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A B S T R A C T   

Isolated actuated signalized intersection is a pressing challenge for conventional eco-approach methods, due to 
the ever-changing signal timing strategy. This research proposes an optimal control based eco-approach method 
tailored to tackle this challenge. The proposed method bears the following features: i) capable of predicting the 
ever-changing actuated signal timing; ii) with enhanced fuel efficiency via proactively catching a feasible passing 
time window; iii) with real-time computation efficiency for implementation. Simulation results demonstrate that 
the proposed method enhances fuel efficiency by 9.1%, reduces stop count by 14.8%, and enhances safety 
performance by 317.14%, compared to conventional human-driven vehicles. The passing time window predic
tion capability is confirmed with an accuracy of 3.1 s. All the aforementioned benefit is at a cost of a minimal 
travel time increase of 5.5 s. Moreover, the average computation time of the proposed method is 12 ms, 
demonstrating its readiness for field implementation.   

1. Introduction 

Transportation stands as a primary contributor to global warming 
(Masson-Delmotte et al., 2022). It is responsible for over 27% of 
greenhouse gas emissions (Aminzadegan et al., 2022). Among all modes 
of transportation, road transportation accounts for approximately 72% 
of energy consumption and more than 80% of CO2 emissions (Holmberg 
et al., 2012). In road transportation scenarios, approaching intersections 
presents a significant energy-wasting challenge, leading to the con
sumption of 2.8 billion gallons of gasoline in the United States alone 
(Davis and Boundy, 2021). To mitigate this, eco-approach technology 
has been developed for Connected and Automated Vehicles (CAVs), 
focusing on reducing fuel consumption by avoiding inefficient 
stop-and-go patterns (Wang et al., 2022d). 

Conventional eco-approach studies mainly focus on the fixed 
signalized intersection, employing two main planning methods: Rein
forcement Learning (RL) and optimal control. RL methods compute 
driving behaviors by training agents to interact with the environment. 
Initial research in this domain utilized Q-learning (Fei Ye et al., 2019), 
an RL method based on value estimation in discrete action spaces. 

However, the discrete nature of Q-learning limits its applicability in 
scenarios requiring continuous action space. To overcome this limita
tion, recent advancements have shifted towards policy-based RL 
methods designed for continuous action spaces in eco-driving applica
tions (Vindula Jayawardana, 2022). For instance, Guo et al. imple
mented the Deep Deterministic Policy Gradient (DDPG) algorithm, 
integrating both longitudinal acceleration and lateral lane-changing 
decisions (Guo et al., 2021). Similarly, Zhang et al. developed an 
eco-driving approach utilizing the Twin Delayed Deep Deterministic 
(TD3) policy gradient algorithm (Zhang et al., 2022). While these 
policy-based methods are noted for their computational efficiency, their 
training processes often lack transparency and fail to account for vehicle 
dynamics (Li, 2017). This opacity can result in actions that exceed the 
vehicle’s operational capabilities or compromise safety. Consequently, 
potential safety risks and execution failures remains a critical concern in 
the application of RL methods in eco-driving scenarios. 

Optimal control methods focus on solving optimization problems 
aimed at minimizing fuel consumption. These methods typically employ 
a vehicle kinematics model (Wang et al., 2023) or a vehicle dynamics 
model (Jia et al., 2022). The precision of these models mitigates 
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concerns related to tracking errors during execution, making optimal 
control a preferred approach in numerous eco-approach studies. A sig
nificant advancement in the domain of eco-approach controllers is the 
introduction of overtaking capabilities by (Hu et al., 2021). Their model 
distinctively considers the stochastic nature of surrounding traffic, 
marking a noteworthy development in this area. Further building on 
this, Hu et al. refined this model, positioning it as one of the few methods 
integrating lane-level navigation features (Hu et al., 2023). Based on Hu 
et al.‘s optimal control framework, this paper addresses the unique 
challenges inherent to actuated signalized intersections. Additionally, 
Dong et al. proposed an eco-approach controller that considers the 
queue of vehicles ahead, enhancing practical applicability (Dong et al., 
2021). This research was further extended to multi-intersection sce
narios and evaluated in real-world settings (Dong et al., 2022). Yang 
et al. developed a strategy for ecological speed guidance in vehicle 
platoons (Yang et al., 2020), and Lei et al. proposed a dynamic inverse 
hierarchical optimization method specifically tailored for hybrid electric 
vehicles (Lei et al., 2023). Given the extensive research and successful 
field tests, the optimal control method has emerged as a promising 
strategy for eco-approach applications, offering a blend of accuracy, 
practicality, and adaptability to diverse driving scenarios. 

However, conventional eco-approach controllers encounter signifi
cant challenges at an actuated signalized intersection which is widely 
deployed on urban roads. Unlike the fixed signal timing, actuated signal 
controller is a more flexible way, characterized by its dynamic signal 
timings in response to real-time traffic status. In such environments, 
traditional controllers an unaware of the remaining time (time to signal 
switching) of an actuated signal. Hence, ecological approaching trajec
tories are no more obtained. For example, as illustrated in Fig. 1-(I), a 
CAV approaching a red signal might decelerate in anticipation of a 
prolonged stop, only to find the signal turning green prematurely. 
Conversely, as depicted in Fig. 1-(II), a CAV might slow down during a 
green phase based on outdated information, potentially missing the 
opportunity to cross the intersection. 

