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Isolated actuated signalized intersection is a pressing challenge for conventional eco-approach methods, due to
the ever-changing signal timing strategy. This research proposes an optimal control based eco-approach method
tailored to tackle this challenge. The proposed method bears the following features: i) capable of predicting the
ever-changing actuated signal timing; ii) with enhanced fuel efficiency via proactively catching a feasible passing
time window; iii) with real-time computation efficiency for implementation. Simulation results demonstrate that
the proposed method enhances fuel efficiency by 9.1%, reduces stop count by 14.8%, and enhances safety
performance by 317.14%, compared to conventional human-driven vehicles. The passing time window predic-

tion capability is confirmed with an accuracy of 3.1 s. All the aforementioned benefit is at a cost of a minimal
travel time increase of 5.5 s. Moreover, the average computation time of the proposed method is 12 ms,
demonstrating its readiness for field implementation.

1. Introduction

Transportation stands as a primary contributor to global warming
(Masson-Delmotte et al., 2022). It is responsible for over 27% of
greenhouse gas emissions (Aminzadegan et al., 2022). Among all modes
of transportation, road transportation accounts for approximately 72%
of energy consumption and more than 80% of CO, emissions (Holmberg
etal., 2012). In road transportation scenarios, approaching intersections
presents a significant energy-wasting challenge, leading to the con-
sumption of 2.8 billion gallons of gasoline in the United States alone
(Davis and Boundy, 2021). To mitigate this, eco-approach technology
has been developed for Connected and Automated Vehicles (CAVs),
focusing on reducing fuel consumption by avoiding inefficient
stop-and-go patterns (Wang et al., 2022d).

Conventional eco-approach studies mainly focus on the fixed
signalized intersection, employing two main planning methods: Rein-
forcement Learning (RL) and optimal control. RL methods compute
driving behaviors by training agents to interact with the environment.
Initial research in this domain utilized Q-learning (Fei Ye et al., 2019),
an RL method based on value estimation in discrete action spaces.
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However, the discrete nature of Q-learning limits its applicability in
scenarios requiring continuous action space. To overcome this limita-
tion, recent advancements have shifted towards policy-based RL
methods designed for continuous action spaces in eco-driving applica-
tions (Vindula Jayawardana, 2022). For instance, Guo et al. imple-
mented the Deep Deterministic Policy Gradient (DDPG) algorithm,
integrating both longitudinal acceleration and lateral lane-changing
decisions (Guo et al., 2021). Similarly, Zhang et al. developed an
eco-driving approach utilizing the Twin Delayed Deep Deterministic
(TD3) policy gradient algorithm (Zhang et al., 2022). While these
policy-based methods are noted for their computational efficiency, their
training processes often lack transparency and fail to account for vehicle
dynamics (Li, 2017). This opacity can result in actions that exceed the
vehicle’s operational capabilities or compromise safety. Consequently,
potential safety risks and execution failures remains a critical concern in
the application of RL methods in eco-driving scenarios.

Optimal control methods focus on solving optimization problems
aimed at minimizing fuel consumption. These methods typically employ
a vehicle kinematics model (Wang et al., 2023) or a vehicle dynamics
model (Jia et al., 2022). The precision of these models mitigates
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Fig. 1. Eco-approach at actuated signalized intersection: dynamic signal timing.

concerns related to tracking errors during execution, making optimal
control a preferred approach in numerous eco-approach studies. A sig-
nificant advancement in the domain of eco-approach controllers is the
introduction of overtaking capabilities by (Hu et al., 2021). Their model
distinctively considers the stochastic nature of surrounding traffic,
marking a noteworthy development in this area. Further building on
this, Hu et al. refined this model, positioning it as one of the few methods
integrating lane-level navigation features (Hu et al., 2023). Based on Hu
et al.‘s optimal control framework, this paper addresses the unique
challenges inherent to actuated signalized intersections. Additionally,
Dong et al. proposed an eco-approach controller that considers the
queue of vehicles ahead, enhancing practical applicability (Dong et al.,
2021). This research was further extended to multi-intersection sce-
narios and evaluated in real-world settings (Dong et al., 2022). Yang
et al. developed a strategy for ecological speed guidance in vehicle
platoons (Yang et al., 2020), and Lei et al. proposed a dynamic inverse
hierarchical optimization method specifically tailored for hybrid electric
vehicles (Lei et al., 2023). Given the extensive research and successful
field tests, the optimal control method has emerged as a promising
strategy for eco-approach applications, offering a blend of accuracy,
practicality, and adaptability to diverse driving scenarios.

However, conventional eco-approach controllers encounter signifi-
cant challenges at an actuated signalized intersection which is widely
deployed on urban roads. Unlike the fixed signal timing, actuated signal
controller is a more flexible way, characterized by its dynamic signal
timings in response to real-time traffic status. In such environments,
traditional controllers an unaware of the remaining time (time to signal
switching) of an actuated signal. Hence, ecological approaching trajec-
tories are no more obtained. For example, as illustrated in Fig. 1-(I), a
CAV approaching a red signal might decelerate in anticipation of a
prolonged stop, only to find the signal turning green prematurely.
Conversely, as depicted in Fig. 1-(II), a CAV might slow down during a
green phase based on outdated information, potentially missing the
opportunity to cross the intersection.

