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Abstract— The emerging prevalence of electric vehicles (EVs)
in shared mobility services has led to a groundbreaking trend
for decarbonizing the shared mobility sector. However, it is
still unclear how to maximize the efficiency of EVs to reduce
greenhouse gas (GHG) emissions while maintaining high service
quality, particularly considering the ongoing transition towards
a fully electrified service fleet. In this paper, focusing on meal
delivery, we proposed an eco-friendly on-demand meal delivery
(ODMD) system to maximize the utilities of EVs to mitigate GHG
emissions and maintain low operational cost and delay cost. The
main feature of our system is that its fleet consists of electric
and gasoline vehicles mirroring the evolving electrification trend
in the shared delivery sector. A rolling horizon framework
integrated with the adaptive large neighborhood search (RH-
ALNS) algorithm was proposed to efficiently solve the meal order
dispatching and routing problem with the mixed fleet. Three
delivery policies were explored in the numerical study. Experi-
ment results demonstrated that it is necessary for online meal
delivery platforms to actively collect information of electric vehi-
cles and take initiative to employ an eco-friendly delivery policy.

Index Terms— Dynamic on-demand meal delivery, mixed fleet
dispatching, eco-friendly meal delivery, adaptive large neighbor-
hood search (ALNS), eco-friendly delivery.

I. INTRODUCTION

CATALYZED by the prevalence of information and com-
munication technology and boosted by the unexpected

COVID-19 pandemic, on-demand meal delivery (ODMD) has
achieved explosive growth [1]. In the U.S., food delivery
now comprises 14% of the total restaurant market [2]. The
revenue from ODMD is projected to reach 63.02 billion
dollars by 2022, growing annually at 8.9% [3]. Crowdsourced
delivery emerged to meet the demand for faster and lower-cost
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deliveries by outsourcing meal delivery tasks to on-demand,
non-professional drivers. The operation of crowdsourced meal
delivery is supported by online platforms (e.g., UberEats,
Meituan, Deliveroo, etc.), which handles everything from
offering various food options, facilitating food ordering and
digital payment, to scheduling delivery tasks and driver rout-
ing [4].

Meanwhile, electric vehicles (EVs) are gaining fast adoption
due to their zero tailpipe emissions. In ODMD services, Door-
Dash reported that over 56 million orders were fulfilled using
low or no-emissions vehicles [5]. The foreseen increasing EVs
in ODMD service can be attributed to several factors. Firstly,
as EVs continue to penetrate the car market, it is becoming
increasingly common for delivery drivers to use their own EVs
to complete meal delivery tasks. Secondly, shared delivery
companies have launched pilot programs to encourage EV
owners to participate in ride-hailing and on-demand delivery
services. For instance, Uber provides an additional one-dollar
subsidy for trips completed by fully electric vehicles [6].
Thirdly, local and state governments are also implementing
regulations to guide the electrification of shared mobility
services. The Clean Miles Standard proposed in California,
for example, requires transportation network companies such
as Uber and Lyft to achieve 90% electric vehicle miles traveled
(eVMT) by 2030 [7]. Both Uber and Lyft have committed
to transitioning to a 100% EV fleet [8], [9]. Despite these
initiatives, challenges such as limited range, high upfront
purchase price, unevenly distributed charging stations, and
long charging time have delayed the transition to a purely
EV delivery fleet. Most on-demand mobility and delivery
companies in the U.S. currently operate a mixed delivery fleet
consisting of conventional gasoline-fueled vehicles and electric
vehicles, which offers opportunities to curtail GHG emissions
during the delivery process if EVs are utilized properly.

In this research, we aim to explore an effective meal delivery
strategy that can efficiently utilize EVs in the mixed fleet
for meal order deliveries to reduce greenhouse gas (GHG)
emissions while minimizing operational cost and delay cost.
To achieve this goal, we first proposed an eco-friendly crowd-
sourced meal system with the following key characteristics:
(1) dynamism: order demand and driver resources are con-
tinuously arriving; (2) a mixed fleet: crowdsourced drivers
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Fig. 1. Review scope and application in ODMD.

utilize both GVs and EVs; and (3) eco-friendliness: explicitly
minimize GHG emissions and other costs in ODMD. Next,
an efficient and effective optimization approach, RH-ALNS,
was developed to solve the dynamic ODMD problem. This
approach includes a rolling horizon (RH) framework to handle
dynamic meal orders and driver information and an adaptive
large neighborhood search (ALNS) algorithm to obtain the
optimized plan for order dispatching and routing.

To validate the proposed algorithm and demonstrate the
benefits of the eco-friendly crowdsourced meal system,
we conducted real-world numerical simulations in the city
of Riverside, California. Three delivery policies were tested
in the numerical experiments to demonstrate the importance
of actively utilizing EVs in the mixed fleet to curtail GHG
emissions. In summary, the main contributions of this paper
could be summarized as follows.
• We modeled the mixed fleet scenario in the dynamic

ODMD business, which is an important scenario that
could significantly reduce GHG emissions by effectively
utilizing the EVs in the delivery fleet. To the best of
our knowledge, this is the first work investigating mixed
fleet dispatching policy to improve the sustainability of
ODMD.

• By fully considering the feature of dynamic ODMD and
the charging needs of EVs, the proposed RH-ALNS
algorithm was tailored by specifying the requirements
for the removal and repair operators to achieve the opti-
mized dispatching and routing plan. The performance
of RH-ALNS was compared to two other state-of-the-
art heuristic algorithms.

• A real-world meal delivery simulation was constructed
in the City of Riverside, California. Simulation results
consolidated the importance for ODMD platforms to
fully utilize the EVs in the mixed fleet to reduce GHG
emissions.

II. LITERATURE REVIEW

This section first briefly reviewed the literature on pickup
and delivery problem with time windows (PDPTW) and vehi-
cle routing problem (VRP) related to the proposed ODMD
system characteristics: dynamic, mixed fleet, and eco-friendly.
Next, in terms of the application scenario, we focused on the
recent work about ODMD and classified them based on the
three characteristics. The reviewed scope is shown in Figure 1.

