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Application of Wireless Charging at Seaports for
Range Extension of Drayage Battery Electric Trucks

Fuad Un-NoorG, Alexander Vu, Shams TanvirG,
and Kanok Boriboonsomsin

Abstract-Even though heavy-duty battery electric trucks
(BETs) have become commercially available, their range limitation
still hinders widespread adoption. Drayage has been regarded
as a suitable application for early BETs due to typically having
limited daily mileage. However, drayage operation can vary widely
and some form of range extension may still be needed for BETs
operating in thisapplication. In this paper, wireless chargingat port
terminals is proposed for this purpose. Potential wireless charging
zones at port terminals are identified, and efficacy of wireless
charging to extend BET range in drayage operation is verified by
simulating the activity of20 BETs from a drayageoperator serving
the ports of Los Angeles and Long Beach, using a microscopic BET
energyconsumption model. Furthermore, an optimization problem
is formulated for optimal wireless charging zone planning from the
port authority's perspective, considering subsets of the identified
zones, and charging power options to choose from, for different
budget ranges. In this context, zone planning means determining
which areas of the port terminals should be selected for installing
wireless chargingsystems, and what levelof charging power should
be for each selected zone's system. For each budget range, the op-
timization problem is solved using genetic algorithm to determine
an optimal zone plan that provides the maximum amount of energy
through wireless charging per unit cost of installation. The results
show that wireless charging can aid improving activity completion
of the simulated fleet by 5%, and further optimizing the zone plan
can achieve similar performance with lower cost.

llldex Temis-Class 8 truck, drayageoperations, electric vehicle,
fleet, genetic algorithm, optimization, planning, range anxiety,
wireless charging.

I. INTRODUCTION

LECTRIFICATION of heavy-duty trucks is a key strat-
egy for reducing pollution from the transportation sector
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[1]. Electrifying these vehicles, however, is challenging due to
technical limitations such as low energy density of batteries [2].
Even though these limitations are slowly being overcome, and
commercial battery electric trucks(BET) are becomingavailable
[3], [4], the range of these BETsS are still not enough for all
freight applications, especially the ones over longdistances.The
current BETs make moresense whenconsidered forshorter-haul
applications, which are within their driving range. Drayage is
one such application which renders itself particularly suitable
for BETs. It involves the transportation of containers and bulk
byheavy-duty trucksin-between ports, intermodal railyards, and
near-by warchouses [5]. Trucks engaged in drayage generally
work from a base where they usually return at least once a day,
drive a limited number of miles daily, and spend a significant
amount of driving time creeping or in transient modes. The
limited daily mileage ofdrayage trucks renders them suitable for
current BETs, which have limited range. Regularly returning to
base creates possibility for overnight and opportunity charging.
And the significant amount of creeping and transient modes in
driving favors BETSs over diesel trucks as the BETs, equipped
with regenerative braking system, would consume significantly
less energy in those conditions while also causing less air
pollution.

Due to the potential of BETs to replace the ever-expanding
fleet of polluting diesel drayage trucks, many past studies ad-
dressed this topic from different angles. More specifically, the
drayage operation at the San Pedro Bay port complex (Port of
Los Angeles and Port of Long Beach) generated significant
research interest. These past works are particularly useful in
highlighting the relevance of this paper, as it too uses drayage
fleet operational data at these ports as a case study (the data is
described in Section II-A). In 2018, You and Ritchie studied
drayage truck operation at these ports using data collected by
global positioning system (GPS) units installed on trucks. They
noted that most drayage tours were completed within a day, and
tours had repetitive patterns (a trait notshared by other commer-
cial trucks) [6]. Giuliano et al.'s 2021 research mentioned the
increasing truck traffic and emissions resulting from the rise in
freight shipment, as the motivation to study BETs. They noted
the range and charging limitations of BETs in the near-term, but
also mentioned that with enhanced performance and reduced
cost, BETSs could besuitable for increasingly more applications.
Their comparative study of BETs with hybrid trucks showed
that BETs were more effective in reducing air toxins. They also
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suggested investment in charging infrastructureto promote BET
use [7]. Ramirez-Ibarra andSaphores tackled thecost issue of re-
placing thediesel drayage trucks withzeroemission alternatives
at the San Pedro Bay port complex from the perspective of en-
vironmental and health costs incurred by diesel pollution. Their
analyses showed that compared to 2012, significant amounts
of premature deaths and asthma attacks could be reduced by
2035 by switching to zero emission technologies, even though
the drayage fleet was expected to expand by 145%. Such steps
would aid significantly to reduce health issues in disadvantaged
communities [8].