In addressing the challenge of eco-approach at an isolated actuated
signalized intersection, early studies aimed to adapt the problem to the
conventional eco-approach scenarios at fixed signalized intersections by
estimating a probable signal timing for ecological trajectory planning.
For instance, Hao et al. approached this by calculating the remaining
duration of the current signal phase as the average of the minimum and
maximum values obtained from the signal controller (Hao et al., 2019).
Similarly, Shafik et al. estimated the signal switching time (from red to

Roadside

facility (gj

Ego CAV

green) by randomly sampling from a Gaussian distribution modeled
from historical signal timing data (Shafik et al., 2023). Broek et al.
determined the optimal passing time for the ego-vehicle through the
intersection based on the moment with the highest probability of
encountering a green light, as inferred from historical data (Borek et al.,
2022). Despite these innovative approaches, a common limitation
emerges: the inability to consistently plan optimal eco-approach ma-
neuvers. This stems from the reliance on predetermined signal timings,
which may not always align with real-time conditions, leading to po-
tential misjudgments. Recognizing this issue, Sun et al. developed an
eco-approach controller based on robust optimization (Sun et al., 2020),
incorporating a chance constraint on the vehicle’s arrival time relative
to the uncertain signal timings represented by a Gaussian distribution.
Yet, this method, too, depends on historical data and does not fully ac-
count for real-time traffic dynamics. These observations highlight an
ongoing need for an effective eco-approach controller specifically
tailored for isolated actuated signalized intersections, one that can
dynamically adapt to signal timing variations in accordance to real-time
traffic conditions.

In this paper, a novel eco-approach method is specifically designed
for an isolated actuated signalized intersection to ensure ecological
driving. This method stands out with several key contributions:

e Predictive Capability for Actuated Signal Timing: Utilizing the
Markov Process (MP), this research is adept at predicting the future
state of an actuated signal controller. Traffic conditions are innova-
tively integrated as a state transition variable in Multivariate Markov
Chains (MMCs), bolstering the accuracy of signal timing predictions.
This predictive capability is crucial in adapting to the dynamic na-
ture of actuated signalized intersections.

Enhanced Fuel Efficiency at Actuated Intersections: Based on the
forecasted actuated signal timing, the proposed method is capable of
predicting feasible passing time windows. The passing time window
prediction facilitates the proactive behaving of ego-vehicle in
anticipation of future signal changes. Hence, the proposed method
reduces unnecessary stops and speed oscillations, thereby enhancing
fuel efficiency.

Real-time Computational Efficiency: In addressing the challenges
of computational complexity, the chance constraint of passing time
window within the optimal control problem has been linearized. This
significantly streamlines the computational process. Furthermore,
we have implemented a dynamic programming-based algorithm,
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Fig. 2. The scenario of interest: an isolated actuated signalized intersection.
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Fig. 3. Structure of the proposed eco-approach controller at an isolated actuated signalized intersection.

facilitating the real-time resolution of a quadratic Model Predictive
Control (MPC) problem. This design enhances the practicality of the
controller in real-time scenarios.

2. Methodology
2.1. Scenario of interest

A typical application scenario of the proposed eco-approach
controller is shown in Fig. 2, where an isolated actuated signal
controller prioritizes the main road, and a single CAV on the main road,
equipped with the proposed controller, aims to pass through the inter-
section ecologically. The CAV communicates with roadside facilities to
receive passing time window navigations and then plans eco-approach
trajectories. The proposed controller is without the consideration of
the CAV penetration rate.

2.2. System structure

The system structure of the proposed eco-approach method is illus-
trated in Fig. 3. The eco-approach system is implemented both onboard
and on the roadside. The control logic is described as follows.

e Roadside module: Within the roadside module, crucial data is
collected to facilitate eco-approach maneuvers. This module gathers
real-time Signal Phase and Timing (SPaT) information (including
current signal time, current signal phase, phase setting, and circle
length) directly from the traffic signal controller, alongside real-time
traffic state data obtained from roadside sensing facilities, which
may include advanced technologies such as video and radar sensors.
Both real-time SPaT data and traffic state data are stored as historical
data. Leveraging historical and real-time datasets, a dedicated
passing time window prediction method is developed. The passing
time window is an accumulation of the feasible passing timing. It
serves as a dynamic chance constraint when planning the trajectory
of the eco-approach, ensuring adaptability to actuated signal timing.

of cell x,(t)
@ Roadside
facility

G €

e Onboard module: Within the onboard module, a trajectory planner
is proposed to address the eco-approach problem. This module cap-
italizes on the passing time window prediction output, treating it as a
vital chance constraint. Taking real-time vehicle states into account,
the system generates ecological trajectories tailored for the ego-CAV
to execute. This approach ensures that the vehicle responds
dynamically to actuated signal timing while adhering to eco-friendly
principles.