A. Dynamic PDPTW

The proposed meal delivery problem can be considered
as an extension of the general pickup and delivery problem
with time window (PDPTW) [10], [11], as delivery drivers
need to pick up the orders first then deliver to the cor-
responding location with time window constraints. Unlike
the static PDPTW where delivery demand and fleet supply
were deterministic and known as a priori of the model, our
studied problem falls into the dynamic type [12], where the
system information including meal orders and crowdsourced
drivers are dynamically revealed. A popular approach to solve
dynamic PDPTW is the rolling horizon method which aims
to re-optimize the solution according to the newly revealed
information. The time interval between each re-optimization
is critical. Some studies proposed a reactive time interval,
indicating the system re-optimizes upon each new request
arrival [13], [14]. This approach allows real-time updates but is
computationally expensive if the requests arrive continuously
in every time unit. Instead, other studies applied the periodic
rolling horizon which divides the operating horizon into a
sequences of time intervals and performs a re-optimization
step of the solution. For example, Karami et al. proposed
a periodic optimization approach with buffering strategy to
solve a dynamic logistics scheduling problem. Their results
show that the performance of scheduling plan is positively
affected by the system dynamism while negatively affected
by the request urgency [15]. Mitrovic-Minic et al. considered
the impact of long-term and short-term time interval setting
and proposed a double-horizon based heuristics to leverage
the slack time in the future to help reduce routing cost [16].
Jia et al. utilized a periodic and event-driven rolling horizon
procedure to minimize the total travelling time with dynamic
events of traffic congestion, customer delivery time change,
and new requests arrival [17]. In this study, we implemented a
periodic rolling horizon framwork to update the whole system
status and monitor the task completeness.

B. Mixed Fleet Vehicle Routing Problem

There are many inspiring works regarding the dispatching
and management of a mixed energy fleet. Different with the
traditional VRP problem, the mixed fleet VRP has to explicitly
enforce the fleet composition constraint which guarantees that
dispatching of vehicles is consistent with the composition
of the fleet. Additionally, given the range limit of EVs and
longer charging times, the model should consider the fleet
capacity changes due to the EV charging needs. Goeke and
Schneider developed a comprehensive mixed fleet routing
problem for EVs and internal combustion vehicles (ICVs),
integrating a realistic energy consumption model for EVs
to determine driving range and charging times at stations.
The study’s results indicate that the objective function has a
substantial impact on EV usage [18]. Hiermann et al. further
studied a more complicated fleet which combining with ICVs,
EVS and plug-in hybrid vehicles (PHEV) and constructed a
genetic algorithm with local and large neighborhood search
to efficiently solve the routing problem. Their results show
that effective usage of a mixed fleet is beneficial in saving
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operational cost compared to the single type fleet case [19].
Maasmoudi et al. investigated the mixed fleet routing problem
in the dial-a-ride scenario, which is most related to our
studied problem. But this research only considered a static
order information and was with a focus on analyzing the
algorithm performance instead of investigating the dispatching
policy of a mixed fleet [20]. Besides, bi-objective optimization
was explored in the mixed fleet VRP in order to explore
the trade-off between service efficiency and environmental
impacts [21], [22], [23], [24]. Other studies further extended
the mixed fleet VRP by integrating the charging behaviors
of EVs, such as partial battery recharging [25], charging
station selection considering charging cost [26] and charging
power [23], battery swapping [27], etc.

C. Eco-Friendly Vehicle Routing Problem

From the eco-friendly perspective, some VRPs focused on
minimizing the energy consumption or pollutant emissions.
A comprehensive survey of eco-friendly VRP can be found
in [28]. Fuel consumption is an important component when
constructing the energy minimizing VRP model. Kara et al.
first proposed the Energy Minimizing Vehicle Routing Prob-
lem (EMVRP) which considering the travel distance and
load of vehicles [29]. But the energy consumption model is
simplistic which fail to consider the vehicle speed during the
routing process. Further, a more realistic energy consumption
model was proposed by Goeke et al with the consideration of
vehicle mass, travel speed an road gradient [18]. An overview
of electric vehicle energy consumption models can be found
in [30]. Regarding the emission reduction for vehicle routing,
Bektas and Laporte proposed the pollutant routing problem
(PRP) which minimizes the weighted sum of GHG emis-
sions, operational cost, and fuel consumption [31]. Sawik
et al. presented multi-criteria optimization models to study
the problem of maximization of truck capacity meanwhile
minimization of fuel consumption, carbon mission and noise in
the logistics production [32]. Further, a Comprehensive Modal
Emission Model (CMEM) [33] was proposed by Barth et al.
that can predict the high-resolution vehicle emissions given the
vehicle trajectory (speed, acceleration, road grade, etc.), which
has been widely adopted in the eco-friendly vehicle routing
research, such as [20] and [31]. In this research, we used the
EMFAC model to estimate the GHG emission from passenger
GV, which only requires the vehicle link-level speed to obtain
the emission rate and is well maintained by California Air
Resources Board [34].

D. On-Demand Meal Delivery (ODMD)

On-demand meal delivery service is an emerging area,
as most research results were published during the past five
year. A portion of studies assumed perfect information of
meal orders to sidestep the system dynamism. Liu et al.
proposed to leverage the taxi resources to deliver food order
either in opportunistic manner or in dedicated manner with
the goal to minimize taxi number and distance cost [35].
Tu et al. developed an online dynamic optimization frame-
work which includes order collection, solution generation

on and sequential delivery [36]. Wang et al. presented an
insertion-based heuristic to solve a single driver food delivery
routing problem along with the geographic information to
accelerate the insertion process [37]. Yildiz and Savelsbergh
assumed perfect information of meal orders and introduced
the concept of work-package which integrates both space and
time consistency constraints. The problem was solved by a
column and row generation method [38]. Liao et al. studied
a green meal delivery routing problem with multi-objectives
to maximize the customer satisfaction, rider utilization and
minimize carbon footprint [39].

On the other hand, the dynamic meal delivery problem also
receives attentions from many researchers. Reyes et al. studied
the meal-delivery routing problem (MDRP) and proposed a
rolling-horizon algorithm to solve the dynamic vehicle routing
and capacity management problem [40]. Zhou et al. formulated
an online order dispatched system with new orders arrival,
but this research only solved the problem in one time interval
without considering the platform update [41]. Huang et al.
proposed a UAV-based ODMD system, however, UAV is
largely constrained by the load limits [42]. Steever et al.
developed a ‘pro-active’ heuristic to predict the future delivery
needs [43].