However, BETs are not a perfect match for drayage applica-
tions yetas a previous studyrevealed thata BETfleet isincapable
of operating at the same level of a diesel fleet under similar op-
erational conditions [9]. BETs were held back by the downtime
they received, which was insufficient to significantly recharge
their batteries.Whereas fordiesel trucks, thatdowntime duration
was sufficient for refueling. The BETs in [9] were considered
to be charged only at the base. It thus underscores the need
for providing convenient out-of-base charging opportunities for
drayage BETs, and wireless charging is one potential solution
to achieve that. Hydrogen fuel cell electric trucks had also been
explored as a potential zero-emission replacement forport trucks
[10], [11], [12], but this paper focuses solely on overcoming
current limitations of BETs for this application.

Wireless charging has gained popularity in recent times as a
solution to combating range anxiety [13], [14]. As this technol-
ogy can charge vehicles in motion, it removes the necessity to
stop vehicles in order to charge. Wireless charging essentially
extends the effective range of electric vehicles (EV), allowing
them to travel longer distances with a certain battery size. It
has also been considered more convenient and cost-effective
compared tostationary charging systems and battery swapping
[15], [16]. Wireless charging has been pitched for electric buses
[13], [17], [18], which follow fixed routes, have to operate
on a schedule, and have limited downtime that minimizes the
chance of conventional charging. With wireless charging sys-
tems installed in the operating route, the buses can conveniently
replenish their batteries without hampering the schedule. This
approach can be applied to drayage trucks, as they too operate
ona tight schedule that does not allow for significant downtime,
and they are highly likely to visit a certain location: the port.
Installing wireless charging systems at ports thus appears as
a useful solution to extend range of drayage BETSs, which
could significantly aid them to go toe to toe with the diesel
variants.

For investigating the efficacy of wireless charging for a
drayage BET fleet operation, this work begins by developing a
microscopic BET energy consumption model. Such approaches
are well-documented in literature [19], [20], [21], [22], [23],
and here, it is used to simulate the operation of BETs using
real-world operational data collected from diesel drayage trucks.
Conventional charging at the home base, and wireless charging
at port locations is integrated in the simulation model. This com-
bined simulation model provides the energy usage due to BET
activity, and gains from regeneration, conventional charging at
home base, and wireless charging at specific wireless charging

IEEETRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 4, APRIL 2024

zones. Effect of wireless charging for range extension can be
clearly observed from the simulation results.

Port locations most visited by trucks are good candidates
for installing wireless charging systems. However, there can
be many such locations in a port, and the port authority is
likely to have limited resources at their disposal for converting
them into wireless charging zones. Thus, they have to select
a few spots which would provide the best charging opportu-
nity. If there are more than one option for wireless charging
systems, for example, different power ratings, they would also
have to decide which power rating to choose for which zone,
considering the associated cost and resulting return in terms
of charging energy gains. This form of optimal charging sta-
tion planning has been studied heavily for stationary charging
stations, and different approaches were demonstrated to come
up with an optimal plan considering certain constraints and
objectives [24]. Previous studies focused on charging station
costs [25],[26], [27], power loss[28], [29], profit maximization
[30] etc. A plethora of optimization techniques have also been
used to achieve the optimal charging station plans from the
formulated problems. These include balanced mayfly algorithm
[25], catswarm optimization, teaching-learning based optimiza-
tion [26], genetic algorithm [27], and multi-population genetic
algorithm [31].

The contribution of this paper is in evaluating wireless charg-
ing at seaports for range extension of drayage BETs for ef-
fective fleet operation. Additionally, it presents methodology
to optimally plan wireless charging at ports. The rest of the
paper is arranged as follows. Section II describes the data used,
simulation models, and analyses framework. The results are
presented and discussed in Section ill. Finally, the conclusions
are drawn in Section IV.