2.3. Problem formulation

The proposed eco-approach controller is designed as a Chance Con-
strained Model Predictive Control (CCMPC) problem. This framework
effectively manages the inherent uncertainty associated with actuated
signal timing by incorporating a meticulously crafted chance constraint.
This chance constraint is derived from the prediction of passing time
window which uses the Markov Process (MP) as a basis. The detailed
formulation and workings of this controller are thoroughly expounded
upon in the subsequent sections of this paper.

2.3.1. System definition

The mathematical definition of the proposed eco-approach system is
provided as follows.

Roadside state €® includes the state of traffic and signal. It is
perceived via roadside facilities, as shown in Fig. 4.

gR(t)d_if[x.\(t)vxt'x (t)vxfa (l), ©y X (I)v sty Xey (l)]T (1)

where t is the signal time, t € {0,1,2,...,T — 1}; T is the length of a signal
cycle; x,(t) is the state of signal defined as equation (2). It is provided by
SPaT from the signal controller. The state of traffic x., (t) is detected by
roadside facility. Its detection region is partitioned into cells, as illus-
trated in Fig. 4. The traffic state is defined based on the occupancy of
these smaller cells as equation (3).
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Fig. 4. System states declaration.
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3

(1) 0 there is no vehicle in cell i
“ 1 there is vehicle in cell i
where iis the index of the cell, i € {0,1,2,...,N}. N is the number of cells.

Onboard vehicle state & and control variable u are defined as fol-
lows.

v {Sk } )

Vk
wEay )

where s; is the longitudinal position of ego-CAV; vy the speed of ego-
CAV; ay is the acceleration of ego-CAV; k is the control time step
index, k € {1,2,...,K}; K is the number of control steps.

2.3.2. Passing time window prediction

To enable an eco-approach at an isolated actuated signalized inter-
section, the ego-CAV must make optimal decisions regarding the passing
timing at the stop line. However, the feasible passing timing through the
intersection is inherently uncertain due to the ever-changing actuated
signal timing. Therefore, this paper introduces a methodology to iden-
tify feasible passing timing and formulate it into a potential passing time
window. The prediction process of the passing time window is sum-
marized in Fig. 5 and elaborated upon as follows:

Step 1 (Signal color prediction): In this initial step, predictions are
made regarding the likelihood that the signal light will be green,
based on a combination of historical and real-time data of both signal
state and traffic state. These predictions are derived using a Markov
Process (MP) model, resulting in the creation of a Possibility Distri-
bution Function (PDF) representing the probability of a green light.
Step 2 (Signal switching prediction): The signal switching time is
the signal time when signal color changes. The signal switching
probability is a differential of the PDF of the green light. The signal

switching prediction finally outputs a Cumulative Distribution
Function (CDF) of signal switching probability.

Step 3 (Passing time window modeling): The concept of a passing
time window is defined as an accumulation of feasible passing
timing. The reliability of a passing time window is quantified as the
probability that the actual passing time window has a wider range
than the identified time window. It is realized via the CDF of signal
switching probability.

2.3.2.1. Signal color prediction. The color of an actuated traffic signal
controller is predicted via the Markov Process (MP) (Gagniuc, 2017). In
this paper, the approach goes further by formulating Multivariate
Markov Chains (MMCs). These MMCs are designed to take into account
not only the signal state but also the traffic state in the prediction pro-
cess. This enhanced modeling approach enables a more comprehensive
and accurate prediction of signal color, considering both the dynamic
changes in signal state and concurrent variations in traffic conditions.

To cover both traffic and signal status, all relevant variables in & (t)
are adopted for the prediction process. For each variable, its transition is
modeled using a Markov Chain (MC), as illustrated in Fig. 6. Each MC
comprises an accumulation of transition matrices. The transition prob-
ability in the matrices is calculated as follows:

()

x. (1) _ x(rtAr)

ﬂ.’(:(H»At) =7 € {S> Ci} 6)

Hx (1)
where x, (t) is a roadside state variable in €% (t); At is a transition horizon;
H*® is the number of occurrences of x,(t) in the historical data set;

Hy E:l ap is the number of transitions from x.(t) to x,(t+At) in the his-

torical data set.

By integrating all individual MCs, MMCs are formulated into the
Cartesian product of MCs (Shin and Sunwoo, 2018), as illustrated in
Fig. 6. The resulting MMCs are then organized into a series of multi-
variate transition matrices. It consists of T? transition matrices, each
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with a size of 2¥+1 x 2N+1,

Leveraging the MMCs, it becomes possible to predict the probability
of transiting from one state to another in the future. Specifically, at time
t, the prediction result of the MMCs is the probability of observing a
green light after time duration At, denoted as p¢, ,,. A discussion on this
probability is presented as follows.

PP 4 is transformed into the discretized horizon to adapt to the
context of trajectory planning. To clarify, let the current signal time be t
and the control step size be Az, and the control step at k correspond to
time t + kAz. Consequently, the probability of encountering a green light
at control step k is calculated using equation (7).

