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Abstract— Object perception plays a fundamental role in
Cooperative Driving Automation (CDA) which is regarded as
a revolutionary promoter for next-generation transportation
systems. However, the vehicle-based perception may suffer
from the limited sensing range and occlusion as well as low
penetration rates in connectivity. In this paper, we propose Cyber
Mobility Mirror (CMM), a next-generation real-world object
perception system for 3D object detection, tracking, localization,
and reconstruction, to explore the potential of roadside sensors
for enabling CDA in the real world. The CMM system consists
of six main components: i) the data pre-processor to retrieve
and preprocess the raw data; ii) the roadside 3D object detector
to generate 3D detection results; iii) the multi-object tracker
to identify detected objects; iv) the global locator to generate
geo-localization information; v) the mobile-edge-cloud-based
communicator to transmit perception information to equipped
vehicles, and vi) the onboard advisor to reconstruct and
display the real-time traffic conditions. An automatic perception
evaluation approach is proposed to support the assessment of
data-driven models without human-labeling requirements and
a CMM field-operational system is deployed at a real-world
intersection to assess the performance of the CMM. Results
from field tests demonstrate that our CMM prototype system
can achieve 96.99% precision and 83.62% recall for detection
and 73.55% ID-recall for tracking. High-fidelity real-time traffic
conditions (at the object level) can be geo-localized with a
root-mean-square error (RMSE) of 0.69m and 0.33m for lateral
and longitudinal direction, respectively, and displayed on the
GUI of the equipped vehicle with a frequency of 3 —4Hz.

Index Terms—Field operational system, 3D object detection,
multi-object tracking, localization, deep learning, cooperative
driving automation.

I. INTRODUCTION
ITH the rapid growth of travel demands, the transporta-
tion system is facing increasingly serious traffic-related
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Fig. 1. Tllustration for CMM concept at an intersection scenario.

challenges, such as improving traffic safety, mitigating traffic
congestion, and reducing mobile source emissions. Taking
advantage of recent strides in advanced sensing, wireless
connectivity, and artificial intelligence, Cooperative Driving
Automation (CDA) is attracting more and more attention
over the past few years and is regarded as a transformative
solution to the aforementioned challenges [1]. In the past
few decades, several projects or programs have been con-
ducted to explore the feasibility and potential of CDA. For
instance, the California PATH program showed throughput
improvement by a fully connected and automated platoon [2].
In the European DRIVE C2X project, the cooperative traffic
system was assessed by large-scale field operational tests
for various connected vehicle applications [3]. Recently, the
U.S. Department of Transportation is leading the CARMA
Program [4] for research on CDA, leveraging emerging
capabilities in both connectivity and automation to enable
cooperative transportation system management and operations
(TSMO) strategies. Additionally, the Autonet2030 Program led
by EUCar is working on Cooperative Systems in Support of
Networked Automated Driving by 2030 [5]. However, most of
the aforementioned projects assume an ideal scenario, i.e., all
vehicles are connected and automated. Because the presence
of mixed traffic (with different types of connectivity and
levels of automation) would be the norm, in the long run,
one of the popular ways to enhance CAVs’ adaptability in
such a complicated environment is to improve their situation-
awareness capability. For example, vehicles are equipped with
more and more high-resolution onboard sensors and upgraded
with powerful onboard computers to better perceive the sur-
roundings and make decisions by themselves, a similar path to
highly automated vehicles (HAVs) [6]. However, this roadmap
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is facing a couple of major challenges: 1) the cost of large-
scale real-world implementation is prohibitive; and 2) the
detection ranges are limited for onboard sensors, which also
suffer from occlusion partially due to mounting heights and
positions [7].

Recently, roadside sensor-assisted perception is attracting a
significant amount of attention for CAVs and is regarded as a
promising way to unlock numerous opportunities for coopera-
tive driving automation applications [8]. Current roadside sens-
ing systems are mainly camera-based, which are cost-effective
and well-developed for traffic surveillance such as turning
movement counts, but hard to provide reliable object-level
high-fidelity 3D information due to lighting conditions and
shadow effects [9].

Considering its capability to determine an accurate 3D
location based on point cloud data, LIDAR gets more popular
in infrastructure-based traffic surveillance. Previous studies
validated the performance of roadside LiDAR for vehicle
detection, vehicle tracking, lane identification, pedestrian near-
crash warning, and other applications [10]. These studies laid
the foundation for applications with roadside LiDAR-based
perception systems. However, most of these systems are
deployed upon traditional perception pipelines [11], consisting
of background filtering, point cloud clustering, object clas-
sification, and object tracking. Such pipelines may generate
stable results but suffer from uncertainties and generality [12].
With the development of computer vision, deep learning-based
perception models show great potential to overcome the above
issues. However, few studies applied deep learning-based
perception algorithms to roadside LiDAR systems.

The main contributions of this paper can be summarized as
follows:

1) To the best of the authors’ knowledge, this paper is the
first attempt to comprehensively build a deep learning-
based real-world platform, called Cyber Mobility Mirror
(CMM), for 3D object-level cooperative perception at a
signalized intersection using the roadside LiDAR.

2) A mobile-edge-cloud (MEC) framework is designed
and implemented for real-world prototyping, with the
consideration of scalability.

3) An onboard system is designed and developed for
real-time object reconstruction and display.

4) An automatic perception evaluation approach is pro-
posed for model assessment without the involvement of
human-labeling efforts.

The CMM platform can serve as the stepping stone
to enabling various cooperative driving automation (CDA)
applications.

The rest of this paper is organized as follows: related work
is firstly introduced in Section II. Section III shows the concept
and structure of CMM, followed by a detailed description
of the associated field operational system in Section IV. The
results and analyses are discussed in Section V and the last
section concludes this paper with further discussion.

II. BACKGROUND

Situation awareness is one of the fundamental build-
ing blocks for Driving Automation. Specifically, 3D object
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detection and tracking play a crucial role in perceiving the
environment. Meanwhile, traffic object reconstruction helps
drivers better understand traffic conditions. Hence, in this
section, related work about the detection, tracking, and recon-
struction of traffic objects is presented.