II. METHODS

This paper utilized real-world in-use activity data from a
drayage fleet to identify port locations best suited to serve as
wireless charging zones. As it is unrealistic to install wireless
charging systems at all of them, an optimization problem was
then formulated for determining which selection of these zones
serve best as wireless charging zones, and what should be the
charging power rating at each of theselected zones, considering
budget constraints. A BET model, and a fleet operation frame-
work wereformulated next The BET model allowed calculating
wireless charging gains from the determined zone plans at a
microscopic level. The fleet operational framework was then
used to verify a BET fleet's capability in carrying out tasks
performed by diesel trucks, aided by range extension from
wireless charging.

A. Data

Truck activity data from a fleet of 20 class-8 diesel trucks was
used in this paper. This fleet operated from their base located
about a mile away from the port of Los Angeles, and primarily
served theSan Pedro Bay portcomplex (Port of Los Angeles and
Port of Long Beach), the Inland Empire area, and the Greater
Los Angeles Metropolitan area. Occasional service destinations
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TABLE!
SUMMARY STATISTICS FOR TRIPSIN DATASET

Average Range
Trip distance | 3.6 0.6-8.0
(miles)
Trip duration | 21.0 5.0-42.8
(minutes)
Trip speed| 5.6 1.8- 84
(miles/hour)
Time spent idle 63.6% 43.7% - 88.9%
Time spent | 36.2% 10.9% - 56.3%
braking

TABLE IT
SUMMARY STATISTICS FOR TOURSIN DATASET

Average Range
Tours per day 22 1-7
Tour distance | 58.9 5.7-122.5
(miles)
Running time | 244.3 43.6-401.9
(minutes)
Timespentat base | 21.1 0-44.9
(minutes)
Time spent at| 262.8 0-490.6
stops outside base
(minutes)

included locations in inland Northern California and Central
Valley. Data loggers were used to collect over 170engine control
unit (ECU) parameters and GPS data (e.g., speed, timestamp,
latitude, longitude) at 1 Hz. The collected truck activity data
wassegmented in terms of trips, which was later used toidentify
tours. Trip was defined as travelling between two nodes, while
tour represented a chain of trips starting from the base and
finally returningtoit. Thedata extracted from thelogger was put

through multiple processing steps for cleaning and correction,
trip identification, and origin and destination cloaking of trips
for confidentiality[32]. Road grade data was added for freeway
portions of trips using map-matching. Due to unavailability of
grade data for non-freeway portions, non-freeway grades were
considered 0 (flatterrain).The finaldataset yielded truck activity
for the week of Monday, Jan 23, 2017 through Friday, Jan 27,
2017. Tables I and II provide summary statistics for trips and
tours in the dataset, respectively.

B. Identifying Wireless Charging 'Zones

In this paper, potential wireless charging zones at the San
Pedro Bay port complex were identified by studying recorded
truck activity. Port locations where the trucks spent significant
amounts of time queuing or stopping (for example, terminal
gates) were selected, as this allows the most charging opportu-
nity.Todo this,firstthe port terminals at thecomplex wereidenti-
fied(Fig.1).Then, using theactivity data,stop/queuing instances
within these terminal boundaries were estimated. Locations in
the terminals having a cluster of stop/queuing data points were
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identified as potential wireless charging zones.Thestop/queuing
data points were obtained by first filtering the activity data by
speed (speed = 0) to find out truck stop/idling instances. These
data points were then matched with aerial images to estimate
queuing areas. Polygons were drawn around these areas, and
that yielded the potential wireless charging zones (red areas
in Fig. 1). Roadway lengths covered by the identified zones
were measured, wireless charging systems in the zones have to
provide charging along these lengths. It was assumed that in
these zones, there would be one dedicated lane for BETs with
wireless charging systems installed.

The collected GPS data, with the aid of geofencing, was
then used to identify instances of truck presence in these zones
Fig. 2. There was some noise in the GPS data, which showed
vehicle positions changingeven when the trucks werestationary
(speed = 0). This was corrected by ignoring GPS data showing
vehicles moving out of a zone when speed was zero, thus con-
sidering the vehicles remained in that zone. Finally, consecutive
matched geofence data points were grouped together to create
potential chargingevents, assuming those zones tohave wireless
chargers installed. A summary of these charging events for 16
trucks is shown in Table III. Four of the 20 trucks did not visit
any of the wireless charging zones identified, and thus, did not
experience any charging event. The power delivered by wireless
charging totruck j inzonei during eachsecond, twas calculated
as:

(1

where Pwe. is rated wireless charging power and 7/wc. is
wireless charging efficiency in zone i.

pYehET e 11We.