Pkc :Pt(ikAr @)

By defining the event A¢ as observing a green light at step k, pf =
Pr(Af). Considering the signal phasing strategy, as presented in equa-
tion (8), AY occurring means the occurring of A§---AS , A¢ |, when
current signal is green. Moreover, A¢ occurring also indicates the
occurring of AY, |, AY,,--A{, when current signal is red.

G G G
Pr(a%) _{Pr(AIG UAé U uAk)G x() =1 ®
Pr(Af UAY, U UAT) x(1)=0
where K is the signal time of the prediction horizon, K < K. It is generally
set to the step when signal color is determined, such as the middle of a
signal phase, to ensure the prediction only covers one time of signal
color switching.

2.3.2.2. Signal switching prediction. MMCs have provided forecasts of
the likelihood of a green traffic signal p,f. The signal switching proba-
bility at a specific step, denoted as pfw, can be determined according to
equation (9). »

Pr(ag L NAL) w0 =1
)]

PS —
ko T —G
Pr(dc. . n4g) x() =0

where kg, is the signal-switching step; ZZW is the opposite event that the
signal is not green at step kg,.
By applying equation (8) to equation (9), equation (10) is obtained.

s [Pl w0 =1 10
P, =\ ¢ G 1o
Piyit P, %()=0

Moving forward, the probability of signal switching event occurring
within the K, steps is denoted as Pfgw. It is the Cumulative Distribution
Function (CDF) of p;iw over a sequence of K, as equation (11).

L

Py, =Fi, (Ko) =Prik, <Ko)=> "~ "pj an

2.3.2.3. Passing time window modeling. At the present signal time t, the
identified passing time window K is defined as a collection of plan-
ning steps ahead of or after the signal-switching step, as shown in
equation (12). Here, K, is also discussed according to different signal
colors at the current time.

KO = {kl1 <k<k,} x()=1
Ky — s { \~7 <k} (1) a12)
K? = {klky, <k <K} x(t)=0

pass

where kg, is the predicted signal-switching step. KPGUSS is the passing time

. is the passing time window in a red

window in a green phase; Kl‘fm
phase.

The reliability of the identified passing time window is quantified by
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the probability that the actual passing time window has a wider range
than the identified passing time window, denoted as Pr(Kpq;) in equa-
tion (13). It is contingent on the CDF Fy, (Ky) in equation (11). The
reliability of the identified passing time window indicates the passing
success rate for ego-CAV when it arrives at the intersection within the
identified passing time window.

Pr(K‘j’m) = Prlky, > ko) = 1 — Fy (k) x,() =1
Pr(K) = : ( ) o () X5 (1)
x(1)=0

'pass

Pr(KE,) = Priky, < Eo) = Fi, (ko)

2.3.3. Trajectory planning

To compute an eco-approach maneuver for the ego-CAV, trajectory
planning is cast as a Chance Constrained Model Predictive Control
(CCMPC) problem (Wang et al., 2022a). This approach leverages the
distribution of passing time window as a chance constraint to regulate
the ego-CAV’s arrival time at the intersection, thereby allowing users to
personalize the trade-off between mobility and reliability.

2.3.3.1. Cost function. The CCMPC cost function takes a quadratic form,
as expressed in equation (14). It seeks to minimize a composite cost that
comprises three components: state error cost, fuel cost, and terminal
state error cost. Since actual fuel consumption model is non-convex and
could substantially increase computational complexity, the square of
acceleration is employed as a proxy for fuel cost. The cost function is
designed to strike a balance between fuel efficiency and vehicular
mobility.

1 T 1
S(8 —gh.) 08! — &) +ul Ru
—

Fuel cost

. K-1
min g
P k=0

State error cost

14)

(e e o(e - 8)

Terminal state error cost

where Q¥diag(0, q,); g, is the weighting factor of longitudinal speed
error cost; R is the weighting factor of acceleration cost. They are used to
. . (| s .
adjust the importance of each cost component. &Y, kdé‘{vd“} is the
’ des
desired vehicle state at step k; Notably, the desired position sgs is
excluded due to its zero-cost weighting. v is the desired driving speed.

2.3.3.2. Vehicle dynamics. The motion of the ego-CAV follows a vehicle
dynamics model formulated based on kinematics (Wang et al., 2022c),
as presented in equation (15). This model utilizes matrices A and B to
describe the vehicle’s state evolution over time.

& =AE + Bu, @as)

A [(1) ﬂ 16)
ae

B=| 2 a7)
At

where A7 is the length of a control time step.

