
  

-  

Abstract—Efforts to decarbonize the heavy-duty vehicle 

sector have generated vast interest in transitioning from 

conventional diesel trucks to battery electric trucks 

(BETs). As a result, understanding energy consumption 

characteristics of BETs has become important for a 

variety of applications, for instance, assessing the 

feasibility of deploying BETs in place of conventional 

diesel trucks, predicting the state-of-charge (SOC) of 

BETs after specific duty cycles, and managing BET 

charging needs at the home base or en-route. For these 

applications, mesoscopic energy consumption models 

offer a good balance between the amount and fidelity of 

the input data needed, such as average traffic speed and 

road grade on a link-by-link basis, and the model 

performance. As a common intelligent transportation 

system (ITS) application, this paper presents a 

comparative assessment of mesoscopic energy 

consumption models for BETs developed using three 

different machine learning techniques. The results show 

that the random forest (RF) regression outperforms the 

extreme gradient boosting (XGBoost), the light gradient-

boosting machine (LightGBM), as well as the conventional 

linear regression as evidenced by the resulting model 

having a higher coefficient of determination (R2) value 

than that of its counterparts. When applied to the 

simulated dataset, the RF regression can capture the 

behaviors of BET energy consumption well where the R2 

value of the resulting model is 0.94. 

Keywords—Battery Electric Truck , random forest regressor, 

mesoscopic model, XGBoost, LightGBM, intelligent 

transportation system. 

I. INTRODUCTION 

Transportation is essential to the everyday life of people.  
At the same time, vehicles are one of the major sources of air 
pollution [1, 2]. Reducing the pollution footprint from vehicles 
has been a topic of research in academia for many years. One 
possible solution is to increase the use of electric vehicles in 
place of the ones that consume fossil fuels. The reason is 
because not only do electric vehicles reduce pollution, but they 
also save money [3]. The advancement in battery technology 
has made it more common to see electric cars on the roads 
today. However, it is more difficult to electrify the heavy-duty 
truck sector. Heavy-duty battery electric trucks (BETs) are still 

 

 
 

few and far between, and are being researched to make them 
more available. Some reasons as to why BETs are harder to 
adopt are because they have a shorter driving range than their 
diesel counterparts, and at the same time it takes longer time 
to charge them. Given the limited driving range, it is important 
to understand energy consumption characteristics of BETs so 
that routes can be planned and make the most out of the trucks. 

In research, there are a variety of electric vehicle energy 
consumption models [4-10]. Many of these models follow the 
white box approach, meaning that they are developed with 
known physical parameters and behaviors. A drawback of 
these models is their complexity, which makes them difficult 
to develop and apply [11]. In contrast, black box models (e.g., 
those based on machine learning, a common application in 
Intelligent Transportation Systems (ITS)) are faster to create 
because they are based on experimental data and some data 
processing [12,13].  While these models are sometimes 
criticized for not being able to be interpreted completely [14], 
the fact that they can be trained and developed faster, making 
them more appealing in their use in a variety of applications 
including vehicle routing, range estimation, etc., which are 
important for many ITS research topics such as eco-routing 
and charging planning [15-20]. To date, however, there has 
been very few studies that apply machine learning techniques 
to develop mesoscopic energy consumption models 
specifically for heavy-duty BETs. 

Previously, we developed mesoscopic energy consumption 
models for BETs using a machine learning technique called 
random forest (RF) regression [21]. The models performed 
better than the ones developed with the traditional linear 
regression and showed that it is possible to capture nonlinear 
behavior. The coefficient of determination (R2) values for the 
RF regression models were 0.86-0.89 as compared to 0.50-
0.52 for the linear regression models. However, there is room 
for improvements on the previous models. The objective of the 
research presented in this paper was, therefore, to improve the 
performance of mesoscopic energy consumption models for 
BETs in several ways. First, we made some changes to the data 
processing procedures to generate better input data for the 
models. Second, we applied other machine learning techniques 
to develop the models and compared the results with those 
from RF and linear regressors. This helped us assess how 
different black box models perform on the same dataset and 
identify the machine learning technique most suitable for 
modeling BET energy consumption. Lastly, since black box 
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models are entirely data driven, we examined the 
interpretability of the models under various conditions.  

