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Abstract-California has set a goal for all drayage trucks oper-
ating in the state to be zero-emitting by 2035. In order to achieve
this goal, drayage operators would need to transition 100% of
their Heets tozero-emission vehicles such as battery electric trucks
(BETs). This article presents an intelligently controlled charging
model for BETs that minimizes charging costs while optimizing
subsequent tour completion. To develop this model, real-world
activity data from a drayage truck Heet operating in Southern
California was combined with a two-stage clustering technique
to identify trip and tour patterns. The energy consumption for
each trip and tour was then simulated for BETs with a battery
capacity of 565 kWh using a 150 kW charging power level. Home
base charging load profiles were generated using the proposed
charging model, subject to constraints of the energy needed to
complete the next subsequent tour and Time-of-Use energy cost
rates. A sensitivity analysis evaluated three scenarios: a passive
scenario with a 5% state-of-charge (SOC) constraint after com-
pleting the subsequent tour, an average scenario with a 50% SOC
constraint, and an aggressive scenario with an 80% SOC con-
straint. Results indicated that the 80% SOC constraint scenario
achieved the lowest charging cost. However, it also yielded the
lowest tour completion rate (51%). In contrast, the 5% SOC
constraint scenario registered the highest tour completion rate.
These results revealed that 96% of the tours could be successfully
completed using the intelligently controlled charging model. The
remaining tours were infeasible, indicating that the available time
at the home base was inadequate for charging the necessary energy
for the next tour. In terms of total costs, the scenario with a
5% SOC constraint resulted in an annual cost of approximately
$40,000, whereas the 80% SOC scenario nearly doubled that
amount.

Index Tem,s-Smart charging, battery electric trucks, charging
load profile, drayage trucks.

I. INTRODUCTION

HE transportation sector accounts for approximately 40%
T of thetotalgreenhouse gas (GHG) emissions in California,
making it the largest source of GHG emissions, according to the
2022 inventory report by the California Air Resources Board
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(CARB) [1]. In addition to being the largest source of GHG
emissions, the transportation sector is also responsible for a
significant portion of air pollutants such as oxides of nitrogen
(NOx) and particulate matter (PM), which pose health risks such
as asthma, heart attacks, and cancer [2], [3]. Medium-duty (MD)
and heavy-duty (HD) mobile sources are responsible for 67%
of NOx emissions in California, while light-duty (LD) sources
account for only 13% of NOx emissions in the state [4].0One
reason for this difference is that most HD vehicles are diesel-
powered, which produce higher NOx emissions per mile than
gasoline-powered vehicles. Additionally, HD vehicles travel
more miles per year, with an average of 62,229 miles per year,
while an average car travels 10,589 miles per year [5]. In recent
years, various efforts have been made toreduce emissions from
the transportationsector, and one of the latest strategies is trans-
portation electrification. According to the American Council
for an Energy-Efficient Economy (ACEEE), California is the
leading state in the US for its efforts towards transportation
electrification, having set a target for statewide deployment of
zero-emission vehicles (ZEVs) while considering the impact of
transportation on disadvantaged communities [6].

Toaddress air pollution andclimate change, California Gover-
nor issued Executive Order N-79-20 in September 2020, which
is acrucial step towards achieving carbon neutrality by 2045 [7].
This Executive Order targets:

» All in-state sales of new passenger cars and trucks to be
zero-emission by 2035;

All drayage trucksoperatingin the stateto bezero-emission
by 2035;

All MD and HD vehicles operating in the state to be zero-
emission by 2045, where feasible; and

All off-road vehicles and equipment to be zero-emission
by 2035, where feasible.

CARB estimates that electrifying the MD and HD sectors
will be crucial to meet California's targets, with a minimum
of 157,000 chargers needed to support an estimated 180,000
MD and HD vehicles by 2030. In January 2021, the California
Energy Commission (CEC) assessed the electric vehicle (EV)
charging infrastructure and identified key actions needed by
2030, including supporting innovative charging solutions and
modeling efforts to determine the quantities, locations, and load
curves of chargers required to meet statewide travel demand,
including for MD and HD vehicles [7]. Currently, EV charging
techniques arecategorized as uncontrolled or controlled [8]. Un-
controlled charging draws power immediately uponconnection,
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typicallycontinuing until the battery isfull or halted by the user.
Controlled charging includes:

 Indirect: Leverages user behavior for grid load control.

+ Intelligent: Data-driven, optimizing available resources
within constraints such as energy demand and battery
capacity.