2.3.3.3. Constraints
2.3.3.3.1. Passing time window constraint. The ego-CAV is required
to cross the stop-line within a user preferred passing time window:

St > Sy (1) = Lk e KE
k top () ; (18)
Sk < Suop X%(1) =0,k €K

pass
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Algorithm 2: Solution algorithm of the proposed eco-approach controller

Input: initial state &}, desired state Eges,k, number of control steps K, 4, B, Q, R
Output: optimal control u, and state &, for each step
Initialize: iter = 0
while |[ui®” — uie™1|| > £ do
iter =iter +1
0k2Q

14
K = _dies,k

™

Forke{K-1,---,1}
Dy = _Qfdesi

= GiRGy + S;Q11Sk + Q

Ql
=
|

Dy = GiRyH) + S;.Qys1 Ty + SiDyesy

P = (R + BL.Qy1B))™*

)
=
|

= —PB Qi1 4k
Hy = —PyB}(Qs1 + Dyyq)
T, = B.H,
S, = Ay + ByGy,
For k € {0,1,---,K}
we = Gy, + Hy
§isr = Sii + Ty,
if §Viter > gV then
§VteT = &
if §iter < &V . then
e = gh,
if u'™" > u,,,, then
witer =y
if u'te” < u,,;, then

iter —
u = Unin
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However, due to the uncertainty of the passing time window as
determined in equation (13), this constraint is reformulated into a
chance constraint, as articulated in equation (19).

Pr(sc > sup) 27 x(t) =Lk e€KS
(50> 50r) 27 50 A o)
Pr(sk < s.‘,,,p) >y x(1)=0,keK

> pass
where y is a risk parameter, y € (0,1). It allows users to specify their
desired level of risk. In this research, y is set to 0.5.

Constraint (19) indicates that the user preferred passing window
Kpqss should be determined to satisfy the risk parameter y as follows.

Pr(Kfm) >y x() =1

Pr(Kgm) >y x(t)=0 @0

By applying equation (13) into equation (20), the signal switching
time could be clarified as follows.

y 1 ;
~ (21)

Hence, the chance constraint (19) could be linearized by applying
equation (21) as follows.

5> Sup %) =1ke {K—F,;l(l —1K—F 1=y + 11<}

5t < Sunp 5@ =0ke{l.F1 0}
(22)
2.3.3.3.2. Collision avoidance constraints. Collision avoidance be-
tween the ego-CAV and its preceding vehicle is achieved by regulating

the car-following gap:

St < S — Seape (23)

where sy, is the minimum safe car-following gap, which is set to 5 m in
this research. si’ " is the longitudinal position of the preceding vehicle at
step k. The prediction of the preceding vehicle’s actions is computed
based on a logical assessment of potential future behaviors under
varying traffic signal conditions. This prediction process is formulated as
follows:

dace X (T + kAT) = 1 and V™™ < vy,
x,(f 4+ kA7) =0 24

0 else

front __
Ay =4 Qdec

where ai"’"t is the acceleration of the preceding vehicle at step k; g is
the acceleration of a speed-up action; ag, is the acceleration of a slow-

down action; Vf""t is the speed of the preceding vehicle; vy, is the
average speed of traffic. The decision to speed up is predicted when the
traffic signal is green and the preceding vehicle’s speed is less than the
average traffic speed. Conversely, slowing down is anticipated when the
traffic signal is red. In all other scenarios, the preceding vehicle is ex-
pected to maintain a constant speed. The values of aq, and a4, can be
empirically determined from field trajectory data.

2.3.3.3.3. Execution capability constraints. The vehicle’s speed and
acceleration must adhere to certain limits as follows.

0 < < Vinax (25)
Apin < A < Aoy (26)

where Vo is the speed limit, ay;;, and apge, are the minimum and
maximum accelerations, respectively.

2.3.3.3.4. Solution algorithm. The linearized CCMPC problem is
tackled using a dynamic programming-based algorithm developed by

Journal of Cleaner Production 435 (2024) 140493

=D

[ & ]
Ego CAV (g

=
~-

=D
T4 <L

¢2 )

|
P

%3
¥

Actuated signal phasing

Fig. 7. Test scenario.

Table 1
Parameters setting.
Name Definition Value
T Cycle length of the actuated traffic signal controller 160 s
G;c‘i” Minimum duration of the ¢; signal phase Gz’}]i” =15s
7
Grin =205
GZ’;” =20s
Grin =155
Gy Maximum duration of the ¢; signal phase Gy =50s
7 2
G =40
3
Ta Duration of yellow 3s
T, Duration of red clearance 2s
qs The volume of the vehicle from J entry of the intersection q; < capy
capy The road capacity of the J entry of the intersection. 1200 pcu/h
Deco Distance of the range for eco-approach 500 m
Table 2
Case definition.
v/c=01 v/c=03 v/c=05 v/c=07 v/c=09
Vmax = 60km/h Case 1 Case 2 Case 3 Case 4 Case 5

Two types of eco-approach controllers are evaluated.

the authors (Wang et al., 2022b). This algorithm efficiently computes
the optimal solution through backward calculations involving concom-
itant matrices and forward calculations involving control and state
vectors. By predefining the optimal terminal state, this approach en-
hances computational efficiency. The algorithm’s detailed procedure is
outlined below.

3. Evaluations

The proposed eco-approach controller is evaluated via simulations
on the VISSIM platform. The evaluation is conducted from the following
perspectives: i) function validation; ii) passing time window prediction;
iii) fuel-efficiency; iv) driving mobility; v) driving safety; vi) computa-
tional efficiency; vii) parameter tuning.

