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Abstract-California has set a goal for all drayage trucks oper­ 
ating in the state to be zero-emitting by 2035. In order to achieve 
this goal, drayage operators would need to transition 100% of 
their Heets tozero-emission vehicles such as battery electric trucks 
(BETs). This article presents an intelligently controlled charging 
model for BETs that minimizes charging costs while optimizing 
subsequent tour completion. To develop this model, real-world 
activity data from a drayage truck Heet operating in Southern 
California was combined with a two-stage clustering technique 
to identify trip and tour patterns. The energy consumption for 
each trip and tour was then simulated for BETs with a battery 
capacity of 565 kWh using a 150 kW charging power level. Home 
base charging load profiles were generated using the proposed 
charging model, subject to constraints of the energy needed to 
complete the next subsequent tour and Time-of-Use energy cost 
rates. A sensitivity analysis evaluated three scenarios: a passive 
scenario with a 5% state-of-charge (SOC) constraint after com­ 
pleting the subsequent tour, an average scenario with a 50% SOC 
constraint, and an aggressive scenario with an 80% SOC con­ 
straint. Results indicated that the 80% SOC constraint scenario 
achieved the lowest charging cost. However, it also yielded the 
lowest tour completion rate (51%). In contrast, the 5% SOC 
constraint scenario registered the highest tour completion rate. 
These results revealed that 96% of the tours could be successfully 
completed using the intelligently controlled charging model. The 
remaining tours were infeasible, indicating that the available time 
at the home base was inadequate for charging the necessary energy 
for the next tour. In terms of total costs, the scenario with a 
5% SOC constraint resulted in an annual cost of approximately 
$40,000, whereas the 80% SOC scenario nearly doubled that 
amount. 

Index Tem,s-Smart charging, battery electric trucks, charging 
load profile, drayage trucks. 

 
 

I. INTRODUCTION 

HE transportation sector accounts for approximately 40% 
of thetotalgreenhouse gas (GHG) emissions in California, 

making it the largest source of GHG emissions, according to the 
2022 inventory report by the California Air Resources Board 
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(CARB) [l]. In addition to being the largest source of GHG 
emissions, the transportation sector is also responsible for a 
significant portion of air pollutants such as oxides of nitrogen 
(NOx) and particulate matter (PM), which pose health risks such 
as asthma, heart attacks, and cancer [2], [3]. Medium-duty (MD) 
and heavy-duty (HD) mobile sources are responsible for 67% 
of NOx emissions in California, while light-duty (LD) sources 
account for only 13% of NOx emissions in the state [4].One 
reason for this difference is that most HD vehicles are diesel­ 
powered, which produce higher NOx emissions per mile than 
gasoline-powered vehicles. Additionally, HD vehicles travel 
more miles per year, with an average of 62,229 miles per year, 
while an average car travels 10,589 miles per year [5]. In recent 
years, various efforts have been made toreduce emissions from 
the transportationsector, and one of the latest strategies is trans­ 
portation electrification. According to the American Council 
for an Energy-Efficient Economy (ACEEE), California is the 
leading state in the US for its efforts towards transportation 
electrification, having set a target for statewide deployment of 
zero-emission vehicles (ZEVs) while considering the impact of 
transportation on disadvantaged communities [6]. 

Toaddress air pollution andclimate change, California Gover­ 
nor issued Executive Order N-79-20 in September 2020, which 
is acrucial step towards achieving carbon neutrality by 2045 [7]. 
This Executive Order targets: 

• All in-state sales of new passenger cars and trucks to be 
zero-emission by 2035; 

•  All drayage trucksoperatingin the stateto bezero-emission 
by 2035; 

• All MD and HD vehicles operating in the state to be zero­ 
emission by 2045, where feasible; and 

• All off-road vehicles and equipment to be zero-emission 
by 2035, where feasible. 

CARB estimates that electrifying the MD and HD sectors 
will be crucial to meet California's targets, with a minimum 
of 157,000 chargers needed to support an estimated 180,000 
MD and HD vehicles by 2030. In January 2021, the California 
Energy Commission (CEC) assessed the electric vehicle (EV) 
charging infrastructure and identified key actions needed by 
2030, including supporting innovative charging solutions and 
modeling efforts to determine the quantities, locations, and load 
curves of chargers required to meet statewide travel demand, 
including for MD and HD vehicles [7]. Currently, EV charging 
techniques arecategorized as uncontrolled or controlled [8]. Un­ 
controlled charging draws power immediately uponconnection, 
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typicallycontinuing until the battery isfull or halted by the user. 
Controlled charging includes: 

• Indirect: Leverages user behavior for grid load control. 
• Intelligent: Data-driven, optimizing available resources 

within constraints such as energy demand and battery 
capacity. 

