
of moments of order statistics of the distribution.

Lemma 3.5. There exist constants n0 ∈ N and

λ = inf

λ′ | λ−
F←

(
c(1+ 1

λ−1 )
n

)
F←

(
1
n

) ≥ 0, ∀n ≥ n0


such that for every n ≥ n0, we have

ϕ(λ, n) ≥
µ2:n

µn
− 1

n
,

where µ2:n is the expected value of the second order statistic of F .

Proof. Let c = µ2:2

µ2
− 1, and notice that µ2:n

µn
≤ µ2:2

µ2
= c+ 1. Thus,

µ2:n

µn
− 1

n
≤ c

n
.

Next, by Lemma (3.3), we know that ϕ(λ, n) is strictly increasing in λ for every n ≥ 1, and

lim
λ→∞

ϕ(λ, n) = 1,

which implies that for every n > c, there exists a λ such that

(3.7) ϕ(λ, n) ≥
µ2:n

µn
− 1

n
.

Next, we show that λ = inf

λ′ | λ′ −
F←

(
c(1+ 1

λ−1 )
n

)
F←( 1

n )
≥ 0, ∀n ≥ n0

 satisfies (3.7).

By Lemma 3.4, we know that

ϕ(λ, n) =

∫ λµn−1

a
F (u) du

λµn−1
.

Taking the first-order Taylor approximation of
∫ x

a
F (u) du around x = a, we obtain∫ x

a
F (u) du

x
≈ x− a

x
F (x),

and thus

ϕ(λ, n) ≈ λµn−1 − a
λµn−1

F (λµn−1).
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Therefore, for large enough n, it suffices to show that

F (λµn−1) ≥
c

n
· λµn−1

λµn−1 − a
.

If a = 0, we know that λµn−1

λµn−1−a = 1, and if a ̸= 0, for λ bounded away from 1, we know that λµn−1

λµn−1−a ≤
λa

λa−a =
λ

λ−1 = 1 + 1
λ−1 .

Thus, we need that

(3.8) F (λµn−1) ≥
c
(
1 + 1

λ−1

)
n

.

For λ bounded away from 1, let c′ = c
(
1 + 1

λ−1

)
. Thus, (3.8) becomes

(3.9) F (λµn−1) ≥
c′

n
.

By [ABN08] (Eq. (5.5.3)), for large enough n, we obtain

µn−1 ≈ F←
(
1

n

)
,

which turns (3.9) into

(3.10) F

(
λF←

(
1

n

))
≥ c′

n
⇐⇒ λF←

(
1

n

)
≥ F←

(
c′

n

)
⇐⇒ λ ≥

F←
(

c′

n

)
F←

(
1
n

) ,
which is true, as λ is the infimum across all numbers satisfying (3.10). Finally, λ is a constant, since

F←
(

c′
n

)
F←( 1

n )
is the

ratio of two quantiles of D of the same order that converges to a constant as n→∞ [ABN08] (Eq. (5.5.2), (5.5.3)).

Finally, we will need the following useful recurrence for moments of order statistics.

Lemma 3.6. ([ABN08], Theorem 5.3.13) Let µi:n denote the expected value of the i-th order statistic out of n
random variables. Then,

µ2:n = nµ1:n−1 − (n− 1)µ1:n.

We are now ready to prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] Fix a n0 ∈ N to be defined later, and let ξ = inf
{
ξ′ | G(n)

µn
≤ ξ′ ∀n ≥ n0

}
. Note

that, at this point, no bound on ξ has been established, and hence it could, in principle, be that ξ = +∞. We
show this is not the case. Recall that G(n) denotes the expected value of the optimal threshold algorithm on n
random variables. We start with the following upper bound on G(n).

Claim 3.1. For all n > n0,

G(n) ≤ ξµn−1e
−H(ξµn−1) +

∫ H(ξµn−1)

0

H←(u) e−u du.

Proof. By Lemma 3.2, we know that

(3.11) G(n) = a+

∫ G(n−1)

a

e−H(u) du ≤ a+
∫ ξµn−1

a

e−H(u) du,

where the last inequality follows from G(n−1)
µn−1

≤ ξ by the definition of ξ.
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Let x = H(u) ⇐⇒ u = H←(x), which implies du = dH←(x)
dx dx. Thus, (3.11) becomes

G(n) ≤ a+
∫ H(ξµn−1)

0

dH←(x)

dx
e−x dx

= a+
[
H←(x) e−x

]H(ξµn−1)

0
+

∫ H(ξµn−1)

0

H←(x) e−x dx

= a+ ξµn−1e
−H(ξµn−1) −H←(0) +

∫ H(ξµn−1)

0

H←(x) e−x dx

= ξµn−1e
−H(ξµn−1) +

∫ H(ξµn−1)

0

H←(x) e−x dx,

since H(a) = 0 ⇐⇒ a = H←(0).

Next, using Claim 3.1, we have

G(n)

µn
≤
ξµn−1e

−H(ξµn−1) +
∫H(ξµn−1)

0
H←(u) e−u du

µn

= ξ
µn−1

µn

(
e−H(ξµn−1) +

∫H(ξµn−1)

0
H←(u)e−u du

ξµn−1

)
= ξ

µn−1

µn
(1− ϕ(ξ, n)) .(3.12)

We need (3.12) to be at most ξ. This happens if and only if

µn−1

µn
(1− ϕ(ξ, n)) ≤ 1 ⇐⇒

(
1 +

µn−1

µn
− 1

)
(1− ϕ(ξ, n)) ≤ 1.

This is true, for large enough n, if

(3.13) ϕ(ξ, n) ≥ µn−1

µn
− 1.

By Lemma 3.6 we know that
µ2:n = nµn−1 − (n− 1)µn,

which implies that
µn−1

µn
− 1 =

µ2:n

µn
− 1

n
,

and (3.13) becomes

(3.14) ϕ(ξ, n) ≥
µ2:n

µn
− 1

n
.

Finally, Lemma 3.5 shows the existence of constants ξ, namely ξ = λ, and n0, and our result follows.
The tightness of our result is immediate from the fact that the λ guaranteed by Lemma 3.5 is taken to be the

infimum among all such λ satisfying (3.14).

3.3 Closed Form for Entire Distributions If D is an entire distribution (see Definition 2.4), we provide a
closed form for λ, via Theorem 1.2, restated here.

Theorem 3.2. Let D be an entire distribution supported on [a, b] or [a,+∞), where a ≥ 0, with cdf F . There
exists n0 ∈ N such that, for every n ≥ n0, there exists a λ(d)-factor cost prophet inequality for the I.I.D. setting
under D, where

λ(d) =
(1 + 1/d)

1/d

Γ (1 + 1/d)
,

d is the smallest degree of the Puiseux series of H, and Γ(·) is the Gamma function.
Moreover, this constant is tight for the distribution with cumulative hazard rate H(x) = xd.
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3.3.1 Upper Bound

Theorem 3.3. Let D be an entire distribution on [0,+∞) with cumulative hazard rate H, which has a Puiseux
series H(x) =

∑∞
i=1 aix

di where d1 < d1 < . . . , and let

λ(d1) =
(1 + 1/d1)

1/d1

Γ (1 + 1/d1)
.

Then, Algorithm 3.1 achieves a λ(d1)-competitive ratio with respect to µn, for large enough n.

Proof. By Observation 2.3 we have that d1 > 0 and a1 > 0. For the competitive ratio of Algorithm 3.1, we start
by analyzing its expected cost with respect to the cumulative hazard rate H(x). Recall that, by Lemma 3.2, the
expected cost incurred by Algorithm 3.1 is

G(n) =

∫ G(n−1)

0

e−H(u) du.