II. METHODOLOGY 

This section introduces the different datasets utilized for 
the different models within the paper. There are two main 
datasets utilized. The first dataset comes from logging vehicle 
activity and energy consumption data directly from real-world 
heavy-duty trucks and the second dataset comes from a 
simulation of BET energy consumption based on the real-
world heavy-duty truck activity using a microscopic BET 
powertrain model. The main reason for creating the simulated 
dataset is to be able to incorporate cargo weight as a variable 
in the mesoscopic models as it is not available in the real-world 
dataset. Mesoscopic models developed in this research relate 
the BET energy consumption required to traverse a roadway 
link with variables that are generally available on a link-by-
link basis such as average traffic speed and road grade. These 
variables have a high impact in the energy consumption of 
BETs [22-24]. The main difference between the different 
models developed is the machine learning technique used to 
predict BET energy consumption on any roadway links.  

A.  Data 

The first dataset comprises real-world vehicle activity and 
energy consumption data obtained from heavy-duty trucks in 
California. Specifically, these data were collected from a 
group of 2020 model year class 8 trucks doing drayage 
operations at the port of Los Angeles. Each truck’s data were 
collected over a period of 1-2 months using a combination of 
GPS and engine control unit (ECU) data loggers. The setup 
was designed to record GPS data—including timestamp, 
speed, latitude, longitude, and altitude—as well as selected 
ECU parameters at a rate of 1 Hz. The GPS data were used to 
perform map matching with a digital map to identify the 
roadway link and road grade associated with each data point. 

The second dataset was generated by simulating the energy 
consumption of a BET following the second-by-second 
vehicle activity in the first dataset at different levels of cargo 
weight. The simulation utilized a microscopic BET powertrain 
model that needs certain information about the BET and its 
activity. Some of the data needed were second-by-second 
vehicle speed, acceleration, and road-grade. The data were fed 
into Equation (1) to obtain the tractive power of the BET and, 
subsequently, BET energy consumption was calculated. Table 
1 provides the values of the different model parameters. More 
details about the microscopic BET powertrain model are 
available in [30].  

Wtract = m·v·a + ⅟2 ρ· Cd· Af·v3 + m·g· Crr·v·cos(Ɵ) + 

m·g·v·sin(Ɵ)                                                                    (1) 

 
where v is instantaneous speed; a is instantaneous 

acceleration; Ɵ is angle of the inclination of the road (road 
grade); ρ is air density; Cd is drag coefficient; Af is BET frontal 
area, Crr is coefficient of rolling resistance of the BET tires; g 
is gravity; and m is mass of the BET and cargo combined. 

Unlike conventional diesel trucks, BETs can recover some 
energy through regenerative braking when Equation (1) 
outputs a negative value. The consideration of regenerative 
braking energy in mesoscopic BET energy consumption 

models makes the models more complex and highly nonlinear, 
which are suitable for data-driven, machine learning 
techniques. 

TABLE 1. PARAMETER LIST FOR TRACTIVE POWER EQUATION 
 

Parameter Symbol Value 

Front area (m2) Af 10 

Rolling resistance coefficient Crr 0.008 

Aerodynamic drag coefficient Cd 0.56 

Air density ρ 1.161 

gravity g 9.8 

 

B. Data Processing 

Initial data filtering was performed on the second-by-
second data points. A close inspection of the dataset indicated 
that there were data points with power of over 350 Kilowatts, 
which is the rated capacity of the electric motor of the BET. 
Thus, these data points were removed. Other data points that 
did not make sense in the physical world were also removed. 
An example of such points is regeneration when the vehicle is 
accelerating while going uphill.  

Given the nature of roads, a roadway link may be long 
enough to have significant changes in road grade. Different 
road grade values could potentially affect BET energy 
consumption. To address this issue, links were split based on 
different criteria. For instance, it was assumed that a BET 
would have similar energy consumption behavior if the road 
grades are within certain bins. An example would be a flat 
road. If the road grade values of a link were within -0.5 to 0.5 
percent, then we assumed that the BET energy consumption 
would be similar within that part of the link. If the same link 
contained road grade values within other bins (e.g., 0.5 to 1.5 
percent), then the map matching procedure would split that 
link into sub-links according to the different road grade bins. 
Additionally, within a sub-link it is necessary to determine the 
average road grade as road grade values on the sub-link may 
not be uniform. The average road grade, ḡ, was obtained by 
calculating the length of each second-by-second road grade 
value within the sub-link and performing a weighted average 
based on the distance. A similar approach was taken to obtain 
the average velocity, ῡ, within each sub-link. The weighted 
average helped stabilize the speed and road-grade profiles. 

