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Abstract — Electrifying the ride-hailing services has the
potential to significantly reduce greenhouse gas emissions in
the shared mobility sector. However, these emission
reduction benefits depend on the utilization of EVs to serve

trip requests, especially during the fleet electrification process.

In this paper, we evaluated the performance and emission
impacts of ride-hailing service with three dispatching policies
and various EV penetration levels in the ride-hailing fleet. A
large-scale simulation platform was developed for the city of
San Francisco in SUMO to enable the application of ride-
hailing, electric vehicle charging, and idle vehicle
repositioning. Simulation results indicate that with a 60%
EVs in the simulated fleet, the off-peak EV priority policy and
off-peak EV only policy can reduce CO; emissions by 32% -
40% while preserving the mobility performance in terms of
deadheading, total travel distance, and average rider pick-up
time. It is important for ride-hailing platforms to increase the
zero-emission rides and encourage ride pooling to comply
with California’s Clean Miles Standard.

I. INTRODUCTION

Transportation network companies (TNCs), such as Uber
and Lyft, have significantly changed personal travel patterns
and reshaped the transportation sector. As of 2023, over 7.6
billion trips were fulfilled by Uber globally with 130 million
monthly active users [1]. In San Francisco, Uber and Lyft
have served approximately 15% of person trips [2]. The fast-
growing TNC business may bring new issues, including urban
city congestion, excessive energy consumption and pollutant
emissions due to deadheading mileage, substitution of public
transit, and induced travel demand. An analysis conducted by
the Union of Concerned Scientists estimated that TNC rides
produce 69% more greenhouse gas emissions compared to the
individual trips that riders might make on their own [3]. An
empirical data analysis based on 1.5 million individual rides
from Austin found 41% - 90% more energy consumption by
TNC ride-hailing trips even under the scenario where TNC
has high fleet efficiency and high share of pooled rides [4].

Accelerating vehicle electrification is a key strategy to
decarbonize the transportation sector while prioritizing the
ride-hailing fleet electrification could bring more
environmental and societal benefits due to the high daily
driving mileage of ride-hailing vehicles. Based on the 1.4
million ride-hailing trips data provided by TNCs, Jenn et al.
found that the emission benefits of electrifying a ride-hailing
vehicle are three times higher than those from electrifying a
regularly used vehicle in California [5] and up to 5 times
when considering the cleaner grid development [6]. Mohan et
al estimated that electrification of Uber and Lyft can reduce
the life cycle GHG emissions per trip by 40% - 45% [7].
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Additionally, the lower operating/maintaining cost of EVs is
attractive to drivers with high driving mileage. Taiebat et al
utilized a Total Cost of Ownership method to model the EV
cost in a ride-hailing service [8]. Results show that a BEV
with an annual 10,000 VMT under a 10,000 subsidy and over
a five-year commitment period, costs 29% less than an ICEV.
In addition, more EVs in the TNC fleet can boost the
utilization rate of fast charging stations, which can stabilize
charging prices and improve the expansion of DCFC stations
[9]. Another non-trivial benefit is that EVs on the TNC
platform broaden consumer exposure to EVs and increase
public awareness of EV technology and experiences [9].

Consistent with the trend of vehicle electrification, top
transportation network companies (TNCs) such as Uber and
Lyft, have announced multiple plans to support the transition
to a zero-emission platform by 2030 [10], [11]. Uber has
partnered with EvGo and Wallbox to provide the fast-
charging solution and all-in-one home smart EV-charging
option. Drivers with battery electric vehicles are eligible for
$1 incentive per ride. More than 37700 ZEV active drivers on
the road as reported by Uber, which represents a 4-fold
increase over the same period a year ago [1]. As directed by
Senate Bill (SB) 1014, the California Air Resources Board
(CARB) developed the Clean Miles Standard and Incentive
Program, a first-of-its-kind regulation designed to reduce
GHG emissions from TNC vehicles and increase the use of
zero-emission vehicles (ZEV) [12]. The primary objectives of
the Clean Miles Standard (CMS) are to increase the
percentage of total miles driven by TNC using ZEVs, and to
reduce GHG emissions per passenger mile traveled. The
TNCs with 5 million annual VMT are required to comply with
this regulation starting from 2023 [12].