5 99"

C. Optimal 'Zone Planning

The total amount of energy a wireless charging zone can
deliver to trucks depends on the amount of time the trucks stay
in it. This energy for each zone, i, can be calculated as:

Tn

EWGhrg— """ pWGhrgT-
t ti,j J e
Il

@

where 7i is the total amount of time (in seconds) truck j spent

in zone i, and mis the total number of trucks that visited zone i.

The cost for installing wireless charging system at zone i can
be calculated as:

C'i . Li UPVVC,— (3)

where Li is the length of zone i in miles, and Upwc is the unit
cost per mile for installing wireless charging syste . This unit
cost, UPwc , depends on the rated charging power selected for
zone i, Pw; ..

Itcan beseen from Table 111 that all 23 zones were not visited
byeach of the 16 trucks (recall that four of the 20 trucks did not
visit any zone at all). Also, some zones saw more truck presence
than others. (2) shows that the energy provided by each zone
depends directly on the time spent by trucks in each zone. (3)
on the other hand, shows that the cost of installing wireless
charging systems in each zone depends on the zone length, and
the rated charging power of the installed system: which controls
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Fig. 1. Locations identified to place wireless chargers (in red) at different terminals (marked by translucent turquoise and brown polygons) at the Port of Los
Angeles (POLA) and the Port of Long Beach (POLB).

for installing a cheaper, lower-powered system in more zones.
There could also be other choices where some zones receive the
higher-powered system, andsome zones the lower-powered one.
The same budget cap could bemet with differentsuch selections.
Depending on the selected zones, some selections (e.g., more
total truck presence with less total roadway length to cover)
coulddeliver moreenergy to thetrucksthanothers(e.g.,lesstotal
truck presence with more total roadway length to cover). The
option of varying the charging power adds one more dimension
to this consideration, as a higher-poweredsystem would provide
more energy compared to a lower-powered one during a certain
amount of truck presence, but would also cost more, and that
might bar including additional zone(s) by depleting the budget
sooner. Thus, an optimal zone plan have to select specific zones,
and the charging powers for each of them, in a way that the
Fig. 2. Identifying truck presence (red dots) in a potential wireless charging ~Maximum amount of energy delivery can be achieved for a
zone (red polygon). certain budget limit. In other words, this optimal selection would
provide the maximumamountof energy delivery per unitamount
of expenditure, for a given budget. It can also be called as the
the unit cost. For zone planning, we need to select specific zones ~most efficient plan. To formulate this optimization problem, the
from the total of 23, and the charging system powers in those objective function is thus defined as following:
zones, in a way that conforms to the budget allocated for this
task. For a certain budget cap, this selection can be done in n N

multiple ways. For example, one could choose to install costlier, Objective Function = L E:VGhrg /L, Ci. (4)
higher-powered charging systems in a few zones, or could opt

i=l i=t
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TABLE ill
WIRELESS CHARGING STHJISTICS
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thoun 3 55 84 68 68 39 5§ o4 74 5] 4] 75 34 7 04 ] 954
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LA2 q 0 0 0 0] (! BEE a 20

TATm.isc ( C ( [C C [Q ( C ( T

Sum 17263 16400y 3577 33430]4328428706)31585) 30868 4475 28004

Yaof

operating

time 1] g 14 14 19 27 15 13 17 1

Colors show relative values (red: lowest, green: highest) for timespent at each zone .

where n is thetotal number of wirelesscharging zones  Equating
from (1), (2), and (3), the objective function can be expressed as
a function of the rated charging power at each zone:

f (Pwe)=>.Y . Pwewe, T/

i=14=1

Y LiUpy., )
i=1

The optimization problem can then be formulated as:

(6)

maximize f (Pwc) .

subject to LLiu Pwe, :-:; budget

i=1

7

To simplify the optimization problem, we considered three
choicesof rated charging power foreachof then zones, as OkW,
125 kW, and 250 kW. 0 kW essentially means not installing
a wireless charging system at a zone; in other words, that
particular zone not being selected for wireless charging. Recent
wireless charging demonstration projects focused on systems
with 125 kW, 250 kW, 380 kW, and 500 kW [33]. However, the
BET modeled in this paper allows a rated charging power of up
to 250 kW [3]. Therefore, 150 and 250 kW were selected as the
options in this paper. Current publicly available information on
wireless charging quoted a cost of $1.9 million for a mile-long
charging zone [34], where charging rate could reach 150 kW
for vehicles equipped with five receivers, each rated for 30 kW