» Multistage Hierarchical: Utilizes a priority-baseddecision
tool, blending decision control with genetic algorithms
and either fuzzy logic or Artificial Intelligence (Al)-based
tools.

ThePortsof LosAngelesand Long Beach,collectively known
as the San Pedro Bay Ports, are the largest container shipping
ports in the US, handling around 40% of the nation's waterborne
imported cargo [9]. Consequently, the California South Coast
region, where these ports are located, is among the worst in
the US that are affected by air pollution related to truck ac-
tivities, especially in drayage operations. To address this issue,
CARB has highlighted thesignificance of electrification efforts
and charging strategies for MD and HD fleets, with a special
emphasis on Class 8 drayage trucks [10]. To efficiently project
the required charging infrastructure and develop innovative so-
lutions to meet the increasing charging demand from HD BETs,
an intelligently controlled charging model was developed and
evaluated using real-world activity data of drayage trucks at the
Ports of Los Angeles and Long Beach. The main contributions
are listed below:

+ This intelligently controlled charging model is specifically

designed for BETs, which takes into account Time-of-
Use (TOU) energy cost rates to optimize subsequent tour
completion and minimize charging costs, representing a
pioneering approach in BET charging.

» This model's application was demonstrated by generat-
ing home base load profiles, analyzing one year worth
of real-world activity data from a fleet of 20 drayage
trucks operating at the Ports of Los Angeles and Long
Beach. The modeled trucks have a battery capacity
of 565 kWh and are charged using a 150 kW power
level.

+ Asensitivity analysis was performed to compare theresults
of three scenarios-with 5%, 50%, and 80% reserved SOC
after completing the subsequent tour.

This article is organized as follows. First, prior research
efforts related to HD truck electrification are reviewed in
Section II. Then, the dataset and methodology used in our study
are described in Section III. Next, the results and discussion
of the intelligently controlled charging model are provided in
Section IV. Finally, conclusions and future work are presented
in Section V.

II. RELATED WORK

In recent years, there have been multiple efforts to under-
stand truck activity, grid impacts, and charging models for
drayage fleets, especially as drayage truck fleets are anticipated
to become more electrified and connected in the future [11].
Drayage trucks, which transport cargocontainers between ports
and nearby distribution centers daily, are considered an ideal
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candidate for electrification due to their predictable activity
patterns. Drayage trucks travel a limited distance each day,
which is likely to be shorter than the driving range of current
BET technologies. They return to home baseevery night, which
allows them to be charged at the home base overnight. Based
on an analysis of truck trips, Ambrose [12] reported that
less than 1% of drayage trucks completed more than five trips
per shift. In a separate study, Tanvir et al. [13] analyzed the
activity of drayage trucks in Southern California to estimate
the corresponding electric energy consumption and SOC of
their batteries. Their results suggest that BETs can serve 85%
of the tours if they can be opportunity charged at the home
base between consecutive tours. Activity patterns of HD trucks
have also been studied. McCormack et al. [14] measured truck
movements along specific roadway corridors in Washington
State using data from the Commercial Vehicle Information
System and Networks (CVISN) electronic truck transponders
and Global Positioning System (GPS) data from 30,000 trucks.
Results showed that GPS devices provided highly accurate data
on both travel routes and individual roadway segments used by
trucks. This makes the GPS dataset considerably more robust
than the transponder data. Ma et al. [15] analyzed GPS truck
data to develop performance measures for truck-based freight
network monitoring. Truck travel patterns were identified using
an algorithm that differentiated between traffic-based stops and
intended stops. This algorithm uWized average stop duration
(i.e., dwell time), and the results were manually inspected. The
findings presented travel time and speed, roadway location,
and stop location information for a fleet of 2,500 trucks in the
Puget Sound, Washington region. You et al. [16] developed a
comprehensive framework for processing GPS data from clean
trucks at California's San Pedro Bay Ports. Data from 545
trucks were filtered and manually checked for truck-accessible
locations using Google Earth. Four tour type patterns were
analyzed, concluding that the tour characteristics of trucks vary
significant]y basedonfuel typeand cargomoves.Similarly,Patel
et al.[17] uWized a Random Forest classifier tocategorize truck
stop locations as either primary or secondary using GPS data.
Their proposed machine learning model can identify primary
stop locations with an accuracy of 97%. Zhu et al. [18] con-
ducted a systematic study on the impact of charging loads of
HD EVs on the electric power grid. They used a methodology
that takes into account the location of chargers, load modeling,
and grid impact analysis, and compared the results using one
model distribution feeder and a realistic California feeder. The
study revealed the impact of charging stations on the grid and
suggested that different mitigation plans,such as the useof smart
chargers, can provide reactive power support. Fjaer et al. [19]
modeled the aggregated load profiles of high-energy charging
stations uWized by HD EVs in Eastern Norway, considering
peakloads of 4, 9, and 13 MW.Thefindingsshowed that the peak
loads associated with HD EVs caused the electrical distribution
substation to surpass its rated capacity and thermal limit. To
address this issue, the authors suggested reducing the peak load
byextending thedrivers' break timeby 15minutes, whichwould
enable the operation of the electrical distribution substation to
remain below therated capacity. This recommendationaimed to
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ensure that the substation operates within its limit and provides
a stable power supply.