Recall that R(n) denotes the competitive ratio of Algorithm 3.1 for n random variables, and that our algorithm
compares against the prophet who always selects the minimum value out of all realizations, i.e. µn on expectation.
We want to show that R(n) is upper bounded by a constant for all n ≥ 1. By Lemma 3.2, we have

R(n) =
G(n)

µn
=

1

µn

∫ G(n−1)

0

e−H(u) du =
1

µn

∫ G(n−1)

0

e−
∑∞

i=1 aiu
di
du.

Before we proceed, we analyze µn.

Lemma 3.7. For every n ≥ 1.

µn =
Γ (1 + 1/d1)

(a1 n)
1/d1

+ o

(
1

n1/d1

)
.

Proof.

µn =

∫ ∞
0

e−nH(u) du =

∫ ∞
0

e−n
∑∞

i=1 aiu
di
du =

∫ ∞
0

e−n a1u
d1 · e−n

∑∞
i=2 aiu

di
du

=

∫ ∞
0

e−n a1u
d1 ·

∞∏
i=2

e−n aiu
di
du =

∫ ∞
0

e−n a1u
d1 ·

∞∏
i=2

∑
ℓi≥0

(
−n aiudi

)ℓi
ℓi!

du.(3.15)

Let x = n a1u
d1 ⇐⇒ u =

(
x

n a1

)1/d1

. Then,

dx = n a1d1u
d1−1 du ⇐⇒ du =

u1−d1

n a1 d1
dx =

x1/d1−1

n a11/d1 d1
dx,

and (3.15) becomes

µn =
1

n a11/d1 d1

∫ ∞
0

e−xx1/d1−1 ·
∞∏
i=2

∑
ℓi≥0

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
dx.

As in the proof of Lemma 3.8, each term
∑

ℓi≥0

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
converges to e

−n ai

(
x

n a1

)di/d1

, and thus we
have

∞∏
i=2

∑
ℓi≥0

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
=

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
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µn =
1

n a11/d1 d1

∫ ∞
0

e−xx1/d1−1 ·
∑

ℓ2,ℓ3,...≥0

∞∏
i=2

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
dx

=
1

n a11/d1 d1

∑
ℓ2,ℓ3,...≥0

∫ ∞
0

e−xx1/d1−1 ·
∞∏
i=2

(
−n ai

(
x

n a1

)di/d1
)ℓi

ℓi!
dx

=
1

n a11/d1 d1

∑
ℓ2,ℓ3,...≥0

∫ ∞
0

e−xx1/d1+1/d1

∑∞
j=2 djℓj−1 ·

∞∏
i=2

(
−n ai (n a1)−di/d1

)ℓi
ℓi!

dx

=
1

n a11/d1 d1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−n ai (n a1)−di/d1

)ℓi
ℓi!

·
∫ ∞
0

e−xx1/d1+1/d1

∑∞
j=2 djℓj−1 dx

=
1

n a11/d1 d1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−n ai (n a1)−di/d1

)ℓi
ℓi!

· Γ

1/d1 + 1/d1

∞∑
j=2

djℓj

(3.16)

=
Γ (1/d1)

d1 (n a1)
1/d1

+

+
1

d1 (n a1)
1/d1

∑
ℓ2,ℓ3,...≥0

ℓ2,ℓ3...̸=(0,0,... )

∞∏
i=2

(
−n ai (n a1)−di/d1

)ℓi
ℓi!

Γ

1/d1 + 1/d1

∞∑
j=2

djℓj


=

Γ (1 + 1/d1)

(n a1)
1/d1

+
1

d1 (n a1)
1/d1

∑
ℓ2,ℓ3,...≥0

ℓ2,ℓ3,...̸=(0,0,... )

n
∑∞

j=2 ℓj(1−dj/d1)

·
∞∏
i=2

(
−aia−di/d1

1

)ℓi
ℓi!

Γ

1/d1 + 1/d1

∞∑
j=2

djℓj

 .(3.17)

where (3.16) follows by the definition of the Gamma function.
Notice that, since di > d1 for all i ≥ 2, we have n1−di/d1 = o (1) for all i ≥ 2. Also, in the exponent of n in

the second summand, there is always at least one ℓj that is not 0, and thus

µn =
Γ (1 + 1/d1)

(a1 n)
1/d1

+ o

(
1

n1/d1

)
.

We are now ready to upper bound R(n).

Lemma 3.8. For every n ≥ 1, we have

R(n) ≤ (1 + 1/d1)
1/d1

Γ(1 + 1/d1)
.

Proof. We show that R(n) ≤ (1+1/d1)
1/d1

Γ(1+1/d1)
via induction on n. For n = 1, R(1) = 1 and (1+1/d1)

1/d1

Γ(1+1/d1)
≥ 1 for all

d1 > 0. For the induction hypothesis, assume R(k) ≤ (1+1/d1)
1/d1

Γ(1+1/d1)
for all k ≤ n, and let λ(d1) =

(1+1/d1)
1/d1

Γ(1+1/d1)
for

brevity. For n+ 1 we have

R(n+ 1) =
1

µn+1

∫ G(n)

0

e−
∑∞

i=1 aiu
di
du
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≤ 1

µn+1

∫ λ(d1)µn

0

e−
∑∞

i=1 aiu
di
du

=
1

µn+1

∫ λ(d1)µn

0

e−a1u
d1 ·

∞∏
i=2

e−aiu
di
du

=
1

µn+1

∫ λ(d1)µn

0

e−a1u
d1 ·

∞∏
i=2

∑
ℓi≥0

(
−aiudi

)ℓi
ℓi!

du.(3.18)

where the second inequality follows by our induction hypothesis, since G(n) ≤ λ(d1)µn. Let x = a1u
d1 ⇐⇒ u =(

x
a1

)1/d1

. Also,

dx = a1d1u
d1−1 du ⇐⇒ du =

u1−d1

a1d1
dx =

x1/d1−1

a11/d1d1
dx .

Thus, (3.18) becomes

R(n+ 1) ≤ 1

d1a11/d1µn+1

∫ a1(λ(d1)µn)
d1

0

e−xx1/d1−1 ·
∞∏
i=2

∑
ℓi≥0

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
dx

Recall that D is an entire distribution and thus the Puiseux series for H converges everywhere in the support of D.

Therefore, each term
∑

ℓi≥0

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
converges to e

−ai

(
x
a1

)di/d1

, and thus we can use the distributive law
for infinite products [DP02] and obtain

∞∏
i=2

∑
ℓi≥0

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
=

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
.

Therefore,

R(n+ 1) ≤ 1

d1a11/d1µn+1

∫ a1(λ(d1)µn)
d1

0

e−xx1/d1−1 ·
∑

ℓ2,ℓ3,...≥0

∞∏
i=2

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
dx

=
1

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∫ a1(λ(d1)µn)
d1

0

e−xx1/d1−1 ·
∞∏
i=2

(
−ai

(
x
a1

)di/d1
)ℓi

ℓi!
dx

=
1

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∫ a1(λ(d1)µn)
d1

0

e−xx1/d1+1/d1
∑∞

j=2 djℓj−1 ·
∞∏
i=2

(
−aia1−di/d1

)ℓi
ℓi!

dx

=
1

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−aia1−di/d1

)ℓi
ℓi!

∫ a1(λ(d1)µn)
d1

0

e−xx1/d1+1/d1

∑∞
j=2 djℓj−1 dx

=
1

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−aia1−di/d1

)ℓi
ℓi!

γ

1/d1 + 1/d1

∞∑
j=2

djℓj , a1 (λ(d1)µn)
d1

 ,(3.19)

where the third inequality follows by multiplying together the terms of each sum, the fourth inequality follows
by exchanging the order of summation and integration, the fifth inequality follows because the product does not
depend on x, and the last inequality follows by the definition of γ(s, x).
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Now, using Fact C.2, (3.19) becomes

R(n+ 1) ≤ 1

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−aia1−di/d1

)ℓi
ℓi!