[35], [36]. For the lack of better data, this $1.9M/mile cost was
considered for the 125kWcharging system, as it isclosest to the
charging power of the $1.9M/mile system. The other charging
power of 250kW was assumed tocost 1.5times higher, $2.85M,
considering some costsaving due toeconomy of scale. This was
purely based on assumption, as no data was available. The cost
for O kW is $0, as it means not installing any charging system.
For budget constraints, a lower budget would require selecting
zones with better yield (energy delivery per unit cost). Higher
budgets would allow including zones with gradually less yield.
To demonstrate the formulated optimization problem, a budget
range was considered, with Gib as the lower bound and Cub as
the upper bound. With these considerations, the optimization
problem can be expressed as:

maximize f(Pwc) (3

subject to Gib :—::;L L;UPwec, :-::; Cub )
i=1

Pwce, E{0, 125,250},i=1, ... ., n (10)

This optimization problem was implemented in MATLAB
2022a, using its genetic algorithm solver from the Global Opti-
mization Toolbox [37].This solver is designed to minimize the
objective function, thus the negative of (8) was provided as the
objective function (- f(Pwec)); minimizing - f( Pwc) means



4604

maximizing f(Pwy). The constraint in (9) was included in the
objective function formulation in a way that the zone plans with
costsoutside the specified budget range were penalized and thus
not chosen as optimal solutions.

D. BETModel

To examine the effect of the optimal charging zone plans on a
drayage fleet, a BET fleet was considered to carry out the exact
same tasksrecorded in thecollected data. Energy requirement of
each truck in the fleet was represented by a microscopic energy
consumption model, expressed as following:

EBattery _ Ff/ract"_ EAcc _ERegen _ EWChrg
7 - 7 z 7 7

an

where Ef attery isbattery energy consumption in each second;

ETract EAcc ERegen and EWChrg areinstantaneous trac-
v, r ' t

tive energy consumption, accessory load consumption, energy
regeneration from braking, andenergygainfrom wireless charg-
ing, respectively. E'/:'Chrg wasobtained using(2). The rest were

PtT

E'{'ract = ============ S VPt 2 0)
T/WT/FAT/MT/B

derived as:

(12)

Pt= mvtai +0.5pCdA Vi +Crrgmvtc050 +gmvtsin0
(13)
where m is BET mass, 77 is instantaneous speed, a7 is instan-
taneous acceleration (az = vt+7 - Vz), p is airdensity, Cd is
coefficient of drag, 4 is BET front area, Crr is coefficient
of rolling resistance of BET tires, g is gravity, O is angle of

inclination of the road; 7/W,1/Fd, /M, T/B are efficiencies of
wheel, final drive, motor, and battery, respectively. Pt gives

tractive powerconsumption in each second, which is used in (12)
to get the tractive energy consumption, considering 7' = 1 as the
data is 1 Hz.7/8 wascalibrated for matching thesimulated BET's
rated range (275 miles with 565 kWh battery [3]) weighing
80000 1bs.

EAe — P, T (14)

where P4cc is therated accessory load,and 7" = 1.

E{«'gen = PtTIwWT/FAT/MT/B; V(A <0)N (vt > 5) N (ar<3)
s)
Battery energy consumption for each trip was calculated as:
T

maggery —g ey T g ued o,

(16)
=l

Average trip battery energy consumption was 25 kWh, with

minimum and maximum trip consumptions being 0.009 kWh

and 515 kWh, respectively.

E. Fleet Operation Model

Trip-level data was used for tour construction. For each trip,
starting and end GPS coordinates were used to determine if the
trips started and/or ended at the base. A trip starting at the base
was marked as the start of a tour, and the successive trip that
ended at the base indicated the end. If a tripstarted and ended at
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Fig.3. Battery SOC-dependent charging power assumed for BET charging at
base.

the base, it would be a tour by itself [9]. For our dataset with 20
trucks, 193 tours were identified. Battery energy consumption
in each tour can now be calculated as:

k

b
EBggery |

EBattery =mu

. °
tour ner of tn ps 1 tour

a7
Using (17), battery energy consumption for each tour, or in
other words, how much a fully charged battery pack would be
depleted to complete each tour, was calculated. Average tour
battery energy consumption was 120 kWh, with minimum and
maximum tour consumptions being 0.3 kWh and 708 kWh,
respectively.