Borlaug et al. [20] investigated the impacts of depot charging
by developing synthetic load profiles for short-haul HD EVs,
which were applied to 36 distribution substations. The results
showed that 78-86% of the substations were capable of supply-
ing HD charging without upgrades. In [21], a simulation was
conducted to assess the impact of HD charging ona distribution
system in Texas. The findings indicated that the transmission
gridexperienced asignificantimpact whencharging only 11%of
the simulated HD EVs, highlighting the need for infrastructure
upgrades and further studies of smart charging models. Simi-
larly, Tong et al. [22] analyzed the charging load profiles of HD
EVs, which demonstrated that the daily charging peak is highly
influenced by long-haul truck operations, as well as the peaks
in solar power generation in California. Smart charging for HD
EVs, explored in [23], used data from 259 U.S. HD EVs to
gauge peak demand impacts. Modeling two battery capacities
and charging levels, the findings showed that smart charging
could reduce peak demand by 1,095 kW, potentially saving up
to $10,000 monthly.

The review of these prior research efforts suggests significant
gaps in the existing literature concerning pattern recognition of
drayage truck operation, stop locations, and energy consump-
tion. Moreover, while the estimation of grid impacts from HD
truck charging has been explored, it has not been specifically
examined for drayage operations. Lastly, the development of
intelligent charging models tailored for HD trucks is almost
non-existent.

While there are various factors that affect the performance of
BETs, including temperature conditions, battery degradation,
and battery cell imbalance, electric trucks are greatly influ-
enced by technological advancements. Given the rapid progress
in battery technology, the battery feasibility of HD BETs is
changing rapidly [24]. Consequently, the literature on battery
degradation in BETSs is limited [25], [26]. Given these gaps and
existing limitations, an intelligently controlled charging model
is proposed, aiming to maximize tour completion while also
minimizingchargingcosts. This model has beencalibrated using
a one year worth of real-world activity data from a fleet of 20
drayage trucks operating at theSan Pedro Bay Ports in Southern
California.

ill. METHODOLOGY

Truck activity data were analyzed for 20 vehicles belonging
to the same fleet operating at the San Pedro Bay Ports termi-
nal regions in Long Beach and Los Angeles from July 2021
to August 2022. The available data for each truck included
ID (Truckld), latitude, longitude, and GPS date/time. Further-
more, data for each truck at different terminal regions were
also available, including the terminal name, tract name, enter
date/time to the terminal, and exit date/time from the terminal.
The frequency of theactivity data was not uniform as the vehicle
position and GPS date/time were recorded only when the trucks
moved along the road. Hence, no data were recorded if there
was no movement. This fleet typically covers routes in Los
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Fig.I. Typical routes for the 20drayage trucks included in this study.

Angeles, San Bernardino, and Riverside counties, as illustrated
in Fig. 1.

A. Identifying Trips and Tours

The raw GPS data were first pre-processed and filtered by
terminal region and Truckld. However, the data were not la-
beled in terms of stops. To solve this issue, a two-staged un-
supervised machine learning (ML) technique called k-Means
clustering was adapted from [27] and implemented in Python
to identify the home base and loading/unloading stops for the
trucks. The k-Means algorithm was used to cluster the data by
separating them intogroups while minimizing the within-cluster
sum-of-squares [28]. This algorithm was selected because of
its scalability and widespread use across various applications.
Additionally, the GPS date/time differential was calculated to
determine the time gap between consecutive timestamps. A
cluster of data points on the map with a large time gap between
timestamps suggests a potential home base or warehouse where
trucks stop to load/unload cargo. In contrast, a cluster of data
points on the map with a small time gap between timestamps
implies that the truck is continuously moving, and is unlikely to
represent a meaningful stop. Hyperparameter optimization was
also conducted to determine the optimal number of clusters for
the initial k-Means by calculating the average time differential
and the 99th percentile in minutes for the cluster designated for
removal.