The most proposed objectives in the ODMD problems
are from the operational efficiency perspective, including
minimizing driver delivery distance [35], [44], [45], driver
waiting time [45], total driver compensation [38], order deliv-
ery delay [43], [46], order cancellation rate [41], etc. Only
Liao et al explicitly minimize the carbon footprint of meal
delivery drivers [39]. But this paper only considered the static
ODMD scenario with the generated datasets to verify the
algorithm performance without noticing the fleet composition.
Based on the research from Liu et al. [47] and Allen et al. [48]
about model-based and comparative evaluation of emissions
impacts from the ODMD deliveries, results have emphasized
that it is necessary to encourage the use of zero emission
vehicles for these journeys. However, it is still unclear about
how to efficiently utilize the green vehicles in the mixed fleet.
On the other hand, some studies and industry companies have
proposed the UAV for meal deliveries [42], [49], which still
has a long way to go before mass adoption.

III. PROBLEM DESCRIPTION AND FORMULATION

A. Problem Description

We considered a decision maker represented by an online
platform that performs on-demand meal delivery with a mixed
fleet of electric and gasoline vehicles. Specifically, G-driver
and E-driver were used to distinguish the delivery driver with
a gasoline vehicle and an electric vehicle respectively. Meal
orders are arriving dynamically, and the system only optimizes
the solution based on the revealed order information. Each
meal order has the information about order placing time,
customer location, and restaurant location. The crowdsourced
drivers can log on and log off the system freely during the
operating time depending on drivers’ working schedules. The
platform needs to dispatch meal orders to either E-drivers or
G-drivers according to the objectives and the dispatching
policy.
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Fig. 2. Meal order and driver status definition.

Given the dynamic nature of meal orders and crowdsourced
drivers, the platform should update the dispatching result
periodically, where the rolling horizon approach was widely
used [40], [46]. Generally, the whole operational horizon H
was divided into

⌈ H
τ

⌉
time intervals with a length of τ .

Suppose the platform begins at time t0. Then at every time
step th (where th = t0 + h × τ , h =

(
1, 2, . . . ,

⌈ H
τ

⌉)
, the

system re-optimizes the order dispatching decision regarding
the new meal order demand and the updated driver information
during [th−1, th).

As shown in Figure 2, we defined three types of order status.
At time th , if an order o is placed in the range of [th−1, th),
then it falls in the new order set On . The platform dispatches
the new orders to drivers at the re-optimization time, after
which the order status changes to “scheduled” in Os . The
order status is switched to completed (defined as Oc) when
the order is finally delivered. Each crowdsourced driver has
two states: working (in setK w) or idle (inset K I ). Driver k
first logs on to the platform and is at idle status waiting for the
order dispatching notification. Suppose at time th , the driver
receives delivery tasks and starts working. In addition, some
drivers may have multiple delivery trips and their statuses keep
switching between “working” and “idle” until they leave the
platform.

The system overview is shown in Figure 3. First, at re-
optimization time th the online operation platform collects
new order information, generates pick-up and drop-off tasks
for each order, and checks current active drivers. Given
this information as input, the ODMD system optimizes the
order dispatching and driver routing decisions. The goal is
to minimize greenhouse gas (GHG) emissions, operational
cost, and meal delivery delays. Note that only the GHG
emissions from G-drivers during the meal delivery process are
considered since the GHG emissions from E-drivers during the
delivery process are negligible. The life cycle GHG emissions
in electricity generation for EVs are not considered in this
study. The order dispatching is subject to constraints of order
time windows, number of available drivers, range limit of EVs,
etc. With the optimized solution, drivers will receive updated
routing information and finish the delivery tasks sequentially.
At the next time step th+1, the system will repeat the above
steps to construct a new sub-problem with respect to the new
delivery demand.

B. Problem Assumption

To formulate the dynamic ODMD problem, we have the
following assumptions:

• All orders must be delivered. The order rejection and
cancellation are not covered in this study. Drivers cannot
reject the assigned order in the system.

• After the assignment, order cannot be transferred
between drivers. A driver should finish both pick-up and
drop-off tasks of a meal order.

• New drivers should wait at the initial location before the
first order is assigned. After one delivery trip, drivers
should wait at the last drop-off location until the next
order dispatching.

• Drivers should complete the ongoing task and then
adjust the following delivery plan with respect to the
new command. They cannot change their immediate
destination when heading to a restaurant/customer.

• To ensure delivery speed, we restricted E-drivers from
getting battery charged during the working hour. If EVs
reach the charging threshold, drivers should log off the
system to reach a charging station. E-drivers should get
fully charged by themselves and will be treated as new
drivers if they return to the ODMD system. Thus, the
EV charging problem is not considered in the platform
but is delegated to the E-drivers.

C. Problem Formulation

An optimization model can be formulated at each reopti-
mization time step th . The notation definitions are summarized
in Table I. Let us consider the online platform with a set Ph

of pick-up tasks, a set Dh of drop-off tasks and a set K h

of crowdsourced drivers. Current delivery fleet K h includes
mh

E E-drivers and mh
G G-drivers. Each E-driver has a range

limit of RLk . Given the meal delivery demand and the mixed
fleet, the system needs to determine the matching between
drivers and meal orders and the routing plan for drivers.
A directed graph G = (V, E) can be defined. Each node in
V

(
V = Ph

∪ Dh
∪ K h)

represents the location of a customer,
a restaurant, or a driver. Each arc in E(E = V ×V ) represents
movement from one node to another.

The goal of the Eco-friendly ODMD system is to balance
the operational efficiency and the environmental impact. The
objective function (equation (1)) consists of three components:
delivery distance cost, meal delay cost and GHG emission
cost, which in essence is a multi-objective optimization prob-
lem [50]. In this paper, the weighted sum method is employed
to iteratively search for a Pareto-efficient solution in the
dynamic ODMD scenario. Due to the linearity of the cost
function, it is also guaranteed that a solution obtained from
the weight sum method is a Pareto-efficient solution [51].

min F = α
∑

k∈K h

∑
(i∈V, j∈V,i ̸= j)

cddi j xk
i j

+ β
∑

i∈Dh
ct pc max

(
0, t i

do − t ie
do

)
+ γ

∑
k∈K h

∑
(i∈V, j∈V,i ̸= j)

ce Ei j xk
i j yk (1)

The first term sums up the total delivery distance, multiplied
by an operational cost factor cd . The second term is the delay
cost, where the delivery delay is defined with the difference
between the order’s actual drop-off time t i

do and the expected
drop-off time t ie

do provided by the system. A linear delay
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Fig. 3. The overview of the dynamic ODMD system with a mixed fleet.

penalty pc is enforced to penalize long delay time. The delay
term is multiplied by the delay cost factor ct to represent
the delay cost. The last term is the total GHG emission cost
from G-drivers. The GHG emission Ei j is multiplied by the
emission cost factor ce. The weighted factors of the three terms
are α, β, γ , which can be tuned to achieve the balance among
the objectives.