A. Traffic Object Detection

Object detection is a fundamental task of environment
perception and has also gone through a rapid development
process in the past several decades. Back twenty years ago,
a vision-based traffic detection system made an impres-
sive achievement using statistical methods [13]. Aslani and
Mahdavi-Nasab [14] proposed an optical flow-based moving
object detection method for traffic surveillance. However, these
model-based methods cannot provide high-fidelity detection
results for more delicate applications, e.g., precise localization
and object-level tracking.

With the tremendous progress of convolutional neural net-
works (CNNGs) in vision-based tasks, CNN-based object detec-
tion methods have attracted a significant amount of attention
in traffic surveillance [15]. You Only Look Once (YOLO) [16]
and its variants, due to an impressive performance in real-
time multi-object detection, get very popular in high-resolution
traffic monitoring scenarios. Faster RCNN [17] is another
generic epoch-making detection method, utilizing the region
proposal ideology. To further improve the object detection
performance for Faster-RCNN, Li et al. [18] proposed a
cross-layer fusion structure based on Faster RCNN to achieve
a nearly 10% higher average accuracy in complex traffic
environments.

Except for the general object detection task applied in traffic
scenes, many studies focus on specific perception cases. For
instance, considering that existing traffic surveillance systems
were made up of costly equipment with complicated opera-
tional procedures, Mhalla et al. [19] designed an embedded
computer-vision system for multi-object detection in traffic
surveillance. For small object detection, Lian et al. [20]
proposed an attention feature fusion block to better integrate
contextual information from different layers that could achieve
much better performance.

To support object-level cooperative operations, detecting the
objects in a 3D format is a straightforward and promising
way to high-fidelity situation awareness. Hence, owing to the
capability of generating 3D point clouds with spatial infor-
mation, it is increasingly popular for deploying 3D LiDAR
to traffic environment perception. Wu et al. [21], proposed
a revised Density-Based Spatial Clustering of Applications
with Noise (3D-DBSCAN) method to detect vehicles based
on roadside LiDAR sensors under rainy and snowy condi-
tions. Using a roadside LiDAR, Zhang et al. proposed a
three-stage inference pipeline, called GC-net [22], including
the gridding, clustering, and classification. To distinguish the
moving object from the point cloud, Song et al. proposed a
hierarchical searching method based on the feature distribution
of point clouds to achieve background filtering and object
detection [11]. Although 3D LiDAR has innate advantages to
dealing with 3D object detection, the lack of labeled roadside
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datasets significantly limits the potential for applying deep
learning-based detectors to roadside LiDAR sensors. Hence in
this paper, an point cloud encoder-decoder method is proposed
to enable the detection model to work on the roadside point
clouds with training on the onboard dataset.

B. Traffic Object Tracking

Deploying CDA in urban environments poses a series
of difficult technological challenges, out of which object
tracking is arguably one of the most significant since it
provides the identification information for other subsequent
technical models [23]. Object tracking can be classified into
two categories in terms of the number of objects tracked at
one time: one is single-object tracking (SOT) and the other
is multi-object tracking (MOT). SOT has been investigated
over several decades and the Kalman filtering-based meth-
ods have been developed widely [24] for this type of task.
For MOT tasks, some approaches have been proposed with
the focus on improving accuracy and real-time performance.
Bewley et al. [25] proposed Simple Online and Real-time
Tracking (SORT) that can achieve MOT in a high frame
rate without much-compromising accuracy. Based on SORT,
Bewley and Paulus [26] proposed a multi-object tracker —
DeepSORT, which was capable of tracking objects with longer
periods of occlusions and effectively reducing the number
of identity switches by integrating the appearance features.
However, DeepSORT does not apply to 3D objects.

Chen et al. proposed a camera-based edge traffic flow
monitoring scheme using DeepSORT [27]. Recent advances
in LiDAR technology enable it to hold a place in traffic
object tracking tasks, by leveraging the point cloud data. For
instance, Cui et al. [28] provided a simple global nearest
neighbor (GNN) method to track multiple vehicles based
on the spatial distance between consecutive frames. Adaptive
probabilistic filtering was utilized by Kampker et al. [29] to
handle uncertainties due to sensing limitations of 3D LiDARs
and the complexity of targets’ movements.

C. Traffic Object Reconstruction

Traffic reconstruction, traditionally, means rebuilding the
traffic scenarios or parameters based on recorded sensor data,
such as loop detectors and surveillance cameras [30], [31].
These traffic-level reconstruction data are valuable for macro-
scopic traffic management. In this paper, nevertheless, the
object-level reconstruction means rebuilding the 3D location or
shape of certain objects based on sensor data, which can more
concrete information to support subsequent CDA applications.
Several studies have been conducted in this emerging area.
Cao et al. [32] developed a camera-based 3D object recon-
struction method on the Internet of Vehicles (IoV) environ-
ment. Rao and Chakraborty [33] proposed a LiDAR-based
monocular 3D shaping to reconstruct the surrounding objects
for onboard display, which has a similar purpose to the
reconstruction work in this paper.

III. CYBER MOBILITY MIRROR (CMM)

To explore the potential of the roadside sensing sys-
tem, we propose a novel infrastructure-based object-level
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Fig. 2. Systematic diagram for the core concept of CMM.

perception system, named Cyber Mobility Mirror. In this
section, the core concept of CMM and the associated platform
implemented in the real world are introduced.

A. Core Concept of CMM

CMM aims to enable real-time object-level traffic per-
ception and reconstruction to empower various cooperative
driving automation (CDA) applications, such as Collision
Warning [34], Eco-Approach, and Departure (EAD) [35], and
Cooperative Adaptive Cruise Control (CACC) [36]. In the
CMM system, traffic conditions (i.e., “mobility”) are detected
by high-fidelity sensors and advanced perception methods,
such as object detection, classification, and tracking. In the
“cyber” world, digital replicas (i.e., “mirrored” objects) are
built to reconstruct the traffic in real-time via high-definition
3D perception information, such as the detected objects’
geodetic locations (rendered on the satellite map), 3D dimen-
sions, speeds, and moving directions (or headings). Then, this
“mirror” can act as the perception foundation for numerous
CDA applications in a real-world transportation system.