Fig. 2 summarizes this methodology. After identifying po-
tential truck stops and the home base using the first k-Means,
a second k-Means model was implemented. The main aim was
to obtain the convex hulls for each cluster to identify possible
truckstops.Therefore, based on theoriginal activity of thetruck,
every time the truckentersa convex hull andspends a significant
amount of time there, the potential stop will be labeled as a
significant stop. Finally, a hyperparameter optimization was
also performed for the second k-Means model to determine the
optimum number of clusters, maximum number of iterations
of the model, and random state for result repeatability. To
determine the optimal numberof clustersforthesecond k-Means
model, the Elbow method (improvement in distortion declines)
was used, which involves calculating the inertia. Inertia is a
measure of how well a dataset is clustered by k-Means. It is
calculated by measuring the distance between each data point
and itscentroid, squaring this distance, and then summing these
squares across one cluster. A good model is characterized by
low inertia and a minimal number of clusters [29], [30].
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operating at the San Pedro Bay Ports.

Proposed methodology. Intelligently controlled charging model is based on one year worth of real-world activity data from a fleet of 20 drayage trucks

Clusters
-O
1400, -4
! -9 60
4 129 E‘ ‘8 50
C,WO! I ®
i . ' o
£407 |
210 2% | N
5 g 5600 1 X 530] |
= B |
2 = 4 2 izo \
E 6 00 3 — ;
2 1 2 - 12 '5‘10 \ Optimal
< 0 . .7
Loy ,/‘h.\‘\,ée -3 0, e e
30 25 20 15 10 K = g 6 20 40 60 80 100

99thPercentile (min)

Fig. 3.

Number of Clusters

Results of thefirst k-Means hypeiparameter optimization (left), the time differential plot (middle), and thesecond k-Means hypeiparameter optimization

(right) for a fleet of 20 trucks using data from July 2021 to August 2022. Theoptimal numbers of clusters for thefirst and second k-Means models were 13 and 20,

Torranc:

Anaheim

respectively.
San Bernargy 2022-09
. an bernargno Sagii—t
El Mont = N, | B
LosAnggles e [T ) 2022-05 {{ie
Santa Monica csno ey Sy i !
rglwsrood 7 Riverside 4 2022:01 ez
ol G © Moendvali 000 o0 '.EE-_ =
o—""2"P i B s i
LE £ ! Yorba Linda N, a
. e -; v ]
P S ol . 2022-09

Huntington Irvine

Menifes
Beach

(@)

Fig. 4. Results of applying the second k-means model to a fleet of 20 trucks
using data from July 2021 to August 2022. The 20 resulting clusters are
represented by green dots and enclosed in red convex hulls. Additionally, a
manual convex hull was assigned to the data to indicate the home base.

Trips and tours were generated from the identified stops and
home base. A truck tripservesa specific purpose, such as picking
up a container from the port or delivering it to a warehouse. A
truck tour consists of a sequence of truck trips. In this study,
a truck tour is defined as starting and ending at the home base
location. Tour travel distances for each truck were determined
using a maps, routing,and navigation Application Programming

& Mapbay © Opensresap 202 1-09

fil:-

Fig. 5. Locations visited by Trucks Oto 19 between July 2021 and August
2022.The red dotsrepresent a stopat the homebase, while thebluedotsrepresent
a stop at the port.

Interface (API) in Python. It is assumed that trucks were un-
loaded when traveling from thehome baseand loaded when trav-
elingfrom the ports.The loaded/unloaded status was maintained
between the end of the previous tour and the beginning of the
next tour. Within a tour, the status alternates between loaded and
unloaded for each trip.To calculate energyconsumption, energy
efficiency values from [27], [31] were utilized, with loaded and
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Fig. 6. Tour distance distribution (left) and normalized cumulative tour dis-
tance(right) fora fleetof 20 trucksoperating at theSan Pedro Bay ports between
July 2021 and August 2022. The figure also includes a threshold of 275 miles,
as it has been suggested in [32) that this is the expected range for a 565 kWh
battery electric truck.
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Fig. 7. Optimal (top) vs. Infeasible (bottom) solutions from the optimization
model for a truck that spends 3 hours at the home-base. Each axis (t1,t2,t3)
represents the hourly bin that needs to be optimized. Colormap represents the
charging cost in $. Red dot represents the solution given by the optimization
model.

unloaded trucks consuming 3.72 kWh/mi and 1.48 kWh/mi,
respectively.