•  Multistage Hierarchical: Utilizes a priority-baseddecision 
tool, blending decision control with genetic algorithms 
and either fuzzy logic or Artificial Intelligence (AI)-based 
tools. 

ThePortsof LosAngelesand Long Beach,collectively known 
as the San Pedro Bay Ports, are the largest container shipping 
ports in the US, handling around 40% of the nation's waterborne 
imported cargo [9]. Consequently, the California South Coast 
region, where these ports are located, is among the worst in 
the US that are affected by air pollution related to truck ac­ 
tivities, especially in drayage operations. To address this issue, 
CARB has highlighted thesignificance of electrification efforts 
and charging strategies for MD and HD fleets, with a special 
emphasis on Class 8 drayage trucks [10]. To efficiently project 
the required charging infrastructure and develop innovative so­ 
lutions to meet the increasing charging demand from HD BETs, 
an intelligently controlled charging model was developed and 
evaluated using real-world activity data of drayage trucks at the 
Ports of Los Angeles and Long Beach. The main contributions 
are listed below: 

• This intelligently controlled charging model is specifically 
designed for BETs, which takes into account Time-of­ 
Use (TOU) energy cost rates to optimize subsequent tour 
completion and minimize charging costs, representing a 
pioneering approach in BET charging. 

• This model's application was demonstrated by generat­ 
ing home base load profiles, analyzing one year worth 
of real-world activity data from a fleet of 20 drayage 
trucks operating at the Ports of Los Angeles and Long 
Beach. The modeled trucks have a battery capacity 
of 565 kWh and are charged using a 150 kW power 
level. 

•  Asensitivity analysis was performed to compare theresults 
of three scenarios-with 5%, 50%, and 80% reserved SOC 
after completing the subsequent tour. 

This article is organized as follows. First, prior research 
efforts related to HD truck electrification are reviewed in 
Section II. Then, the dataset and methodology used in our study 
are described in Section III. Next, the results and discussion 
of the intelligently controlled charging model are provided in 
Section IV. Finally, conclusions and future work are presented 
in Section V. 

 
II. RELATED WORK 

In recent years, there have been multiple efforts to under­ 
stand truck activity, grid impacts, and charging models for 
drayage fleets, especially as drayage truck fleets are anticipated 
to become more electrified and connected in the future [11]. 
Drayage trucks, which transport cargocontainers between ports 
and nearby distribution centers daily, are considered an ideal 

candidate for electrification due to their predictable activity 
patterns. Drayage trucks travel a limited distance each day, 
which is likely to be shorter than the driving range of current 
BET technologies. They return to home baseevery night, which 
allows them to be charged at the home base overnight. Based 
on an analysis of truck trips, Ambrose [12] reported that 
less than 1% of drayage trucks completed more than five trips 
per shift. In a separate study, Tanvir et al. [13] analyzed the 
activity of drayage trucks in Southern California to estimate 
the corresponding electric energy consumption and SOC of 
their batteries. Their results suggest that BETs can serve 85% 
of the tours if they can be opportunity charged at the home 
base between consecutive tours. Activity patterns of HD trucks 
have also been studied. McCormack et al. [14] measured truck 
movements along specific roadway corridors in Washington 
State using data from the Commercial Vehicle Information 
System and Networks (CVISN) electronic truck transponders 
and Global Positioning System (GPS) data from 30,000 trucks. 
Results showed that GPS devices provided highly accurate data 
on both travel routes and individual roadway segments used by 
trucks. This makes the GPS dataset considerably more robust 
than the transponder data. Ma et al. [15] analyzed GPS truck 
data to develop performance measures for truck-based freight 
network monitoring. Truck travel patterns were identified using 
an algorithm that differentiated between traffic-based stops and 
intended stops. This algorithm uWized average stop duration 
(i.e., dwell time), and the results were manually inspected. The 
findings presented travel time and speed, roadway location, 
and stop location information for a fleet of 2,500 trucks in the 
Puget Sound, Washington region. You et al. [16] developed a 
comprehensive framework for processing GPS data from clean 
trucks at California's San Pedro Bay Ports. Data from 545 
trucks were filtered and manually checked for truck-accessible 
locations using Google Earth. Four tour type patterns were 
analyzed, concluding that the tour characteristics of trucks vary 
significant]y basedonfuel typeand cargomoves.Similarly,Patel 
et al.[17] uWized a Random Forest classifier tocategorize truck 
stop locations as either primary or secondary using GPS data. 
Their proposed machine learning model can identify primary 
stop locations with an accuracy of 97%. Zhu et al. [18] con­ 
ducted a systematic study on the impact of charging loads of 
HD EVs on the electric power grid. They used a methodology 
that takes into account the location of chargers, load modeling, 
and grid impact analysis, and compared the results using one 
model distribution feeder and a realistic California feeder. The 
study revealed the impact of charging stations on the grid and 
suggested that different mitigation plans,such as the useof smart 
chargers, can provide reactive power support. Fjaer et al. [19] 
modeled the aggregated load profiles of high-energy charging 
stations uWized by HD EVs in Eastern Norway, considering 
peakloads of 4, 9, and 13 MW.Thefindingsshowed that the peak 
loads associated with HD EVs caused the electrical distribution 
substation to surpass its rated capacity and thermal limit. To 
address this issue, the authors suggested reducing the peak load 
byextending thedrivers' break timeby 15minutes, whichwould 
enable the operation of the electrical distribution substation to 
remain below therated capacity. This recommendationaimed to 
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ensure that the substation operates within its limit and provides 
a stable power supply. 