In addressing the challenge of eco-approach at an isolated actuated 
signalized intersection, early studies aimed to adapt the problem to the 
conventional eco-approach scenarios at fixed signalized intersections by 
estimating a probable signal timing for ecological trajectory planning. 
For instance, Hao et al. approached this by calculating the remaining 
duration of the current signal phase as the average of the minimum and 
maximum values obtained from the signal controller (Hao et al., 2019). 
Similarly, Shafik et al. estimated the signal switching time (from red to 

green) by randomly sampling from a Gaussian distribution modeled 
from historical signal timing data (Shafik et al., 2023). Broek et al. 
determined the optimal passing time for the ego-vehicle through the 
intersection based on the moment with the highest probability of 
encountering a green light, as inferred from historical data (Borek et al., 
2022). Despite these innovative approaches, a common limitation 
emerges: the inability to consistently plan optimal eco-approach ma
neuvers. This stems from the reliance on predetermined signal timings, 
which may not always align with real-time conditions, leading to po
tential misjudgments. Recognizing this issue, Sun et al. developed an 
eco-approach controller based on robust optimization (Sun et al., 2020), 
incorporating a chance constraint on the vehicle’s arrival time relative 
to the uncertain signal timings represented by a Gaussian distribution. 
Yet, this method, too, depends on historical data and does not fully ac
count for real-time traffic dynamics. These observations highlight an 
ongoing need for an effective eco-approach controller specifically 
tailored for isolated actuated signalized intersections, one that can 
dynamically adapt to signal timing variations in accordance to real-time 
traffic conditions. 

In this paper, a novel eco-approach method is specifically designed 
for an isolated actuated signalized intersection to ensure ecological 
driving. This method stands out with several key contributions:  

• Predictive Capability for Actuated Signal Timing: Utilizing the 
Markov Process (MP), this research is adept at predicting the future 
state of an actuated signal controller. Traffic conditions are innova
tively integrated as a state transition variable in Multivariate Markov 
Chains (MMCs), bolstering the accuracy of signal timing predictions. 
This predictive capability is crucial in adapting to the dynamic na
ture of actuated signalized intersections.  

• Enhanced Fuel Efficiency at Actuated Intersections: Based on the 
forecasted actuated signal timing, the proposed method is capable of 
predicting feasible passing time windows. The passing time window 
prediction facilitates the proactive behaving of ego-vehicle in 
anticipation of future signal changes. Hence, the proposed method 
reduces unnecessary stops and speed oscillations, thereby enhancing 
fuel efficiency.  

• Real-time Computational Efficiency: In addressing the challenges 
of computational complexity, the chance constraint of passing time 
window within the optimal control problem has been linearized. This 
significantly streamlines the computational process. Furthermore, 
we have implemented a dynamic programming-based algorithm, 

Fig. 1. Eco-approach at actuated signalized intersection: dynamic signal timing.  

Fig. 2. The scenario of interest: an isolated actuated signalized intersection.  
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facilitating the real-time resolution of a quadratic Model Predictive 
Control (MPC) problem. This design enhances the practicality of the 
controller in real-time scenarios. 

2. Methodology 

2.1. Scenario of interest 

A typical application scenario of the proposed eco-approach 
controller is shown in Fig. 2, where an isolated actuated signal 
controller prioritizes the main road, and a single CAV on the main road, 
equipped with the proposed controller, aims to pass through the inter
section ecologically. The CAV communicates with roadside facilities to 
receive passing time window navigations and then plans eco-approach 
trajectories. The proposed controller is without the consideration of 
the CAV penetration rate. 

2.2. System structure 

The system structure of the proposed eco-approach method is illus
trated in Fig. 3. The eco-approach system is implemented both onboard 
and on the roadside. The control logic is described as follows.  

• Roadside module: Within the roadside module, crucial data is 
collected to facilitate eco-approach maneuvers. This module gathers 
real-time Signal Phase and Timing (SPaT) information (including 
current signal time, current signal phase, phase setting, and circle 
length) directly from the traffic signal controller, alongside real-time 
traffic state data obtained from roadside sensing facilities, which 
may include advanced technologies such as video and radar sensors. 
Both real-time SPaT data and traffic state data are stored as historical 
data. Leveraging historical and real-time datasets, a dedicated 
passing time window prediction method is developed. The passing 
time window is an accumulation of the feasible passing timing. It 
serves as a dynamic chance constraint when planning the trajectory 
of the eco-approach, ensuring adaptability to actuated signal timing.  

• Onboard module: Within the onboard module, a trajectory planner 
is proposed to address the eco-approach problem. This module cap
italizes on the passing time window prediction output, treating it as a 
vital chance constraint. Taking real-time vehicle states into account, 
the system generates ecological trajectories tailored for the ego-CAV 
to execute. This approach ensures that the vehicle responds 
dynamically to actuated signal timing while adhering to eco-friendly 
principles. 

2.3. Problem formulation 

The proposed eco-approach controller is designed as a Chance Con
strained Model Predictive Control (CCMPC) problem. This framework 
effectively manages the inherent uncertainty associated with actuated 
signal timing by incorporating a meticulously crafted chance constraint. 
This chance constraint is derived from the prediction of passing time 
window which uses the Markov Process (MP) as a basis. The detailed 
formulation and workings of this controller are thoroughly expounded 
upon in the subsequent sections of this paper. 

2.3.1. System definition 
The mathematical definition of the proposed eco-approach system is 

provided as follows. 
Roadside state ξR includes the state of traffic and signal. It is 

perceived via roadside facilities, as shown in Fig. 4. 