B. Intelligently Controlled Charging Model

The intelligently controlled charging model optimizes charg-
ing resources suchas energy cost andefficiency basedon various
constraints, including grid energy demand, battery capacity,
network structure, and transformer efficiency, using data-driven
approaches [8]. After processing tripandtour datafor eachtruck,
as well as their respective timestamps for entering and exiting
the home base location, an intelligent controlled charging model
for our fleet scenario is proposed.

1) Setupand Assumptions.: The following assumptions were

made for the model:
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Fig. 8. Percentage of tours completed per truck under the three modeled
scenarios for a fleet of 20 trucks operating at the San Pedro Bay ports between
July 2021 and August 2022.

* Each truck has a nominal battery capacity of 565 kWh,
with 80% usable capacity for state-of-health protection
purposes [32];

* The truck battery is 100% charged at the beginning of the
first tour;

» Charging is modeled usinga 150kWcharger,and assuming
a 85% charging efficiency adapted from [33];

¢« When the time at the home base exceeds 24 hours, the
charging session will occur during the first 24 hours;

* The electrical load profile modeled at the home base only
considers the charging of BETs.

» The effects of temperature conditions are neglected;

e Battery degradation and battery cell imbalance during
charging are neglected;

2) Objective Function: Goal is to minimize the totalcharging
cost and maximize subsequent tour completion by opti-
mizing the charging time. Thus, for the objective function
described in (1), the charging time tin hours for each hour
jand touri is given by:

TOWU .l . L tl’
Minimize I/L [ . v T/cPL .

z=1J=1 TOUnm tnm
With: ; ENIr @)
3) Constraints:
» Setting lower bounds:
Cl:zij, ... ,tnm 20 @)
» Setting upper bounds:
C2: [tij, -, tnm] :S:/Kij, - -.Knm] 3)
* The total charging time should not exceed the maximum
battery capacity:
C3itij+ ... +tnm <Ti 4

e Aftercharging, the SOC minus the energy for the next tour
should meet the SOC constraint:

BRi Y (C3) X 1/ePL)- Ei+1

9

Where:
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TABLE!
2019-2023 TOU-EV-9 RATES SCE [34], [35]

Energy Charge Description d/KWh

Summer on-peak Jun 1 - Sep 30 weekdays 0412
4:00pm-9:00pm

Summer mid-peak Jun1 - Sep 30 weekends-holidays 0.218
4:00pm-9:00pm

Summer off-peak Jun1 - Sep 30 0.102
any other time

Winter mid-peak Oct 1 - May 31 0.250
4:00pm-9:00pm

Winter off-peak Oct 1 - May 31 0.107
00:00am-8:00am and 9pm-00am

Winter super-off-peak | Oct I - May 31 0.067
8:00am-4:00pm

¢t = charging time in hours;

i= number of the tour;

n = total number of tours;

j = hourly bin to charge at each tour;

m = total number of hours (bins) available at the home base
to charge;

T/c = charging efficiency equals to 0.85;

PL = charging power level at the borne base equals to
150 kW;

BC = truck battery capacity equals to 565 kWh;

Kj = time remaining in hours to charge within the hourly
bin (s; 1);

Ti = time needed in touri to have a fully charged battery in
hours;

BRi = battery remaining after tour i,

ei+1 =kWh needed to cover subsequent tour (i + 1);

SOCc = Model constraints of 5%, 50%, and 80% represent
the reserved SOC after completing the subsequent tour (i + 1);
and

TOUii = TOU-EV-9 rate is applied for each touri and hour
J at the home base, which is located in a zipcode covered by
Southern California Edison (SCE). The specific TOU rates are
summarized in Table I.

4) Optimization Technique: The proposed algorithm shown
in Algorithm 1 defines anoptimization problem using the
Python PuLP library [36]. PuLP is a free, open-source
software written in Python. It is primarily used to describe
optimization problems as mathematical models. Once
defined, Pu.LP can call various external linear program-
mingsolvers, such as CBC, GLPK, CPLEX, Gurobi, etc.,
to solve the model. The model uses the CBC (Coin-or
branch and cut) solver. This is an open-source solver
that comes bundled with Pu.LP. For many standard prob-
lems, particularly smaller ones, CBC is quite effective.
Other solvers like Sequential Least Squares Quadratic
Programming (SLSQP) and Nelder-Mead are available
in the Scipy.optimize Python package [37]. These two
solvers are particularly effective for non-linear optimiza-
tion problems. While SLSQP is straightforward to use,
Nelder-Mead does not enforce constraint handling.