Specifically, Fig. 2 illustrates the system diagram for the
core concept of CMM. Traffic objects can be detected by
high-fidelity sensors equipped on the infrastructure side and
the sensing data is processed by an edge server to generate
object-level information and enable various functions, such as
detection, classification, tracking, and geodetic localization.
The perception information is also transmitted to a cloud
server for distribution and 3D reconstruction. The recon-
structed traffic environment can be displayed on the GUI of
connected road users to support various CDA applications.

B. Systematic Structure of CMM

In the real-world traffic environment, the system architecture
of the CMM system is designed by following the core concept.
Specifically, the CMM system can be divided into two main
parts: the CMM RoadSide System (CMM-RSS) and the CMM
Onboard System (CMM-OBS).
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Fig. 3. The architecture for CMM field operational prototype system.

1) CMM Roadside System: CMM-RSS consists of 1) road-
side sensors, e.g., LIDAR in this study, to perceive traffic
conditions and generate high-fidelity sensor data; 2) edge
computing-based real-time perception pipeline to achieve sen-
sor fusion (if appropriate), object detection, classification, and
tracking tasks; and 3) communication devices to receive infor-
mation from other road users, infrastructure or even “clouds”,
and share perception results with them via different kinds of
protocols (the communication protocols used in this paper is
introduced in Section IV-G).

2) CMM Onboard System: For CAVs, CMM-OBS can
receive the object-level perception data from CMM-RSS and
then act as the perception inputs to support various CDA
applications, such as CACC, cooperative merging, coopera-
tive eco-driving; and for Connected Human-driven Vehicles
(CHVs), CMM-OBS can also provide them with real-time
traffic information via the human-machine interface (HMI) to
improve driving performance or to avoid possible crashes due
to occlusion.

In this paper, the CMM concept is implemented in the real
world and a field operational system is developed for real-
world testing, which will be discussed in Section IV.

IV. CMM FIELD OPERATIONAL SYSTEM
A. System Overview

The system overview for the CMM Field Operational Sys-
tem (FOS) is shown in Fig. 3. The FOS mainly consists of
a roadside 3D LiDAR for data collection, an edge-computing
system for data processing, a cloud server for data distribution,
and a test vehicle equipped with connectivity and Graphic User
Interface (GUI). To be specific, the LiDAR is installed on
the signal pole high enough to achieve better coverage. The
edge computer retrieves 3D point cloud data from the roadside
LiDAR and then generates high-definition perception infor-
mation (i.e., 3D object detection, classification, and tracking
results) which is transmitted to the cloud server via Cellular
Network. A CHV equipped with the CMM OBUs (including
a GPS receiver, onboard communication device, and a tablet)
can receive the perception information, and reconstruct and
display the object-level traffic condition on GUI in real-time.

The whole system follows an edge-cloud structure where
the edge server and cloud are mainly responsible for raw
data processing and message distribution respectively. It is
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notable that computing on the cloud and communicating on
edge (e.g., DSRC) is also a theoretically feasible structure.
However, for the Lidar-based CMM system, the raw Lidar
data transmission requires a 504+ MBps data transmitting rate
with low latency which is hard to be satisfied by the cloud, and
the edge-based communication is limited by communicating
range and occlusion.

B. System Initialization

As demonstrated by Fig. 4, the LiDAR is installed at the
northwest corner of the intersection (marked as the red circle)
of University Ave. and Iowa Ave. in Riverside, California.
In this work, an OUSTER®64-Channel 3D LiDAR is used
as a major roadside sensor, mounted on a signal pole at the
height of 14-15 ft above the ground with the appropriate
pitch and yaw angles to cover the monitoring area enclosed
by the orange rectangle in Fig. 4. The edge computer at
the intersection retrieves the data stream from the LiDAR in
the form of UDP packets. Point cloud attributes such as 3D
location, i.e., x, y, z, and the intensity, i, of each point are
bundled into an N x 4 array to be processed for generating
3D detection, tracking, and localization results.

Additionally, two types of perception areas are defined in
Fig. 4. Since University Ave. (horizontal) is the main focus
of the previous Riverside Innovation Corridor project [37],
a primary perception area is identified as the yellow box in
Fig. 4. For the rest of the area that is perceived from general
purpose, we define it as the general perception area shown in
the green box in Fig. 4.

C. Data Retrieving and Preprocessing

The raw point cloud data is generated by a 64-channel 3D
LiDAR and then the edge computer retrieves the raw data
through an Ethernet cable via UDP communication. In this
paper, the detection range €2 for the roadside LiDAR is defined
as a 102.4m x 102.4m area centered on the location of LiDAR.
The raw point cloud data can be described by:

P ={lx,y zilllx,y,z1 e R}, i €[0.0,1.0]}. (1)
Then, P is geo-fenced by:
Po={lx,y,z,il" [xe X, ye ), z e 2} 2)

where Pg represents the 3D point cloud data after geofencing.
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Fig. 5. Description of the initial transformation for LiDAR point cloud data.

D. 3D Object Detection From Roadside LiDAR

1) Roadside Data Transformation: Considering the
LiDAR’s limited vertical field of view (FOV), it is installed
with an adjusted rotation angle including pitch, yaw, and
roll to cover the desired surveillance area as shown in
Fig. 5. To build the system cost-effectively, we try to use
an open-source dataset to train our detection model, e.g.,
Nuscenes [38]. However, these available datasets are collected
based on a vehicle-equipped LiDAR. These LiDAR sensors
have different spatial configurations from ours. The domain
gap between Nuscenes and our roadside data will lead
to performance degradation if the model trained on these
datasets is applied to our roadside point clouds directly.

Therefore, to empower the model with the capability of
domain adaptation — training on onboard datasets while infer-
ence on the roadside data — we propose the Roadside Data
Transformation (RDT). The main purpose of RDT is to
transform roadside point clouds into a space in which the
model trained on the onboard datasets can work out. The
transformation process of the RDT is described in Fig. 5.