However, with the enforcement of California’s CMS, it is
still unclear about the potential mobility and environmental
impact of different TNC operation strategies (as considered
part of Intelligent Transportation Systems) and how TNCs
could meet the requirements while maintaining high service
quality. To bridge this gap, we developed an optimization-
based simulation platform to actively explore feasible and
eco-friendly vehicle dispatching policies. The contributions
can be briefly summarized as follows. Firstly, a large-scale
ride-hailing simulation platform was developed in a
microscopic traffic simulator, SUMO, with a high-resolution
city network, charging stations, parking areas, ride demand as
inputs in the city of San Francisco. Secondly, multiple fleet
dispatching policies were tested under the fleet electrification
process. Thirdly, we evaluated the performance of TNC
services and specifically quantified the greenhouse gas
emission and eVMT share targets to discover the TNC
operation requirements in order to comply with the CMS.
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II. DATASET

A. San Francisco Network

The San Francisco network was first obtained from
OpenStreetMap (OSM). To simulate the real-world traffic
status, we further calibrated the OSM link speed according to
the Uber movement dataset [13] which provide the link-level
daily average speed of Uber driver across the city. According
to SFCTA, the TNC vehicles were reported to cause a 15%
average speed reduction [14]. We first multiplied a ratio of
1.15 with the Uber speed dataset to offset the speed reduction
incurred by TNC vehicles so that the network average speed
can converge to the real-world Uber speed in the simulation.
SUMO network speed was calibrated by mapping the Uber
speed with the same link according to osmID. Only 53% of
speed data from the Uber movement data can be mapped to the
OSM network because Uber used an older version of OSM.
This poses a challenge to map the Uber movement data since
some osmID change or disappear as roads are split, combined,
newly built, or removed. For those unmatched links, we kept
the free flow speed from the OSM network.

B. Charging Stations and Parking Areas

The public charging station data in San Francisco (SF) was
obtained from the Alternative Fuels Data Center including
location, number of chargers, and power level [15]. Currently,
SF has 124 DC fast chargers. However, due to our sampling
process of the TNC travel demand and the TNC vehicles
(explained in the following sections), 25 charging stations
with 50 KW rated power were imported into SUMO.

The SUMOActivityGen tool was used to generate the taxi
parking stands inside the city [16]. A total of 60 taxi stands
were extracted. The taxi parking stands were used as idling
places for TNC vehicles in the simulation. As an example,
i presents a snapshot of the simulation environment.
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Figure 1. SF network with charging stations (yellow circle with C),
parking areas (blue circle with P), TNC vehicles (yellow vehicles are GVs,
green vehicles are EVs) and riders (dark blue triangles).

C. TNC Demand

San Francisco County Transportation Authority (SFCTA)
released a dataset from the 2017 TNC Today study which
provided the hourly pickup and drop-off numbers in 981
traffic analysis zones (TAZ) in San Francisco [2]. The raw
dataset collected from the Uber and Lyft APIs was not
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publicized. We instead relied on the hourly pick-up and drop-
off statistics to generate the origin-destination (OD) matrix
and then used the od2trips tool in SUMO to generate TNC
trips. To further ensure the trips’ connectivity, we utilized
DUARouter (dynamic user assignment router) [17] to validate
each trip and deleted the unconnected trips. Tuesday’s
statistic was selected to generate the travel demand which
indicates 150,200 TNC trips over 24 hours. Each trip has the
features of origin, destination, trip request time. As shown in
Figure 2, the generated TNC trips preserve the spatial patterns
from the real-world data. Most of the ride requests are
occurred in the northeast quadrant of SF, which is the most
congested area in the city. In this study, we simulated the
TNC trips from 8 am - 9 pm covering both morning peak and
evening peak, with a 20% sample (21754 trips) to reflect a
certain level of TNC service and avoid excessive
computational time in the microscopic simulation.
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Figure 2. The spatial patterns of TNC today data (left) [2] and generated
trips in SUMO (right).