The optimization problem is set up as a minimization
problem with the objective function defined as the dot
product of the TOU rates, power levels,and ¢  variables,
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Algorithm 1: Intelligent Controlled Charging Algorithm.

1:  Lpprob -
p.LpProblem('"Problem'.p.LpM inimize)
tarray f- [ |
fori - 1ton do
for j +- 1tom do
tlij]1 &= p.LpVariable("t j,lowBound = 0)
Lpprob t- [TOUIj] - T/cPL x [tij]
Lpprob - tij S; kij
end for
end for
10: return rarray
11: fori+-1ton do
12: Lpprob t- p.lpSum(taN'ay) S; Ti
13: Lpprob £ (BR.+(p.IpSu'7i :ri;; )*1JcPL)-E:+,) ::0:

D AR AR

SOCc
14:  status +- LPprob-solve()
15: end for

16: return rarray

5%SOC 50077
250| - 50%S0OC | aLi 1
200 80% SOC " ‘
S |
150 .
e
.S100
501 | .
O- - i
2021--07-05 2021-07-00 2021--07-13

Fig. 9. Hourly home base load profile in kW generated for the month of July
2021 for a fleet of 20 trucks using the intelligent controlled charging model with
three SOC constraints. The zoom-out figure presents the hourly profile from
July 2021 to August 2022 for the 5% SOC constrained scenario.

which represent the amount of time spent charging in
houriy bins.The variables arecreated as a dictionary using
the LpVariable method, and the lowBound parameter is
set to O to ensure non-negativity. The algorithm then sets
up several constraints related to the variables, including
upper bounds on the charging time and a constraint on the
reserved SOCof the battery after the next subsequent tour.
Finally, theoptimization problem is solved using thesolve
method of the LpProblem class.

5) Results: The outcome provides the optimal charging du-
ration for each hourly bin to construct the borne-base
charging load profile.

[V. REsSULTS AND DISCUSSION

The results of the sensitivity analysis for determining the
optimal number of clusters are shown in Fig. 3. For the initial
k-Means, the optimal number of clusters was determined by
calculating both the average time and the 99th percentile in
minutes for cluster O situated at the bottom (as seen in Fig. 3
middle). Thisclusterrepresents the truck constantly moving and
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Fig. 11. Cumulative energy charging cost using the TOU-EV-9 rates for the
threeSOC constrained scenarios from July 2021 to August 2022.

does not indicate potential stops for the truck. This cluster was
subsequently excluded from the analysis. Therefore, with 13
modeled clusters, the cluster designated for removal bas a mean
of 0.7 minutes, and 99% of the points halted for 2.3 minutes or
fewer (Fig. 3 left). Increasing the total number of clusters to 14
causes 99% of the points in thecluster designated for removal to
stop for0.9 minutes or less, a duration considerably shorter than
the 3-minute threshold found in the literature [14], [15]. The
result of the EIbow method to determine the optimal number of
clusters for the second k-Means model is shown in Fig. 3-right.

$80,000
Charging Cost
Delay Cost
$60,000
0"' $65,131
$40,000 $12.755 $36,407
$20,000| | $33.074
$23,220
$11,342
$0
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Fig. 12. Charging vs. Delay costs for the three SOC constrained scenarios
from July 2021 to August 2022.

Convex hulls computed as a results of the second k-means
performed using only GPS latitude and longitude are presented
in Fig. 4.

After obtaining the convex bulls for the stops of both trucks,
trip-and-tour identification was conducted. Fig. 5 presents a
comparison of the locations visited by Trucks 0 to 19 from
July 2021 to August 2022, emphasizing the variability in travel
patterns across the fleet. Some trucks, such as Truck 1, display
more active travel patterns, while others, like Truck 13, show
notably less activity. Moreover, it's evident that certain trucks
make more intermediate stops between the home base (red dots)
and the port (blue dots). This variability is further highlighted
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TABLE I
NUMBER OF TOURS AND TRIPs PER TRUCK FOR A FLEET OF 2 0 TRUCKS USING
DATA FROM JULY 2021 TO AUGUST2022

Truckld | # of Tours | # of trip
0 369 1273
1 411 1449
2 395 1281
3 316 1148
4 308 991
5 245 816
6 224 756
7 395 1395
8 299 970
9 418 1441
10 389 1333
11 309 1043
12 309 1009
13 204 793
14 335 1072
15 389 1469
16 237 754
17 357 1356
18 303 1121
19 336 1192

TABLEIll

TOTAL NUMBER OF TOURS COMPLETED PER CONSTRAINED SCENARIOS

SOC N° Tours N° Tours % Tours

Constraint | Optimal Sol. | Infeasible Sol. | Completed
5% 3563 153 95.9%
50% 3020 696 81.3%
80% 1806 1910 51.4%

in Table II, which lists the number of trips and tours per truck
over one year.