ξR(t)≝[xs(t), xc1 (t), xc2 (t), ⋯, xci (t), ⋯, xcN (t)]
T (1)  

where t is the signal time, t ∈ {0, 1, 2,…,T − 1}; T is the length of a signal 
cycle; xs(t) is the state of signal defined as equation (2). It is provided by 
SPaT from the signal controller. The state of traffic xci (t) is detected by 
roadside facility. Its detection region is partitioned into cells, as illus
trated in Fig. 4. The traffic state is defined based on the occupancy of 
these smaller cells as equation (3). 

xs(t)≝
{

0 signal is not green
1 signal is green (2) 

Fig. 3. Structure of the proposed eco-approach controller at an isolated actuated signalized intersection.  

Fig. 4. System states declaration.  
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xci (t)≝
{

0 there is no vehicle in cell i
1 there is vehicle in cell i (3)  

where i is the index of the cell, i ∈ {0, 1, 2,…,N}. N is the number of cells. 
Onboard vehicle state ξV

k and control variable uk are defined as fol
lows. 

ξV
k ≝

[
sk
vk

]

(4)  

uk≝ak (5)  

where sk is the longitudinal position of ego-CAV; vk the speed of ego- 
CAV; ak is the acceleration of ego-CAV; k is the control time step 
index, k ∈ {1, 2, …, K}; K is the number of control steps. 

2.3.2. Passing time window prediction 
To enable an eco-approach at an isolated actuated signalized inter

section, the ego-CAV must make optimal decisions regarding the passing 
timing at the stop line. However, the feasible passing timing through the 
intersection is inherently uncertain due to the ever-changing actuated 
signal timing. Therefore, this paper introduces a methodology to iden
tify feasible passing timing and formulate it into a potential passing time 
window. The prediction process of the passing time window is sum
marized in Fig. 5 and elaborated upon as follows: 

Step 1 (Signal color prediction): In this initial step, predictions are 
made regarding the likelihood that the signal light will be green, 
based on a combination of historical and real-time data of both signal 
state and traffic state. These predictions are derived using a Markov 
Process (MP) model, resulting in the creation of a Possibility Distri
bution Function (PDF) representing the probability of a green light. 
Step 2 (Signal switching prediction): The signal switching time is 
the signal time when signal color changes. The signal switching 
probability is a differential of the PDF of the green light. The signal 

switching prediction finally outputs a Cumulative Distribution 
Function (CDF) of signal switching probability. 
Step 3 (Passing time window modeling): The concept of a passing 
time window is defined as an accumulation of feasible passing 
timing. The reliability of a passing time window is quantified as the 
probability that the actual passing time window has a wider range 
than the identified time window. It is realized via the CDF of signal 
switching probability. 

2.3.2.1. Signal color prediction. The color of an actuated traffic signal 
controller is predicted via the Markov Process (MP) (Gagniuc, 2017). In 
this paper, the approach goes further by formulating Multivariate 
Markov Chains (MMCs). These MMCs are designed to take into account 
not only the signal state but also the traffic state in the prediction pro
cess. This enhanced modeling approach enables a more comprehensive 
and accurate prediction of signal color, considering both the dynamic 
changes in signal state and concurrent variations in traffic conditions. 

To cover both traffic and signal status, all relevant variables in ξR(t)
are adopted for the prediction process. For each variable, its transition is 
modeled using a Markov Chain (MC), as illustrated in Fig. 6. Each MC 
comprises an accumulation of transition matrices. The transition prob
ability in the matrices is calculated as follows: 

πx∗(t)
x∗(t+Δt) =

Hx∗(t)
x∗(t+Δt)

Hx∗(t) , ∗ ∈ {s, ci} (6)  

where x∗(t) is a roadside state variable in ξR(t); Δt is a transition horizon; 
Hx∗(t) is the number of occurrences of x∗(t) in the historical data set; 
Hx∗(t)

x∗(t+Δt) is the number of transitions from x∗(t) to x∗(t +Δt) in the his
torical data set. 

By integrating all individual MCs, MMCs are formulated into the 
Cartesian product of MCs (Shin and Sunwoo, 2018), as illustrated in 
Fig. 6. The resulting MMCs are then organized into a series of multi
variate transition matrices. It consists of T2 transition matrices, each 

Fig. 5. The prediction process of passing time window.  

Fig. 6. MMCs for signal color prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)  
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with a size of 2N+1 × 2N+1. 
Leveraging the MMCs, it becomes possible to predict the probability 

of transiting from one state to another in the future. Specifically, at time 
t, the prediction result of the MMCs is the probability of observing a 
green light after time duration Δt, denoted as pG

t+Δt. A discussion on this 
probability is presented as follows. 

pG
t+Δt is transformed into the discretized horizon to adapt to the 

context of trajectory planning. To clarify, let the current signal time be t 
and the control step size be Δτ, and the control step at k correspond to 
time t + kΔτ. Consequently, the probability of encountering a green light 
at control step k is calculated using equation (7). 

pG
k = pG

t+kΔτ (7) 

By defining the event AG
k as observing a green light at step k, pG

k =

Pr(AG
k ). Considering the signal phasing strategy, as presented in equa

tion (8), AG
k occurring means the occurring of AG

1 ⋯AG
k−2, AG

k−1, when 
current signal is green. Moreover, AG

k occurring also indicates the 
occurring of AG

k+1,AG
k+2⋯AG

K̃
, when current signal is red. 