Sub-links required another layer of filtering. The length of 
second-by-second data indicated how long the truck spent on 
a sub-link. Some of the sub-links were very short, lasting just 
one or a few seconds. While it is possible to encounter short 
links, keeping many one-second links would make our models 
be more biased towards low energy consumption as the 
aggregated energy would only come from one point of data. 
Empirically, it was determined that sub-links below ten 
seconds should be removed. Additionally, as mentioned 
before, each sub-link contains its own average speed, road 
grade, weight, and energy consumption rate (in kwh/mile). 
This allowed us to plot BET energy consumption rate as a 
function of these variables. While most of the data could be 
grouped together, there were instances where outliers may be 
present, which in turn would cause the models to have lower 
performance. The solution to the outliers of data was to use a 
3D interquartile range (IQR) on different subsets or bins of the 
data. An example of a 3D bin is the energy consumption for 
the speed between 5 and 10 mph, with the road grade between 
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-0.5 and 0.5 percent, and the weight of 30,000 lbs. IQR 
statistics for each 3D bin were calculated, which allowed us to 
identify and remove the outliers, resulting in less noisy data.  

C. Model Development 

The three machine learning algorithms used were RF 
regression, XGBoost, and lightGBM. These algorithms were 
chosen because, as ensemble algorithms, they can combine 
different techniques, which allows them to capture non-linear 
relationships [25]. XGBoost is a gradient-boosted decision 
tree, which is very efficient for regression problems [26]. As 
an ensemble algorithm, it uses different machine learning 
techniques to obtain a better model. Its parallel nature makes 
it faster than other algorithms. LightGBM is similar to 
XGBoost as they both use the same strategy for their 
predictions [27]. The main difference lies in the 
implementation of the construction of trees. This difference 
can lead to very different results in the prediction performance.  

The mesoscopic models use link-level input data such as 
average speed and road grade to predict the corresponding 
BET energy consumption rate (in kwh/mile) on a particular 
roadway link. Then, the energy consumption rate can be 
multiplied by the link distance to obtain the energy 
consumption required for the BET to traverse the link. In 
addition to the three machine learning-based models, a model 
based on linear regression was also developed for comparison.  

The dataset includes a limited number of features or 
predictors (average speed, road grade, and total weight). 
However, it is possible to create additional features, for 
instance, by multiplying average speed and average road 
grade. In Equation (1), some of the variables are higher order 
terms of speed or interaction terms between speed and road 
grade. For this reason, we created higher order features of 
these variables. However, it would be undesirable to train a 
model that has a near infinite number of features. In order to 
avoid this issue, it was necessary to identify key features that 
would provide the most important information for the model. 

There are multiple feature selection algorithms. For 
instance, for many machine learning techniques, permutation 
importance is used to select prospects that contribute the most 
information to the model [28].  In the case of RF regression, 
the algorithm takes all the features at once and creates a 
baseline R2 value. It then proceeds to permute the column 
values of a single feature and test how that changes the 
baseline value. Finally, only the features that improve or affect 
the baseline value are kept and used for the final training. The 
process identified the 13 features in Table 2 as the most 
important in our prediction problem. Figure 1 shows the 
importance of the different features. It can be seen that feature 
1 (average road grade) has the highest importance while 
feature 6 (weight), despite having lower importance than the 
other features, is still relevant in the model. A similar approach 
was taken for the rest of the machine learning-based models. 

Since we also wanted to compare the machine learning-
based models with the model developed using traditional 
linear regression, we performed stepwise linear regression, 
and the results r are given in Table 3. The model has an R2 
value of 0.55. In this model, both average road grade and 
weight are an important feature and have a positive coefficient. 
This is expected because as the weight carried by the BET 

increases, its energy consumption per unit distance should also 
increase at any given average speed and average road grade. 