To achieve the transformation, we propose a self-calibration
approach for the roadside-LiDAR pose by using Least
Square Regression (LSR) to the point clouds. The coordinate
for roadside point clouds is defined as LiDAR Coordinate
(L-Coor) and the coordinate of point clouds after encoding,
is defined as Horizontal Coordinate (H-Coor). Using LSR, the
least square plane is generated to represent the x — y plane of
the L-Coor. Then the 3D rotation matrix can be generated as
Pcuaii, which is shown as:

a b ¢
Pcali=|d e f (3)
g h i
where a, ...,i are the parameters generated from LSR. For

translation, the vertical offset Az is defined as:

AZ = Zroadside — Zonboard 4

where Zroadside and Zonboara represent the heights of the
roadside LiDAR and the onboard LiDAR (used in the training
dataset), respectively.

The whole encoding process is defined by:

0 1:| +10,0, Az, 0] )
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2) Object Detection Network: Although the roadside point
cloud is transformed into the coordinate suitable for training
on the onboard dataset. The detection model has still required
a large tolerance for the difference in data. Since there is a
large shifting, i.e., near 3m, along z—axis, to make the model
not too sensitive for z—axis data, we voxelized the point cloud
following the strategy applied in [39], i.e., only voxelization
on the x — y plane to generate point cloud pillars. Then data
aggregation, as shown in Fig. 6, is designed to extract and
compress the features which will be sent to the deep neural
network for generating predicted bounding boxes.

After the data aggregation, Fig 7 shows the designed
feature pyramid network (FPN) followed by a 3D anchor-
based detection head [40] to generate predicted bounding
boxes. The FPN consists of two sub-networks: 1) one 2D
convolutional (Conv2D) layer-based network that generates
the extracted features with decreasingly spatial resolution;
and 2) one deconvolutional (DeConv2D) layer-based network
that generates output features by performing upsampling and
concatenation. Each Conv2D block consists of one Conv2D
layer with the kernel of (3, 2, 1), followed by several Conv2D
layers with kernels of (3, 1, 1). Specifically, the numbers of
Conv2D layers in each block are 4, 6, and 6, respectively.

For the loss functions, localization and classification are
considered. To be specific, ground targets (GT) and anchors
are defined by an 8-dimensional vector (x,y,z, w,l, h,0).
The localization regression residuals between ground truth and
anchors are defined by:

8t _ ya gt _ \a gt _ a
Ax:%, Ayz%, AZ=%, (6)
wé’ 18 hs?
Aw:logW, Al:logl—a, Ah:logh—a, @)
A6 = sin(6%" —6%) (8)
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where the superscript gt and a represent the ground truth and
anchor, respectively, and d“ is defined by:

d* = (w2 4 (19)2. 9)

The total localization loss is:

[flac = Z

be(x,y,z,w,l,h,0)

SmoothL1(Ab) (10)

Inspired by [41], a softmax classification loss, Ly, is used to
distinguish flipped boxes. The object classification is enabled
by the focal loss [42], which is shown as:

Lcls = (11)

where p? is the class probability of an anchor, and « and 8
are set as the same as the original paper. Hence, the total loss
is:

—oq (1 — p*)7 log p*,

L= (lglocﬁloc + ,Bclsﬁclx + ,Bdir[:dir)a (12)

Npos
where N, is the number of positive anchors and Bjoc, Beis
and By, are set as 2, 1, and 0.2.

E. 3D Multi-Object Tracking

For real-time 3D MOT, we propose 3DSORT by adding
3D object matching on DeepSORT [27]. To be specific, 2D
location information is filtered from the 3D detection results,
and the 2D location data is fed into the DeepSORT model to
generate the 2D MOT results, i.e., unique identification (ID)
number for each object. Then, a Euclidean distance-based 3D
object-matching algorithm is designed to generate enhanced
3D MOT results.

Algorithm 1 The Description for 3DSORT

Input: The instant 3D object detection results: Dobj =
{D(i)(x, vz, w,l,h,0)i =1,2,..., Npppx};

Output: The multi-object tracking results: Tobj =
(TOx, y,z,w, 1, h,0,id)|i =1,2,..., Nppps);

1: function 3D DEEPSORT(Dobj)

2 Dobjg < DV (x,y, w,D)|i =1,2,..., Npppx;

3 Tobjy = (T (x, y, w, 1, id)|j -
1,2,..., Nrppx} < DeepSORT (Dobjarg);

4 for Dobj,, W) ¢ Dobjrg do

5: for Tobj,; V) ¢ Tobjrq do

6: if Euclidean distance of (Dobhii), Tobj, G )) <
d, then

7: T! < [DD, Tobjyy(id)]; Continue;

: end if

9: end for

10: end for

11 Tobj ={T®i =1,2,..., Npppx}

12: return Tobj;

13: end function

Algorithm 1 demonstrates the details of 3DSORT where
Npppx and Nrpp, are the numbers of the detection bounding
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boxes and 2D tracking boxes, respectively. Additionally,
id represents the tracking identification number for each
unique object. d, is the matching distance which is defined
as 0.2m.

F. Geo-Localization

To endow the perception data with more generality, the
geo-referencing of the point cloud is developed in this work.
However, the output Tp,xes from the 3D MOT is calculated
based on the Horizontal-LiDAR Coordinate, i.e., a Cartesian
Coordinate centered with the sensor installed evenly. Thus,
the input of the geo-localization data, i.e., the Tpyyes from
Algorithm 1, is then fed into a multi-step transformation pro-
cess to transform the object location information to Geodetic
Coordinate, i.e., latitude, longitude, and altitude. There are
three steps: 1) from the horizontal-LiDAR coordinate to the
real LiDAR coordinate; 2) from the real LiDAR coordinate to
the Geocentric Earth-centered Earth-fixed (ECEF) coordinate;
and 3) from ECEF coordinate to the geodetic coordinate
(i.e., latitude, longitude, and altitude). Specifically, the
World Geodetic System 1984 (WGS84) is applied for the
geo-transformation. The transformation from the Horizontal
LiDAR coordinate to the ECEF coordinate system is shown
in Eq. 13.