Pr
(
AG

k

)
=

{
Pr

(
AG

1 ∪ AG
2 ∪ ⋯ ∪ AG

k

)
xs(t) = 1

Pr
(
AG

k ∪ AG
k+1 ∪ ⋯ ∪ AG

K̃

)
xs(t) = 0

(8)  

where K̃ is the signal time of the prediction horizon, K̃ ≤ K. It is generally 
set to the step when signal color is determined, such as the middle of a 
signal phase, to ensure the prediction only covers one time of signal 
color switching. 

2.3.2.2. Signal switching prediction. MMCs have provided forecasts of 
the likelihood of a green traffic signal pG

k . The signal switching proba
bility at a specific step, denoted as pS

ksw
, can be determined according to 

equation (9). 

pS
ksw

=

⎧
⎪⎨

⎪⎩

Pr
(

AG
ksw−1 ∩ AG

ksw

)
xs(t) = 1

Pr
(

AG
ksw−1 ∩ AG

ksw

)
xs(t) = 0

(9)  

where ksw is the signal-switching step; AG
ksw 

is the opposite event that the 
signal is not green at step ksw. 

By applying equation (8) to equation (9), equation (10) is obtained. 

pS
ksw

=

{
pG

ksw−1 − pG
ksw

xs(t) = 1
pG

ksw+1 − pG
ksw

xs(t) = 0
(10) 

Moving forward, the probability of signal switching event occurring 
within the Ksw steps is denoted as PS

Ksw
. It is the Cumulative Distribution 

Function (CDF) of pS
ksw 

over a sequence of Ksw as equation (11). 

PS
Ksw

= Fksw (Ksw) = Pr(ksw ≤ Ksw) =
∑ksw=Ksw

ksw=1
pS

ksw
(11)  

2.3.2.3. Passing time window modeling. At the present signal time t, the 
identified passing time window Kpass is defined as a collection of plan
ning steps ahead of or after the signal-switching step, as shown in 
equation (12). Here, Kpass is also discussed according to different signal 
colors at the current time. 

Kpass =

⎧
⎨

⎩

KG
pass = {k|1 ≤ k ≤k̃sw} xs(t) = 1

KR
pass = {k|̃ksw ≤ k ≤ K} xs(t) = 0

(12)  

where ̃ksw is the predicted signal-switching step. KG
pass is the passing time 

window in a green phase; KR
pass is the passing time window in a red 

phase. 
The reliability of the identified passing time window is quantified by 

the probability that the actual passing time window has a wider range 
than the identified passing time window, denoted as Pr(Kpass) in equa
tion (13). It is contingent on the CDF Fksw (Ksw) in equation (11). The 
reliability of the identified passing time window indicates the passing 
success rate for ego-CAV when it arrives at the intersection within the 
identified passing time window. 

Pr
(
Kpass

)
=

⎧
⎪⎨

⎪⎩

Pr
(

KG
pass

)
= Pr(ksw ≥ k̃sw) = 1 − Fksw (k̃sw) xs(t) = 1

Pr
(

KR
pass

)
= Pr(ksw ≤ k̃sw) = Fksw (k̃sw) xs(t) = 0

(13)  

2.3.3. Trajectory planning 
To compute an eco-approach maneuver for the ego-CAV, trajectory 

planning is cast as a Chance Constrained Model Predictive Control 
(CCMPC) problem (Wang et al., 2022a). This approach leverages the 
distribution of passing time window as a chance constraint to regulate 
the ego-CAV’s arrival time at the intersection, thereby allowing users to 
personalize the trade-off between mobility and reliability. 

2.3.3.1. Cost function. The CCMPC cost function takes a quadratic form, 
as expressed in equation (14). It seeks to minimize a composite cost that 
comprises three components: state error cost, fuel cost, and terminal 
state error cost. Since actual fuel consumption model is non-convex and 
could substantially increase computational complexity, the square of 
acceleration is employed as a proxy for fuel cost. The cost function is 
designed to strike a balance between fuel efficiency and vehicular 
mobility. 

min
u

⎛

⎜
⎜
⎝

∑K−1

k=0

⎛

⎜
⎜
⎝

1
2

(
ξV

k − ξV
des,k

)T
Q

(
ξV

k − ξV
des,k

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
State error cost

+
1
2
uT

k Ruk
⏟̅̅̅ ⏞⏞̅̅̅ ⏟
Fuel cost

⎞

⎟
⎟
⎠

+
1
2

(
ξV

K − ξV
des,K

)T
Q

(
ξV

K − ξV
des,K

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Terminal state error cost

⎞

⎟
⎟
⎠

(14)  

where Q≝diag(0, qv); qv is the weighting factor of longitudinal speed 
error cost; R is the weighting factor of acceleration cost. They are used to 

adjust the importance of each cost component. ξV
des,k≝

[
sdes
vdes

]

is the 

desired vehicle state at step k; Notably, the desired position sdes is 
excluded due to its zero-cost weighting. vdes is the desired driving speed. 

2.3.3.2. Vehicle dynamics. The motion of the ego-CAV follows a vehicle 
dynamics model formulated based on kinematics (Wang et al., 2022c), 
as presented in equation (15). This model utilizes matrices A and B to 
describe the vehicle’s state evolution over time. 

ξV
k+1 = AξV

k + Buk (15)  

A =

[
1 Δτ
0 1

]

(16)  

B =

⎡

⎣
Δτ2

2
Δτ

⎤

⎦ (17)  

where Δτ is the length of a control time step. 