3.1. Test scenario

The test scenario is illustrated in Fig. 7. In this scenario, the ego-CAV
would like to ecologically pass through an isolated actuated signalized
intersection. Notably, the ego-CAV is traversing along the main branch,
and it is given with the priority by the signal controller’s configuration.
The actuated signal timing logic for this scenario is outlined in Fig. 7.
Essential parameters for the actuated signal timing are provided in
Table 1.
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3.2. Experiment design

To evaluate the proposed eco-approach controller, five cases are
designed as illustrated in Table 2. They cover different congestion levels,
quantified by volume-to-capacity ratio: v/c. The traffic speed limit is set
to 60km/h. In each case, the ego-CAV enters the eco-approach region at
different signal time to encounter most signal timings at the intersection.
In each setting, forty times simulations are conducted with different
random seeds to provide stochastic traffic states.

The proposed controller: The proposed controller is capable of eco-
approaching towards an isolated actuated signal timing.

The baseline: The baseline is a Human-driven Vehicle (HV). It fol-
lows the Wiedemann car following model imbedded in the VISSIM
platform (Fan et al., 2013). It computes motion commands by equation
27.

AV?

(A5 = Lyom) @7

Aego = E X As, — + Afrons
where Av is the speed difference between the ego-vehicle and the pre-
ceding vehicle; As is the distance between the two vehicles; Asp, is the
minimum following distance; L, is the length of the preceding vehicle;
Qfron: is the acceleration of the preceding vehicle; aeg, is the acceleration
of the ego-vehicle.
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3.3. Measures of effectiveness

There are five types of Measures of effectiveness (MOEs).

Function validation: The function of eco-approach via catching the
potential passing time window is quantified by vehicle sample trajec-
tories. Two scenarios are specifically illustrated to highlight the
strengthen of the proposed method. Scenario (I): ego-vehicle arrives at
the end of a green signal. Scenario (II): ego-vehicle arrives at the end of a
red signal.

Passing time window prediction capability: The capability of
predicting passing time window is evaluated by real-time prediction of
signal switching time. In this research, signal switching time is predicted
as the time when the cumulative probability of signal switching is
greater than 0.5, indicating the risk parameter y is set to 0.5 in equation
(21). Moreover, the capability of predicting passing time window is
quantified by the prediction error ek, that is defined as equation (28).

€Ky, = Koy — k| AT (28)
where kg, is the predicted signal-switching step; ks, is the real signal-
switching step. The signal switching time is the boundary of passing
time window, according to the definition of passing time window in
equation (12).

Fuel efficiency: This MOE is quantified by two indexes: fuel con-
sumption and stop count. The fuel consumption is calculated by VT-
micro model (Rakha et al., 2004), and the parameters of this model
were previously calibrated by the authors. The correlation among speed,
acceleration, and fuel consumption is depicted in Fig. 8.

Driving mobility: This MOE is quantified by the travel time. Travel
time is defined as the duration from the initiation of the eco-approach
maneuver to the moment the vehicle crosses the stop line.

Driving safety: This MOE is quantified by the minimum Time-to-
Collision (TTC).

Computational efficiency: This MOE is quantified by the compu-

tation time.

3.4. Results

The results confirm the effectiveness of the proposed controller in
several aspects: i) It effectively performs an eco-approach to an actuated
signalized intersection. ii) The controller demonstrates the ability to
predicting passing time window with an accuracy of within 3.1 s iii) It
improves fuel efficiency by 9.1%. iv) The controller reduces the number
of stops by 14.8%. v) It results in only 5.5 s of additional travel time. vi)
The proposed controller enhances safety performance by 78.43%. vii)
The computational efficiency is maintained at 12 ms.
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Fig. 9. Vehicle trajectories towards an isolated actuated signalized intersection.
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Fig. 10. Real-time prediction of passing time window: cumulative probability of signal switching time.
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3.4.1. Function validation

Vehicle sample trajectories are captured and depicted in Fig. 9,
effectively showcasing the comparison between the proposed controller
and the baseline. In Scenario (1), illustrated by Fig. 9-(I), the proposed
controller demonstrates an eco-friendly approach by slowing down
when it identifies no opportunity for passing. In stark contrast, the
baseline controller abruptly applies brakes and comes to a stop before
the stop-line. In Scenario (II), illustrated by Fig. 9-(I), the proposed
controller exhibits its capability to intelligently utilize the start of the
green light, while the baseline method stops at the stop-line, waiting for
a green signal. The proactive behaving thereby enhances the fuel effi-
ciency of the proposed method, reducing fuel consumption by 18.2% in
Scenario (I) and 16.7% in Scenario (II).

