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Abstract—Efforts to decarbonize the heavy-duty vehicle
sector have generated vast interest in transitioning from
conventional diesel trucks to battery electric trucks
(BETSs). As a result, understanding energy consumption
characteristics of BETs has become important for a
variety of applications, for instance, assessing the
feasibility of deploying BETSs in place of conventional
diesel trucks, predicting the state-of-charge (SOC) of
BETs after specific duty cycles, and managing BET
charging needs at the home base or en-route. For these
applications, mesoscopic energy consumption models
offer a good balance between the amount and fidelity of
the input data needed, such as average traffic speed and
road grade on a link-by-link basis, and the model
performance. As a common intelligent transportation
system (ITS) application, this paper presents a
comparative  assessment of mesoscopic energy
consumption models for BETs developed using three
different machine learning techniques. The results show
that the random forest (RF) regression outperforms the
extreme gradient boosting (XGBoost), the light gradient-
boosting machine (LightGBM), as well as the conventional
linear regression as evidenced by the resulting model
having a higher coefficient of determination (R2) value
than that of its counterparts. When applied to the
simulated dataset, the RF regression can capture the
behaviors of BET energy consumption well where the R2
value of the resulting model is 0.94.

Keywords—Battery Electric Truck , random forest regressor,
mesoscopic model, XGBoost, LightGBM, intelligent
transportation system.

I. INTRODUCTION

Transportation is essential to the everyday life of people.
At the same time, vehicles are one of the major sources of air
pollution [1, 2]. Reducing the pollution footprint from vehicles
has been a topic of research in academia for many years. One
possible solution is to increase the use of electric vehicles in
place of the ones that consume fossil fuels. The reason is
because not only do electric vehicles reduce pollution, but they
also save money [3]. The advancement in battery technology
has made it more common to see electric cars on the roads
today. However, it is more difficult to electrify the heavy-duty
truck sector. Heavy-duty battery electric trucks (BETs) are still
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few and far between, and are being researched to make them
more available. Some reasons as to why BETs are harder to
adopt are because they have a shorter driving range than their
diesel counterparts, and at the same time it takes longer time
to charge them. Given the limited driving range, it is important
to understand energy consumption characteristics of BETs so
that routes can be planned and make the most out of the trucks.

In research, there are a variety of electric vehicle energy
consumption models [4-10]. Many of these models follow the
white box approach, meaning that they are developed with
known physical parameters and behaviors. A drawback of
these models is their complexity, which makes them difficult
to develop and apply [11]. In contrast, black box models (e.g.,
those based on machine learning, a common application in
Intelligent Transportation Systems (ITS)) are faster to create
because they are based on experimental data and some data
processing [12,13]. While these models are sometimes
criticized for not being able to be interpreted completely [14],
the fact that they can be trained and developed faster, making
them more appealing in their use in a variety of applications
including vehicle routing, range estimation, etc., which are
important for many ITS research topics such as eco-routing
and charging planning [15-20]. To date, however, there has
been very few studies that apply machine learning techniques
to develop mesoscopic energy consumption models
specifically for heavy-duty BETs.

Previously, we developed mesoscopic energy consumption
models for BETs using a machine learning technique called
random forest (RF) regression [21]. The models performed
better than the ones developed with the traditional linear
regression and showed that it is possible to capture nonlinear
behavior. The coefficient of determination (R2) values for the
RF regression models were 0.86-0.89 as compared to 0.50-
0.52 for the linear regression models. However, there is room
for improvements on the previous models. The objective of the
research presented in this paper was, therefore, to improve the
performance of mesoscopic energy consumption models for
BETs in several ways. First, we made some changes to the data
processing procedures to generate better input data for the
models. Second, we applied other machine learning techniques
to develop the models and compared the results with those
from RF and linear regressors. This helped us assess how
different black box models perform on the same dataset and
identify the machine learning technique most suitable for
modeling BET energy consumption. Lastly, since black box
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models are entirely data driven, we examined the