(
a1 (λ(d1)µn)

d1

)1/d1+1/d1

∑∞
j=2 djℓj

·
∑
ℓ1≥0

(
−a1 (λ(d1)µn)

d1

)ℓ1
ℓ1!
(
1/d1 + 1/d1

∑∞
j=2 djℓj + ℓ1

)
=
a1

1/d1λ(d1)µn

d1a11/d1µn+1

∑
ℓ2,ℓ3,...≥0

∞∏
i=2

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!

∑
ℓ1≥0

(
−a1 (λ(d1)µn)

d1

)ℓ1
ℓ1!
(
1/d1 + 1/d1

∑∞
j=1 djℓj

)
=
λ(d1)µn

µn+1

∑
ℓ1,ℓ2,...≥0

∞∏
i=2

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!

(
−a1 (λ(d1)µn)

d1

)ℓ1
ℓ1!
(
1 +

∑∞
j=1 djℓj

)
= λ(d1)

µn

µn+1

∑
ℓ1,ℓ2,...≥0

∞∏
i=1

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!
(
1 +

∑∞
j=1 djℓj

) .(3.20)

Claim 3.2. For large enough n,

µn

µn+1

∑
ℓ1,ℓ2,...≥0

∞∏
i=1

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!
(
1 +

∑∞
j=1 djℓj

) ≤ 1.

Proof. By Lemma 3.7, we know that, for large enough n, there exist a constant c ≥ 0 such that

µn =
Γ (1 + 1/d1)

(a1 n)
1/d1

+ o

(
1

n1/d1

)
≤ Γ (1 + 1/d1)

(a1 n)
1/d1

(1 + o (1)) .

Therefore, we have

µn

µn+1
=

(
n+ 1

n

)1/d1

(1 + o (1)) .

Thus

µn

µn+1

∑
ℓ1,ℓ2,...≥0

∞∏
i=1

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!
(
1 +

∑∞
j=1 djℓj

) =

(
1 +

1

n

)1/d1

(1 + o (1))
∑

ℓ1,ℓ2,...≥0

∞∏
i=1

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!
(
1 +

∑∞
j=1 djℓj

)
≤
(
1 +

1

n

)1/d1

(1 + o (1))

(
1−

∞∑
i=1

ai
1 + di

(λ(d1)µn)
di + o

(
1

n1/d1

))
.(3.21)

Notice that
∞∑
i=1

ai
1 + di

(λ(d1)µn)
di =

a1
1 + d1

(λ(d1))
d1 µd1

n +
∞∑
i=2

ai
1 + di

(λ(d1)µn)
di .

Also, µdi
n = O

(
1

ndi/d1

)
, and for i ≥ 2, we have di > d1, which implies that µdi

n = o
(

1
n1/d1

)
. Thus, (3.21) becomes

µn

µn+1

∑
ℓ1,ℓ2,...≥0

∞∏
i=1

(
−ai (λ(d1)µn)

di

)ℓi
ℓi!
(
1 +

∑k
j=1 djℓj

) ≤ (1 + 1

n

) 1
d1

(1 + o (1))

(
1− a1

1 + d1
(λ(d1)µn)

d1 + o

(
1

n1/d1

))
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≤

((
1 +

1

n

)1/d1

+ o

(
1

n1/d1

))(
1− a1

1 + d1
(λ(d1)µn)

d1 + o

(
1

n1/d1

))
= 1 +

1

d1 n
− a1

1 + d1
(λ(d1)µn)

d1 + o

(
1

n

)
= 1 +

1

d1 n
− a1

1 + d1
(λ(d1))

d1
(Γ (1 + 1/d1))

d1

a1n
+ o

(
1

n

)
(3.22)

For (3.22) to be bounded above by 1, we need

1

d1 n
≤ a1

1 + d1
(λ(d1))

d1
(Γ (1 + 1/d1))

d1

a1n
⇐⇒ (λ(d1))

d1 ≥ 1 + 1/d1

(Γ (1 + 1/d1))
d1
⇐⇒

λ(d1) ≥
(1 + 1/d1)

1/d1

Γ (1 + 1/d1)
,

which holds, since λ(d1) =
(1+1/d1)

d1

Γ(1+1/d1)
.

Thus, it follows that Algorithm 3.1 achieves a (1+1/d1)
1/d1

Γ(1+1/d1)
-competitive ratio with respect to µn.

Remark 3.1. The astute reader might observe that throughout the paper we’ve assumed that the support of D
begins at 0, which implies that H(x) =

∫ x

0
h(u) du, and thus H(0) = 0, which in turn implies that d1 > 0. This is

without loss of generality. Specifically, if the support of D begins at a > 0, one can “shift” it to the origin to find
the approximation factor. Formally, we have H(x) =

∫ x

a
h(u)du =

∫ x−a
0

h(u+ a)du, and thus H(a) = 0. Define
H ′(x) = H(x+a). We have H ′(0) = 0 and the approximation factor of the original distribution depends on d′1 > 0.
Thus, this dependence is a technicality that does not affect the approximation factor.

3.3.2 Lower Bound In this section, we show that there exist entire distributions for which the upper bounds
given by λ of the previous section is tight. Notice that a cumulative hazard rate H(x) = xd defines, for d > 0,

a distribution on [0,+∞), with CDF F (x) = 1 − e−xd

, since F (0) = 0 and limx→∞ F (x) = 1. For d = 1, the
resulting distribution is the exponential with rate 1.

Theorem 3.4. Consider the distribution D for which H(x) = xd for d ≥ 0. For any ε > 0, there is no(
(1+1/d)1/d

Γ(1+1/d) − ε
)
-competitive cost prophet inequality for the single-item setting and I.I.D. random variables drawn

from D.

Proof. Let λ(d) = (1+1/d)1/d

Γ(1+1/d) .

Lemma 3.9. For every n ≥ 1,

µn =
Γ (1 + 1/d)

n1/d
.

Proof. The proof follows immediately from the proof of Lemma 3.7. In particular, we have

(3.23) µn =

∫ ∞
0

e−nH(u) du =

∫ ∞
0

e−n ud

du,

and, by (3.17) of Lemma 3.7, since a1 = 1 and a2 = · · · = ak = 0, we get that

µn =
Γ (1 + 1/d)

n1/d
.
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Using Lemma 3.9, we have that

(3.24) R(n) =
G(n)

µn
=

n1/d

Γ(1 + 1/d)

∫ G(n−1)

0

e−H(u) du =
n1/d

Γ(1 + 1/d)

∫ G(n−1)

0

e−u
d

du.

Let x = ud ⇐⇒ u = x1/d. Also,

dx = d ud−1 du ⇐⇒ du =
u1−d

d
dx =

x1/d−1

d
dx,

and thus (3.24) becomes

(3.25) R(n) =
n1/d

d Γ(1 + 1/d)

∫ (G(n−1))d

0

e−xx1/d−1 dx =
n1/d

Γ(1 + 1/d)

1

d
γ
(
1/d, (G(n− 1))

d
)
.

where the second equality follows from the definition of the lower incomplete Gamma function.

Lemma 3.10. R(n) is increasing in n.

Proof. Recall that, by (3.25), we have

R(n) =
n1/d

Γ(1/d)
γ
(
1/d, (G(n− 1))

d
)

=
1

d

n1/d

Γ (1 + 1/d)
γ
(
1/d, (G(n− 1))

d
)

=
1

d µn
γ
(
1/d, (G(n− 1))

d
)
.

However, by Fact C.2, we have

γ
(
1/d, (G(n− 1))

d
)
= G(n− 1)

∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1/d+ k)
.

Thus

R(n) =
G(n− 1)

d µn

∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1/d+ k)

=
G(n− 1)

µn−1

µn−1

µn

∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1 + d k)

= R(n− 1)
µn−1

µn

∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1 + d k)
.