T
Xecef Xhor
Yecef Yhor
= ~Pcai - P 13
Zecef Zhor Cal’ ECEF (13)
1 1

where PE;H € RY4 and Prcpr € RY*4 are the inverse of
the LiDAR calibration matrix, and the ECEF transformation
matrix, respectively. Xpor, Ynor, and Zp, represent the
coordinates of 3D points concerning Horizontal LiDAR
Coordinate. The Pgcgr matrix responsible for transforming
points in LiDAR coordinate frame to the geocentric coordinate
frame (ECEF) is calculated using the Ground Control Point
surveying technique [43].

The longitude (A) is calculated from the ECEF position
using Eq. 14,

ecef )

A = arctan(——— (14)

ecef

The geodetic latitude (¢) is calculated using Bowring’s

method by solving Eq. 15 and Eq. 16 in an iterative
manner,
— ecef
B alrctan((1 ~ s ) (15)
z ) 3
_ ecef +e ( Z)R(SIHIB)
¢ = arctan( ) (16)

s — ezR(cos B)3

where R, f, and e2=1-— (1-— f)2 are the equatorial radius,
flattening of the planet, and the square of ﬁrst eccentricity,

respectively. s is defined as s = ,/X a of TY, e cef" The altitude

(hego, height above ellipsoid) is given by,

hego = 5 €08 § + (Zecer + >N sing)sing — N (17)
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where N, the radius of curvature in the vertical prime,
is defined as

R

V1 — e%(sin ¢)?

Then the geo-referenced perception information (¢, A, heg0)
along with other data will be transmitted to the cloud server
for distribution and the final data is packaged as:

N = (18)

Datayoadsidze = {MOt, id, ¢, . hego, w, 1, h, )00
(19)

G. Mobile-Edge-Cloud Communication

To make the CMM capable of future extension, a Mobile-
Edge-Cloud communication framework is designed, as shown
in Fig. 8. The cloud system is applied to cope with
a dynamic number of edge systems or mobile systems
(e.g., data synchronization algorithms can be deployed in
the cloud system to align all the timestamps of different
subsystems.).

Fig. 8 illustrates the inter-system and intra-system commu-
nications. Specifically, the CMM-OBS retrieves traffic percep-
tion data from the cloud server and GPS location data from
a GPS receiver. Then the onboard unit reconstructs the traffic
conditions based on the multi-source data and displays it on
the graphical user interface (GUI) in real time. In our field
implementation, a Samsung Galaxy Tab A7 tablet serves as the
onboard computer, running a designed application to retrieve
data from the GPS receiver and displaying the reconstructed
object-level traffic information on the GUI. To have accurate
GPS measurements, we utilize a C102-F9R U-Blox unit
with an embedded Inertial Measurement Unit (IMU) which
provides an 8Hz update frequency on the GPS location and
heading.

For Vehicle-to-Cloud (V2C) and Infrastructure-to-Cloud
(I2C) communication, We applied the NETGEAR AirCard
770S mobile hotspots which are equipped with 4G/LTE sim
cards and can provide V2C/I2C communication between the
cloud server and CMM-OBS/CMM-RSS.

H. Multi-Object Reconstruction

An application is designed to visualize the location of
vehicles perceived by the roadside unit (RSU) and the ego
vehicle provided by the OBU. To achieve that, we first locate
the monitored area at the intersection and crop it from the
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Fig. 9. The diagram illustrating the APE approach.

Google Earth Pro satellite view. We leverage the cropped
image as a background map for visualizing the reconstructed
traffic. Firstly, we calculate the distance between two reference
GPS points using the Haversine formula as shown followed.

a= sinz(Alat/Z) + cos(latreft)
~cos(latyef) - sinz(Alon/Z)
c=2-atan2(x/a,~1 —a)

d=R-c (20)

where lat,;.r1 and lat,.r, are latitudes of two reference GPS
points, Alat is the latitude difference between two GPS points,
Alon is the longitude difference between two GPS points, R is
the radius of the earth, and d is the distance computed between
two GPS points. Based on the number of pixels between their
displayed pixel coordinates on the tablet, we can calculate the
transfer ratio between them.

Pixrefl - PixrefZ i

- - (21)
Dlsrefl - DlsrefZ

where, Pixy.r1 and Pix,.s are the pixel coordinates of two

reference points, Dis,.r1 and Dis,.r2 are the distance between

two reference points, and « is the transfer ratio. By now,

we can create an object and display it on the desired pixel

coordinates based on its GPS location.

1. Automatic Perception Evaluation

In this section, we propose a novel automatic perception
evaluation (APE) approach that doesn’t require human-labeled
data for evaluating the detection, tracking, and localization
performance of data-driven models. Specifically, rather than
evaluating all objects in each frame, which requires costly
human-labeling effort, evaluating the perception performance
of the ego-vehicle (GPS+RTK enabled) can be statistically
regarded as a sampling evaluation process. The APE approach
can be illustrated in Fig. 9.

Since the GPS data and LiDAR data are asynchronous
data, to associate each perception frame with an accurate
ground truth, time interpolation and motion model are adopted
in our APE approach as shown in Fig. 9. Considering the
future extension of more sensors, a query time 7o is designed
to increasingly traverse all the LiDAR-based measurements
Dobj. To cope with the non-synchronization issue, two adja-
cent GPS measurements G*¢°(t; 1, tG.2), before and after the
LiDAR-based measurement, are extracted and a linear motion
model is applied to estimate the associated ground truth egog,
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at time f7. The detailed description of the APE approach is
shown in Algorithm 2, where §¢ is set as 0.02 s and t.,4 is
set as the final time of GPS-based measurement.