interpretability of the models under various conditions.
II. METHODOLOGY

This section introduces the different datasets utilized for
the different models within the paper. There are two main
datasets utilized. The first dataset comes from logging vehicle
activity and energy consumption data directly from real-world
heavy-duty trucks and the second dataset comes from a
simulation of BET energy consumption based on the real-
world heavy-duty truck activity using a microscopic BET
powertrain model. The main reason for creating the simulated
dataset is to be able to incorporate cargo weight as a variable
in the mesoscopic models as it is not available in the real-world
dataset. Mesoscopic models developed in this research relate
the BET energy consumption required to traverse a roadway
link with variables that are generally available on a link-by-
link basis such as average traffic speed and road grade. These
variables have a high impact in the energy consumption of
BETs [22-24]. The main difference between the different
models developed is the machine learning technique used to
predict BET energy consumption on any roadway links.

A. Data

The first dataset comprises real-world vehicle activity and
energy consumption data obtained from heavy-duty trucks in
California. Specifically, these data were collected from a
group of 2020 model year class 8 trucks doing drayage
operations at the port of Los Angeles. Each truck’s data were
collected over a period of 1-2 months using a combination of
GPS and engine control unit (ECU) data loggers. The setup
was designed to record GPS data—including timestamp,
speed, latitude, longitude, and altitude—as well as selected
ECU parameters at a rate of 1 Hz. The GPS data were used to
perform map matching with a digital map to identify the
roadway link and road grade associated with each data point.

The second dataset was generated by simulating the energy
consumption of a BET following the second-by-second
vehicle activity in the first dataset at different levels of cargo
weight. The simulation utilized a microscopic BET powertrain
model that needs certain information about the BET and its
activity. Some of the data needed were second-by-second
vehicle speed, acceleration, and road-grade. The data were fed
into Equation (1) to obtain the tractive power of the BET and,
subsequently, BET energy consumption was calculated. Table
1 provides the values of the different model parameters. More
details about the microscopic BET powertrain model are
available in [30].

Wiact = mv-a + % p- Co Arv’ + mg: Crv-cos(0) +
m-g-v-sin(6) (D

where v is instantaneous speed;, a is instantaneous
acceleration; O is angle of the inclination of the road (road
grade); p is air density; Cqis drag coefficient; Aris BET frontal
area, C, is coefficient of rolling resistance of the BET tires; g
is gravity; and m is mass of the BET and cargo combined.

Unlike conventional diesel trucks, BETs can recover some
energy through regenerative braking when Equation (1)
outputs a negative value. The consideration of regenerative
braking energy in mesoscopic BET energy consumption
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models makes the models more complex and highly nonlinear,
which are suitable for data-driven, machine learning
techniques.

TABLE 1. PARAMETER LIST FOR TRACTIVE POWER EQUATION

Parameter Symbol Value
Front area (m?) A¢ 10
Rolling resistance coefficient Cr 0.008
Aerodynamic drag coefficient Cq 0.56
Air density p 1.161
gravity g 9.8

B. Data Processing

Initial data filtering was performed on the second-by-
second data points. A close inspection of the dataset indicated
that there were data points with power of over 350 Kilowatts,
which is the rated capacity of the electric motor of the BET.
Thus, these data points were removed. Other data points that
did not make sense in the physical world were also removed.
An example of such points is regeneration when the vehicle is
accelerating while going uphill.

Given the nature of roads, a roadway link may be long
enough to have significant changes in road grade. Different
road grade values could potentially affect BET energy
consumption. To address this issue, links were split based on
different criteria. For instance, it was assumed that a BET
would have similar energy consumption behavior if the road
grades are within certain bins. An example would be a flat
road. If the road grade values of a link were within -0.5 to 0.5
percent, then we assumed that the BET energy consumption
would be similar within that part of the link. If the same link
contained road grade values within other bins (e.g., 0.5 to 1.5
percent), then the map matching procedure would split that
link into sub-links according to the different road grade bins.
Additionally, within a sub-link it is necessary to determine the
average road grade as road grade values on the sub-link may
not be uniform. The average road grade, g, was obtained by
calculating the length of each second-by-second road grade
value within the sub-link and performing a weighted average
based on the distance. A similar approach was taken to obtain
the average velocity, o, within each sub-link. The weighted
average helped stabilize the speed and road-grade profiles.