It suffices to show that

µn−1

µn

∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1 + d k)
≥ 1.

Notice that

µn−1

µn
=

(
n

n− 1

)1/d

=

(
1 +

1

n− 1

)1/d

=

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
.
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Thus, it suffices to show that

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
·
∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1 + d k)
≥ 1.

We use the fact that G(n− 1) ≤ λ(d)µn−1 =
(

1+1/d
n−1

)1/d
and get

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
·
∞∑
k=0

(
− (G(n− 1))

d
)k

k! (1 + d k)
=
∞∑
k=0

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
·

(
− (G(n− 1))

d
)k

k! (1 + d k)

≥
∞∑
k=0

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
· (−(1 + 1/d))

k

k! (n− 1)k (1 + d k)

=
∞∑
k=0

1/d∑
ℓ=0

(
1/d

ℓ

)
(−(1 + 1/d))

k

k! (1 + d k)
· 1

(n− 1)
ℓ+k

= 1 +
1

d(n− 1)
− 1 + 1/d

(d+ 1)(n− 1)
+ O

(
1

n2

)
Thus, for this quantity to be greater than 1, it suffices to have

1

d(n− 1)
≥ 1 + 1/d

(d+ 1)(n− 1)
⇐⇒ d+ 1

d
≥ 1 + 1/d,

which is true.

Assume, towards contradiction, that limn→∞R(n) = λ∗ < λ(d1) =
(1+1/d)1/d

Γ(1+1/d) .

We know that G(n− 1) = R(n− 1)µn−1 = Γ(1+1/d)
(n−1)1/dR(n− 1). Thus we get

(3.26) R(n) =
n1/d

Γ(1 + 1/d)

1

d
γ

(
1/d,

(Γ (1 + 1/d))
d

(n− 1)
(R(n− 1))

d

)
.

Recall that, by Fact C.2, γ(s, x) = xs
∑∞

k=0
(−x)k

k! (s+k) , and thus (3.26) becomes

R(n) =

(
n

n− 1

)1/d

R(n− 1)
1

d

∞∑
k=0

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1/d+ k)

R(n) =

(
n

n− 1

)1/d

R(n− 1)
∞∑
k=0

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1 + d k)

= R(n− 1)

(
1 +

1

n− 1

)1/d ∞∑
k=0

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1 + d k)

Notice that (
1 +

1

n− 1

)1/d

=

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
.

Thus,

(
1 +

1

n− 1

)1/d ∞∑
k=0

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1 + d k)
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=

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
·
∞∑
k=0

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1 + d k)

=
∞∑
k=0

1/d∑
ℓ=0

1

(n− 1)
ℓ

(
1/d

ℓ

)
·

(
− (Γ(1+1/d))d

(n−1) (R(n− 1))
d
)k

k! (1 + d k)

=
∞∑
k=0

1/d∑
ℓ=0

1

(n− 1)
ℓ+k

(
1/d

ℓ

)
·

(
− (Γ (1 + 1/d) ·R(n− 1))

d
)k

k! (1 + d k)

≈ 1 +
1

d (n− 1)
− (Γ (1 + 1/d) ·R(n− 1))

d

(d+ 1) (n− 1)
,

where, for large enough n, we can ignore higher order terms and we also have R(n− 1) ≈ λ∗. Thus, for R(n) ≤ λ∗,
it must be that

1

d
− (Γ (1 + 1/d) · λ∗)d

(d+ 1)
≤ 0 ⇐⇒ (Γ (1 + 1/d) · λ∗)d ≥ 1 + 1/d ⇐⇒ λ∗ ≥ (1 + 1/d)

1/d

Γ (1 + 1/d)
,

and we arrive at a contradiction.
Therefore, for any ε > 0, there is no

(
(1+1/d)1/d

Γ(1+1/d) − ε
)
-competitive cost prophet inequality for the single-item

setting and I.I.D. random variables drawn from D.

Now, Theorem 1.2 follows by Theorems 3.3 and 3.4.

3.4 Special Case: MHR Distributions Even though the constant-factor competitive ratio obtained by
Algorithm 3.1 is distribution-dependent, it turns out that we can show a uniform factor of 2 when the distributions
are MHR and entire. This factor is also tight, and it provides a nice parallel to the standard 1/2-competitive
prophet inequality in the rewards setting [KS77, KS78, SC84, KW19].

Theorem 3.5. For every entire MHR distribution, there exists an algorithm that achieves a 2-competitive ratio in
the cost prophet inequality setting.

Proof. Let D be an entire MHR distribution with cumulative hazard rate H where H has a Puiseux series
H(x) =

∑∞
i=1 aix

di and d1 < d2 < . . . . Notice that since D has a monotonically increasing hazard rate, we have
h′(x) = H ′′(x) ≥ 0 everywhere in [0,+∞). Thus,( ∞∑

i=1

aix
di

)′′
≥ 0 ⇐⇒

( ∞∑
i=1

ai dix
di−1

)′
≥ 0 ⇐⇒

∞∑
i=1

ai di (di − 1)xdi−2 ≥ 0,

for all x ≥ 0. Recall that, by Observation 2.3, for H to be the cumulative hazard rate of a distribution D, it must
be an increasing function in x, and thus a1 > 0.

Assume towards contradiction that d1 < 1, which implies that the first term of H is negative. We use this to
contradict the fact that H ′′(x) ≥ 0 everywhere. In particular, consider a point y where

a1 d1(1− d1)yd1 >
∞∑
i=2

ai di (di − 1)ydi ⇐⇒

y2

(
a1 d1(1− d1)yd1−2 −

∞∑
i=2

ai di (di − 1)ydi−2

)
> 0 ⇐⇒

−y2H ′′(y) > 0 =⇒ H ′′(y) < 0.

Such a point can always be found because, for any choice of a1, a2, . . . and d1 < d2 < . . . , one can pick a small
enough y that ensures a1 d1(1− d1)yd1 dominates the term

∑∞
i=2 ai di (di − 1)ydi .
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Therefore, for all entire MHR distributions, it must be the case that d1 ≥ 1. This implies that for every entire
MHR distribution D, λ(d1) ≤ λ(1) = 2, and thus Algorithm 3.1 obtains a 2-factor approximation to the prophet’s
cost.

Furthermore, notice that if we consider the distribution with H(x) = x, i.e. the exponential distribution, then,
as a corollary of Theorem 1.2 for d = 1, we get that the factor of 2 is tight. The exponential distribution is MHR
as it has a constant hazard rate, and hence we obtain the following result.

Corollary 3.1. For any ε > 0, there exists no (2− ε)-factor cost prophet inequality for the exponential
distribution.

Now, Theorem 1.3 follows by Theorem 3.5 and Corollary 3.1.

4 Single Threshold Algorithm

This section is dedicated to proving Theorem 1.4. We design an algorithm which sets a fixed threshold T and
selects the first realization that is below T . If our algorithm ever reaches Xn and has not selected any value, it is
forced to pick the realization of Xn regardless of its cost. Our choice of T is

T = Θ

((
log n

n

)k
)
,

for an appropriate value of k that depends on the given distribution.
We analyze our algorithm’s performance for an entire distribution with Puiseux series for the cumulative

hazard rate H(x) =
∑∞

i=1 ai x
di , where d1 < d2 < . . . , and obtain a O

(
(log n)

1/d1

)
-competitive ratio. We

then proceed to show that this ratio is asymptotically tight, as we show that no single threshold algorithm can

achieve a competitive ratio better than Ω
(
(log n)

1/d
)
for the distribution with H(x) = xd. Our results imply a

O (polylog n)-factor single-threshold cost prophet inequality for the single-item setting and entire distributions.
Theorem 1.4 follows by Theorems 4.1 and 4.2.