Algorithm 2 The Description for APE Approach
Input: The LiDAR-based objects

measurement:

Dobj = {D(i)(tL, Xpreds> Ypreds Zpreds idpred)|i =

1,2,..., Npppr}; The GPS-based ego-vehicle

measurement: Gobj = {G%(tG, Xg1, Ygr, Zg1> idgr) };
Output: The APE information matrix: S =

{De8%(1,., Xpreds Ypreds Zpreds idpredy Xgts Ygts Zgts idgt)};
1: function APE(Dobj, Gobj)
2 initialize idx_lidar_buffer, S, t.,4;
3 while ¢ < ¢t,,,4 do
4 idx_lidar < index of the most recent LiDAR frame
5: if idx_lidar # idx_lidar_buffer then
6 Dobj(t) < retrieve objects at this frame
7 t;, < Dobj(t)
8 Two adjacent GPS measurement before and
after the 1.: 1.1, tg,2 < G®°

9: Estimating the velocity at the query time:
v, < G%°(1G,1,1G,2)
10 Estimating the ground truth egog at

the query time: egoy, =
Uiy, G49(1G,1, 1G,2), Dobj (1)

11: Find the ego-vehicle’s measurement egopeq
from euclidean distance to the bbox;

{xgta Ygt> th»idgt} <~

12: Append {t7, egopred, €80gi} to S
13: idx_lidar_buffer < idx_lidar

14: end if

15: t < t+ 8t

16: end while

17: return S;

18: end function

V. FIELD TESTING AND RESULTS ANALYSIS
A. Feasibility

Object-level perception information acts as the building
block for CMM, which requires high-fidelity data retrieved
from high-resolution sensors, such as LiDARs. Nevertheless,
it could be costly, time-consuming, and to some extent,
restricted by policies and protocols, to deploy these sensors
directly in the real world. Thus, it is necessary to evaluate the
feasibility of the system at the early stage of this work.

To find an efficient and cost-effective way to validate
the feasibility of CMM, we emulated a CMM system in
a simulation platform, i.e., a CARLA-based co-simulation
system [44], before the real-world implementation. As demon-
strated in Fig. 10, the basic idea is to emulate the real-world
traffic environment via one CARLA simulator [45] and run
the entire perception process within the emulated real-world
environment. Then the other CARLA simulator is applied to
emulate the cyber world, i.e., to reconstruct the traffic objects
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Fig. 11. Tllustration of CMM field operational test from different views from
a drone, host vehicle, onboard GUI, and edge server.

and then display them. Owing to the capability of CARLA
to model high-fidelity sensors, the evaluation results of the
emulated CMM in the co-simulation platform can lay the
foundation for real-world CMM implementation.

After the feasibility check in the simulation environment,
we implement the CMM field operational system (FOS) at
a real-world intersection of University Ave. & lowa Ave.
in Riverside, California. Fig. 11 depicts the field system
from different views. Multi-view videos are captured along
the test including drone’s view, in-vehicle views (including
driver perspective, backseat passenger perspective, and GUI),
roadside view, and point cloud data-based bird’s-eye view
(BEV). A video clip is edited with descriptive annotations
to show the whole online process, which is available at
https://www.youtube.com/watch?v=0egpmgkzyGO0). The video
demonstrates the feasibility of the CMM FOS and the follow-
ing sections will show the results of detection accuracy and
real-time performance.

B. Experimental Setup

1) General Setting: For the purpose of evaluating and
investigating the real-time perception performance of our
CMM system, the perceiving area is set as the intersection of
University Ave. & Iowa Ave., Riverside, CA, USA as shown
in Figure 4. Specifically, due to the effective ground truth
range in our training dataset (i.e., £51.2m for the nuScenes
dataset), the geo-fencing area of the point cloud data is set as
the range of x € [-51.2m,51.2m] and y € [-51.2m, 51.2m].
For the object detection network, the spatial size of the voxel
is set as [0.25m, 0.25m, 8.0m] and the maximum number of
voxels is set to 30, 000 and 40, 000 during training and testing,
respectively.

For the score threshold during the inference pipeline setting,
two factors are considered: 1) the objects at the most right
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TABLE I
DATASET ANALYSIS FOR MODEL TRANSFERABILITY

Dataset LiDAR Structure ‘ Horizontal FOV ‘ Vertical FOV ‘ Channel | Channel Under Horizon | Inter-beam Angle
KITTI Single 180° [—24.9°, +2°] 64 59 0.420°
NuScenes Single 360° [—30.0°, +10°] 32 24 1.250°
Waymo Multiple (1 mid-range, 4 short range) 360° [—17.6°,42.4°] /[-90°, 30°] 64 56.32/48 0.313°/1.875°
CMM (Ours) Single 360° [—22.5°,22.5°] 64 32 0.703°
lane of University Ave. (the southwest horizontal lane in TABLE II
Fig. 4) should be able to be detected (because the approaching DETECTION PERFORMANCE IN PRIMARY PERCEPTION AREA
vehicles from the west dlréctlon v&fﬂl' be furt}'ler used .for future Ground Truth | TP | FP | Precision | Recall Miss
research), and 2) the objects within the intersection range 1661 1380 | 43 | 96.99% | 83.62% | 16.38%

shouldn’t have too many False Positive (FP) detections. Based
on the principles above, we finally set the score threshold to
0.3, which can recall most of the vehicles in our tentative
coverage area with satisfied precision performance.

2) Dataset Selection: To decide the Dataset used for train-
ing our model, we further conducted several experiments to
analyze the model transferability by utilizing different training
datasets, e.g., KITTI [46], NuScenes [38], or Waymo Open
Dataset [47]. Specifically, we trained the detection model on
KITTI, NuScenes, and Waymo Open Dataset and applied
the same domain adaptation techniques that we proposed in
Section IV-D.1. However, we found that the model trained on
KITTI and Waymo Open Dataset can barely return correct
detection results. By analyzing the detailed specification of
these Datasets in Table I, we found that KITTI and Waymo
Open Dataset have bigger domain gaps than the NuScenes
Dataset if compared with our data.