Borlaug et al. [20] investigated the impacts of depot charging 
by developing synthetic load profiles for short-haul HD EVs, 
which were applied to 36 distribution substations. The results 
showed that 78-86% of the substations were capable of supply­ 
ing HD charging without upgrades. In [21], a simulation was 
conducted to assess the impact of HD charging ona distribution 
system in Texas. The findings indicated that the transmission 
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gridexperienced asignificantimpact whencharging only 11%of 
the simulated HD EVs, highlighting the need for infrastructure 
upgrades and further studies of smart charging models. Simi­ 
larly, Tong et al. [22] analyzed the charging load profiles of HD 
EVs, which demonstrated that the daily charging peak is highly 
influenced by long-haul truck operations, as well as the peaks 
in solar power generation in California. Smart charging for HD 
EVs, explored in [23], used data from 259 U.S. HD EVs to 
gauge peak demand impacts. Modeling two battery capacities 
and charging levels, the findings showed that smart charging 
could reduce peak demand by l,095 kW, potentially saving up 
to $10,000 monthly. 

The review of these prior research efforts suggests significant 
gaps in the existing literature concerning pattern recognition of 
drayage truck operation, stop locations, and energy consump­ 
tion. Moreover, while the estimation of grid impacts from HD 
truck charging has been explored, it has not been specifically 
examined for drayage operations. Lastly, the development of 
intelligent charging models tailored for HD trucks is almost 
non-existent. 

While there are various factors that affect the performance of 
BETs, including temperature conditions, battery degradation, 
and battery cell imbalance, electric trucks are greatly influ­ 
enced by technological advancements. Given the rapid progress 
in battery technology, the battery feasibility of HD BETs is 
changing rapidly [24]. Consequently, the literature on battery 
degradation in BETs is limited [25], [26]. Given these gaps and 
existing limitations, an intelligently controlled charging model 
is proposed, aiming to maximize tour completion while also 
minimizingchargingcosts.This model has beencalibrated using 
a one year worth of real-world activity data from a fleet of 20 
drayage trucks operating at theSan Pedro Bay Ports in Southern 
California. 

 
ill. METHODOLOGY 

Truck activity data were analyzed for 20 vehicles belonging 
to the same fleet operating at the San Pedro Bay Ports termi­ 
nal regions in Long Beach and Los Angeles from July 2021 
to August 2022. The available data for each truck included 
ID (Truckld), latitude, longitude, and GPS date/time. Further­ 
more, data for each truck at different terminal regions were 
also available, including the terminal name, tract name, enter 
date/time to the terminal, and exit date/time from the terminal. 
The frequency of theactivity data was not uniform as the vehicle 
position and GPS date/time were recorded only when the trucks 
moved along the road. Hence, no data were recorded if there 
was no movement. This fleet typically covers routes in Los 

Fig. I. Typical routes for the 20drayage trucks included in this study. 

 
Angeles, San Bernardino, and Riverside counties, as illustrated 
in Fig. 1. 

 
A. Identifying Trips and Tours 

The raw GPS data were first pre-processed and filtered by 
terminal region and Truckld. However, the data were not la­ 
beled in terms of stops. To solve this issue, a two-staged un­ 
supervised machine learning (ML) technique called k-Means 
clustering was adapted from [27] and implemented in Python 
to identify the home base and loading/unloading stops for the 
trucks. The k-Means algorithm was used to cluster the data by 
separating them intogroups while minimizing the within-cluster 
sum-of-squares [28]. This algorithm was selected because of 
its scalability and widespread use across various applications. 
Additionally, the GPS date/time differential was calculated to 
determine the time gap between consecutive timestamps. A 
cluster of data points on the map with a large time gap between 
timestamps suggests a potential home base or warehouse where 
trucks stop to load/unload cargo. In contrast, a cluster of data 
points on the map with a small time gap between timestamps 
implies that the truck is continuously moving, and is unlikely to 
represent a meaningful stop. Hyperparameter optimization was 
also conducted to determine the optimal number of clusters for 
the initial k-Means by calculating the average time differential 
and the 99th percentile in minutes for the cluster designated for 
removal. 