2.3.3.3. Constraints 
2.3.3.3.1. Passing time window constraint. The ego-CAV is required 

to cross the stop-line within a user preferred passing time window: 
⎧
⎨

⎩

sk > sstop xs(t) = 1, k ∈ KG
pass

sk < sstop xs(t) = 0, k ∈ KR
pass

(18) 
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However, due to the uncertainty of the passing time window as 
determined in equation (13), this constraint is reformulated into a 
chance constraint, as articulated in equation (19). 
⎧
⎨

⎩

Pr
(
sk > sstop

)
≥ γ xs(t) = 1, k ∈ KG

pass

Pr
(
sk < sstop

)
≥ γ xs(t) = 0, k ∈ KR

pass

(19)  

where γ is a risk parameter, γ ∈ (0, 1). It allows users to specify their 
desired level of risk. In this research, γ is set to 0.5. 

Constraint (19) indicates that the user preferred passing window 
Kpass should be determined to satisfy the risk parameter γ as follows. 
⎧
⎪⎨

⎪⎩

Pr
(

KG
pass

)
≥ γ xs(t) = 1

Pr
(

KR
pass

)
≥ γ xs(t) = 0

(20) 

By applying equation (13) into equation (20), the signal switching 
time could be clarified as follows. 
⎧
⎨

⎩

k̃sw = F−1
ksw

(1 − γ) xs(t) = 1

k̃sw = F−1
ksw

(γ) xs(t) = 0
(21) 

Hence, the chance constraint (19) could be linearized by applying 
equation (21) as follows. 
⎧
⎨

⎩

sk > sstop xs (̃t) = 1, k ∈
{

K − F−1
ksw

(1 − γ), K − F−1
ksw

(1 − γ) + 1, …, K
}

sk < sstop xs (̃t) = 0, k ∈
{

1, …, F−1
ksw

(γ)
}

(22)  
2.3.3.3.2. Collision avoidance constraints. Collision avoidance be

tween the ego-CAV and its preceding vehicle is achieved by regulating 
the car-following gap: 

sk ≤ sfront
k − ssafe (23)  

where ssafe is the minimum safe car-following gap, which is set to 5 m in 
this research. sfront

k is the longitudinal position of the preceding vehicle at 
step k. The prediction of the preceding vehicle’s actions is computed 
based on a logical assessment of potential future behaviors under 
varying traffic signal conditions. This prediction process is formulated as 
follows: 

afront
k =

⎧
⎪⎪⎨

⎪⎪⎩

aacc xs (̃t + kΔτ) = 1 and vfront
k < vtra

adec xs (̃t + kΔτ) = 0
0 else

(24)  

where afront
k is the acceleration of the preceding vehicle at step k; aacc is 

the acceleration of a speed-up action; adec is the acceleration of a slow- 
down action; vfront

k is the speed of the preceding vehicle; vtra is the 
average speed of traffic. The decision to speed up is predicted when the 
traffic signal is green and the preceding vehicle’s speed is less than the 
average traffic speed. Conversely, slowing down is anticipated when the 
traffic signal is red. In all other scenarios, the preceding vehicle is ex
pected to maintain a constant speed. The values of aacc and adec can be 
empirically determined from field trajectory data. 

2.3.3.3.3. Execution capability constraints. The vehicle’s speed and 
acceleration must adhere to certain limits as follows. 

0 ≤ vk ≤ vmax (25)  

amin ≤ ak ≤ amax (26)  

where vmax is the speed limit, amin and amax are the minimum and 
maximum accelerations, respectively. 

2.3.3.3.4. Solution algorithm. The linearized CCMPC problem is 
tackled using a dynamic programming-based algorithm developed by 

the authors (Wang et al., 2022b). This algorithm efficiently computes 
the optimal solution through backward calculations involving concom
itant matrices and forward calculations involving control and state 
vectors. By predefining the optimal terminal state, this approach en
hances computational efficiency. The algorithm’s detailed procedure is 
outlined below. 

3. Evaluations 

The proposed eco-approach controller is evaluated via simulations 
on the VISSIM platform. The evaluation is conducted from the following 
perspectives: i) function validation; ii) passing time window prediction; 
iii) fuel-efficiency; iv) driving mobility; v) driving safety; vi) computa
tional efficiency; vii) parameter tuning. 

3.1. Test scenario 

The test scenario is illustrated in Fig. 7. In this scenario, the ego-CAV 
would like to ecologically pass through an isolated actuated signalized 
intersection. Notably, the ego-CAV is traversing along the main branch, 
and it is given with the priority by the signal controller’s configuration. 
The actuated signal timing logic for this scenario is outlined in Fig. 7. 
Essential parameters for the actuated signal timing are provided in 
Table 1. 

Fig. 7. Test scenario.  

Table 1 
Parameters setting.  

Name Definition Value 

T Cycle length of the actuated traffic signal controller 160 s 
Gmin

φj 
Minimum duration of the φj signal phase Gmin

φ1
= 15 s 

Gmin
φ2

= 20 s 
Gmin

φ3
= 20 s 

Gmin
φ4

= 15 s 
Gmax

φj 
Maximum duration of the φj signal phase Gmax

φ2
= 50 s 

Gmax
φ3

= 40 s 
TA Duration of yellow 3 s 
Tr Duration of red clearance 2 s 
qJ The volume of the vehicle from J entry of the intersection qJ ≤ capJ 

capJ The road capacity of the J entry of the intersection. 1200 pcu/h 
Deco Distance of the range for eco-approach 500 m  

Table 2 
Case definition.   

v/c = 0.1 v/c = 0.3 v/c = 0.5 v/c = 0.7 v/c = 0.9 

vmax = 60km/h Case 1 Case 2 Case 3 Case 4 Case 5 

Two types of eco-approach controllers are evaluated. 
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3.2. Experiment design 

To evaluate the proposed eco-approach controller, five cases are 
designed as illustrated in Table 2. They cover different congestion levels, 
quantified by volume-to-capacity ratio: v/c. The traffic speed limit is set 
to 60km/h. In each case, the ego-CAV enters the eco-approach region at 
different signal time to encounter most signal timings at the intersection. 
In each setting, forty times simulations are conducted with different 
random seeds to provide stochastic traffic states. 