The operational constraints of the ODMD system are
grouped into the following five categories.

1) Route Construction Constraints:∑
k∈K h

∑
j∈V

xk
i j = 1 ∀i ∈ Ph

∪Dh (2)∑
j∈V

xk
k0, j = 1 ∀ k ∈ K h (3)∑

i ∈V
xk

i,k0
= 1 ∀k ∈ K h (4)∑

i ∈V
xk

i j −
∑

i∈V
xk

ji = 0 ∀ j ∈ Ph
∪Dh, ∀k ∈ K h

(5)∑
j ′ ∈V

xk
i j ′
−

∑
j ′ ∈V

xk
j ′ j
= 0 ∀(i, j) ∈ Rh, ∀ k ∈ K h

(6)

T k
i ≤ T k

j ∀k ∈ K h, ∀(i, j) ∈ Rh

(7)

2) Mixed Fleet Constraints:∑
j∈V

xk
k0 j yk

≤ mh
G ∀k ∈ K h (8)∑

j∈V
xk

k0 j (1− yk) ≤ mh
E ∀k ∈ K h (9)∑

(i∈V, j∈V,i ̸= j)
(1− yk)(di j xk

i j + δ∗RLk)

≤ RLh
k ∀k ∈ K h (10)

3) Capacity Constraints:

Qk
j ≥ Qk

i + q j ∀ i, j∈ V, ∀k ∈ K h (11)

Qk
i ≤ Qk

∀i ∈ V, ∀k ∈ K h (12)

4) Time Window Constraints:

t i
pu = max

(
t i
r , T k

i

)
∀i ∈ Ph, ∀k ∈ K h (13)

T k
j ≥ t i

pu + ti j + si ∀ i ∈ Ph, ∀ j ∈ V, ∀k ∈ K h (14)

T k
j ≥ t i

do + ti j + si ∀ i ∈ Dh, ∀ j ∈ V, ∀k ∈ K h (15)

T k
j ≥ T k

i + ti j + CT ∀ i ∈ F
′

, ∀ j ∈ Ph,∀k ∈ K h (16)

5) Variable Constraints:

xk
i j ∈ {0, 1} ∀ (i, j) ∈ E, ∀k ∈ K h (17)

yk
∈ {0, 1} ∀k ∈ K h (18)

Qk
i ≥ 0 ∀i ∈ V, ∀k ∈ K h (19)

T k
i ≥ 0 ∀i ∈ V, ∀k ∈ K h (20)

Route construction constraints ensure the fundamental
requirements of a route. Constraint (2) requires all meal
orders to be completed. Constrain (3)-(5) indicates each driver
should log on from the initial location, return to it after
logging off the system, and the route should satisfy the flow
conservation. Constraint (6) requires the pair of pick-up and
drop-off tasks from one order should be fulfilled by the same
driver. Constraint (7) guarantees the driver picks up the meal
order first, and then delivers it to the customer.

The second category specifies the mixed fleet constraints.
Constraint (8) and (9) ensure that the maximum number
of utilized drivers adhere to the delivery fleet composition.
Constraint (10) states that E-drivers’ remaining travel range
should cover the travel distance of the next assigned tasks
and the predefined charging threshold δ∗RLk . The charging
threshold setting is to ensure that EVs have enough battery to
reach an available charging station.

Constraint (11) and (12) are the capacity constraints, which
states each driver delivered order number change along the
route and limits the maximum orders that can be assigned at
any given time.
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TABLE I
VARIABLES DEFINITION AND DESCRIPTION

The fourth group includes all the time constraints. Each
pick-up task has a ready time t i

r provided by the restaurant.
Constraint (13) states that one driver can arrive earlier at the
restaurant but should wait until the t i

r to pick up the meal order.
If the driver arrives later than t i

r , then he/she can directly pick
up the order. Constraint (14) states that if the previous visit
location i is a restaurant, then the time when the driver arrives
at the next consecutive location j is no earlier than the order
pick-up time t i

pu plus the sum of service time si and travel
time from i to j . Constraint (15) implies that if the previous
visit location i is a customer, then the time when the driver
arrives at consecutive location j is no earlier than the order
drop-off time t i

do plus the sum of service time si and travel
time from i to j. Constraint (16) covers the E-driver charging
case, which indicates that the E-driver can only log on to the

Fig. 4. RH-ALNS algorithm flowchart.

system again after charging time CT. The last group defines
the decision variables. xk

i j is a binary variable indicating if
driver k travels from i to j . yk is a binary variable as well.
When yk

= 0, indicating driver k is an E-driver. Otherwise,
yk
= 1, indicating driver k is a G-driver.

During the dynamic order dispatching and routing process,∣∣Ph
∣∣ ≤ ∣∣Dh

∣∣ holds, as some meal orders might be picked up at
the restaurants but haven’t been delivered at the customer loca-
tion before time th . The system input and model formulation
will be updated at every re-optimization time th according to
the new arrival orders and the status of previous tasks, which
will be presented in the next section.

IV. PROPOSED RH-ALNS ALGORITHM

The meal delivery problem in an ODMD system can be
considered as a dynamic pickup and delivery problem with
time window problem which is famous for its NP-hardness.
To accommodate the newly received order demand and the
updated delivery fleet, we proposed a rolling horizon based
adaptive large neighborhood search (RH-ALNS) algorithm to
solve the order dispatching problem. The main components
of RH-ALNS are shown in Figure 4. The RH component is
designed to update the status of previous tasks and collect new
information during the new time interval. A feasible initial
solution is first generated in the new optimization scenario,
then the ALNS algorithm is used to optimize the order
dispatching and routing solution. Besides, to further intensify
the searching space, we implemented a local search algorithm
to reschedule the previous tasks. The delivery drivers will be
notified with the updated task sequence based on the solution
to execute pick-up/drop-off accordingly. The details of each
component are introduced in the following sections.