4.1 Upper Bound

Theorem 4.1. Let D be an entire distribution on [0,+∞) for which the cumulative hazard rate function H has
Puiseux series H(x) =

∑∞
i=1 aix

di , where d1 < d2 < . . . . Then, there exists a single threshold T = T (n, d1, a1)

such that the algorithm that selects the first value Xi ≤ T for i < n and Xn otherwise, achieves a O
(
(log n)

1/d1

)
-

competitive ratio compared to µn, for large enough n.

Proof. We start by analyzing the algorithm’s performance for an arbitrary choice of T . We have

E[ALG] =
(
1− (1− F (T ))n−1

)
E [X |X ≤ T ] + (1− F (T ))n−1 E[X](4.27)

=
(
1− e−(n−1)H(T )

)∫ T

0

(
1− F (x)

F (T )

)
dx+ e−(n−1)H(T )

∫ ∞
0

e−H(x) dx

=
(
1− e−(n−1)H(T )

)∫ T

0

(
1− 1− e−H(x)

1− e−H(T )

)
dx+ e−(n−1)H(T )

∫ ∞
0

e−H(x) dx

=
1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−H(x) dx− Te−H(T )

)
+ e−(n−1)H(T )

∫ ∞
0

e−H(x) dx ⇐⇒

R(n) =
1

µn

(
1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−H(x) dx− Te−H(T )

)
+ e−(n−1)H(T )µ1

)
.(4.28)

Notice that, ∫ T

0

e−H(x) dx− Te−H(T ) ≤ T
(
1− e−H(T )

)
.
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Using the above, (4.28) becomes

R(n) ≤ 1

µn

(
1− e−(n−1)H(T )

1− e−H(T )
T
(
1− e−H(T )

)
+ e−(n−1)H(T )µ1

)
=

1

µn

((
1− e−(n−1)H(T )

)
T + e−(n−1)H(T )µ1

)
.(4.29)

By Lemma 3.7, we know that there exist constants c1, c2 > 0 such that for large enough n, we have

c1
Γ (1 + 1/d1)

n1/d1
≤ µn ≤ c2

Γ (1 + 1/d1)

n1/d1
.

Thus, (4.29) becomes

R(n) ≤ n1/d1

c1 Γ (1 + 1/d1)

((
1− e−(n−1)H(T )

)
T + e−(n−1)H(T ) c2 Γ (1 + 1/d1)

)
.(4.30)

=
n1/d1

c1 Γ (1 + 1/d1)

(
1− e−(n−1)H(T )

)
T + e−(n−1)H(T ) c2

c1
n1/d1 .(4.31)

Let

T =

 log
(

n
logn

)
d1 a1 (n− 1)

1/d1

.

Since H(T ) =
∑∞

i=1 aiT
di , we have

H(T ) = a1 ·
log
(

n
logn

)
d1 a1 (n− 1)

+
∞∑
i=2

ai

 log
(

n
logn

)
d1 a1 (n− 1)

di/d1

=
log
(

n
logn

)
d1 (n− 1)

+
∞∑
i=2

ai

 log
(

n
logn

)
d1 a1 (n− 1)

di/d1

.

Since di > d1 for all i ≥ 2, we have that, for large enough n,

H(T ) ≈ a1 T d1 ,

as
∑∞

i=2 aiT
di = o

(
T d1
)
. Thus, (4.31) becomes

R(n) ≤ n1/d1

c1 Γ (1 + 1/d1)

(
1− e−(n−1) a1 Td1

)
T + e−(n−1) a1 Td1 c2

c1
n1/d1

=
n1/d1

c1 Γ (1 + 1/d1)

(
1− e−(n−1) a1

log( n
log n )

d1 a1 (n−1)

) log
(

n
logn

)
d1 a1 (n− 1)


1
d1

+ e
−(n−1) a1

log( n
log n )

d1 a1 (n−1)
c2
c1
n

1
d1

=
n1/d1

c1 Γ (1 + 1/d1)

(
1−

(
log n

n

)1/d1
) log

(
n

logn

)
d1 a1 (n− 1)

1/d1

+
c2
c1

(
log n

n

)1/d1

n1/d1

=
1

c1 Γ (1 + 1/d1) (d1 a1)
1/d1

(
n

n− 1

) 1
d1

(
1−

(
log n

n

) 1
d1

)(
log

(
n

log n

)) 1
d1

+
c2
c1

(log n)
1
d1

However, there exists a constant c3 > 0 such that for large enough n,(
1 +

1

n− 1

)1+1/d1
(
1−

(
log n

n

)1/d1
)
≤ c3,
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and also
(
log
(

n
logn

))1/d1

≤ (log n)
1/d1 . Thus,

R(n) ≤ c3

c1 Γ (1 + 1/d1) (d1 a1)
1/d1

· (log n)1/d1 +
c2
c1

(log n)
1/d1 = O

(
(log n)

1/d1

)
.

4.2 Lower Bound

Theorem 4.2. Consider the distribution D for which H(x) = xd for d ≥ 0. There is no o
(
(log n)

1/d
)
-competitive

single-threshold cost prophet inequality for the single-item setting and I.I.D. random variables drawn from D.

Proof. Recall by (4.28) that

R(n) =
1

µn

(
1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−H(x) dx− Te−H(T )

)
+ e−(n−1)H(T )µ1

)
.

Assume, towards contradiction, that R(n) = o
(
(log n)

1/d
)
. For this to be the case, it must be that

(4.32) e−(n−1)H(T ) µ1

µn
= o

(
(log n)

1/d
)
,

and also that

(4.33)
1

µn

(
1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−H(x) dx− Te−H(T )

))
= o

(
(log n)

1/d
)
.

By (4.32) and the definition of o (·), we have that for every ε > 0, there must exist a n0 ≥ 1 such that for all
n ≥ n0, we have

e−(n−1)H(T ) µ1

µn
≤ ε (log n)1/d ⇐⇒ e−(n−1)H(T ) ≤ ε µn

µ1
(log n)

1/d ⇐⇒

−(n− 1)H(T ) ≤ log

(
ε
µn

µ1
(log n)

1/d

)
⇐⇒ H(T ) ≥

log
(

µ1

ε µn (log n)1/d

)
n− 1

⇐⇒

T d ≥
log
(

µ1

ε µn (log n)1/d

)
n− 1

⇐⇒ T ≥

 log
(

µ1

ε µn (log n)1/d

)
n− 1

1/d

.(4.34)

However, by (4.33), we have that for every ε′ > 0, there must exist a n1 ≥ 1 such that for all n ≥ n1, we have

1

µn

(
1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−H(x) dx− Te−H(T )

))
≤ ε′ (log n)1/d(

1− e−(n−1)H(T )

1− e−H(T )

(∫ T

0

e−x
d

dx− Te−H(T )

))
≤ ε′ µn (log n)

1/d

(
1− e−(n−1)H(T )

1− e−H(T )

(
1

d
γ
(
1/d, T d

)
− Te−H(T )

))
≤ ε′ µn (log n)

1/d
.(4.35)

where the last equality follows by substituting t = xd in the integral, as seen several other times in the paper.
Notice that T has to be decreasing in n, since, if not, one can easily see from (4.27) that the algorithm is too

eager to select a value and its performance degrades rapidly as n increases. Therefore, we know that limn→∞ T = 0.
Furthermore, by Fact C.3, we know that for small T , i.e. large enough n, we have

γ
(
1/d, T d

)
≈ d T,
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and thus (4.35) becomes (
1− e−(n−1)H(T )

1− e−H(T )

(
T − Te−H(T )

))
≤ ε′ µn (log n)

1/d ⇐⇒(
1− e−(n−1)H(T )

1− e−H(T )
T
(
1− e−H(T )

))
≤ ε′ µn (log n)

1/d ⇐⇒

T
(
1− e−(n−1)H(T )

)
≤ ε′ µn (log n)

1/d
.