The proposed controller: The proposed controller is capable of eco- 
approaching towards an isolated actuated signal timing. 

The baseline: The baseline is a Human-driven Vehicle (HV). It fol
lows the Wiedemann car following model imbedded in the VISSIM 
platform (Fan et al., 2013). It computes motion commands by equation 
(27). 

aego =
1
2

×
Δv2

Δsmin −
(
Δs − Lfront

) + afront (27)  

where Δv is the speed difference between the ego-vehicle and the pre
ceding vehicle; Δs is the distance between the two vehicles; Δsmin is the 
minimum following distance; Lfront is the length of the preceding vehicle; 
afront is the acceleration of the preceding vehicle; aego is the acceleration 
of the ego-vehicle. 

3.3. Measures of effectiveness 

There are five types of Measures of effectiveness (MOEs). 
Function validation: The function of eco-approach via catching the 

potential passing time window is quantified by vehicle sample trajec
tories. Two scenarios are specifically illustrated to highlight the 
strengthen of the proposed method. Scenario (I): ego-vehicle arrives at 
the end of a green signal. Scenario (II): ego-vehicle arrives at the end of a 
red signal. 

Passing time window prediction capability: The capability of 
predicting passing time window is evaluated by real-time prediction of 
signal switching time. In this research, signal switching time is predicted 
as the time when the cumulative probability of signal switching is 
greater than 0.5, indicating the risk parameter γ is set to 0.5 in equation 
(21). Moreover, the capability of predicting passing time window is 
quantified by the prediction error eKpass that is defined as equation (28). 

eKpass = |̃ksw − ksw|Δτ (28)  

where k̃sw is the predicted signal-switching step; ksw is the real signal- 
switching step. The signal switching time is the boundary of passing 
time window, according to the definition of passing time window in 
equation (12). 

Fuel efficiency: This MOE is quantified by two indexes: fuel con
sumption and stop count. The fuel consumption is calculated by VT- 
micro model (Rakha et al., 2004), and the parameters of this model 
were previously calibrated by the authors. The correlation among speed, 
acceleration, and fuel consumption is depicted in Fig. 8. 

Driving mobility: This MOE is quantified by the travel time. Travel 
time is defined as the duration from the initiation of the eco-approach 
maneuver to the moment the vehicle crosses the stop line. 

Driving safety: This MOE is quantified by the minimum Time-to- 
Collision (TTC). 

Computational efficiency: This MOE is quantified by the compu
tation time. 

3.4. Results 

The results confirm the effectiveness of the proposed controller in 
several aspects: i) It effectively performs an eco-approach to an actuated 
signalized intersection. ii) The controller demonstrates the ability to 
predicting passing time window with an accuracy of within 3.1 s iii) It 
improves fuel efficiency by 9.1%. iv) The controller reduces the number 
of stops by 14.8%. v) It results in only 5.5 s of additional travel time. vi) 
The proposed controller enhances safety performance by 78.43%. vii) 
The computational efficiency is maintained at 12 ms. 

Fig. 8. Vehicle fuel consumption rate.  

Fig. 9. Vehicle trajectories towards an isolated actuated signalized intersection.  
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3.4.1. Function validation 
Vehicle sample trajectories are captured and depicted in Fig. 9, 

effectively showcasing the comparison between the proposed controller 
and the baseline. In Scenario (I), illustrated by Fig. 9-(I), the proposed 
controller demonstrates an eco-friendly approach by slowing down 
when it identifies no opportunity for passing. In stark contrast, the 
baseline controller abruptly applies brakes and comes to a stop before 
the stop-line. In Scenario (II), illustrated by Fig. 9-(II), the proposed 
controller exhibits its capability to intelligently utilize the start of the 
green light, while the baseline method stops at the stop-line, waiting for 
a green signal. The proactive behaving thereby enhances the fuel effi
ciency of the proposed method, reducing fuel consumption by 18.2% in 
Scenario (I) and 16.7% in Scenario (II). 

3.4.2. Passing time window prediction capability 
Signal switching time is the boundary of passing time window. Re

sults of signal switching time prediction in the Scenario (I) and Scenario 
(II) are presented in Fig. 10. Results show that in the two scenarios, the 
average prediction error is 1.1 s. The prediction of signal switching time 

Fig. 10. Real-time prediction of passing time window: cumulative probability of signal switching time.  

Fig. 11. Distribution of prediction error for passing time window.  

Fig. 12. Sensitivity analysis for ego-vehicle’s fuel efficiency.  
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agrees well with actual experiment results. The prediction capability of 
passing time windows is quantified in Fig. 11. The analysis reveals that 
the average prediction error amounts to 3.1 s, with a median error of 2 s. 
Additionally, the proposed method ensures that 76.5% of predictions 
exhibit errors of less than 5 s and 92.7% of predictions are within 10 s of 
accuracy. This confirms that the proposed controller is capable of 
ensuring an accurate prediction of passing time window. 