Sub-links required another layer of filtering. The length of
second-by-second data indicated how long the truck spent on
a sub-link. Some of the sub-links were very short, lasting just
one or a few seconds. While it is possible to encounter short
links, keeping many one-second links would make our models
be more biased towards low energy consumption as the
aggregated energy would only come from one point of data.
Empirically, it was determined that sub-links below ten
seconds should be removed. Additionally, as mentioned
before, each sub-link contains its own average speed, road
grade, weight, and energy consumption rate (in kwh/mile).
This allowed us to plot BET energy consumption rate as a
function of these variables. While most of the data could be
grouped together, there were instances where outliers may be
present, which in turn would cause the models to have lower
performance. The solution to the outliers of data was to use a
3D interquartile range (IQR) on different subsets or bins of the
data. An example of a 3D bin is the energy consumption for
the speed between 5 and 10 mph, with the road grade between
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-0.5 and 0.5 percent, and the weight of 30,000 lbs. IQR
statistics for each 3D bin were calculated, which allowed us to
identify and remove the outliers, resulting in less noisy data.

C. Model Development

The three machine learning algorithms used were RF
regression, XGBoost, and lightGBM. These algorithms were
chosen because, as ensemble algorithms, they can combine
different techniques, which allows them to capture non-linear
relationships [25]. XGBoost is a gradient-boosted decision
tree, which is very efficient for regression problems [26]. As
an ensemble algorithm, it uses different machine learning
techniques to obtain a better model. Its parallel nature makes
it faster than other algorithms. LightGBM is similar to
XGBoost as they both use the same strategy for their
predictions [27]. The main difference lies in the
implementation of the construction of trees. This difference
can lead to very different results in the prediction performance.

The mesoscopic models use link-level input data such as
average speed and road grade to predict the corresponding
BET energy consumption rate (in kwh/mile) on a particular
roadway link. Then, the energy consumption rate can be
multiplied by the link distance to obtain the energy
consumption required for the BET to traverse the link. In
addition to the three machine learning-based models, a model
based on linear regression was also developed for comparison.

The dataset includes a limited number of features or
predictors (average speed, road grade, and total weight).
However, it is possible to create additional features, for
instance, by multiplying average speed and average road
grade. In Equation (1), some of the variables are higher order
terms of speed or interaction terms between speed and road
grade. For this reason, we created higher order features of
these variables. However, it would be undesirable to train a
model that has a near infinite number of features. In order to
avoid this issue, it was necessary to identify key features that
would provide the most important information for the model.

There are multiple feature selection algorithms. For
instance, for many machine learning techniques, permutation
importance is used to select prospects that contribute the most
information to the model [28]. In the case of RF regression,
the algorithm takes all the features at once and creates a
baseline R2 value. It then proceeds to permute the column
values of a single feature and test how that changes the
baseline value. Finally, only the features that improve or affect
the baseline value are kept and used for the final training. The
process identified the 13 features in Table 2 as the most
important in our prediction problem. Figure 1 shows the
importance of the different features. It can be seen that feature
1 (average road grade) has the highest importance while
feature 6 (weight), despite having lower importance than the
other features, is still relevant in the model. A similar approach
was taken for the rest of the machine learning-based models.

Since we also wanted to compare the machine learning-
based models with the model developed using traditional
linear regression, we performed stepwise linear regression,
and the results r are given in Table 3. The model has an R2
value of 0.55. In this model, both average road grade and
weight are an important feature and have a positive coefficient.
This is expected because as the weight carried by the BET

increases, its energy consumption per unit distance should also
increase at any given average speed and average road grade.