However, by (4.34) we know that we must have

T ≥

 log
(

µ1

ε µn (log n)1/d

)
n− 1

1/d

,

and if
T
(
1− e−(n−1)H(T )

)
≤ ε′ µn (log n)

1/d
,

then it also must be the case that

T

(
1− ε µn (log n)

1/d

µ1

)
≤ ε′ µn (log n)

1/d
.

Notice that by Lemma 3.7

µn =
Γ (1 + 1/d)

n1/d
and µ1 = Γ (1 + 1/d) ,

and thus

T

(
1− ε

(
log n

n

)1/d
)
≤ ε′ µ1

(
log n

n

)1/d

.

For every ε, for n large enough, we have 1− ε
(

logn
n

)1/d
> 0, and thus

(4.36) T ≤ ε′
µ1

(
logn
n

)1/d
1− ε

(
logn
n

)1/d .
To arrive at a contradiction, we use (4.34) and (4.36) to show that it suffices to find, for every ε > 0, a constant
ε′ > 0 such that

ε′
µ1

(
logn
n

)1/d
1− ε

(
logn
n

)1/d <
 log

(
µ1

ε µn (log n)1/d

)
n− 1

1/d

=

 log

(
1
ε

(
n

logn

)1/d)
n− 1


1/d

.

Indeed, rearranging the terms above, we get

ε′ <
1− ε

(
logn
n

)1/d
µ1

(
logn
n

)1/d ·

 log

(
1
ε

(
n

logn

)1/d)
n− 1


1/d

=
1

µ1
·
1− ε

(
logn
n

)1/d
(

logn
n

)1/d ·

 1
d · log

(
1
εd

n
logn

)
n− 1

1/d
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=
1

µ1
·

(
1− ε

(
log n

n

)1/d
)
·

 1
d ·

n
logn log

(
1
εd

n
logn

)
n− 1

1/d

=
1

µ1
·

(
1− ε

(
log n

n

)1/d
)
·

1

d
· n

n− 1
·
log
(

1
εd

n
logn

)
log n

1/d

=
1

µ1 d1/d
·

(
1− ε

(
log n

n

)1/d
)
·

(
n

n− 1
·
log n− log

(
εd log n

)
log n

)1/d

.

Notice, however, that for any fixed ε > 0, we have

lim
n→∞

(
1− ε

(
log n

n

)1/d
)
·

(
n

n− 1
·
log n− log

(
εd log n

)
log n

)1/d

= 1,

and thus, for every ε > 0 there exists a large enough n and a constant 0 < ε′ 1
µ1d1/d such that (4.34) and (4.36)

cannot simultaneously hold, and we arrive at a contradiction.

5 Conclusion

Our work initiates the study of prophet inequalities for cost minimization, and provides a nuanced distribution-
sensitive analysis. It opens up a number of interesting questions.

• The optimal online algorithm has n distinct thresholds, one for each Xi, which is at the other extreme
compared to the single-threshold algorithms. What if we are allowed to use at most k-thresholds for k > 1?
How does the competitive ratio improve with k, starting with the poly-logarithmic factor we show for k = 1?

• If one has only sample access to D, how does the competitive ratio of the optimal algorithm change with the
number of samples? This question, with importance in practical applications when the distributions are not
fully known, has been studied extensively in the rewards maximization setting [AKW19, CDFS22, RWW20].

• Can we derive optimal distribution-sensitive guarantees for the rewards maximization setting to complement
the uniform bound of ≈ 0.745 due to [CFH+21]?
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for prophet inequalities and optimal ordering. In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21:
The 22nd ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, page 692. ACM,
2021.

[LS18] Euiwoong Lee and Sahil Singla. Optimal online contention resolution schemes via ex-ante prophet inequalities.
In Hannah Bast, Grzegorz Herman, and Yossi Azar, editors, 26th European Symposium on Algorithms, ESA 2018,
Leibniz International Proceedings in Informatics, LIPIcs, Germany, August 2018. Schloss Dagstuhl- Leibniz-Zentrum
fur Informatik GmbH, Dagstuhl Publishing.

[Luc] Brendan Lucier. personal communication.
[Luc17] Brendan Lucier. An economic view of prophet inequalities. SIGecom Exch., 16(1):24–47, September 2017.
[MS83] Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading. Journal of Economic

Theory, 29(2):265–281, 1983.
[Mye81] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.
[PRSW22] Tristan Pollner, Mohammad Roghani, Amin Saberi, and David Wajc. Improved online contention resolution for

matchings and applications to the gig economy. In David M. Pennock, Ilya Segal, and Sven Seuken, editors, EC ’22:
The 23rd ACM Conference on Economics and Computation, Boulder, CO, USA, July 11 - 15, 2022, pages 321–322.
ACM, 2022.

[QM99] Feng Qi and Jia-Qiang Mei. Some inequalities of the incomplete gamma and related functions. Zeitschrift für
Analysis und ihre Anwendungen, 18(3):793–799, 1999.

[QRVW19] Junjie Qin, Ram Rajagopal, Shai Vardi, and Adam Wierman. Convex prophet inequalities. SIGMETRICS
Perform. Eval. Rev., 46(2):85–86, 1 2019.

[RH04] Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models, Statistical Methods and Applications.
Wiley-Interscience, Hoboken, NJ, 2004.

[RS17] Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–1687. SIAM, 2017. Longer ArXiv version is at
http://arxiv.org/abs/1611.00665.

[Rub16] Aviad Rubinstein. Beyond matroids: Secretary problem and prophet inequality with general constraints. In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page 324–332, New
York, NY, USA, 2016. Association for Computing Machinery.

[RWW20] Aviad Rubinstein, Jack Z. Wang, and S. Matthew Weinberg. Optimal single-choice prophet inequalities from
samples. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 60:1–60:10. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[SC84] Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative random

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited454

D
ow

nl
oa

de
d 

05
/3

1/
24

 to
 6

7.
17

3.
98

.0
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

http://arxiv.org/abs/1611.00665


variables. The Annals of Probability, 12(4):1213–1216, 1984.
[SM02] Uwe Saint-Mont. A simple derivation of a complicated prophet region. J. Multivar. Anal., 80(1):67–72, 1 2002.
[Yan11] Qiqi Yan. Mechanism design via correlation gap. In Dana Randall, editor, Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 710–719. SIAM, 2011.

Appendix

A Counterexamples

A.1 Single-Threshold Counterexample For the cost-prophet inequality setting, a natural approach that is
seemingly intuitive is to set a single threshold T close to µn = E[miniXi] since, if n is large enough, with good
probability there will be a realization below the threshold and, this way, one would achieve a very good competitive
ratio.

We present an example that shows why this natural intuition fails.

Example. Consider the exponential distribution, for which F (x) = 1− e−x, f(x) = e−x, H(x) = x, E[X] = 1 and

µn =

∫ ∞
0

e−nx dx =
1

n
.

In our attempt to achieve a constant competitive ratio, we set a threshold T = c
n for some constant c > 0. If there

exists a realization of X1, . . . , Xn−1 that is below T , then we would select it; otherwise we are forced to select Xn

and obtain a cost equal to E[X].

The probability that there exists a realization of X1, . . . , Xn−1 that is below T is 1− (1− F (T ))n−1. Thus,
the expected cost of our algorithm is

E[ALGn] =
(
1− (1− F (T ))n−1

)
E [X |X ≤ T ] + (1− F (T ))n−1E[X]

=
(
1− e−(n−1)T

)
E [X |X ≤ T ] + e−(n−1)T · 1

=
(
1− e−c

n−1
n

)
E [X |X ≤ c/n] + e−c

n−1
n

=
(
1− e−c

n−1
n

) ∫ c
n

0
xf(x) dx

1− e−c/n
+ e−c

n−1
n

=
(
1− e−c

n−1
n

) ∫ c
n

0
xe−x dx

1− e−c/n
+ e−c

n−1
n

=
(
1− e−c

n−1
n

) 1− e−c/n − c
n e
−c/n

1− e−c/n
+ e−c

n−1
n

=
(
1− e−c

n−1
n

)(
1− c

n
· e−c/n

1− e−c/n

)
+ e−c

n−1
n .