Fig. 2 summarizes this methodology. After identifying po­ 
tential truck stops and the home base using the first k-Means, 
a second k-Means model was implemented. The main aim was 
to obtain the convex hulls for each cluster to identify possible 
truckstops.Therefore, based on theoriginal activity of thetruck, 
every time the truckentersa convex hull andspends a significant 
amount of time there, the potential stop will be labeled as a 
significant stop. Finally, a hyperparameter optimization was 
also performed for the second k-Means model to determine the 
optimum number of clusters, maximum number of iterations 
of the model, and random state for result repeatability. To 
determine the optimal numberof clustersforthesecond k-Means 
model, the Elbow method (improvement in distortion declines) 
was used, which involves calculating the inertia. Inertia is a 
measure of how well a dataset is clustered by k-Means. It is 
calculated by measuring the distance between each data point 
and itscentroid, squaring this distance, and then summing these 
squares across one cluster. A good model is characterized by 
low inertia and a minimal number of clusters [29], [30]. 
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Fig. 2.  Proposed methodology. Intelligently controlled charging model is based on one year worth of real-world activity data from a fleet of 20 drayage trucks 
operating at the San Pedro Bay Ports. 
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Fig. 3.  Results of thefirst k-Means hypeiparameter optimization (left), the time differential plot (middle), and thesecond k-Means hypeiparameter optimization 
(right) for a fleet of 20 trucks using data from July 2021 to August 2022. Theoptimal numbers of clusters for thefirst and second k-Means models were 13 and 20, 
respectively. 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Results of applying the second k-means model to a fleet of 20 trucks 
using data from July 2021 to August 2022. The 20 resulting clusters are 
represented by green dots and enclosed in red convex hulls. Additionally, a 
manual convex hull was assigned to the data to indicate the home base. 

 

 
Trips and tours were generated from the identified stops and 

home base. A truck tripservesa specific purpose, such as picking 
up a container from the port or delivering it to a warehouse. A 
truck tour consists of a sequence of truck trips. In this study, 
a truck tour is defined as starting and ending at the home base 
location. Tour travel distances for each truck were determined 
using a maps, routing,and navigation Application Programming 

Fig. 5. Locations visited by Trucks Oto 19 between July 2021 and August 
2022.The red dotsrepresent a stopat the homebase, while thebluedotsrepresent 
a stop at the port. 

 
 
 

Interface (API) in Python. It is assumed that trucks were un­ 
loaded when traveling from thehome baseand loaded when trav­ 
elingfrom the ports.The loaded/unloaded status was maintained 
between the end of the previous tour and the beginning of the 
next tour. Within a tour, the status alternates between loaded and 
unloaded for each trip.To calculate energyconsumption, energy 
efficiency values from [27], [31] were utilized, with loaded and 

  
1200 

 

  
 



4534 IEEETRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 4, APRIL 2024 
 

.
 

: 

C4: 5 

'§3 0.2 4
--   2m7ile ra5nge threshold :::, 

 

 
 

2500 tl.O 
C 0,8 

 

".O, 
100 

2000 

§1500 .
[
._ 0.6 

ai 80 
C. E 

8 
1000 

 
 

 

·>g 0,4 

u = Cumulative 

0u 60 

 
B 

0 0 100 200 
Tour Distance (mi) 

o.o O 100 200 
Cumulatlve Tour Distance (ml) 

0 
'#. 

Fig. 6. Tour distance distribution (left) and normalized cumulative tour dis­ 
tance(right) fora fleetof 20 trucksoperating at theSan Pedro Bay ports between 
July 2021 and August 2022. The figure also includes a threshold of 275 miles, 
as it has been suggested in [32) that this is the expected range for a 565 kWh 
battery electric truck. 
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Fig. 8. Percentage of tours completed per truck under the three modeled 
scenarios for a fleet of 20 trucks operating at the San Pedro Bay ports between 
July 2021 and August 2022. 
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• Each truck has a nominal battery capacity of 565 kWh, 
with 80% usable capacity for state-of-health protection 
purposes [32]; 

• The truck battery is 100% charged at the beginning of the 
first tour; 

• Charging is modeled usinga 150kWcharger,and assuming 
a 85% charging efficiency adapted from [33]; 

•  When the time at the home base exceeds 24 hours, the 
charging session will occur during the first 24 hours; 

• The electrical load profile modeled at the home base only 
considers the charging of BETs. 