As toursrequiring energy more than the batterycapacitycould
not be completed, a tour schedule was created for the BET fleet
excluding such tours (in this case, one tour) from the total of
193. In our fleet operational framework, a fleet of 20 BETs were
considered, each replacing a diesel truck to carry out the exact
same tours, with the exclusion of tour(s) beyond battery range.
Each BET was assumed to start with a fully charged battery at
the beginning of the simulation. The batteries got depleted as the
BETs travelled for each tour; they received wireless charging if
available. When theBETSs returned to the baseat theend of a tour,

they received opportunity charging with conventional charging
stations during the time they spent at the base in-between tours.

i=1

Battery energy after base charging was calculated by:

ol
pc

ChargedBattery=— EBattery"_
F 1C z

t-1 G-
=l

(18)

where £% 4@y 1°b attery energyb ef ore? ase argmg a 1's
effective time factor, 7" is available time for base charging in

seconds, /70 is charging efficiency, and Pf is charging power
- which is a function of battery state of charge (SOC). The
SOC-PP plotisshown inFig.3[38].a represents the portion of
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TABLE IV
PARAMETER VALUES [3], [9], [33], [39]

Parameter Symbol | Value
Battery size (kWh) - 565
Mass (kg) m 35906
Coefficient of drag Cd 0.65
Front area (m~) A 8.5
Coefficient of rolling
. resistance Crr 0.008
Vehicle Accessory load for
EV (kW) PAcc 2.8
Wheel efficiency 1"/ 0.99
Final drive efficiency 1'/Fd 0.98
Motor efficiency 1M 0.88
Battery efficiency 1'JB 0.88
Air density (kg/m’) P 1.161
Atmosphere Gravity (m/s?) g 9.8
Rated charging 0,
Pwc 125 P
power(kW) 250
erele.ss Wireless  charging
Charging efficiency 1/we | 0.9
. 0, 1.9,
Per mile cost ($M) upwe | 85
Rated charging | ~ 250
Base power(kW)
Charging Charging efficiency 1/c 0.85
Effective time factor a 0.8
TABLEV
FEASIBLE TOURS UNDER DIFFERENT SCENARIOS
_ - Nob posiwin [ 290KW
Scenario Wireless 1 inall
Charging allzones zones
% Feasible
Tours for o o o
BETDrayage 86% 90% 91%
Fleet

time at base actually utilized forcharging, as trucks are unlikely
to be plugged in the second they arrive at base. Table IV shows
the parameter values used in this study.

IILL RESULTS AND DISCUSSIONS

Effect of wireless charging on the studied drayage fleet tour
completion is analyzed first for two straightforward scenar-
ios: installing either 125 kW or 250 kW charging systems in
all identified zone. The outcome of this analysis is shown in
Table V, which shows that both these approaches improve tour
completion compared to the case with no wireless charging;
installing 250 kW systems in all zones improve tour completing
by 5%, while the125kW system achieves 4% improvement. The
distribution of individual tour battery depletion for twocases: no
wireless charging, and 250 kW wireless charging at all zones,
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Fig.4. Distribution of battery depletion, shown as box plots. One specific tour
depleted the battery 125% for bothcases, indicating that this tour is out of range
for the simulated BET, and it did not visit any wireless charging zone.

0%

are shown in Fig. 4. Tours passing through wireless charging
zones allowed batteries tobecharged, thus thecase with wireless
charging depleted the battery less. From this figure, it can be
seen that one specific tour was depleting 125% of the battery
capacity, which means the simulated BET would not be able to
cover this tour even if it began with a fully charged battery. This
tour is simply out of range. Also, range extension from wireless
charging did not alter the amount of battery depletion for this
tour.This indicates that this tour did not visit any of the wireless
charging zones.