Fig.6 displays thetour traveldistance and cumulativedistribu-
tions for a fleet 0f20 trucks operating at theSan Pedro Bay ports
from July 2021 to August 2022. It is worth noting that all tours
in the fleet have a travel distance less than the 275-mile range
for a truck with a 565 kWh battery capacity [32]. Achieving
a 275-rnile range would require an assumed energy efficiency
of 2 kWh per mile, but it is important to consider that drayage
trucks consume varying amounts of kWh per mile depending on
factors such as cargo load and road type (freeway or local) [27],
[31].

A. Tour Completion Analysis

One of the primary constraints in the intelligently con-
trolled charging model is the completion of subsequent tours.
Table III summarizes the percentage of tours completed under
the three SOC constrained scenarios. It becomes evident that as
the remaining SOC constraint becomes more aggressive, the
percentage of completed tours decreases. This is due to the
model lacking optimal solutions. The table also indicates the
number of tours with optimal and infeasible solutions. Asshown
in Fig. 7, for a truck that spends 3 hours at the home-base,
each axis (t;, to, t3) represents the hourly bin to be optimized.
A tour with an infeasible solution indicates that the available
charging time does not satisfy the constraints in (1), preventing
the model from completing the next tour, as highlighted by the
red dot being outside thecube.Consequently, a scenariowith 5%
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reserved SOC after completing the subsequent tour will result
in 96% of tours beingcompleted across the entire fleet. Results
from Tanvir et al. [13] suggest that BETs can complete 85% of
the tours if they can be opportunity charged at the home base
between consecutive tours. Thus, the intelligently controlled
charging model can increase the tour completion rate from
85% to 96%. Furthermore, when juxtaposing the results with
the normalized cumulative tour distance for this fleet (Fig. 6),
it implies that all tours should be completed. However, there
remain about 153 tours (4%) that will not be completed in one
year.

The percentage of tours completed by each truck under the
three modeled scenarios is presented in Fig. 8. It is evident that
certain trucks completed more tours than others. For example,
while Truckld 11 and 12 both embarked on the same number of
tours (asdetailed inTable II), they differed in thenumberoftrips
made, with 1043 and 1009 trips, respectively. This variation in
trips leads to a distinct energy consumption pattern, influenced
by the route taken by the truck and whether it is carrying cargo
or not.

B. Home Base Load Analysis

Fig. 9 displays the hourly home base load profile in kW
generated by the intelligent controlled charging model under
the three remaining SOC constraints. This zoomed-out figure
highlights the 5% SOC constraint.

The daily aggregated load profile per month in kW, under
the three different scenarios considered, is presented in Fig. 10.
A seasonality pattern within each month is evident. Patterns
corresponding to weekdays are noticeable every approximately
five days, representing truck charging during the weekdays
and minimal charging over the weekends. Furthermore, a load
seasonality in the energy charged can be observed during the
Summer months of July and August 2021. This seasonality
might also be linked to the type of product the drayage truck
transports and its import patterns to the country during specific
months of the year. Comparing the three constrained SOC
scenarios, the variability introduced by the available charging
time at the home base, and subsequently, the number of feasible
solutions isevident.Thisvariability ishighlighted by thevertical
gap in kW between the 5%, 50%, and 80% cases.

C. Cost Analysis

Fig.11 presents acomparisonof thecumulativechargingcosts
from July 2021 to August 2022 for the three SOC constrained
scenarios using the TOU-EV-9 rates detailed in Table I. The
total cumulative charging cost for one year under the 5% SOC
constraint amounts to approximately $33,000, as outlined in
Table IV. However, when contrasted with the 80% SOC sce-
nario, a decrease of 34% in charging cost (from $33,174 to
$11,341) is observed. Yet, this decrease does not correspond to
an equivalent 44% reduction in the number of tours completed.
This discrepancy arises from the optimal solutions at each tour,
with the number of infeasible solutions not factored into the
charging cost.
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TABLEIV
MONTHLY ENERGY CHARGING COST FROM JULY 202110 AUGUST2022
CONSIDERING THE THREE SOC CONSTRAINED SCENARIOS