D. Ride-Hailing Fleet

The fleet size is critical to serve the demand through the
operating hours. There are around 5000 hourly active drivers
in San Francisco with all TNC trips [2]. With the sampled 20%
of TNC trips in this simulation study, we set the fleet size to
be fixed at 1000. To ensure fair comparisons, all vehicles were
loaded into the simulation in the first hour. TNC fleet
electrification process was simulated by setting the EV ratio in
the mixed fleet ranging from 10% to 90%, with a 10%
increment interval.

EVs are assumed to be typical, such as a Kia Soul EV 2020
with calibrated energy consumption parameters provided by
SUMO [17], which considers air drag efficiency propulsion
efficiency, radial drag coefficient in its energy model. The
maximum battery capacity is 64 kwh. We assumed 50% of
EVs in the mixed fleet have the home charge option, thus
starting the shift with a 100% SOC. While other EVs’ initial
SOC was generated with a normal distribution with a mean of
32 kwh and variance of 5 kwh. Gasoline Vehicles (GVs) are
assumed to have a full tank of fuel.

We set the charging threshold R, to be 10% of SOC to
ensure the vehicle can reach an assigned charging station. This
parameter can be tuned according to the driver’s preference or
the platform’s consideration. The charging rate will decrease
when SOC approaches to 100%. In the simulation, when an
EV reaches 80% SOC at the charging station, it will be
available again and wait for new rider assignment.
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Figure 3. SUMO simulation framework for TNC mixed fleet dispatching, charging station assignment and repositioning

III. METHODOLOGY

In this section, we described the methodology to simulate
the TNC ride-hailing service by first presenting the simulation
framework. Next, three key modules were explained in detail,
including charging station assignment, mixed fleet
dispatching, and idle vehicle repositioning.

A. Simulation Framework

The simulation platform was constructed with SUMO,
which is an open-source, microscopic and continuous traffic
simulation software [17]. The newly added Taxi module,
Electric module, and charging station module make it possible
to simulate the TNC mixed fleet operational scenarios. The
overall simulation framework was presented in Figure 3.
SUMO takes the city network, charging stations, and parking
areas as inputs to load the TNC operating environment. There
are two types of vehicles in the simulation: Electric Vehicles
(EVs) and Gasoline Vehicles (GVs). TNC drivers fulfill the
customer rides according to the platform dispatching results.
Riders enter the system with their origins and destinations,
anticipating having a matched driver shortly. SUMO loads
ride requests from 8 am to 21 pm and updates the system
status every 60 seconds.

In each simulation time step, trip requests that haven’t been
responded after 5 minutes will be canceled by riders. With the
updated trip requests and driver information, the platform first
checks the EVs’ battery status and enforces EVs to charging
stations whose SOC is lower than 10% of battery. Secondly,
with a mixed fleet of vehicles, the platform dispatches drivers
to serve the travel demand. Finally, idle drivers choose to
relocate to the areas with high demand. The behavior of riders
and drivers were observed and controlled via TraCI (Traffic
Control Interface). Details about these three steps are
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provided in the following subsections. At the end of the
simulation, high-resolution trip status outputs, charging
station utilization, and emission profiles were obtained, based
on which we further analyze the performance and impacts of
TNC services.

B. Charging Station Assignment

Assuming that there are |C| available charging stations and
|[V] EVs require charging. A charging station ¢’s location is
C,. The vehicle v’s current location is vp,,s. Then the travel
time from the vehicle’s position to a charging station is
ft(Vpos) €o) - f¢ is the travel time function considering the
network traffic status. The decision variable is a binary
variable x,,., which equals 1 if charging station c is assigned
to vehicle v. Otherwise, charging station c is not selected. Let
8, = D¢ Xy to indicate whether vehicle ¢ is assigned to a
charging station. If §, = 1, then vehicle v is dispatched.
Otherwise, 6, = 0. e, is the energy required for vehicle v to
travel to charging station c. N, is the number of available
chargers at charging station c. The optimization model can be
formulated as follows:

minz Z (ft(vpos, co)) Xpe — Z B4,

Q)
VEV ceC vev

subject to
wagzvc Veec ®)
vev
vac=6v Vv eV (3)
cec
eycXye <R, VVEV,VCEC “4)
x,. €{0,1} Vv eV, VcEC %)
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This model aims to minimize the total travel time to visit
the charging stations. This objective function is designed to
allow the EVs to visit a nearby available charging station to
alleviate the range anxiety. Besides, to avoid ignoring
available charging stations, a high penalty factor B is enforced
in the objective function. Constraint (2) sets the number of
vehicles assigned to a charging station ¢ should be no more
than the available chargers N, to avoid long queues.
Constraint (3) enforces each vehicle can only be assigned to
at most one charging station. Constraint (4) guarantees the
assignment feasibility by ensuring the vehicle has enough
battery to reach the charging station. Constraint (5) defines
the decision variables.

C. TNC Mixed Fleet Dispatching

With the updated availability of drivers and ride requests, a
weighted bipartite graph can be constructed with |V|
available drivers and |R| rider requests. At time step T, if a
rider places a request at t,., then the rider waiting time is
max(0,T — t,). The travel time from vehicle v’s current
location v, to rider’s origin location is defined as
ft(Vpos: 7o), Where f; is the travel time function considering
the network traffic status. The decision variable is a binary
variable x,,,-, which takes value 1 if rider r is served by vehicle
v; otherwise, x,,,- equals 0. To simplify the model construction,
we use &, = ), X, to indicate whether rider r is dispatched.
If 6, = 1, then rider r is dispatched. Otherwise, 8, = 0. The
mixed fleet consists of m® gasoline vehicles (GV) and
m¥F electric vehicles (EVs). The indicator y, is utilized to
indicate the vehicle type. If v is an EV, then y,
0. Otherwise, y,, = 1. Then the mixed fleet dispatching model
can be formulated as follows:

minz Z (max(O, T—t)+ ft(vpos, ro)) Xy

VEV rER (6)
- Z B,
TER
subject to
waﬁl VveV (7)
TER
wa =6, VreR (8)
vev
1-y,)R, =R, Vr€R 9)
X (1= pp) S mF (10)
VEV rER
XorYy = m¢ (1D
VEV rER
Xpr 0 ¥y, €{0,1} Vr € R,VVEV (12)

This model aims to minimize the total request waiting time
and rider pick-up time to guarantee both customer equity and
system efficiency. If a request has been waiting for a long time,
then in the next time step, it will have a higher opportunity to
be matched. In this way, the platform can avoid rider
cancellation. Besides, we add an extremely high penalty B to
avoid ignoring long-waiting riders. Each vehicle will serve at
most one rider every time, and each rider will be served by at
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most one vehicle, as defined by constraints (7) and (8)
respectively. When matching a rider with an EV, the solution
is constrained by the EV’s remaining range. As stated in
constraint (9), the EV’s remaining range should be higher
than the charging threshold R, which can be customized
according to the distribution of charging stations, vehicle’s
energy efficiency, drivers’ preferences, etc. Constraints (10)
and (11) guarantee the number of dispatched EVs and GVs
complies with the fleet composition. Constraint (12) defines
the decision variables x,, and auxiliary variables 6,
according to the problem setting.

To explore the strategies that utilize EVs efficiently to
serve the ride requests, we investigated three dispatching
policies during the fleet electrification process.

e Baseline policy (B): EVs and GVs are dispatched
equally in the platform. |V| consists of all available
EVs and GVs.

e Off-peak EV Priority policy (EV Priority): During
the off-peak hours, the platform utilizes EVs with
higher priority. If EVs are not sufficient to serve all
ride requests, GVs are randomly selected and added to
the fleet set |[V|. During the morning peak and evening
peak, the platform employs the baseline policy to
dispatch riders.

e Off-peak EV Only Policy (EV Only): This policy
enforces more constrained requirements, in which
only EVs are allowed to serve ride requests during the
off-peak hours and the fleet set |V | only contains EVs.

D. Repositioning Strategy

In this module, a greedy algorithm was implemented to
search for vehicle repositioning areas. It includes two steps:

(1) Hot Zone Identification: The probability of selecting
each parking area is calculated according to the zone-
level rider number.