• The effects of temperature conditions are neglected; 
•  Battery degradation and battery cell imbalance during 

charging are neglected; 
2)  Objective Function: Goal is to minimize the totalcharging 

cost and maximize subsequent tour completion by opti­ 
mizing the charging time. Thus, for the objective function 
described in (1), the charging time tin hours for each hour 
j and tour i is given by: 

 
 

 
Fig. 7. Optimal (top) vs. Infeasible (bottom) solutions from the optimization 
model for a truck that spends 3 hours at the home-base. Each axis (t1,t2,t3) 
represents the hourly bin that needs to be optimized. Colormap represents the 
charging cost in $. Red dot represents the solution given by the optimization 
model. 

 

 
unloaded trucks consuming 3.72 kWh/mi and 1.48 kWh/mi, 
respectively. 

 
B. Intelligently Controlled Charging Model 

Minimize 
nLLm [ T O U: ;lj ·T/cP L  X

[ tilj
 

z=I J=I TOUnm tnm 

With: t;j E nr 
3) Constraints: 
• Setting lower bounds: 

C1: tij, ... ,tnm 2 0 

• Setting upper bounds: 

C2: [tij,···, tnm] :S:[Kij, ·· ·,Knm] 

 
 
 
 

 
(1) 

 
 
 

(2) 
 
 

(3) 
The intelligently controlled charging model optimizes charg­ 

ing resources suchas energy cost andefficiency basedon various 
constraints, including grid energy demand, battery capacity, 
network structure, and transformer efficiency, using data-driven 
approaches [8]. After processing tripandtour datafor eachtruck, 
as well as their respective timestamps for entering and exiting 
the home base location, an intelligent controlled charging model 
for our fleet scenario is proposed. 

1) Setupand Assumptions: The following assumptions were 
made for the model: 

• The total charging time should not exceed the maximum 
battery capacity: 

(4) 

•  After charging, the SOC minus the energy for the next tour 
should meet the SOC constraint: 

(BRi +(C3) X T/cPL)- Ei+I  ( ) 
0_ 8x BC  2 SOCc 

Where: 

500 
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TABLE! 
2019-2023 TOU-EV-9 RATES SCE [34], [35] 

 
Energy Charge Description $/kWh 
Summer on-peak Jun 1 - Sep 30 weekdays 

4:00pm-9:00pm 
0.412 

Summer mid-peak Jun l - Sep 30 weekends-holidays 
4:00pm-9:00pm 

0.218 

Summer off-peak Jun l - Sep 30 
any other time 

0.102 

Winter mid-peak Oct 1 - May 31 
4:00pm-9:00pm 

0.250 

Winter off-peak Oct 1 - May 31 0.107 
 00:00am-8:00am and 9pm-00am  

Winter super-off-peak Oct I - May 31 0.067 
 8:00am-4:00pm  

 
t = charging time in hours; 
i= number of the tour; 
n = total number of tours; 
j = hourly bin to charge at each tour; 
m = total number of hours (bins) available at the home base 

to charge; 
T/c = charging efficiency equals to 0.85; 
PL = charging power level at the borne base equals to 

 
 

Algorithm 1: Intelligent Controlled Charging Algorithm. 
 

 

1: Lpprob f- 
p.LpProblem('Problem',p.LpM inimize) 

2: tarray f-  [ ] 
3: for i f-  1 to n do 
4: for j +- 1 to m do 
5: t[ij] f- p.LpV ariable("t j,lowBound = 0) 
6:  Lpprob f- [TOUij] · T/cPL X [tij] 
7: Lpprob f-  tij s; kij 
8: end for 
9:  end for 

10:  return tarray 
11:  for i +- 1 ton do 
12: Lpprob f- p.lpSum(taN'ay) s; Ti 
13: Lpprob f- (BR.+(p.lpSu'7i :ri;; )*1JcPL)-E;+,) :::0: 

SOCc 
14: status +- LPprob·solve() 
15:  end for 
16:  return tarray 

 
 

 

150 kW; 
BC = truck battery capacity equals to 565 kWh; 
Kij = time remaining in hours to charge within the hourly 

2SO 

s_:200 

5%SOC 
- 50%SOC 
- ------ 80% soc 

bin (s; l); 
Ti = time needed in tour i to have a fully charged battery in 

hours; 
BRi = battery remaining after tour i; 
Ei+l =kWh needed to cover subsequent tour (i + l); 
SOCc = Model constraints of 5%, 50%, and 80% represent 

the reserved SOC after completing the subsequent tour (i + l); 
and 

TOUii = TOU-EV-9 rate is applied for each tour i and hour 
j at the home base, which is located in a zipcode covered by 
Southern California Edison (SCE). The specific TOU rates are 
summarized in Table I. 