Table 2. FEATURE NAME AND SYMBOL FOR RANDOM FOREST REGRESSOR
FEATURE NAME
FEATURE 0

FEATURE 1
FEATURE 2 2

FEATURE 3
FEATURE 4

FEATURE 5

FEATURE 6
FEATURE 7

FEATURE 8
FEATURE 9
FEATURE 10
FEATURE 11
FEATURE 12
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Figure 1. Importance of the different features in the simulated dataset

TABLE 3. COEFFICIENTS OF THE STEPWISE REGRESSION MODEL FOR

SIMULATED DATA
Feature b p-val Standard error
5 0.7753 0 0.064
0 -0.2355 0 0.010
02 0.0035 0 0.000
w 4.196e-05 0 4.43e-06
0 g8 0.0028 0 0.001

III. RESULTS AND DISCUSSION

A. Model Performance

The first trained model used the XGBoost algorithm. We
used an R2 value to check how well the models had been
trained. The model was tested using 4-fold cross validation.
The average R2 value of this model was 0.84. It is known that
driving behavior can significantly affect vehicle energy
consumption [29, 30]. Some possible sources of error can be
attributed to XGBoost not being able to capture some
characteristics of BET energy consumption. This can be
visualized in Figure 2. Most of the predicted values overlap
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with the observed data but there are still regions not well
captured, especially on the extreme ends of energy
consumption rate.

The second trained model used the lightGBM algorithm.
Again, 4-fold cross validation was used to assess model
performance. The average R2 value of this model was 0.72.
Even though lightGBM is also a gradient boosting algorithm,
the performance was lower than XGBoost, as shown in Figure
3. This is due to the implementation of both algorithms. While
both use the same technique to solve a problem, the
implementation of that technique in the two algorithms is
different in nature [27].
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Figure 2. XGBoost model result. Green dots are the observed (simulated)
BET energy consumption rates and red dots are the predicted data.

velocity vs power efficiency for lightGBM

15 4

10 4

Kwh/mile

~10 1

T T T T
20 30 40 50

velocity (mph)
Figure 3. LightGBM model results. Green dots are the observed (simulated)
BET energy consumption rates and red dots are the predicted data.
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Figure 4. RF model result. Green dots are the observed (simulated) BET
energy consumption rates and red dots are the predicted data
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The third model was trained using the RF regression
algorithm described in [32]. Similar to the previous models, a
4-fold cross validation was used to evaluate model
performance. The average R2 value of this model was 0.94,
which is the highest among all three machine learning-based
models. This was expected as random forest is known to
perform well with non-linear data. Still, it is not able to capture
the behavior of the data entirely, as shown in Figure 4.

The ability of BET to recover some energy through
regenerative braking makes it harder for the developed models
to predict link-level BET energy consumption rates accurately.
The BET energy consumption rate on a roadway link is highly
dependent on the characteristics of its second-by-second speed
profile on that link. Specifically, if the second-by-second
speed profile includes frequent braking events, then the
corresponding link-level energy consumption rate would be
low or even negative. On the other hand, if the second-by-
second speed profile includes mostly acceleration events, then
the corresponding link-level energy consumption rate would
be very high, even though its average speed is the same as for
the other speed profile. According to the observed (simulated)
data in Figures 2-4, the variation in energy consumption rate
is highest for the average speed of 10 to 20 mph. This is
because this range of average speed usually involves stop-and-
go driving in congested traffic.

A summary of R2 values and mean squared error (MSE)
for all the models is given in Table 4. The main difference
between the model in [21] and the current model is the filtering
and data processing. The extra filtering at the link-level
removed noise that would not be identified otherwise. This
helped the model to achieve better performance. The table
indicates that the use of the machine learning techniques
results in a higher model performance over traditional methods
such as linear regression. This is expected as linear regression
is known to perform poorly on data that is noisy, something
that machine learning techniques are more capable of
overcoming.