3.4.2. Passing time window prediction capability

Signal switching time is the boundary of passing time window. Re-
sults of signal switching time prediction in the Scenario (I) and Scenario
(ID) are presented in Fig. 10. Results show that in the two scenarios, the
average prediction error is 1.1 s. The prediction of signal switching time

() Stop count

—_ e —
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Fig. 12. Sensitivity analysis for ego-vehicle’s fuel efficiency.
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Fig. 14. Sensitivity analysis for driving safety.

agrees well with actual experiment results. The prediction capability of
passing time windows is quantified in Fig. 11. The analysis reveals that
the average prediction error amounts to 3.1 s, with a median error of 2 s.
Additionally, the proposed method ensures that 76.5% of predictions
exhibit errors of less than 5 s and 92.7% of predictions are within 10 s of
accuracy. This confirms that the proposed controller is capable of
ensuring an accurate prediction of passing time window.

3.4.3. Fuel efficiency

The fuel efficiency of the proposed controller is assessed by analyzing
ego-vehicle’s fuel consumption and the number of stops. Statistical
analysis reveals that the proposed controller reduces fuel consumption
by 9.1% and stop count by 14.8%, compared to conventional HVs. To
further investigate the fuel efficiency across different congestion levels,
a sensitivity analysis is conducted.

Fig. 12-(I) presents the results of the sensitivity analysis on ego-ve-
hicle’s fuel consumption, demonstrating consistent fuel consumption
reductions across various v/c ratios. The observed trend in fuel con-
sumption concerning v/c ratios makes sense, as both HVs and the pro-
posed controller generally experience increased fuel consumption with
higher congestion levels. Notably, there is a slight enhancement in fuel
consumption around v/c = 0.7 for the proposed controller. This result
aligns with the concept that the ego-vehicle has a higher likelihood of
catching green lights in denser traffic, thanks to longer green phases
allocated. However, in extremely congested traffic conditions (v/c =
0.9), the ego-CAV cannot catch the green light anymore, due to a high
number of obstructing vehicles. Similar trend could be found in the
analysis of stop count, as illustrated in Fig. 12-(II). The proposed
controller exhibits fewer stops compared to the baseline HV across all
congestion levels. The reduction of stop count is particularly notable in
uncongested traffic conditions. However, in highly congested traffic (v/
¢ = 0.9), the proposed controller cannot significantly reduce stop counts
anymore.
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3.4.4. Driving mobility

The impact of the proposed controller on driving mobility is assessed
primarily through travel time. Statistical analysis shows that the pro-
posed controller slightly enhances travel time by 6.6%, about 5.5 s. To
gain a comprehensive understanding of its effects across varying
congestion levels, a sensitivity analysis is conducted, as depicted in
Fig. 13. This analysis reinforces the observation that the proposed
controller may lead to a minor reduction in driving mobility. Moreover,
an analysis of the trend reveals that travel time for both the baseline and
the proposed controller slightly decreases with increasing v/c ratio.
However, it’s noteworthy that when v/c = 0.7, the proposed controller
exhibits nearly equivalent mobility performance to the baseline.
Conversely, its mobility decreases when v/c = 0.9. These findings align
with the results observed in the sensitivity analysis for fuel consumption.
This observation suggests that the proposed controller is optimally
effective when implemented in scenarios where the v/c is 0.7.

3.4.5. Driving safety

The driving safety of the ego-vehicle is assessed using the minimum
TTC, as illustrated in Fig. 14. This figure demonstrates that the proposed
controller significantly improves the average minimum TTC by
317.14%, elevating it from 3.5 s in the baseline to 14.6 s with the
implementation of the proposed controller. Furthermore, the minimum
value of the minimum TTC under the proposed controller is recorded at
2.3 s, which is also greater than the baseline value of 2.1 s. The evalu-
ation demonstrates that the proposed controller maneuvers a vehicle
more conservatively to ensure driving safety.

3.4.6. Computational efficiency

Computational efficiency is quantified by the average computation
time, as illustrated in Fig. 15. It demonstrates that the average compu-
tation time is 12 ms across all settings. The proposed controller can
ensure a computation time within 20 ms in nearly all cases. It indicates
that the proposed controller is ready for real-time applications.

3.4.7. Parameter tuning

The risk parameter y in equation (21) represents the cumulative
probability of signal switching. This parameter’s tuning significantly
influences the prediction accuracy of the passing time window, which in
turn affects the overall efficiency of the eco-approach controller. To
elucidate this relationship, a sensitivity analysis was conducted with
varying risk parameter settings.

As shown in Fig. 16-(I), the average prediction error of the passing
time window demonstrates a nonmonotone relationship with the risk
parameter: initially decreasing and subsequently increasing as the
parameter value rises. The most accurate prediction occurs when the
risk parameter is set at 0.5. This observation is logical as a cumulative
probability of signal switching set at 0.5 represents the mean and most
probable time for signal transition.

Fig. 16-(II) illustrates the relationship between the risk parameter
and variations in the fuel consumption and travel time of the ego-
vehicle. This figure reveals that fuel consumption initially decreases
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with a risk parameter below 0.3, then increases for parameters between
0.3 and 0.7, followed by a slight decrease when the parameter exceeds
0.7. Conversely, travel time consistently decreases as the risk parameter
increases, although the reduction in travel time is less pronounced when
the parameter is between 0.3 and 0.7.