We can now look at the optimized plans and see how a mix
of charging systems can be placed at specific zones to achieve
better charging performance, rather than blanketing all the zones
with a single selection of charging system. Table VI shows the
optimal zone plans obtained from conducting the optimization
with genetic algorithm. Truck operating times in different zones,
and zonelengthsarealso presented witha color codein thistable.
The colors show relative values (red: lowest, green: highest).
Solving theformulated optimization problem givesoptimal zone
plans for a specified budget range. This zone plan specifies
a wireless charging system from the three options of 0 kW,
125 kW, and 250 kW, for each of the 23 zones. If a zone is
paired with a 0 kW system, it means that this zone should not
have any charging system installed. This zone plan provides the
maximum amount of wireless energy delivery per unit cost of
installation. Therefore, if the optimization is not mandated to
spend a minimum amount of money, it provides the absolute
best plan which maximizes the objective function (8). This can
be seen from Table VI, for the case with no lower budget limit.
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TABLE VI
OPTIMAL WIRELESS CHARGING ZoNE PLANS FOR DIFFERENT BUDGET RANGES

Chari?in|] Power at Zones (kW1
Zone %‘:ﬁ :atlng Leflgth gl(:dget: Budget: | Budget: | Budget: | Budget: | Budget: | Budget:
(seconds) (mile) lower $1-2 $2-3 $3-4 $4-5 $5-6 No upper
limit Million Million Million Million Million limit
LA7 131116 0.09 250 250 250 250 250 250 250
LA9 81115 0.10 250 250 250 250 250 250 250
LA31d2 47933 0.08 0 250 250 250 250 250 250
LA4 42613 0.16 0 0 250 250 250 250 250
LBI 29495 0.13 0 0 250 250 250 250 250
LA7ex 26520 0.05 0 250 250 250 250 250 250
LAS8ex 16670 0.09 0 0 0 250 250 250 250
LA9ex 16251 0.08 0 0 0 250 250 250 250
LA21d 15454 0.22 0 0 0 0 0 250 250
LB4 12945 0.11 0 0 0 250 250 250 250
LAS 12629 0.10 0 0 0 0 250 250 250
LA3 10007 0.08 0 0 0 250 250 250 250
LB6 9057 0.15 0 0 0 0 250 0 250
LA31d 7648 0.07 0 0 125 0 250 250 250
LBS 6858 0.10 0 0 0 0 0 125 250
LATw 5866 0.02 0 125 250 250 250 250 250
LAdex 5387 0.03 0 0 0 250 250 0 250
LA4ex2 4837 0.02 0 125 125 250 250 250 250
LB6misc 4493 0.05 0 0 0 0 0 250 250
LA2 3425 0.16 0 0 0 0 0 250 250
LB2 2019 0.06 0 0 0 0 0 250 250
LA 1185 0.10 0 0 0 0 0 0 250
LAlmisc 714 0.04 0 0 0 0 125 0 250
This plan called for installing the 250 kWcharging system at the TABLE VII
two zones having the most truck presence, and relatively smaller PERFORMANCE OF DETERMINED ZONE PLANS
lengths (can bescfcnfromth_ecolors). More truck presence means ) Encrgy YeFeasible
more energy delivery, while smaller length translates to lower Wireless Delivery Tours for
costs. Also, as the higher charging power of 250 kW provides Budget Range | Energy per Unit BET
double the energy compared to 125 kW, but costs less than (SM) ?\i‘\';'];ry Cost Drayage
double (1.5 times), choosing 250kW gives the maximum energy ( ) (MWh/$M) | Fleet
delivery per unit cost. The zone plan for this case suggests not None 0 = 36%
to install any charging system in the rest of the zones, as they do No lower limit | 13.3 24.0 88%
not improve the energy delivery to cost ratio. 1-2 18.3 18.0 89%
Introducing budget limits allows us to explore which ad- 2-3 23.2 116 89%
ditional zones can be added with this absolute optimal plan. 34 26.9 9.0 902/"
This is analogous to having a certain range of budget, and then 45 28.8 7.2 90%
determining the best way to spend, achieving maximum return -6 27 > %
’ Nounner limit | 30.9 5.1 91%

(in terms of energy delivery) from that expenditure. Gradually
increasing budget ranges are presented in Table VI to observe
bow the optimal zone plans change. With a budget of $1-2
million, two more zones with 250 kW and another two with
125 kW systems were selected by the optimization. Similarly,
as the budget range moved upwards, more and more zones were
selected; the charging power determined by the energy delivery
per unit cost and the budget limit. Finally, with no budget upper
limit, it is possible to install the most expensive 250kW charging
system at all zones.