4)  Optimization Technique: The proposed algorithm shown 
in Algorithm 1 defines anoptimization problem using the 
Python PuLP library [36]. PuLP is a free, open-source 
software written in Python. It is primarily used to describe 
optimization problems as mathematical models. Once 
defined, Pu.LP can call various external linear program­ 
mingsolvers, such as CBC, GLPK, CPLEX, Gurobi, etc., 
to solve the model. The model uses the CBC (Coin-or 
branch and cut) solver. This is an open-source solver 
that comes bundled with Pu.LP. For many standard prob­ 
lems, particularly smaller ones, CBC is quite effective. 
Other solvers like Sequential Least Squares Quadratic 
Programming (SLSQP) and Nelder-Mead are available 
in the Scipy.optimize Python package [37]. These two 
solvers are particularly effective for non-linear optimiza­ 
tion problems. While SLSQP is straightforward to use, 
Nelder-Mead does not enforce constraint handling. 
The optimization problem is set up as a minimization 
problem with the objective function defined as the dot 
product of the TOU rates, power levels, and tij  variables, 

150 
"O 

.S100 ' 
 
 

 
2021--07-05 2021-07-09 2021--07-13 

 
Fig. 9. Hourly home base load profile in kW generated for the month of July 
2021 for a fleet of 20 trucks using the intelligent controlled charging model with 
three SOC constraints. The zoom-out figure presents the hourly profile from 
July 2021 to August 2022 for the 5% SOC constrained scenario. 

 
 
 

which represent the amount of time spent charging in 
houriy bins.The variables arecreated as a dictionary using 
the LpVariable method, and the lowBound parameter is 
set to O to ensure non-negativity. The algorithm then sets 
up several constraints related to the variables, including 
upper bounds on the charging time and a constraint on the 
reserved SOCof the battery after the next subsequent tour. 
Finally, theoptimization problem is solved using thesolve 
method of the LpProblem class. 

5)  Results: The outcome provides the optimal charging du­ 
ration for each hourly bin to construct the borne-base 
charging load profile. 

 
[V.  REsULTS AND DISCUSSION 

The results of the sensitivity analysis for determining the 
optimal number of clusters are shown in Fig. 3. For the initial 
k-Means, the optimal number of clusters was determined by 
calculating both the average time and the 99th percentile in 
minutes for cluster O situated at the bottom (as seen in Fig. 3 
middle). Thisclusterrepresents the truck constantly moving and 
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Fig.10.  Aggregated dailyload profile per month at thehomebase in kW for a fleetof 20 trucks using data fromJuly 1, 2021 to June30, 2022,showing a one-year 
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does not indicate potential stops for the truck. This cluster was 
subsequently excluded from the analysis. Therefore, with 13 
modeled clusters, the cluster designated for removal bas a mean 
of 0.7 minutes, and 99% of the points halted for 2.3 minutes or 
fewer (Fig. 3 left). Increasing the total number of clusters to 14 
causes 99% of the points in thecluster designated for removal to 
stop for0.9 minutes or less, a duration considerably shorter than 
the 3-minute threshold found in the literature [14], [15]. The 
result of the Elbow method to determine the optimal number of 
clusters for the second k-Means model is shown in Fig. 3-right. 

from July 2021 to August 2022. 
 
 
 
 

Convex hulls computed as a results of the second k-means 
performed using only GPS latitude and longitude are presented 
in Fig. 4. 

After obtaining the convex bulls for the stops of both trucks, 
trip-and-tour identification was conducted. Fig. 5 presents a 
comparison of the locations visited by Trucks 0 to 19 from 
July 2021 to August 2022, emphasizing the variability in travel 
patterns across the fleet. Some trucks, such as Truck l, display 
more active travel patterns, while others, like Truck 13, show 
notably less activity. Moreover, it's evident that certain trucks 
make more intermediate stops between the home base (red dots) 
and the port (blue dots). This variability is further highlighted 
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TABLE II 
NUMBER OF TOURS AND TRIPs PER TRUCK FOR A FLEET OF 20TRUCKS USING 

DATA FROM JULY 2021 TO AUGUST2022 
 

Truckld # of Tours # of trip 
0 369 1273 
l 411 1449 
2 395 1281 
3 316 1148 
4 308 991 
5 245 816 
6 224 756 
7 395 1395 
8 299 970 
9 418 1441 
10 389 1333 
11 309 1043 
12 309 1009 
13 204 793 
14 335 1072 
15 389 1469 
16 237 754 
17 357 1356 
18 303 1121 
19 336 1192 

 

TABLEill 
TOTAL NUMBER OF TOURS COMPLETED PER CONSTRAINED SCENARIOS 

 
soc 

Constraint 
N° Tours 

Optimal Sol. 
N° Tours 

Infeasible Sol. 
% Tours 
Completed 

5% 3563 153 95.9% 
50% 3020 696 81.3% 
80% 1806 1910 51.4% 

 

 

in Table II, which lists the number of trips and tours per truck 
over one year. 