3.4.3. Fuel efficiency 
The fuel efficiency of the proposed controller is assessed by analyzing 

ego-vehicle’s fuel consumption and the number of stops. Statistical 
analysis reveals that the proposed controller reduces fuel consumption 
by 9.1% and stop count by 14.8%, compared to conventional HVs. To 
further investigate the fuel efficiency across different congestion levels, 
a sensitivity analysis is conducted. 

Fig. 12-(I) presents the results of the sensitivity analysis on ego-ve
hicle’s fuel consumption, demonstrating consistent fuel consumption 
reductions across various v/c ratios. The observed trend in fuel con
sumption concerning v/c ratios makes sense, as both HVs and the pro
posed controller generally experience increased fuel consumption with 
higher congestion levels. Notably, there is a slight enhancement in fuel 
consumption around v/c = 0.7 for the proposed controller. This result 
aligns with the concept that the ego-vehicle has a higher likelihood of 
catching green lights in denser traffic, thanks to longer green phases 
allocated. However, in extremely congested traffic conditions (v/c =

0.9), the ego-CAV cannot catch the green light anymore, due to a high 
number of obstructing vehicles. Similar trend could be found in the 
analysis of stop count, as illustrated in Fig. 12-(II). The proposed 
controller exhibits fewer stops compared to the baseline HV across all 
congestion levels. The reduction of stop count is particularly notable in 
uncongested traffic conditions. However, in highly congested traffic (v/ 
c = 0.9), the proposed controller cannot significantly reduce stop counts 
anymore. 

3.4.4. Driving mobility 
The impact of the proposed controller on driving mobility is assessed 

primarily through travel time. Statistical analysis shows that the pro
posed controller slightly enhances travel time by 6.6%, about 5.5 s. To 
gain a comprehensive understanding of its effects across varying 
congestion levels, a sensitivity analysis is conducted, as depicted in 
Fig. 13. This analysis reinforces the observation that the proposed 
controller may lead to a minor reduction in driving mobility. Moreover, 
an analysis of the trend reveals that travel time for both the baseline and 
the proposed controller slightly decreases with increasing v/c ratio. 
However, it’s noteworthy that when v/c = 0.7, the proposed controller 
exhibits nearly equivalent mobility performance to the baseline. 
Conversely, its mobility decreases when v/c = 0.9. These findings align 
with the results observed in the sensitivity analysis for fuel consumption. 
This observation suggests that the proposed controller is optimally 
effective when implemented in scenarios where the v/c is 0.7. 

3.4.5. Driving safety 
The driving safety of the ego-vehicle is assessed using the minimum 

TTC, as illustrated in Fig. 14. This figure demonstrates that the proposed 
controller significantly improves the average minimum TTC by 
317.14%, elevating it from 3.5 s in the baseline to 14.6 s with the 
implementation of the proposed controller. Furthermore, the minimum 
value of the minimum TTC under the proposed controller is recorded at 
2.3 s, which is also greater than the baseline value of 2.1 s. The evalu
ation demonstrates that the proposed controller maneuvers a vehicle 
more conservatively to ensure driving safety. 

3.4.6. Computational efficiency 
Computational efficiency is quantified by the average computation 

time, as illustrated in Fig. 15. It demonstrates that the average compu
tation time is 12 ms across all settings. The proposed controller can 
ensure a computation time within 20 ms in nearly all cases. It indicates 
that the proposed controller is ready for real-time applications. 

3.4.7. Parameter tuning 
The risk parameter γ in equation (21) represents the cumulative 

probability of signal switching. This parameter’s tuning significantly 
influences the prediction accuracy of the passing time window, which in 
turn affects the overall efficiency of the eco-approach controller. To 
elucidate this relationship, a sensitivity analysis was conducted with 
varying risk parameter settings. 

As shown in Fig. 16-(I), the average prediction error of the passing 
time window demonstrates a nonmonotone relationship with the risk 
parameter: initially decreasing and subsequently increasing as the 
parameter value rises. The most accurate prediction occurs when the 
risk parameter is set at 0.5. This observation is logical as a cumulative 
probability of signal switching set at 0.5 represents the mean and most 
probable time for signal transition. 

Fig. 16-(II) illustrates the relationship between the risk parameter 
and variations in the fuel consumption and travel time of the ego- 
vehicle. This figure reveals that fuel consumption initially decreases 

Fig. 13. Sensitivity analysis for driving mobility.  

Fig. 14. Sensitivity analysis for driving safety.  

Fig. 15. The computation time regarding varying parameter settings.  
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with a risk parameter below 0.3, then increases for parameters between 
0.3 and 0.7, followed by a slight decrease when the parameter exceeds 
0.7. Conversely, travel time consistently decreases as the risk parameter 
increases, although the reduction in travel time is less pronounced when 
the parameter is between 0.3 and 0.7. 

These patterns can be interpreted as follows: A higher risk parameter 
generally signifies a more aggressive driving style during green lights 
and a more conservative approach during red lights. Aggressive driving 
in green phases aids in catching the end of the green light, potentially 
reducing waiting times at intersections. This behavior contributes 
significantly to decreased travel times (as indicated by the blue line in 
Fig. 16-(II)) and reduced fuel consumption (as shown by the red line in 
Fig. 16-(II) for risk parameters below 0.3 and above 0.7). On the other 
hand, conservative driving during red phases can lead to unnecessary 
slowing down, resulting in increased fuel consumption (as observed in 
the red line in Fig. 16-(II) for risk parameters between 0.3 and 0.5). 