Year-Month 5% SOC 50% SOC 80% SOC
2021-07 $3,169.2 $2,137.9 $1,2948
2021-08 $4,018.3 $2,376.9 $1,187.5
2021-09 $3,087.8 $1,896.5 $1,016.8
2021-10 $2,164.1 $1,099.1 $540.7
2021-11 $2,158.7 $868.6 $490.1
2021-12 $3,001.9 $1,870.4 $919.2
2022-01 $2,350.1 $1,757.1 $703.5
2022-02 $2,728.1 $2,143.5 $778.6
2022-03 $2,569.1 $2,326.9 $978.1
2022-04 $1,760.7 $1,659.7 $621.1
2022-05 $1,432.9 $1,270.5 $607.0
2022-06 $1,875.9 $1,336.5 $815.2
2022-07 $1,333.0 $1,056.5 $537.4
2022-08 $1,524.5 $1,419.5 $851.9
TOTAL $33,174.3 | $23,219.7 | $11,341.9

For the infeasible solutions, a delay cost of $26.7 per hour
from [38] was used to compare optimal vs. infeasible tour
solutions, with each tour being analyzed independently. Total
charging vs. delay costs are presented in Fig. 12. This clearly
indicates that thescenario with 80% SOC has a significant total
cost when delay is considered. Finally, the 5% SOC constraint
resulted in a total charging and delay cost of about $40,000 per
year, whereas the 80% SOC led to almost double that amount.

The total cost per truckld is presented in Fig. 13. Among
them, Truckld 11 stands out with notably more variability than
the others. This graph serves as a valuable tool for pinpointing
the trucks and routes that might benefit from earlier re-routing
to diminish delay costs.

V. CONCLUSION & FuTURE WORK

California has set a goal toachieve carbon neutrality by 2045,
with a specific target to make all drayage trucks operating in the
state be zero-emission vehicles by 2035. Achieving this target
requires accurate modeling of thequantities, locations, and load
profiles of chargers needed to meet statewide electrification
goals. However, therearesignificant gaps in thecurrentliterature
regarding pattern recognition of drayage truck operations, stop
locations, and energy consumption. Furthermore, the develop-
ment of intelligent charging models specifically for HD trucks
is notably lacking.

Given these gaps, an intelligently controlled charging model
hasbeen proposed for BETs.This model takes into account TOU
energy cost rates tooptimize the completion of subsequent tours
and minimize charging costs. It is based on a one-year worth

of real-world activity data from a fleet of 20 drayage trucks
operating at the San Pedro Bay Ports. The application of this
model is demonstrated by generating home base load profiles,
taking into account the energy needed to complete the next
subsequent tour and theTOU energy cost rates. The performance
of the model was assessed under three different scenarios with
varying SOC constraints: 5%, 50%, and 80%.

Results showed that when reserving a 5%SOC after the com-
pletion of thenext subsequent tour, 96% of tours werecompleted
for the entire fleet. This outcome highlights the potential of
strategic charging, especially whencompared toother findings in
the literature, such as those by Tanvir et al. [13]. Furthermore,
the 80% SOC constraint proved to yield the lowest charging
cost. However, this cost-saving is attributed to the number of
infeasible solutions. The cumulative charging cost over a year
under the5% SOC constraint totals around $33,000. Incontrast,
the 80% SOC scenario registered a 34% reduction in charging
costs, dropping from $33,174 to $11,341. In summary, the 5%
SOC constraint led to an aggregate charging and delay cost of
approximately $40,000 annually, while the 80% SOC nearly
doubled that figure.

From the findings presented in this article, it is evident
that a significant portion of the tours remains infeasible under
current BET technologies, particularly with more aggressive
SOCconstraints. Addressing theseinfeasible tourscould involve
deploying BETs with extended range, introducing faster charg-
ing mechanisms, and re-routing BETSs to consider their driving
range alongside the necessary charging durations forsubsequent
tour completions.

Future work includes addressing existing gaps and create a
model for a more accurate estimation of trip-and-tour energy
consumption. The introduction of a re-routing model willfurther
ensure tour completion while optimizing charging costs. The
proposed model lays the foundation for intelligent charging
solutions tailored for BETs and aligns with California's aspi-
rations for zero-emission drayage trucks. As the model under-
goes further refinement, it will incorporate more fleet scenarios.
Additionally, analyses will expand to consider factors such as
temperature conditions, battery degradation, and battery cell
imbalance to provide a more holistic understanding.
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