Thus, the competitive ratio is

R(n) =
E[ALGn]

µn
= n

((
1− e−c

n−1
n

)(
1− c

n
· e−c/n

1− e−c/n

)
+ e−c

n−1
n

)
.

Notice that, as n→ +∞, we have

lim
n→+∞

n
(
1− e−c

n−1
n

)(
1− c

n
· e−c/n

1− e−c/n

)
=
c e−c (ec − 1)

2
,

but
lim

n→+∞
n e−c

n−1
n = +∞,

and thus the competitive ratio of this algorithm is infinite.
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A.2 I.I.D. Counterexample In the I.I.D. cost prophet inequality setting, one cannot hope to obtain a bounded
competitive factor for all distributions. The following counterexample is due to Lucier [Luc].

Proposition A.1. ([Luc]) For any n ≥ 2, there exists an instance of the I.I.D. cost prophet inequality problem
for which no algorithm is α-factor competitive for any α > 0.

Proof. Let n = 2 and consider the equal-revenue distribution, with support [1,+∞) and F (x) = 1− 1/x. For this
distribution, we have

E[X] =

∫ ∞
0

(1− F (x)) dx = 1 +

∫ ∞
1

(1− F (x)) dx = 1 +

∫ ∞
1

1

x
dx = +∞.

In this case, the expected cost of any algorithm is E [ALG] = +∞, regardless of whether it stops at X1 or at X2.
However, the prophet is always able to select the minimum of X1 and X2, which is

OPT = µ2 =

∫ ∞
0

(1− F (x))2 dx = 1 +

∫ ∞
1

1

x2
dx = 2.

Therefore, no algorithm can achieve a finite competitive ratio.
Notice that the above counterexample can be easily extended to any n. Due to the recursive nature of

the optimal online algorithm, we have E [ALG] = +∞ regardless of which Xi the algorithm chooses to stop at.
However, µn is finite for any n ≥ 2.

A.3 Extreme Value Index

Proposition A.2. The tight competitive ratio for the exponential distribution (F1(x) = 1−e−x, x ∈ [0,+∞)) and

the uniform distribution (F2(x) = x, x ∈ [0, 1]) is 2, whereas for the Weibull distribution (F3(x) = 1− e− x2

2 , x ∈
[0,+∞) it is

√
6
π .

Notice that the exponential and Weibull distributions belong to the Gumbel class of asymptotic distributions,
for which the extreme value index γ = 0. However, the uniform distribution belongs to the reversed Weibull class
of asymptotic distributions and has extreme value index γ = −1.

Proof. [Proof of Proposition A.2] We analyze Lemma 3.5 via the use of Lemma 3.4 for each of the aforementioned
distributions:

1. Exponential: We have

ϕ(λ, n) = (n− 1)

∫ λ
n−1

0 1− e−x dx
λ

= 1− n− 1

λ

(
1− e−

λ
n−1

)
.

Also,
µ2:n

µn
− 1

n
=
n
(

1
n−1 + 1

n

)
− 1

n
=

1

n− 1
.

The infimum over all λ > 1 for which

1− n− 1

λ

(
1− e−

λ
n−1

)
≥ 1

n− 1

is 2.

2. Uniform: We have

ϕ(λ, n) = (n)

∫ λ
n

0
x dx

λ
=

λ

2n
.

Also,
µ2:n

µn
− 1

n
=

1

n
.
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The infimum over all λ > 1 for which
λ

2n
≥ 1

n

is 2.

3. Weibull: We have

ϕ(λ, n) =

√
2(n− 1)

π

∫ λ
√

π
2(n−1)

0 1− e− x2

2 dx

λ
=

√
2(n− 1)

λ
√
π

(
λ

√
π

2(n− 1)
−
√
π

2
Erf

(
λ

√
π

2
√
n− 1

))
,

where Erf(x) is the error function, defined as Erf(x) = 2√
π

∫ x

0
e−t

2

dt. Also,

µ2:n

µn
− 1

n
=

√
n

n− 1
− 1.

The infimum over all λ > 1 for which√
2(n− 1)

λ
√
π

(
λ

√
π

2(n− 1)
−
√
π

2
Erf

(
λ

√
π

2
√
n− 1

))
≥
√

n

n− 1
− 1

is
√

6
π .

A.4 Bounded Support Distributions

Observation A.1. For any α > 0, there exists a distribution Dα, supported on [0, 1] such that for the I.I.D. cost
prophet inequality setting with random variables drawn from Dα

1. there exists an α-competitive cost prophet inequality, and

2. there does not exist an (α− ε)-competitive cost prophet inequality for any constant ε > 0.

Proof. Consider the Beta distribution, which is supported on [0, 1] and is parameterized by α > 0, and for which
Fα(x) = xα. For this distribution, we have

Hα(x) = − log (1− Fα(x)) = log

(
1

1− xα

)
.

The Puiseux series of Hα around x = 0 is

Hα(x) =
∑
k≥1

xkα

k
,

which converges for x ∈ [0, 1)5. Thus, we observe that, for this distribution, d1 = α, and from Theorem 1.2, we

know that there exists a tight (1+1/α)1/α

Γ(1+1/α) -cost prophet inequality.

B Missing Proofs

B.1 Proof of Observation 2.1

Observation B.1. For n ≥ 1,

µn = E
[

n
min
i=1

Xi

]
=

∫ ∞
0

(1− F (s))n ds.

5The Puiseux series and H are equal also for x → 1, since both diverge to +∞.
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Proof. Let Yn = minni=1Xi, then the CDF FYn
of Yn is

FYn(x) = Pr [Yn ≤ x] = 1− Pr [Yn > x] = 1−
n∏

i=1

Pr [Xi > x] = 1− (1− F (x))n , ∀x ∈ [0,+∞).

Recall that for a random variable X, we have

E[X] =

∫ ∞
0

xfX(x) dx =

∫ ∞
0

fX(x)

∫ x

0

dt dx.

By changing the order of integration, we obtain

E[X] =

∫ ∞
0

∫ x

0

fX(x) dx dt =

∫ ∞
0

Pr[X ≥ t] dt =
∫ ∞
0

(1− FX(t)) dt.

Using this, we get that the expected cost of the prophet (offline optimum), denoted by µn is,

µn = E[Yn] =
∫ ∞
0

(1− FYn
(s)) ds =

∫ ∞
0

(1− (1− (1− F (s))n)) ds =
∫ ∞
0

(1− F (s))n ds.

B.2 Proof of Observation 2.3

Observation B.2. Consider an entire distribution D supported on [0,+∞) with cumulative hazard rate H(x) =∑∞
i=1 aix

di , where d1 < d2 < . . . . Then, a1 > 0 and d1 > 0.

Proof. Once can easily see that a1 > 0 since H is non-negative. Note that, for any choice of a1, a2, . . . and
d1 < d2 < . . . , since the Puiseux series of H is convergent for every x in the support of D, there exists a small
enough x∗ ∈ [0, 1) such that, ∣∣a1xd1

∗
∣∣ > ∞∑

i=2

∣∣aixdi
∗
∣∣ .