TABLE 4. SUMMARY OF THE RESULTS FOR DIFFERENT MODELS

Model R2 MSE

kWh/mile)*2

Previous random forest model [21] 0.89 0.43
New random forest model 0.94 0.40
XGBoost model 0.84 0.78
lightGBM model 0.72 1.18
Linear regression model 0.55 1.45

B. Model Interpretability

Even if the models perform well in predicting link-level
BET energy consumption rates, it is important to check if the
models behave in a way that is explainable in a physical sense.
Therefore, we decided to examine the RF model, our highest
performing model, under different scenarios. Figure 5 shows
predicted BET energy consumption rate as a function of
average speed for an average road grade of 0 percent at
different weights. Intuitively, the heavier weight carried by a
BET, the more energy is needed to operate it. The graphs
generally agree with this intuition except around 15 mph

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 31,2024 at 19:31:51 UTC from IEEE Xplore. Restrictions apply.



where the energy consumption rates seem to be dominated by
energy regeneration from braking.

In addition, the graphs show that BETs would have
relatively lower energy consumption rates between 30 and 50
mph, which is similar to the trend observed in [31]. On the
other hand, unlike in [31], the trend of the graph between 0
and 15 mph is not as smooth. This is because the second-by-
second speed profiles in this range of average speed have
more fluctuation, as evidenced by the distributions of
acceleration in Figure 6. Such noisy speed profiles cause the
link-level energy consumption rates to be more varied.

energy consumption curve for various weights for grade 0 %

— w = 25000
w = 50000
— w = 82000

energy consumption (kwh/mile)

40 50
velocity (mph)

Figure 5. BET energy consumption rate vs. average speed
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Figure 6. Acceleration distribution of different speed bins

The next variable to be examined is the average road grade.
Figure 7 depicts predicted BET energy consumption rate as a
function of average road grade at different velocities for a
fixed weight of 50,000 lbs. Negative grade is as expected
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because going faster will regen more when braking.
Furthermore, when the truck is climbing grade, there is less
regen (slow down mainly to gravity and less braking), and that
makes the energy consumption change back to what
conventional diesel trucks behave (i.e., around 40 mph is the
lowest energy consumption).

The last variable to be examine is weight. Figure 8 shows
predicted BET energy consumption rate as a function of the
combined weight of BET and cargo for an average speed of
60 mph at different levels of average road grade. As expected,
when a BET is on downhill, it would mostly recover energy
from regenerative braking, and the heavier weight it carries,
the more energy it will generate. The trend is opposite when
a BET is going uphill. However, the trend when a BET is on
a flat road is counterintuitive where the graph indicates that it
would consume less energy if carrying a heavier weight. This
unexpected trend warrants further investigation in the future.

energy consumption curve for various speeds for weight = 50000 Ibs

—— velocity = 20 mph
velocity = 40 mph
—— velocity = 60 mph
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Figure 7. BET energy consumption rate vs. average road grade
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Figure 8. BET energy consumption rate vs. weight

IV. CONCLUSIONS AND FUTURE WORK

This paper presents four different mesoscopic models for
predicting the energy consumption of battery electric trucks,
an important pre-cursor for ITS strategies. The main
contribution is the development of these models using three
different black-box machine learning techniques and
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comparing them against each other as well as against the
model developed with the traditional linear regression.
Indeed, the machine learning-based models outperform the
linear regression model due to their nature of being able to
learn from nonlinear data and at the same time be more robust
to noise. It was found that random forest regression produced
the most accurate results out of all the different models with
an average R2 value of 0.94. The model also showed that it
largely agreed with the physical phenomena that would be
expected of battery electric trucks. This model can be used in
a variety of BET applications, for example, predicting the
remaining range, finding the most energy-efficient route, and
estimating the charging need when arriving back at the depot.

In the future, we will explore incorporating additional
variables affecting BET energy consumption that can be
easily obtained, such as ambient temperature, into the model.
We will also account for powertrain component efficiencies
development of the model. Additionally, we will apply the
developed model to some of the applications mentioned
above to demonstrate the practicality and utility of the model.
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