Table 2. FEATURE NAME AND SYMBOL FOR RANDOM FOREST REGRESSOR 
 

FEATURE NAME SYMBOL 

FEATURE 0 ῡ 

FEATURE 1 ḡ 

FEATURE 2 ῡ
2

 

FEATURE 3 ῡ ⋅ ḡ 

FEATURE 4 ῡ
3

 

FEATURE 5 ῡ
4

 

FEATURE 6 𝑤 

FEATURE 7 ḡ
2

 

FEATURE 8 ῡ
2 ⋅ ḡ 

FEATURE 9 ῡ ⋅ ḡ2 

FEATURE 10 ῡ
2 ⋅ ḡ2 

FEATURE 11 ῡ
3 ⋅ ḡ 

FEATURE 12 ῡ ⋅ ḡ3 

 

 
Figure 1. Importance of the different features in the simulated dataset 

 
TABLE 3. COEFFICIENTS OF THE STEPWISE REGRESSION MODEL FOR 

SIMULATED DATA 

 

Feature b p-val Standard error 

ḡ  0.7753 0 0.064 

ῡ -0.2355 0 0.010 

ῡ2  0.0035 0 0.000 

𝑤  4.196e-05 0 4.43e-06 

ῡ ⋅ ḡ3  0.0028 0 0.001 

 

III. RESULTS AND DISCUSSION 

A.  Model Performance 

The first trained model used the XGBoost algorithm. We 
used an R2 value to check how well the models had been 
trained. The model was tested using 4-fold cross validation. 
The average R2 value of this model was 0.84. It is known that 
driving behavior can significantly affect vehicle energy 
consumption [29, 30]. Some possible sources of error can be 
attributed to XGBoost not being able to capture some 
characteristics of BET energy consumption. This can be 
visualized in Figure 2. Most of the predicted values overlap 

3

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 31,2024 at 19:31:51 UTC from IEEE Xplore.  Restrictions apply. 



  

with the observed data but there are still regions not well 
captured, especially on the extreme ends of energy 
consumption rate. 

The second trained model used the lightGBM algorithm. 
Again, 4-fold cross validation was used to assess model 
performance. The average R2 value of this model was 0.72. 
Even though lightGBM is also a gradient boosting algorithm, 
the performance was lower than XGBoost, as shown in Figure 
3. This is due to the implementation of both algorithms. While 
both use the same technique to solve a problem, the 
implementation of that technique in the two algorithms is 
different in nature [27]. 

 

Figure 2. XGBoost model result. Green dots are the observed (simulated) 

BET energy consumption rates and red dots are the predicted data. 

 

 
Figure 3. LightGBM model results. Green dots are the observed (simulated) 

BET energy consumption rates and red dots are the predicted data. 

 

 
Figure 4. RF model result. Green dots are the observed (simulated) BET 

energy consumption rates and red dots are the predicted data 

 

The third model was trained using the RF regression 
algorithm described in [32]. Similar to the previous models, a 
4-fold cross validation was used to evaluate model 
performance. The average R2 value of this model was 0.94, 
which is the highest among all three machine learning-based 
models. This was expected as random forest is known to 
perform well with non-linear data. Still, it is not able to capture 
the behavior of the data entirely, as shown in Figure 4.  

The ability of BET to recover some energy through 
regenerative braking makes it harder for the developed models 
to predict link-level BET energy consumption rates accurately. 
The BET energy consumption rate on a roadway link is highly 
dependent on the characteristics of its second-by-second speed 
profile on that link. Specifically, if the second-by-second 
speed profile includes frequent braking events, then the 
corresponding link-level energy consumption rate would be 
low or even negative. On the other hand, if the second-by-
second speed profile includes mostly acceleration events, then 
the corresponding link-level energy consumption rate would 
be very high, even though its average speed is the same as for 
the other speed profile. According to the observed (simulated) 
data in Figures 2-4, the variation in energy consumption rate 
is highest for the average speed of 10 to 20 mph. This is 
because this range of average speed usually involves stop-and-
go driving in congested traffic. 