(2) Reposition Zone Selection: The platform selects a
parking area for each idle vehicle according to the zone
probability. It's important to note that even as the driver
is heading to an assigned parking area, the platform
retains the capability to dispatch new rider requests to the

repositioning vehicles.

E. Model Initialization

During each simulation step, the charging station
assignments model was instantiated by finding the current
locations of all EVs that need to get the battery charged and
the locations of charging stations. We queried the travel time
between the combination of all possible charging station and
EV pairs by calling the DUARouter. Similarly, in the mixed
fleet dispatching model, we first obtained all driver locations
and rider locations and then queried the travel time of all
possible combinations from the drivers’ location to the rider’s
pick-up location. The rider waiting time was calculated with
T — t,. The Gurobi solver was employed to solve these two
models optimally. Finally, idle drivers are repositioned to
high demand areas. Each driver only repositions once to wait
for the next trip assignment.
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Table 1. Scenario requirement for TNC to compliance with the CMS in year 2023(252 g CO,/PMT & 2% eVMT, colored in pink), year 2026 (161 g
C0,/PMT & 30% eVMT, colored in yellow), year 2029 (30 g CO,/PMT & 80% eVMT, colored in green)

Policy B (Baseline Policy) E_P (off- peak EV Priority) E_O (off-peak EV Only)
EV 7% 15% 30% eVMT 7% 15% 30% eVMT 7% 15% 30% eVMT
ratio pooled pooled pooled ratio pooled pooled pooled ratio pooled pooled pooled ratio
(g/pmt) | (g/pmt) | (g/pmt) (%) (g/pmt) | (g/pmt) | (g/pmt) (%) (g/pmt) | (g/pmt) | (g/pmt) (%)
10% 291 277 254 9% 340 324 297 10% 256 243 223 20%
20% 261 248 227 18% 284 270 248 22% 200 190 174 35%
30% 228 217 199 28% 220 210 192 36% 150 142 131 51%
40% 199 190 174 37% 168 160 147 49% 118 113 103 61%
50% 166 158 145 48% 115 109 100 63% 94 90 82 69%
60% 135 128 117 57% 90 86 79 71% 78 74 68 75%
70% 95 91 83 70% 61 58 53 81% 58 55 51 81%
80% 66 63 58 79% 42 40 36 87% 39 37 34 88%
90% 34 32 29 89% 21 20 18 93% 21 20 18 93%

IV. EVALUATION AND RESULTS

The SUMO simulation was run for each EV ratio (10% -
90%) in the mixed fleet according to three dispatching
policies: baseline (B), off-peak EV priority (E_P), and off-
peak EV only (E_O). A total of 27 simulation runs were
conducted, holding fixed the TNC ride demand, EV charging
behaviors and other model assumptions. In this section, we
compared the results of our simulation studies and
specifically quantified the criteria in Clean Miles Standard to
understand the compliance of it. Finally, extra simulation
studies were conducted to study the necessary redundancy of
the EV fleet during the day and explore the potential to
enforce EV only strategy across the overall simulating hours.

A. Impact Evaluation
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Figure 4. TNC system performance under three fleet dispatching policy

The four subgraphs in Figure 4 illustrate key performance
metrics: the dispatching rate (ratio of riders where a driver is
assigned to the rider within 5 minutes), rider average pickup
time, total VMT (total travel miles), and deadheading ratios
(the percentage of driving miles without a rider onboard).
Notably, the dispatching rates of B and E_P policies surpass
those of the E_O policy when the EV ratio is below 40%. This
is because the dispatching rate is heavily influenced by the
available vehicles to serve the ride requests. With a limited
number of EVs in the mixed fleet, relying solely on EVs to
fulfill ride requests during off-peak hours is impractical. The
average pickup time under both E P and E O policies is

5

initially higher than that of the baseline policy but eventually
converges to a similar level. This inefficiency is attributed to
the scarcity of EVs in the system, leading to longer distances
traveled to pick up riders. On the other hand, the E_P policy
exhibits higher VMT and deadheading ratios when the EV
ratio is lower owing to the random selection of GVs to serve
riders when there are insufficient EVs during off-peak hours.
All metrics ultimately converge to similar levels as the EV
ratio increases in the system, which underscore the potential
of implementing eco-friendly policies to efficiently serve a
larger number of riders.