These patterns can be interpreted as follows: A higher risk parameter
generally signifies a more aggressive driving style during green lights
and a more conservative approach during red lights. Aggressive driving
in green phases aids in catching the end of the green light, potentially
reducing waiting times at intersections. This behavior contributes
significantly to decreased travel times (as indicated by the blue line in
Fig. 16-(I1)) and reduced fuel consumption (as shown by the red line in
Fig. 16-(II) for risk parameters below 0.3 and above 0.7). On the other
hand, conservative driving during red phases can lead to unnecessary
slowing down, resulting in increased fuel consumption (as observed in
the red line in Fig. 16-(II) for risk parameters between 0.3 and 0.5).

Consequently, the risk parameter in this research is set at 0.5,
prioritizing fuel efficiency over mobility while achieving optimal pre-
diction accuracy. This setting also lays a foundation for practical
application, allowing users to tailor the risk parameter based on their
preferences and driving conditions, as depicted in Fig. 16 For instance,
setting the risk parameter to 0.3 optimizes fuel efficiency, while a setting
of 0.9 maximizes mobility. Such customization offers flexibility in
adapting the eco-approach strategy to individual needs and traffic
scenarios.

4. Conclusion and future research

This research proposes an optimal control based eco-approach
method. It enables an eco-approach towards an actuated signalized
intersection. The proposed method bears the following features: i)
capable of predicting the ever-changing actuated signal timing; ii) with
enhanced fuel efficiency via proactively catching feasible passing time
window; iii) with real-time computation efficiency for implementation.
An evaluation has been conducted. Results demonstrate that:

e The average prediction error of passing time window is 3.1 s.
Moreover, the proposed method has a chance of 76.5% to predict a
passing time window within an error of 5 s.

e The proposed method enhances fuel efficiency by 9.1%, reduces stop
count by 14.8%, and enhances driving safety by 317.14%, compared
to the conventional human-driven vehicle.

e The proposed method fully leverages its strength when v/c is 0.7.

e A risk parameter setting of 0.3 yields optimal fuel efficiency, 0.9
provides the best mobility, and 0.5 achieves the highest prediction
accuracy.

e The proposed method boasts a rapid computation of 12 ms,
demonstrating its readiness for field implementation.
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This research enables a vehicle to eco-approach an isolated signal-
ized intersection with the capability of predicting actuated signal
timing. Future studies could consider enhancing the proposed work in
terms of its compatibility with multiple consecutive intersections.
Moreover, the improvement of vehicle trajectory prediction represents a
promising avenue for the performance enhancement of the proposed
work.
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Indices

Definition
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i
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The acceleration of ego-CAV (m/s?)

The minimum accelerations of eco-CAV (m/s?)

The maximum accelerations of eco-CAV (m/s?)

The coefficient matrix of the state vector in system dynamics
Defining the event A¢ as observing a green light at step k
The opposite event that the signal is not green at step kg,

The coefficient matrix of the control vector in system dynamics
The road capacity of the J entry of the intersection.

Distance for eco-approach (m)

A concomitant matrix in the solution algorithm

The prediction error of passing time window

Minimum green time of the ¢; signal phase (s)

Maximum green time of the ¢; signal phase (s)

A concomitant matrix in the solution algorithm
The number of occurrences of x,(t) in the historical data set, * € {s,¢;}
The number of transitions from x.(t) to x,(t+4) in the historical data set, * € {s,¢;}

A concomitant matrix in the solution algorithm

The index of the cell, i € {0,1,2,..., N}

Iteration index in the solution algorithm

The index of signal phase, j € {1,2,3, 4}

The index of intersection approach, J € {east, south, west, north}
The control step index

The number of total control steps

The signal time of the prediction horizon

The signal-switching step

The predicted signal-switching step

A collection of planning steps ahead of or after the signal-switching step
The number of cells

The probability of observing a green light after time duration At
The signal-switching probability at a specific step

The probability of signal switching event occurring within the K, steps
A concomitant matrix in the solution algorithm

The weighting factor of longitudinal speed error cost

The volume of the vehicle from J entry of the intersection.

The weighting factor of state error cost

A concomitant matrix in the solution algorithm

The weighting factor of acceleration cost

The weighting factor of control cost

The longitudinal position of the preceding vehicle at step k (m)

The minimum safe following gap (m)

The longitudinal position of the stop-line (m)
The longitudinal position of ego-CAV (m)

A concomitant matrix in the solution algorithm
The signal time, t € {0,1,2,...,T— 1}

The transition horizon

The length of a signal cycle (s)

Duration of yellow (s)

Duration of red clearance (s)

A concomitant matrix in the solution algorithm
The system control vector

The speed of ego-CAV (m/s)

The speed limit (m/s)

The state of the ith cell at signal time ¢

The state of the signal phase at signal time t
Roadside state

Onboard vehicle state

The desired vehicle state at step k

The transition probability of roadside state from &% (t) to &%(t + At)
The length of the control step (s)

The j signal phase

Risk parameter, y € (0,1)
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