Fig.6 displays thetour traveldistance and cumulativedistribu­ 
tions for a fleet of20 trucks operating at theSan Pedro Bay ports 
from July 2021 to August 2022. It is worth noting that all tours 
in the fleet have a travel distance less than the 275-mile range 
for a truck with a 565 kWh battery capacity [32]. Achieving 
a 275-rnile range would require an assumed energy efficiency 
of 2 kWh per mile, but it is important to consider that drayage 
trucks consume varying amounts of kWh per mile depending on 
factors such as cargo load and road type (freeway or local) [27], 
[31]. 

 
A. Tour Completion Analysis 

One of the primary constraints in the intelligently con­ 
trolled charging model is the completion of subsequent tours. 
Table III summarizes the percentage of tours completed under 
the three SOC constrained scenarios. It becomes evident that as 
the remaining SOC constraint becomes more aggressive, the 
percentage of completed tours decreases. This is due to the 
model lacking optimal solutions. The table also indicates the 
number of tours with optimal and infeasible solutions. Asshown 
in Fig. 7, for a truck that spends 3 hours at the home-base, 
each axis (t1, t2, t3) represents the hourly bin to be optimized. 
A tour with an infeasible solution indicates that the available 
charging time does not satisfy the constraints in (1), preventing 
the model from completing the next tour, as highlighted by the 
red dot being outside thecube.Consequently, a scenariowith 5% 

reserved SOC after completing the subsequent tour will result 
in 96% of tours beingcompleted across the entire fleet. Results 
from Tanvir et al. [13] suggest that BETs can complete 85% of 
the tours if they can be opportunity charged at the home base 
between consecutive tours. Thus, the intelligently controlled 
charging model can increase the tour completion rate from 
85% to 96%. Furthermore, when juxtaposing the results with 
the normalized cumulative tour distance for this fleet (Fig. 6), 
it implies that all tours should be completed. However, there 
remain about 153 tours (4%) that will not be completed in one 
year. 

The percentage of tours completed by each truck under the 
three modeled scenarios is presented in Fig. 8. It is evident that 
certain trucks completed more tours than others. For example, 
while Truckld 11 and 12 both embarked on the same number of 
tours (asdetailed inTable II), they differed in thenumberoftrips 
made, with 1043 and 1009 trips, respectively. This variation in 
trips leads to a distinct energy consumption pattern, influenced 
by the route taken by the truck and whether it is carrying cargo 
or not. 

 
B. Home Base Load Analysis 

Fig. 9 displays the hourly home base load profile in kW 
generated by the intelligent controlled charging model under 
the three remaining SOC constraints. This zoomed-out figure 
highlights the 5% SOC constraint. 

The daily aggregated load profile per month in kW, under 
the three different scenarios considered, is presented in Fig. 10. 
A seasonality pattern within each month is evident. Patterns 
corresponding to weekdays are noticeable every approximately 
five days, representing truck charging during the weekdays 
and minimal charging over the weekends. Furthermore, a load 
seasonality in the energy charged can be observed during the 
Summer months of July and August 2021. This seasonality 
might also be linked to the type of product the drayage truck 
transports and its import patterns to the country during specific 
months of the year. Comparing the three constrained SOC 
scenarios, the variability introduced by the available charging 
time at the home base, and subsequently, the number of feasible 
solutions isevident.Thisvariability ishighlighted by thevertical 
gap in kW between the 5%, 50%, and 80% cases. 

 
C. Cost Analysis 

Fig.11 presents acomparisonof thecumulativechargingcosts 
from July 2021 to August 2022 for the three SOC constrained 
scenarios using the TOU-EV-9 rates detailed in Table I. The 
total cumulative charging cost for one year under the 5% SOC 
constraint amounts to approximately $33,000, as outlined in 
Table IV. However, when contrasted with the 80% SOC sce­ 
nario, a decrease of 34% in charging cost (from $33,174 to 
$11,341) is observed. Yet, this decrease does not correspond to 
an equivalent 44% reduction in the number of tours completed. 
This discrepancy arises from the optimal solutions at each tour, 
with the number of infeasible solutions not factored into the 
charging cost. 
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Fig. 13.  Charging vs.Delay costs for the threeSOCconstrained scenarios from July 2021 to August 2022 per Truck.Id. 