Thus, if a1 < 0, we have H(x∗) < 0, a contradiction.
Next we show that d1 ≥ 0. Consider the derivative of H, namely h(x) =

∑∞
i=1 aidix

di−1. Again, given that
fact that d1 < di for all i ≥ 2, there exists y∗ such that∣∣a1d1yd1−1

∗
∣∣ > ∞∑

i=2

∣∣aidiydi−1
∗

∣∣ .
Thus since a1 > 0, we have a1 · d1 < 0 which implies h(y∗) < 0, a contradiction to h being non-negative.

B.3 Proof of Proposition 3.1

Proposition B.1. For any instance of the cost prophet inequality setting, one can achieve the optimal competitive
ratio with a threshold-based oblivious algorithm.

Proof. Since every algorithm has to select a value, if an algorithm observes the realization of Xn, it is forced to
select it. When an algorithm sees Xn−1, it has to decide whether to select it or not. Whatever the decision process
of the algorithm, let pA (r |Xn−1 = z) be the probability that algorithm A selects the realization of Xi, given Xi.
Then, the expected cost of A is

∑
z≥0

z pA (r |Xn−1 = z) +

1−
∑
z≥0

pA (r |Xn−1 = z)

E[Xn].

For a fixed choice of L =
∑

z≥0 p
A (r |Xn−1 = z), to maximize this quantity, A will greedily assign all the

probability mass of L to the lowest values z. Thus, the only choice A has to make is L itself, which is equal to
Pr
[
Xn−1 ≤ F−1(L)

]
. Therefore, every choice of L implies a threshold, namely F−1(L).

Finally, for the remaining random variables, the observation holds via induction, since the random variables
are I.I.D.
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B.4 Proof of Lemma 3.1

Lemma B.1. For the cost prophet inequality problem with random variables X1, X2, . . . , Xn, τn = +∞ for every
algorithm. For 1 ≤ i ≤ n− 1, the optimal threshold for the random variable Xi is

τi = G(n− i).

Proof. The lemma follows by backwards induction on n.
Base case. Since we are forced to select a single value, if the algorithm ever observes Xn, it must select its
realization. This is equivalent to τn = +∞. It then follows that G(1) = EX∼D[X].
Induction. Consider the i-th step, where i < n. For our induction hypothesis, assume that τj = G(n− j) for all
i < j < n. Conditioned to the fact that the algorithm has reached the i-th step, the expected cost of the optimal
algorithm is G(n− i+ 1); i.e. the cost that the optimal algorithms expects to receive from the remaining n− i+ 1
variables. Since τi is the optimal threshold for Xi, we obtain the following recurrence for G(n− i+ 1).

(B.1) G(n− i+ 1) = F (τi)E [X |X ≤ τi] + (1− F (τi))G(n− i).

This is because with probability F (τi) we select Xi and therefore receive cost E [X |X ≤ τi], and with probability
1− F (τi), we ignore Xi and we receive cost equal to the expected value of the optimal algorithm on Xi+1, . . . , Xn,
i.e. G(n− i). Thus, it suffices to show that setting τi = G(n− i) minimizes G(n− i+ 1).

We rearrange (B.1) and obtain

G(n− i+ 1) = F (τi)E [X |X ≤ τi] + (1− F (τi))G(n− i)

= F (τi) ·
∫ τi
0
uf(u) du

F (τi)
+ (1− F (τi))G(n− i)

=

∫ τi

0

uf(u) du+ (1− F (τi))G(n− i)

=

∫ τi

0

u (F (u))
′
du+ (1− F (τi))G(n− i)

= [uF (u)]
τi
0 −

∫ τi

0

F (u) du+ (1− F (τi))G(n− i)

= τiF (τi)−
∫ τi

0

F (u) du+ (1− F (τi))G(n− i).

where the second equality follows by the definition of E [X |X ≤ τi] and the second-to-last equality follows via
integration by parts.

We will show that the optimal threshold at the i-th step is

τi = G(n− i).

In other words, we will show that

G(n− i)F (G(n− i))−
∫ G(n−i)

0

F (u) du+ (1− F (G(n− i)))G(n− i)

≤ τiF (τi)−
∫ τi

0

F (u) du+ (1− F (τi))G(n− i),(B.2)

for any τi ̸= G(n− i). Rearranging (B.2), we get

G(n− i)F (G(n− i))−
∫ G(n−i)

0

F (u) du+ (1− F (G(n− i)))G(n− i)

≤ τiF (τi)−
∫ τi

0

F (u) du+ (1− F (τi))G(n− i) ⇐⇒
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G(n− i)−
∫ G(n−i)

0

F (u) du ≤ τiF (τi)−
∫ τi

0

F (u) du+G(n− i)− F (τi)G(n− i) ⇐⇒

F (τi) (G(n− i)− τi) ≤
∫ G(n−i)

0

F (u) du−
∫ τi

0

F (u) du ⇐⇒

F (τi) (G(n− i)− τi) ≤
∫ G(n−i)

τi

F (u) du.(B.3)

We distinguish between two cases: τi < G(n− i) and τi > G(n− i). In the case where τi < G(n− i), (B.3) becomes

F (τi) ≤
∫ G(n−i)
τi

F (u) du

G(n− i)− τi
,

which is true by the mean value theorem, since F is increasing and τi < G(n− i). Similarly, in the case where
τi > G(n− i), (B.3) becomes

F (τi) ≥
∫ G(n−i)
τi

F (u) du

G(n− i)− τi
=

∫ τi
G(n−i) F (u) du

τi −G(n− i)
,

which is again true by the mean value theorem, since F is increasing and τi > G(n− i).
We conclude that the optimal threshold for Xi is

τi = G(n− i).

C Background on the Gamma Function

The Gamma function Γ(x) extends the factorial function to complex numbers. In particular,

Γ(n+ 1) = n!

for every n ∈ N.
Here we give a brief and incomplete primer on the Gamma function, to assist the reader. However, for a more

extensive treatment along with many folklore results about the function, see [Gau98].

Definition C.1. (Gamma (Γ) Function) For every x > 0, the Gamma function is defined as

Γ(x) =

∫ ∞
0

tx−1e−t dt.

Like the factorial function, the Gamma function also satisfies the following recurrence

Γ(x+ 1) = xΓ(x).

The following fact is closely related to Stirling’s approximation for the Gamma function and is due to [DLMF22,
Eq. 5.11.E7].

Fact C.1. For a > 0 and b ∈ R, we have

Γ(a+ b) ≤
√
2π
(a
e

)a
· ab.

Of particular use to us are the following special functions that are related to the Gamma function.

Definition C.2. (Upper (Γ(·, ·) and Lower γ(·, ·) Incomplete Gamma Functions) For every s > 0, x ≥
0, the Upper Incomplete Gamma function is defined as

Γ(s, x) =

∫ ∞
x

ts−1e−t dt,

whereas the Lower Incomplete Gamma function is defined as

γ(s, x) =

∫ x

0

ts−1e−t dt.
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For every s > 0, x ≥ 0, we have
Γ(s, x) + γ(s, x) = Γ(s).

Next, we describe a few known results about the lower incomplete Gamma function that we use throughout
the paper.

Fact C.2. For the lower incomplete Gamma function γ(s, x) with s, x > 0, we have

γ(s, x) = xs
∞∑
k=0

(−x)k

k! (s+ k)
.

Proof. By the definition of the lower incomplete Gamma function, we have

γ(s, x) =

∫ x

0

ts−1e−t dt =

∫ x

0

∞∑
k=0

(−1)k t
s+k−1

k!
=
∞∑
k=0

(−1)k xs+k

k! (s+ k)
= xs

∞∑
k=0

(−x)k

k! (s+ k)
.

The following fact follows easily via Fact C.2.

Fact C.3. We have that, as x→ 0,
γ(s, x)

xs
→ s−1.

The following claim is due to Qi and Mei [QM99].

Claim C.1. [See 3.1 in [QM99]] For small enough x, we have

γ(s, x) ≤ s−1 xs−1 e−x.
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