In Table I, from the perspective of LiDAR structure, we can
find that PCD from Waymo Open Dataset is generated from
the multi-LiDAR system while PCD from KITTI/NuScenes
is generated from a single-LiDAR system which is closer to
ours. From the perspective of FOV, KITTI only has a 180°
horizontal FOV which is not enough for our scenario in which
a panoramic horizontal view is required. Additionally, Way e
from ours in terms of the vertical FOV. For the resolution
of the LiDAR, although Nuscenes has only 32 channels of
the laser beam, it is the only one whose inter-beam angle is
larger than ours. In other words, the PCD collected by our
LiDAR only satisfies the resolution standard of the NuScenes
dataset, which leads to better transferability. For instance, the
data from KITTI has more beams under the horizon and denser
vertical resolution compared with ours, which would cause
data insufficiency when we transfer a KITTI-trained model to
the CMM scenario. So the data collected from our LiDAR will
not face the data insufficiency issue when used for the model
trained on NuScenes. Thus, we applied the NuScenes dataset
to train our detection model.

C. Detection

Fig. 12 demonstrates several frames of the CMM FOS
testing results. The ego vehicle equipped with the CMM
onboard system is marked by a red rectangle in each figure.
In the GUI, the orange icons represent the GPS locations of
the ego vehicle, while the blue ones denote vehicles detected
by the roadside LiDAR. Additionally, pedestrians are also

detected and shown in the GUI with top-view pedestrian icons
(shown in the video). The detection accuracy is evaluated by
the Confusion Matrix. Specifically, the detection results can
be categorized into four classes:

o True Positive (TP): the number of cases predicted as
positive by the classifier when they are indeed positive,
i.e., a vehicle object is detected as a vehicle.
« False Positive (FP) = the number of cases predicted as
positive by the classifier when they are indeed negative,
i.e., a non-vehicle object is detected as a vehicle.
o True Negative (TN) = the number of cases predicted as
negative by the classifier when they are indeed negative,
i.e., a non-vehicle object is detected as a non-vehicle
object.
« False Negative (FN) = the number of cases predicted as
negative by the classifier when they are indeed positive,
i.e., a vehicle is detected as a non-vehicle object.
Precision is the ability of the detector to identify only
relevant objects, i.e., vehicles and pedestrians in this paper.
It is the proportion of correct positive predictions and is given
by
TP TP
TP+ FP  # of all detections

Recall is a metric that measures the ability of the detector to
find all the relevant cases (that is, all the ground truths). It is
the proportion of true positive detected among all ground-truth
(i.e., real vehicles) and is defined as

TP _ TP
TP+ FN  # of all ground truth
In terms of the perspective for traffic surveillance, we define
another metric named Miss which measures the portion of

“missing” vehicles (that are not detected) and is defined
by

Precision = (22)

Recall = (23)

FN __# of all missing vehicles
TP+TN

To evaluate detection performance in the primary perception
area, we randomly select 130 frames of testing data and
manually label them based on the drone’s view. A total of
1661 vehicles are labeled as the ground truth and the detection
accuracy is evaluated based on the three aforementioned
parameters. Table II summarizes the evaluation results.

Miss =

(24)
# of all ground truth
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(a) Drone's view -- ground truth.

Fig. 12.

TABLE III
DETECTION PERFORMANCE IN GENERAL PERCEPTION AREA

(b) View of 3D bounding box.

Examples of the CMM FOS testing results from different perspectives (The ego-vehicle is marked by red boxes).

TABLE IV
TRACKING PERFORMANCE IN GENERAL PERCEPTION AREA

# of GT # of TP under different error condition # of GT # of IDTP under different error condition
° er=3m | err=2m | err = Im | err = 0.5m eir=3m | err=2m | err = Im | err = 0.5m
1365 1181 1174 871 722 1365 1004 1000 747 663

Recall 86.52% 86.01% 63.81% 52.89% ID-Recall | 73.55% 73.26% 54.73% 48.57%
Miss 13.48% 13.99% 36.19% 47.11% ID-Miss 26.45% 26.74% 45.27% 51.43%
Detection Performance under err <= 3m Tracking Performance under err <= 3m
90 L[ * CMM-LiDAR (Ours) i : 12 100 -] ¢ CMM-LiDAR (Ours) :
e GPS+RTK (Ground Truth) ! i < GPS+RTK (Ground Truth) i
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Fig. 13. Detection performance in general perception area and vehicle speed
(m/s) represented by the color bar.

For the detection performance in the general perception
area, the APE process proposed in Section IV-I is applied.
Since APE cannot generate FP data, Recall and Miss are
evaluated and demonstrated in Table III. Furthermore, the
qualitative performance of detection under different velocities
is shown in Fig. 13.

D. Tracking

For evaluating the tracking performance, information matrix
S generated by the APE approach is applied. Specifically, the
tracking performance is calculated using the ID-Recall matrix,
which is defined below:
IDTP
IDTP + IDFN

where IDTP and IDFN represent the number of TP matching
and FN matching, respectively.

ID-Recall = (25)

20 30 40 50 60 70 80 90 100 110 120
East [m]

Fig. 14. Tracking performance in general perception area (id represented by
colors).

Table IV shows the numerical evaluation of the tracking
performance. Under a 2 to 3-meter localization-error condi-
tion, the tracking ID-Recall can achieve over 73%. Even under
sub-meter level localization requirements, our CMM system
can still give a tracking recall performance of around 50%.

More detailed tracking performance with respect to the
ground truth is shown in Fig. 14. Tracking performance shows
a significant drop when it locates away from the LiDAR
(roughly at [70 East, 85 North]). Thus, a second LiDAR
would be required at the opposite corner to make the whole
intersection be covered at a satisfactory tracking performance.

E. Localization

This section analyzes the localization performance of our
CMM field operational system. To evaluate localization accu-
racy, a multi-sensor-based localization system is applied to
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(d) U Turn

with four driving scenarios are extracted and visualized in
Fig. 15. The trajectories generated by our CMM system
(green curves) highly match the ground truth generated by the

(a) Left Turn (b) Right Turn (c) Straight
Fig. 15. Trajectories of different driving scenarios for CMM FOS (green) and ground truth (red).
Localization error along the Iongitudinal direction of the ego-vehicle.
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Fig. 16. Localization error along the longitudinal and lateral direction of the
ego-vehicle.

measure the ground truth location of the ego-vehicle. This
multi-sensor system consists of a GPS receiver enabled
with Real-Time Kinematic (RTK) positioning and an Inertial
Measurement Unit (IMU). Since this system can achieve
centimeter-level positioning, the measurement generated by
this GPS-RTK-IMU positioning system is used as the ground
truth to assess the CMM system.