Performance of these zone plans obtained from the optimiza-
tion are shown in Table VII. For the zone plans for each budget
range, total energy delivered to the BETs are presented along

with the energy delivery per unit cost. Additionally, the effect
of installing wireless charging zones according to the optimal
plans on the BET drayage fleet operation is also provided. This
provides additional perspective in determining the effectiveness
of the zone plans by demonstrating the extent to which the
intended users are benefiting.On top of the budget ranges shown
in Table VI, the case with no wireless chargers installed is
shown as a baseline to illustrate the improvement in BET fleet
tour completion with range extension from wireless charging.
For our studied fleet, with no wireless charging, 86% of the
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193 tours would be completed. This value increased as more
budget was sanctioned for installing wireless charging zones,
as trucks received more energy to replenish their batteries; this
can be seen from the amount of energy delivery of wireless
chargers shown in the 2" column. The 3™ column shows the
amount of energy delivered per unit cost of installation. This
value is the highest for the case with no lower budget limit as
for this scenario, the absolute best zone plan was attained. This
value decreases with increasing budget range. This is because
the lower budget ranges had the more efficient zones already
selected (higher truck presence and smaller length). As the
budget increases, less efficient zones had to be selected, and the
energy delivery amount per unit cost decreased. However, even
though the energy yield per unit cost decreases, the delivered
energy increases, contributing tomaking more tours feasible for
the BET fleet.

For our studied fleet activity, the budget range of $3-4 million
is probably the best middle ground. It increases fleet tour feasi-
bility by 4%, compared to the case with no wireless charging
The higher budget ranges only yield limited gains. However,
it should be noted that these results are obtained from a small
sample set, and applying the methodology developed in this
paper to a larger dataset can provide further insight intowireless
charging zone planning at ports for drayage operation. This
study highlights the capability of economic wireless charging
schemes at ports toeffectively address range anxiety of drayage
BETs. Wireless charging can be considered as a viable tool to
entice drayage fleets into adopting BETS, even for a portion
of their fleet, and thus aiding the port operators in reducing
emissions. As further incentive, relevant agencies may also con-
sidersubsidizing thecostof installing wireless charging receiver
on BETs, and creating dedicated charging lanes at terminal
gates.

Comparing the feasible tour percentage from Tables V
and VII, we can see that 90% completion can be achieved
by either installing 125 kW systems in all zones, or installing
according to the optimal zone plan for $3-4M - which suggests
installing 250 kW systems in select zones (fable VI). Similarly,
91% completion can be achieved by either installing 250 kW
systems in all zones, or a mix of 125 kW and 250 kW systems
in specific zones (optimal plan for $5-6M). This highlights the
efficacy of the optimization to extract the best performing plans.

The results from Table Vand Table VII alsoshowed that even

after installing the higher-powered system at all the wireless
charging zones, the BET drayage fleet failed to complete all the

tours. The single tour beyond BET range (as shown in Fig. 4)

contributed to this. Additionally, even with wireless charging
at port and opportunity charging at home base combined, some
trucks were not recharged enough to carry outsome tours.These
ultimately resulted in a maximum of 91% tour completion with
the simulated fleet operating BETs with 565 kWh batteries and
rated charging power of 250 kW. Higher capacity batteries, abil-
ity to charge at higher powers, and additional in-tour charging
are some options that can aid in fulfilling the tours remaining
infeasible.
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IV. CONCLUSION

In this paper, wireless charging at port locations as a means
of range extension of battery electric drayage trucks has been
studied. An optimization problem has been formulated for op-
timal planning of wireless charging zones to identify zones
and corresponding charging powers that provide the maximum
chargingenergy per unitcost. Theformulated optimization prob-
lem bas been solved using genetic algorithm as it is well-suited
for such optimization. The obtained optimal zone plans were
evaluated by simulating a BETdrayage fleet, whereeach truck's
energy demand was estimated using a microscopic energy con-
sumption model. Theresultsshow wireless cbarging'sefficacy in
improving BET fleet performance through range extension, and
the capability of optimal zone planning to produce plans that
provide the best charging performance within specific budget
limits. Depending on the budget allocated for installing wireless
charging systems, tour completion can be increased by 2%-5%,
and optimal planscanachievesimilar performance as nai"ve plans
without installing charging systems in all zones. The results
presented in this paper are based on a small number of drayage
truck samples at the ports of Los Angeles and Long Beach. The
results can be improved by using data from a larger number
of drayage trucks from several drayage fleets serving the ports.
In addition to that, the costs incurred by drayage operators for
wireless charging is notstudied in this paper. The authors intend
to investigate these in a future work.
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