A summary of R2 values and mean squared error (MSE) 
for all the models is given in Table 4. The main difference 
between the model in [21] and the current model is the filtering 
and data processing. The extra filtering at the link-level 
removed noise that would not be identified otherwise. This 
helped the model to achieve better performance. The table 
indicates that the use of the machine learning techniques 
results in a higher model performance over traditional methods 
such as linear regression. This is expected as linear regression 
is known to perform poorly on data that is noisy, something 
that machine learning techniques are more capable of 
overcoming. 

TABLE 4. SUMMARY OF THE RESULTS FOR DIFFERENT MODELS  

 

Model R2  MSE 

(kWh/mile)^2 

Previous random forest model [21] 0.89 0.43 

New random forest model 0.94 0.40 

XGBoost model 0.84 0.78 

lightGBM model 0.72 1.18 

Linear regression model 0.55 1.45 

B.  Model Interpretability 

Even if the models perform well in predicting link-level 

BET energy consumption rates, it is important to check if the 

models behave in a way that is explainable in a physical sense. 

Therefore, we decided to examine the RF model, our highest 

performing model, under different scenarios. Figure 5 shows 

predicted BET energy consumption rate as a function of 

average speed for an average road grade of 0 percent at 

different weights. Intuitively, the heavier weight carried by a 

BET, the more energy is needed to operate it. The graphs 

generally agree with this intuition except around 15 mph 
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where the energy consumption rates seem to be dominated by 

energy regeneration from braking. 

In addition, the graphs show that BETs would have 

relatively lower energy consumption rates between 30 and 50 

mph, which is similar to the trend observed in [31]. On the 

other hand, unlike in [31], the trend of the graph between 0 

and 15 mph is not as smooth. This is because the second-by-

second speed profiles in this range of average speed have 

more fluctuation, as evidenced by the distributions of 

acceleration in Figure 6. Such noisy speed profiles cause the 

link-level energy consumption rates to be more varied. 

 

Figure 5. BET energy consumption rate vs. average speed 
 

 
Figure 6. Acceleration distribution of different speed bins 

 

The next variable to be examined is the average road grade. 

Figure 7 depicts predicted BET energy consumption rate as a 

function of average road grade at different velocities for a 

fixed weight of 50,000 lbs. Negative grade is as expected 

because going faster will regen more when braking. 

Furthermore, when the truck is climbing grade, there is less 

regen (slow down mainly to gravity and less braking), and that 

makes the energy consumption change back to what 

conventional diesel trucks behave (i.e., around 40 mph is the 

lowest energy consumption). 

The last variable to be examine is weight. Figure 8 shows 

predicted BET energy consumption rate as a function of the 

combined weight of BET and cargo for an average speed of 

60 mph at different levels of average road grade. As expected, 

when a BET is on downhill, it would mostly recover energy 

from regenerative braking, and the heavier weight it carries, 

the more energy it will generate. The trend is opposite when 

a BET is going uphill. However, the trend when a BET is on 

a flat road is counterintuitive where the graph indicates that it 

would consume less energy if carrying a heavier weight. This 

unexpected trend warrants further investigation in the future. 

 

 
Figure 7. BET energy consumption rate vs. average road grade 

 

 
Figure 8. BET energy consumption rate vs. weight 

IV. CONCLUSIONS AND FUTURE WORK 

This paper presents four different mesoscopic models for 

predicting the energy consumption of battery electric trucks, 

an important pre-cursor for ITS strategies. The main 

contribution is the development of these models using three 

different black-box machine learning techniques and 
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comparing them against each other as well as against the 

model developed with the traditional linear regression. 

Indeed, the machine learning-based models outperform the 

linear regression model due to their nature of being able to 

learn from nonlinear data and at the same time be more robust 

to noise. It was found that random forest regression produced 

the most accurate results out of all the different models with 

an average R2 value of 0.94. The model also showed that it 

largely agreed with the physical phenomena that would be 

expected of battery electric trucks. This model can be used in 

a variety of BET applications, for example, predicting the 

remaining range, finding the most energy-efficient route, and 

estimating the charging need when arriving back at the depot. 

In the future, we will explore incorporating additional 

variables affecting BET energy consumption that can be 

easily obtained, such as ambient temperature, into the model. 

We will also account for powertrain component efficiencies 

development of the model. Additionally, we will apply the 

developed model to some of the applications mentioned 

above to demonstrate the practicality and utility of the model. 
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