Consequently, the risk parameter in this research is set at 0.5, 
prioritizing fuel efficiency over mobility while achieving optimal pre
diction accuracy. This setting also lays a foundation for practical 
application, allowing users to tailor the risk parameter based on their 
preferences and driving conditions, as depicted in Fig. 16 For instance, 
setting the risk parameter to 0.3 optimizes fuel efficiency, while a setting 
of 0.9 maximizes mobility. Such customization offers flexibility in 
adapting the eco-approach strategy to individual needs and traffic 
scenarios. 

4. Conclusion and future research 

This research proposes an optimal control based eco-approach 
method. It enables an eco-approach towards an actuated signalized 
intersection. The proposed method bears the following features: i) 
capable of predicting the ever-changing actuated signal timing; ii) with 
enhanced fuel efficiency via proactively catching feasible passing time 
window; iii) with real-time computation efficiency for implementation. 
An evaluation has been conducted. Results demonstrate that:  

• The average prediction error of passing time window is 3.1 s. 
Moreover, the proposed method has a chance of 76.5% to predict a 
passing time window within an error of 5 s.  

• The proposed method enhances fuel efficiency by 9.1%, reduces stop 
count by 14.8%, and enhances driving safety by 317.14%, compared 
to the conventional human-driven vehicle.  

• The proposed method fully leverages its strength when v/c is 0.7.  
• A risk parameter setting of 0.3 yields optimal fuel efficiency, 0.9 

provides the best mobility, and 0.5 achieves the highest prediction 
accuracy.  

• The proposed method boasts a rapid computation of 12 ms, 
demonstrating its readiness for field implementation. 

This research enables a vehicle to eco-approach an isolated signal
ized intersection with the capability of predicting actuated signal 
timing. Future studies could consider enhancing the proposed work in 
terms of its compatibility with multiple consecutive intersections. 
Moreover, the improvement of vehicle trajectory prediction represents a 
promising avenue for the performance enhancement of the proposed 
work. 
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Appendix. List of Symbols  

Indices Definition 

ak The acceleration of ego-CAV (m/s2) 
amin The minimum accelerations of eco-CAV (m/s2) 
amax The maximum accelerations of eco-CAV (m/s2) 
A The coefficient matrix of the state vector in system dynamics 
AG

k Defining the event AG
k as observing a green light at step k 

AG
ksw 

The opposite event that the signal is not green at step ksw 

B The coefficient matrix of the control vector in system dynamics 
capJ The road capacity of the J entry of the intersection. 
Deco Distance for eco-approach (m) 
D̃k A concomitant matrix in the solution algorithm 
eKpass The prediction error of passing time window 
Gmin

φj 
Minimum green time of the φj signal phase (s) 

Gmax
φj 

Maximum green time of the φj signal phase (s) 
Gk A concomitant matrix in the solution algorithm 
Hx∗ (t) The number of occurrences of x∗(t) in the historical data set, ∗ ∈ {s, ci}

Hx∗ (t)
x∗ (t+λ)

The number of transitions from x∗(t) to x∗(t +λ) in the historical data set, ∗ ∈ {s, ci}

Hk A concomitant matrix in the solution algorithm 
i The index of the cell, i ∈ {0, 1, 2, …,N}

iter Iteration index in the solution algorithm 
j The index of signal phase, j ∈ {1, 2, 3, 4}

J The index of intersection approach, J ∈ {east, south,west, north}

k The control step index 
K The number of total control steps 
K̃ The signal time of the prediction horizon 
ksw The signal-switching step 
k̃sw The predicted signal-switching step 
Kpass A collection of planning steps ahead of or after the signal-switching step 
N The number of cells 
pG

t+Δt The probability of observing a green light after time duration Δt 
pS

ksw 
The signal-switching probability at a specific step 

PS
Ksw 

The probability of signal switching event occurring within the Ksw steps 
Pk A concomitant matrix in the solution algorithm 
qv The weighting factor of longitudinal speed error cost 
qJ The volume of the vehicle from J entry of the intersection. 
Q The weighting factor of state error cost 
Q̃k A concomitant matrix in the solution algorithm 
ra The weighting factor of acceleration cost 
R The weighting factor of control cost 
sfront
k 

The longitudinal position of the preceding vehicle at step k (m) 

ssafe The minimum safe following gap (m) 
sstop The longitudinal position of the stop-line (m) 
sk The longitudinal position of ego-CAV (m) 
Sk A concomitant matrix in the solution algorithm 
t The signal time, t ∈ {0, 1, 2, …,T − 1}

Δt The transition horizon 
T The length of a signal cycle (s) 
TA Duration of yellow (s) 
Tr Duration of red clearance (s) 
Tk A concomitant matrix in the solution algorithm 
uk The system control vector 
vk The speed of ego-CAV (m/s) 
vmax The speed limit (m/s) 
xci (t) The state of the ith cell at signal time t 
xs(t) The state of the signal phase at signal time t 
ξR Roadside state 
ξV

k Onboard vehicle state 

ξV
des,k The desired vehicle state at step k 

πξR(t)
ξR(t+Δt)

The transition probability of roadside state from ξR(t) to ξR(t + Δt)

Δτ The length of the control step (s) 
φj The j signal phase 
γ Risk parameter, γ ∈ (0, 1)
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