B. Clean Miles Standard (CMS) Compliance

In this section, we quantified the greenhouse gas factor
(gram CO2 emission per passenger miles travelled) and the
eVMT ratio (the number of miles driven by EVs as a
percentage of total VMT). The CO2 emission rate was set as
232 g/mile, which was obtained by averaging the CO2 rates
from vehicle model years ranging from year 2008 to year
2020 provided in CMS. We then calculated the greenhouse
gas factor with equation (13). The compliance occupancy was
defined as 1.5 for non-pooled rides and as 2.5 for pooled rides
in CMS. According to TNC report 2020 in SF, 7% of trips
were successfully pooled [18]. Thus, we tested the pooled
scenarios with 7%, 15% and 30% of pooled rides with the
compliance occupancy set to be 1.57, 1.65 and 1.80.

gCo,  Y.(VMT x CO, emissionrate)
PMT ~ Y(VMT,ccupica X OCCUpPANcy)

(13)

Table 1 presents the results of greenhouse gas factor and
eVMT ratio under different dispatching policies and ride
pooling ratios. We marked the results in pink, yellow and
green color to represent the scenario which could meet with
the CMS target at year 2023, 2026, and 2029. We found that
the eVMT ratio is easier to achieve compared to the
greenhouse gas target. For example, with ev_ratio of 30%, the
E_P policy could meet the year 2026 targeted eVMT ratio of
30%. But it requires 40% - 50% of EVs in the mixed fleet to
compliance with the greenhouse gas target depending on the
ride pooling rate. The compliance of greenhouse gas target
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relies on the occupancy factors. With the 7% and 15% ride
pooling, the baseline policy is unable to comply with the CMS
at year 2029 even with 90% of EVs in the mixed fleet. These
results emphasize the importance of encouraging ride pooling
to comply with the CMS during the fleet electrifying process.

C. EV Redundancy in the Fleet
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Figure 5. EV redundancy changes with the EV-priority policy

In this section, to further explore the EV requirements to
support the TNC operation during the entire simulation hours,
we simulated the EV Priority policy for all simulation hours.
The EV redundancy is recorded in every simulation step,
which is defined as the number of available EVs minus the
number of riders at the time step. A positive value indicates
EV redundancy while a negative value indicates EV shortage.

The result is plotted in Figure 5. With EVs ratio higher than
50%, it is practical to enforce the off-peak (10 am — 16 pm)
EV only policy since the EV redundancy is above zero. When
ev_ratio is at 90%, the simulated fleet can cover the morning
peak (8 am-10 am) demand. However, it is still not sufficient
to cover the evening peak demand within the simulated
scenario as there is a negative gap between the available EVs
and travel demand. More advanced strategies should be
developed to guide the off-peak hour charging in order to
prepare the fleet for the peak demand.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simulation-based platform was developed
to model and evaluate the performance of ride-hailing
services with a mixed fleet of electric vehicles (EVs) and
gasoline vehicles (GVs). A large-scale ride-hailing simulation

has been designed in San Francisco with the SUMO simulator,

along with the charging station assignment module, mixed
fleet dispatching module, and vehicle repositioning module to
support realistic TNC operations. We evaluated the ride-
hailing service performance and its compliance with Clean
Miles Standard under different dispatching policies.
Experiment results showed that the performance of the E P
and E O policies, in terms of dispatching rate and rider
pickup time, is dependent on the available number of EVs in
the mixed fleet. With a higher penetration rate of EVs, the

performance of these two policies reaches the same level as
in the baseline policy. The compliance with the eVMT target
is much easier than that of the greenhouse gas target. Meeting
the latter objective requires a more focused effort on
encouraging ride pooling and increasing the zero-emission
rides. In the future, more realistic demand setting and
charging behavior of ride-hailing drivers will be investigated.
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