A. Rolling Horizon Framework

The rolling horizon framework is a time-based periodic
approach that divides the total operational horizon H into
a number of time intervals of length τ . At the re-optimized
time step th , from the task respective (since each order has a
pick-up and a drop-off task), the system will first remove any
completed pick-up/drop-off task i if t i

pu ≤ th or t i
do ≤ th . Other
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previous tasks are the scheduled tasks that will be tied with
the assigned driver. Then the system will check new orders
and generate new pick-up and drop-off tasks accordingly.

Meanwhile, the current location of each driver k should be
updated. Previous active drivers who haven’t been assigned
any tasks and the new active drivers will be idle at the origin
initial location k0. For drivers that have departed to execute
tasks, the current location is updated to the on-going task’s
location since we assume drivers to finish the on-going task
before changing the routing. In the case of drivers who have
completed a sequence of tasks, the driver’s location is updated
to the last visited location. The driver task sequence will be
updated according to the task status, such as deleting the
completed tasks. In particular, E-drivers should also update
the remaining travel range according to battery life. E-drivers
will log off the system either when their total working hours
are consumed, or when the remaining travel range reaches
the predefined threshold. G-drivers will log off the system
according to the drivers’ working shift.

B. Initial Solution

We need to insert the new orders to obtain a feasible initial
solution. Algorithm 1 illustrates the proposed nearest driver
with priority strategy to dispatch new orders in each time
interval. New orders are sorted in ascending order according
to the expected drop-off time t ie

do(line 1). Then each order will
be assigned to one active driver to construct an initial solution.
The driver matching strategy is the nearest driver with priority
where the nearest idle driver is searched (line 5). If there is
no idle driver, we will start searching for the nearest working
driver for the order (line 6). With this strategy, when the system
has more drivers than orders, we intend to encourage a single
bundle. This helps the system to warm up quickly and reduce
the delay penalty as much as possible. After finding the nearest
driver k, order o will be inserted into the best position that
causes minimum objective value increase (line 9). If an idle
driver has been assigned an order, then we should update it
into the working driver set K W (line 10).

Algorithm 1 Nearest Driver with Priority

Input: New ordersOn in time interval h, driver set K I
∪K W

Output: The initial assignment of each order to a specific
driver

1: Priority Queue L ← Sort Order by expected
drop-off time (On)

2: Pop out order sequentially
3: for each order o ∈ On do
4: if

∣∣K I
∣∣ > 0:

5: find nearest driver k in K I

6: else:
7: find nearest driver k in K W

8: end if
9: find best position in driver k to insert order o
10: update driver k to K W if k is chosen from K i

11: end for

C. ALNS Improvement for Dynamic ODMD

The Adaptive Large Neighborhood Search (ALNS)
algorithm was developed to further improve the initial solution.
The advantage of ALNS compared to other heuristics is that
it can diversify and intensify the initial solution to get the
optimized solution by leveraging multiple removal and repair
operators. It also has an adaptive scoring mechanism to explore
large neighborhoods in a structured manner and a simulated
annealing acceptance criterion to allow solution exploration,
thus having the potentiality to escape the local minimum.
In this research, to ensure the ODMD solution satisfies our
assumptions in section II, we specified requirements for the
ALNS removal and repair process.

First, transferring the previously assigned orders to another
driver is not allowed, so in the ALNS removal process, only
the new orders can be removed. Second, we only allow drivers
to change route until finish the on-going task, either pick-up
or drop-off. Thus, in the ALNS repair process, no tasks
can be inserted earlier than the on-going task. Meanwhile,
after inserting the new orders, an intra-route search after the
on-going task will be executed between all orders assigned
to the driver. With the above specific setup in the removal
and repair process, then we present the ALNS algorithm for
dynamic on-demand meal delivery as follows.

1) Removal Operators: We implemented five removal oper-
ators to perturb the solution and remove the undesired order
assignments. These removal operators are: 1) random removal,
2) worst removal, 3) Shaw removal, 4) Distance-based path
removal, and 5) Delay-based path removal. In our meal
delivery problem, all removal operators only perform within
the new orders.

Given a feasible solution, random removal selects N orders
randomly to remove in order to perturb the solution space.
Worst removal is to remove the order with the highest insertion
cost. The cost is defined in equation (1). We rank the insertion
cost of every order in increasing order and introduce a random
number y ∈ (0, 1) and a parameter p, then remove the order
located at y p |N |. This randomization is implemented to avoid
removing the same task repeatedly. Shaw removal is based on
the similarity of orders [11], we calculate the similarity in (21),
where dp(i),p( j) is the distance between the restaurants of order
i and order j , dd(i),d( j) is the distance between the two drop-
off locations, tpi − tpj is the time difference of the pick-up
time, tdi−td j is the time difference of drop-off time. A similar
randomization trick is also introduced as in worst removal.
For distance-based and delay-based path removal, we aim to
remove the longest travel distance cost path and worst delay
penalty cost path respectively. Since we only perform removal
between new orders, before the path removal, we need to check
if the path is constructed with only new orders.

Ri, j = f1
(
dp(i),p( j) + dd(i),d( j)

)
+ f2

(∣∣tpi − tpj
∣∣ + ∣∣tdi − td j

∣∣) (21)

2) Repair Operators: After the removal, we need to insert
back the orders to construct a new solution. In this paper, the
parallel insertion heuristic is chosen where multiple routes are
built simultaneously. We first sort the removed orders with
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the target drop-off time then insert each order to construct a
complete solution. Four repair operators are constructed: 1)
random repair, 2) greedy repair, 3) regret-2 repair, 4) regret-
3 repair. The repair operator should ensure that the insertion
position cannot be earlier than the on-going task.

Random repair selects the inserting positions randomly to
insert the removed orders. Greedy repair aims to find the
best position such that the increase of the objective value is
minimal. Regret-q repair leverages the look-ahead information
to avoid the situation that the most “expensive” order is left
at the last iteration where we lack the flexibility to deal with.
Let 1c j

i indicate the objective change when inserting order i
into its jth cheapest position. Then we need to find the order
i that maximizes the regret value in (22). In each iteration,
we select the most regretted order i and insert it into its best
position. In this paper, we construct Regret-2 and Regret-3
insertion operators.

max
i


q∑

j=1

(
1c j

i −1c1
i

) (22)

3) Adaptive Scoring and Selection: Alternating between
different operators could balance with diversification and
intensification of the final solution and could deliver robust
results overall. The Roulette Wheel Selection Principle is
implemented to select the removal and repair operator inde-
pendently in every iteration.