 

TABLE IV 
MONTHLY ENERGY CHARGING COST FROM JULY 2021 TO AUGUST2022 

CONSIDERING THE THREE SOC CONSTRAINED SCENARIOS 
 

Year-Month 5% soc 50% soc 80% soc 
2021-07 $3,169.2 $2,137.9 $1,294.8 
2021-08 $4,018.3 $2,376.9 $1,187.5 
2021-09 $3,087.8 $1,896.5 $1,016.8 
2021-10 $2,164.1 $1,099.1 $540.7 
2021-11 $2,158.7 $868.6 $490.1 
2021-12 $3,001.9 $1,870.4 $919.2 
2022-01 $2,350.1 $1,757.1 $703.5 
2022-02 $2,728.1 $2,143.5 $778.6 
2022-03 $2,569.1 $2,326.9 $978.1 
2022-04 $1,760.7 $1,659.7 $621.1 
2022-05 $1,432.9 $1,270.5 $607.0 
2022-06 $1,875.9 $1,336.5 $815.2 
2022-07 $1,333.0 $1,056.5 $537.4 
2022-08 $1,524.5 $1,419.5 $851.9 
TOTAL $33,174.3 $23,219.7 $11,341.9 

 

 
For the infeasible solutions, a delay cost of $26.7 per hour 

from [38] was used to compare optimal vs. infeasible tour 
solutions, with each tour being analyzed independently. Total 
charging vs. delay costs are presented in Fig. 12. This clearly 
indicates that thescenario with 80% SOC has a significant total 
cost when delay is considered. Finally, the 5% SOC constraint 
resulted in a total charging and delay cost of about $40,000 per 
year, whereas the 80% SOC led to almost double that amount. 

The total cost per truckld is presented in Fig. 13. Among 
them, Truckld 11 stands out with notably more variability than 
the others. This graph serves as a valuable tool for pinpointing 
the trucks and routes that might benefit from earlier re-routing 
to diminish delay costs. 

 
V. CONCLUSION & FuTURE WORK 

California has set a goal toachieve carbon neutrality by 2045, 
with a specific target to make all drayage trucks operating in the 
state be zero-emission vehicles by 2035. Achieving this target 
requires accurate modeling of thequantities, locations, and load 
profiles of chargers needed to meet statewide electrification 
goals. However, therearesignificant gaps in thecurrentliterature 
regarding pattern recognition of drayage truck operations, stop 
locations, and energy consumption. Furthermore, the develop­ 
ment of intelligent charging models specifically for HD trucks 
is notably lacking. 

Given these gaps, an intelligently controlled charging model 
hasbeen proposed for BETs.This model takes into account TOU 
energy cost rates tooptimize the completion of subsequent tours 
and minimize charging costs. It is based on a one-year worth 

of real-world activity data from a fleet of 20 drayage trucks 
operating at the San Pedro Bay Ports. The application of this 
model is demonstrated by generating home base load profiles, 
taking into account the energy needed to complete the next 
subsequent tour and theTOU energy cost rates.The performance 
of the model was assessed under three different scenarios with 
varying SOC constraints: 5%, 50%, and 80%. 

Results showed that when reserving a 5%SOC after the com­ 
pletion of thenext subsequent tour, 96% of tours werecompleted 
for the entire fleet. This outcome highlights the potential of 
strategic charging, especially whencompared toother findings in 
the literature, such as those by Tanvir et al. [13]. Furthermore, 
the 80% SOC constraint proved to yield the lowest charging 
cost. However, this cost-saving is attributed to the number of 
infeasible solutions. The cumulative charging cost over a year 
under the5% SOC constraint totals around $33,000. Incontrast, 
the 80% SOC scenario registered a 34% reduction in charging 
costs, dropping from $33,174 to $11,341. In summary, the 5% 
SOC constraint led to an aggregate charging and delay cost of 
approximately $40,000 annually, while the 80% SOC nearly 
doubled that figure. 

From the findings presented in this article, it is evident 
that a significant portion of the tours remains infeasible under 
current BET technologies, particularly with more aggressive 
SOCconstraints. Addressing theseinfeasible tourscould involve 
deploying BETs with extended range, introducing faster charg­ 
ing mechanisms, and re-routing BETs to consider their driving 
range alongside the necessary charging durations forsubsequent 
tour completions. 

Future work includes addressing existing gaps and create a 
model for a more accurate estimation of trip-and-tour energy 
consumption. The introduction of a re-routing model willfurther 
ensure tour completion while optimizing charging costs. The 
proposed model lays the foundation for intelligent charging 
solutions tailored for BETs and aligns with California's aspi­ 
rations for zero-emission drayage trucks. As the model under­ 
goes further refinement, it will incorporate more fleet scenarios. 
Additionally, analyses will expand to consider factors such as 
temperature conditions, battery degradation, and battery cell 
imbalance to provide a more holistic understanding. 
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