Root-mean-square error (RMSE) is applied for evaluat-
ing the localization performance of the CMM system. The
RMSE for longitudinal localization and lateral localization,
RMSEj,,, and RMSE,;; are 0.69m and 0.33m respectively.
The overall RMSE for the CMM localization system RMSE
is 0.76m. Meanwhile, we also provide the evaluation results
using mean absolute error (MAE), which are 0.19m for lateral
MAE, and 0.47m for longitudinal MAE.

Fig. 16 demonstrates the localization error along the lon-
gitudinal and lateral direction of the ego-vehicle. A positive
correlation can be identified in the longitudinal localization
error, which can be explained by the non-synchronization
between the GPS and LiDAR systems. In another word, the
time gap is amplified by the longitudinal motion, because of
its higher speed than the lateral movement.

Additionally, visualization results are shown in terms of
different driving scenarios, including 1) left turn, 2) right turn,
3) going straight, and 4) U-turn. The trajectories of ego-vehicle

onboard GPS-RTK-IMU positioning system (red curves under
the green one).

F. Latency

As for a field operation system (FOS), it is of great signifi-
cance to analyze the latency of the whole system. As depicted
in Fig. 17, the latency of the whole CMM FOS pipeline to
process one frame of data can be analyzed by breaking down
the whole workflow into three main phases:

Phase 1 — Sensor Side: Time elapsed from the start till the
edge server receives the sensor data. Specifically, in the sensor
processing stage, the sensor collects the raw data and processes
it into a transformable format via its embedded system. For
data retrieving, the processed data can be transmitted to the
edge server via the Local Area Network (LAN). The time
consumption is certified by the manufacturer.

Phase 2 — Edge-Server Side: Time elapsed from the moment
when sensor data is received by the edge server till the
instance when perception data is encoded and sent out to the
cloud server. The edge server is responsible for generating the
object-level perception data, including 3D object detection,
3D multi-object tracking, and geodetic localization. Since
these modules are running in chronological order, the time
consumption for each module is measured by the starting and
ending timestamps of each function.

Phase 3 — Cloud & Onboard Side: Time elapsed from the
moment when perception data is sent from the edge server
till the instance when reconstructed traffic environments are
displayed on the onboard GUI. Since the CMM system tends
to serve all the road users with connectivity, a cloud server is
used for data acquisition, synchronization, and distribution of
processed data (after edge computing). The onboard computer,

e., the tablet utilized in this study, decodes the perception
data, reconstructs the traffic environment, and displays it on
the GUI. Time consumption for this phase is measured by the
timestamps from the onboard end to the edge-server end.

As shown in Fig. 17, the total latency is about
285ms — 335ms, whose variance mainly results from the
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fluctuation of communication. However, during the field test-
ing, we find out that the time consumption of every single
computational module may vary within a certain range. For
example, the object-tracking and geo-localization modules
have a larger variance compared with the object detection
model, which may be caused by the change in the number
of detected objects.

To reduce the latency of the whole system, there are several
ways that can be applied in the future. For example, several
for loops and external python packages are implemented in
the software for tracking and localization parts which mainly
account for the surprisingly high computational cost at the
perception end. Therefore, programming optimization can be
applied to further reduce computational time. Another way
to speed up the whole process is to improve the hardware’s
computational performance for edge servers and onboard
computers.

VI. CONCLUSION AND DISCUSSION

In this study, we introduce the concept of Cyber Mobility
Mirror (CMM) and develop a CMM Field Operational Sys-
tem at a real-world intersection as a prototype for enabling
Cooperative Driving Automation (CDA). It leverages high-
fidelity roadside sensors (e.g., LIDAR) to detect, classify, track
and reconstruct object-level traffic information in real time,
which can lay a foundation of environment perception for
various kinds of CDA applications in mixed traffic. Testing
results prove the feasibility of the CMM concept and also
demonstrate satisfactory system performance in terms of real-
time high-fidelity traffic surveillance. The overall perception
can achieve 96.99% precision and 83.62% recall for detection
and 73.55% ID-recall for tracking. Additionally, the average
geo-localization error of the system is 0.19m, and 0.47m
for lateral and longitudinal direction and real-time traffic
conditions can be displayed at a frequency of 3 —4Hz.

Based on this prototype CMM FOS, several future direc-
tions for improving the system performance may include:

o Perception Accuracy: The current domain adaptation
approach to data transformation is preliminary, which
can be further improved by box distribution normaliza-
tion [48] or pseudo labels [49]. Additionally, Style Trans-
fer [S0] can also be a promising solution to improving the
capabilities of domain adaptation and cost-effectiveness;

o Perception Range: The current CMM FOS only involves
one LiDAR sensor and thus can only cover a limited area
of the whole intersection. To extend the perception range
of the CMM system, we plan to set up several sensors

The diagram of time consumption per frame at different stages in CMM FOS.

including both LiDARs and cameras to cover multiple
intersections to achieve a corridor-level cooperative per-
ception system;

o Real-time Performance: The time consumption can be
mainly reduced from the edge-server side, i.e., optimizing
the software programming in the tracking and localization
parts. Besides, upgrading the hardware equipment can
also improve the real-time processing speed.

This paper intends to provide a field operational system of a
novel concept of the roadside sensor-based high-fidelity coop-
erative perception system, named CMM, which can provide
foundations and inspirations for future work. By leveraging
the high-fidelity roadside sensing information available from
the CMM system, plenty of subsequent CDA applications
(e.g., CACC, advanced intersection management, cooperative
eco-driving) can be revisited for real-world implementation in
the mixed traffic environment.
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