The total search approach of N iterations is divided into K
segments. Each segment has

⌈ N
K

⌉
iterations. At the beginning

of a segment k, each operator is equally weighted and the
accumulated score µ is initialized to zero. In each iteration,
a score γ will be assigned to the selected operators based on
the performance of the complete solution S+. The adaptive
score is shown in (23). The accumulative score µi of operator i
is updated according to γ in (24), where πi is the total number
of times the operator i has been chosen in this segment.

γ =


γ 1 if a new best solution is obtained
γ 2 if the solution is better than the current solution
γ 3 if the solution is worse than the current one

but accepted

(23)

µi =
∑πi

j=1
γ j (24)

Based on the score, the adaptive weight adjustment method
(see (25)) is utilized to update the operator weight.

wk
i = (1− ρ) wk−1

i + ρ
µi

πi
(25)

The weight of operator i at segment k (wk
i ) is based on the

weight at segment k − 1(wk−1
i ) and the performance in the

current segment. ρ is a reaction factor controlling how quickly
the algorithm reacts to the effectiveness of the operators.
If ρ = 0, then the weight is constant as at the last segment.
If ρ = 1, then it only considers the current segment to decide
the weight. Then given n operators, the probability of choosing

operator i during the segment k is defined as:

Pk
i =

wk
i∑n

j=1 wk
j

(26)

4) Acceptance and Termination Criteria: A simulated
annealing strategy is used in the ALNS framework to avoid
trapping in a local minimum. We accept a worsen solution S

′

with the probability of e−
f
(

S
′
)
− f (S)

T , where f is the objective
function and T> 0 is the temperature. T decreases with a
cooling rate δ : T = δT (0 < δ < 1). Considering the
practicality, we prefer good results in short time rather than
getting the optimal solution in long computational time. The
algorithm terminates under two conditions: 1) The maximum
number of iterations ϕmax is reached; 2) ϕ iterations have been
executed without any improvements.

D. Local Search for Scheduled Orders

In the ALNS improvement process, we only focused on
optimizing the new orders dispatching result since previously
scheduled orders cannot be transferred to another driver.
We implemented the intra-route local search to rearrange the
scheduled tasks. Two operators: forward movement & back-
forward movement [52], are performed within each route to
intensify the solution.

V. EVALUATION AND RESULTS

In this section, we presented the experimental studies and
results. First, the performance of the proposed RH-ALNS
algorithm is evaluated compared to two baseline algorithms.
Secondly, a comprehensive analysis is conducted to investigate
the difference of three delivery policies and highlight the
importance of efficiently utilizing EVs in the mixed fleet.
Thirdly, sensitivity analysis regarding the EV ratio in the
mixed fleet is presented. All algorithms are coded in python
3.8 and run with ThinkPadX1 Carbon 2021 with 16GB of
RAM and an Intel Core I7- 1165G7 processor.

A. Setup of Experiment

Instead of randomly generating meal data, we used the
CEMDAP model [53] to generate the meal orders in the City
of Riverside, California. Given various land-use, sociodemo-
graphic, activity, and transportation level-of-service attributes,
CEMDAP provides comprehensive daily activity-trip patterns
for individuals. Among all activities, we specifically focused
on eat-out trips and extracted the meal delivery orders. In this
research, we sampled 100, 300, 500, 700 meal orders out of
1523 eat-out trips during the lunchtime window from 11:30
am to 12:30 pm. These instances were denoted as C100, C300,
C500, C700, accordingly. Each order contains information
such as order place time, restaurant location, and customer
location. To illustrate, Figure 5 depicts the meal orders in C500
instance between 12:00pm and 12:10 pm.

The traffic network in the city of Riverside was extracted
from BEAM [54]. Once all locations were defined, including
drivers’ initial location, customer location and restaurant loca-
tion based on the sampled meal orders and drivers starting
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Fig. 5. Meal orders map in a 10-minute period. Green dots represent the
customer location, yellow dots represent the restaurant location. The white
line indicates meal order. The background is the Riverside network extracted
from BEAM.

locations, we computed the distance matrix and travel time
matrix among the locations based on the fastest path with
the NetworkX module [55]. These matrices were then saved
into a table for quick reference. The link-level emissions were
calculated with the link-level distance and speed information.
First, we integrated the EMFAC model [45] to obtain the
emission rate (E Ri, j ), which is contingent on the link speed.
Subsequently, the link emission Ei, j was obtained as E Ri, j×

di, j , where di, j is the link distance. The total emissions along
the route were computed by summing the emissions from all
links traveled by drivers. The emission matrix containing GHG
emissions from one location to another was pre-calculated to
save the computational time. If an order is matched with an
E-driver, we simply set the emission term to zero.

The parameter settings were summarized in Table II. In the
ODMD system, each order has a place time t i

p. The meal
preparation time is randomly generated from 5 to 20 minutes,
determining the order ready time: t i

r = t i
p + Tpre. The

platform expects to deliver all meal orders within 40 minutes
after the order place time, termed as expected click to door
time T e

ctd . Then the expected drop-off time t ie
do is defined as

t ie
do = t i

p + T e
ctd . If the actual drop-off time t i

do is later than
t ie
do, then a delay occurs. Additionally, each pick-up/drop-off

task needs one minute of service time for miscellaneous tasks,
i.e., walking to the apartment.

The crowdsourced drivers arrive at a ratio of 5 orders per
driver within each time interval. To prevent driver shortages,
the system has additional drivers who start working at time
t0. Considering the order volume, the number of additional
drivers is set as 10, 20, 30, 30 for C100, C300 C500, C700
instance respectively. Among all drivers, we assume E-drivers
account for 40% of delivery drivers and G-drivers make up the
remaining 60%. The range limit of E-drivers is set as 400 km.
When the remaining distance is less than 40 km, then E-drivers
will log off the system to get charged. Further, we assumed
each driver could be assigned with no more than 10 orders
at any given time. The system update time window is set at
10 minutes for all instances.

TABLE II
MEAL ORDER PARAMETERS AND COST FACTORS

In the objective function, the operational cost is calculated
based on the total delivery distance, with an assumed cost
factor of 0.26 $/km. The delay cost factor is set as 0.28 $/min.
The GHG emission cost factor is 50 $/metric ton, obtained
from [56], representing the long-term social cost.

For parameter setting in ALNS algorithm, we mainly took
reference from [57]. For the number of orders to be removed
in each iteration, a random number p is generated from 4,0.2n,
where n is the total number of new orders in the current solu-
tion. The operator score (γ 1, γ 2, γ 3) is set to (33,15,9). Each
segment includes 50 iterations, and we executed 100 segments
in total. The number of non-improvement iterations was set as
500.

B. Discission on Weight Value in the Objective Function

The objective function is a weighted sum of three com-
ponents: emission cost, distance-based operational cost, and
delay cost. Given the monetary cost with factors (cd , ct , ce),
the operational cost and delay cost would significantly out-
weigh the emission cost, leading to insufficient EV utilization
in the delivery fleet. In order to achieve a dispatching plan
with a better balance between operational performance and
emission impact, we conducted preliminary tests to fine-tune
the factors α, β and γ .

To find the factor γ that best represents the research goal
of this paper, we conducted experiments in C100 instance to
calibrate with the RH-ALNS algorithm by setting the weight
factor α and β both equal to 1, then steadily increasing the
weight factor γ . The preliminary results showed that a small
γ led to the neglect of GHG emission costs within the delivery
process. If we steadily increase γ from 1 to 10000, the system
can use EV to replace GV without significantly increasing
distance and delay cost. If γ keeps increasing, the system
will assign higher priority to EVs to deliver orders while
significantly sacrificing the distance and delay cost. With the
preliminary test result, we thus set the weighted factor in
the objective function (α, β, γ ) equal to (1,1,10000) in the
following numerical studies to balance both emission cost and
operation cost. However, this is just a preliminary discussion
regarding the weight parameter. One can calibrate own weight
factors according to the specific study objectives in practice.
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C. Benchmark Policies and Evaluation Metrics

With more EVs participating in the delivery process, it is
important for ODMD platforms to efficiently utilize the mixed
fleet. In this study, we considered three benchmark delivery
policies.

B1: Eco-friendly delivery policy. The platform integrates
the emission cost term in the objective function, aiming to
maximize the EV’s capability to reduce GHG emissions while
upholding meal delivery quality.

B2: Cost-effective delivery policy. The platform treats all
vehicles homogenously and focuses on minimizing operational
costs and delay costs. In this case, EVs have no priority over
other vehicles.

B3: Time-first delivery policy. This policy only minimizes
the delay cost with the goal of delivering meal orders in the
shortest time.

After obtaining the dispatching results based on the delivery
policies, the performance and impacts of ODMD were evalu-
ated from three perspectives, including monetary cost, delivery
efficiency, and environmental impact.

Monetary cost: calculated with equation (27), consisting of
three parts: operational cost, delay cost, and emission cost.

T otal cost = cd × total distance

+ ct × total delay + ce × total emission

(27)

Delivery Efficiency: measured by Click to Door (CtD) time,
which is the time difference between the meal order place time
and actual drop-off time.

Environmental impact: evaluated with eVMT share and
GHG emissions. The eVMT share is the travel distance con-
tributed by E-drivers divided by total travel distance, providing
a measure of electric vehicle utilization.

D. Performance of the Proposed RH-ALNS Algorithm

To validate the performance of RH-ALNS algorithm,
we conducted the experiments with two baseline methods. The
first baseline method, named as RH-IG, replace the ALNS
component with the iterated greedy (IG) algorithm proposed
in [52]. The IG method only uses a random removal operator
to disturb the solution space and a greedy insertion operator
to repair the solution. The second baseline method, termed as
RH-ALNS-e, inspired by the idea of reducing running time
in the searching process of ALNS, we implemented a driver
forward slack time evaluation [58]. If the driver has no slack
time to insert a new order, then the driver needs to finish all
the tasks before receiving new assignment.

We solved the C100, C300, C500, and C700 instance with
the system update time window of 10 minutes combining all
three algorithms and three delivery policies. To fairly compare
the algorithm performance and avoid the randomness, the
C100 and C300 instances were repeated for 10 runs, and
C500 and C700 instances were repeated for 5 runs. Total
270 experiments were conducted. Then the best result for
each scenario was reported and summarized in Table III.
The objective cost was calculated with the objective function
according to the three delivery polices. The gap presents

the deviation from our proposed algorithm, calculated with
Gap = (ALNS_obj – V_obj)/V_obj), where ALNS_obj is the
objective cost from RH-ALNS, V_obj is the objective value
from the two baseline methods. A negative gap indicates our
proposed algorithm is better than the baseline method. The
run time is the average running time per time interval.

The results show the superiority of RH-ALNS in obtaining
high-quality solutions from medium to large-scale instances.
Under the B1 (Eco-friendly) and B3 (Time-first) delivery
policies, the RH-ALNS-e is significantly worse than RH-
ALNS, although it can slightly reduce the running time. This
is because the slack time evaluation will reduce the driver
selection pool and prevent the potential better neighborhood
solutions. Under the B2 (cost-effective) policy, the solution
quality from RH-ALNS-e quality is comparable to our method,
only 3%-5% worse, with the running time reduced by 100 sec-
onds in the C500 and C700 cases. Thus, RH-ALNS-e is
preferred in large-scale cases under the cost-effective delivery
policy.

The IG component may get stuck in the local minima,
terminate prematurely and yield solutions even worse than that
from RH-ALNS-e.

Meanwhile, in the C100 instance, RH-ALNS takes approx-
imately 10 seconds longer than the other two methods but
achieves superior solution improvements. In practical applica-
tions, deploying a clustering step first to divide total orders
into clusters of approximately 100 orders each and then
applying RH-ALNS simultaneously within each cluster can
generate optimized solutions within 30 seconds. This strategic
approach ensures both efficiency and solution quality in real-
life scenarios.

E. Analysis of Different Delivery Policy

In this section, we compared the delivery efficiency of
each scenario with the optimized results from RH-ALNS.
Figure 6 presents four subgraphs: subgraph (a) reports the total
monetary cost, while subgraphs (b)-(d) detail the three cost
components. We observed that the total cost with policy B1
is slightly higher than that with B2, as shown in subgraph
(a). This difference can be attributed to the fact that B1,
which prioritizes eco-friendly delivery methods, tends to rely
on E-drivers more frequently than B2. In this case, the system
bundles multiple orders for E-drivers, causing detours and
subsequently higher delay costs. However, this policy results
in lower emission costs due to the use of E-drivers.

Figure 7 provides the analysis of delivery efficiency by
presenting the CtD distribution of all four instances across the
three different delivery policies. Results indicated that even
with the implementation of an eco-friendly delivery policy,
meal delivery efficiency is still well maintained. Among all
four instances, 75% of meal orders are delivered on time,
and the maximum CtD time does not exceed 50 minutes,
which is considered satisfactory in real-world practice. These
findings demonstrated that eco-friendly delivery policies can
maintain delivery efficiency without sacrificing environmental
benefits, making them a viable and promising option for
ODMD systems.
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TABLE III
COMPARISON OF OBJECTIVE COST AND COMPUTATION TIME OF SOLUTIONS OBTAINED BY THREE ALGORITHMS

Fig. 6. Total cost under three delivery policies. B1 (eco-friendly delivery),
B2 (cost-effective delivery), B3 (time-first delivery).

TABLE IV
eVMT SHARE UNDER DIFFERENT EV RAIO WITH

TWO DELIVERY POLICIES

In Figure 8, we presented the environmental impact of
different delivery policies by showing the eVMT share and
the GHG emission resulting from all three policies. If we treat

Fig. 7. Click-to-door time (CtD) distribution of all instances under three
delivery policies. B1 (eco-friendly delivery), B2 (cost-effective delivery), B3
(time-first delivery).

E-drivers the same as G-drivers, disregarding their ability to
reduce emissions, their eVMT share would be around 40% as
expected, aligning with their proportion in the delivery fleet.
However, with the eco-friendly policy, E-drivers contribute to
a significantly higher eVMT share due to their zero GHG
emissions during delivery. With the B1 policy, the eVMT
share ranges from 65% to 78% across all instances, making a
substantial increase compared to the approximate 40% eVMT
share observed with policies B2 and B3, which focus more on
cost and delay minimization.

To quantify the GHG emissions savings achieved with
policy B1, we compare it to the GHG emissions change with
other policies. The right bar of each column in Figure 7 shows
that B1 results in substantial GHG emission savings compared
to B2 and B3. By actively utilizing E-drivers, we can achieve
at least a 30% reduction in GHG emissions. These results
emphasize the potential of eco-friendly delivery policies in
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Fig. 8. eVMT share and GHG emissions of B1 (eco-friendly delivery), B2
(cost-effective delivery), and B3 (time-first delivery).

Fig. 9. (a)GHG emission saving and (b)average CtD change compared B1
with B2 in multiple cases.

reducing the environmental impact of ODMD systems while
maintaining delivery efficiency.

In summary, eco-friendly delivery policy is promising in
saving large extent of GHG emission while main high service
quality of meal delivery.

F. Sensitivity Analysis

In this section, we performed a sensitivity analysis regarding
the EV ratio in the delivery fleet. From the results from Section

F, we observed that B1 and B2 are two similar strategies in
terms of total cost, but B1 is more eco-friendly. In this part,
to further investigate the eco-performance gap between the two
policies, we varied the EV ratio including 0.2, 0.4, 0.6 and 0.8.
Each instance was run with both policy B1 and policy B2,

Table IV summarizes the eVMT share of each specific
case. With the B1 policy, the eVMT share exceeded the
EV ratio in the delivery fleet, indicating the preference for
E-drivers to deliver meal orders. Particularly, in the C300
and C500 instances with 80% of E-drivers in the fleet, the
eVMT share increases to 98.56% and 99.97% respectively,
indicating a near-exclusive use of E-drivers for meal deliveries.
While with B2 policy, the eVMT share is roughly around the
corresponding EV ratio.

Figure 9 depicts the GHG emission savings achieved by B1
compared to B2, as well as the average CtD time deviation
between the two policies. When the EV ratio is 0.2, the
emission gap ranges from 7.5% to 25%. This is because
G-drivers dominate the delivery fleet, and the system only has
a small portion of E-drivers to operate. The C300 instance
produced the highest emission savings. As the EV ratio
increases, the emission saving achieved by deploying B1
increases dramatically. In the C500 instance, with an EV ratio
of 0.8, GHG emissions were reduced by 96.80% with the B1
policy compared to the B2 policy. This significant reduction
is made possible by utilizing E-drivers to deliver meal orders
in an eco-friendly delivery policy.

Additionally, we assessed the average CtD time deviation
between the two policies. The B1 policy only resulted in a
negligible increase in delivery time, and in most cases, the CtD
time deviation was within 1 minute. In the C500 instance with
an EV ratio of 0.6 and 0.8, the B1 policy even outperformed
the B2 policy in terms of delivery efficiency. These results
demonstrate that the eco-friendly policy not only leads to
substantial GHG emission savings but also maintains high
delivery efficiency, even with a higher proportion of E-drivers
in the delivery fleet.

VI. CONCLUSION

In this paper, we studied a novel dynamic on-demand meal
delivery problem with a mixed fleet of electric and gasoline
vehicles. The objective is to minimize the operational cost,
GHG emission cost and delay cost. The RH-ALNS algorithm,
which consists of a rolling horizon framework and the ALNS
algorithm, is proposed to efficiently deal with the meal order
dynamism and large-scale order dispatching and routing prob-
lem. The numerical experiments demonstrate that the proposed
algorithm performs better than two baseline methods in finding
high-quality solutions. Additionally, a case study is conducted
to investigate three delivery policies, including eco-friendly
delivery (B1), cost-effective delivery (B2), and time-first deliv-
ery (B3), for medium to large-scale meal orders. The study
results show that utilizing electric vehicles in the delivery
fleet through the eco-friendly delivery policy can improve
the sustainability of the delivery system. Experiment results
demonstrate the necessity for online platforms to actively
utilize EVs to delivery meal orders and take initiative to
employ an eco-friendly delivery policy.
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There are several promising directions for future research.
Multi-objectives ODMD can be investigated to explore the
trade-offs between delivery efficiency, environmental impacts,
and various other interests in a more general way. Additionally,
considering the computational efficiency, clustering techniques
could be explored to achieve better solutions in a short
time. Another interesting direction is to integrate charging
scheduling considering charging cost and charging station
recommendations on the ODMD platform to provide support
for E-drivers during the delivery hours.
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