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Abstract — Electrifying the ride-hailing services has the 

potential to significantly reduce greenhouse gas emissions in 

the shared mobility sector. However, these emission 

reduction benefits depend on the utilization of EVs to serve 

trip requests, especially during the fleet electrification process. 

In this paper, we evaluated the performance and emission 

impacts of ride-hailing service with three dispatching policies 

and various EV penetration levels in the ride-hailing fleet. A 

large-scale simulation platform was developed for the city of 

San Francisco in SUMO to enable the application of ride-

hailing, electric vehicle charging, and idle vehicle 

repositioning. Simulation results indicate that with a 60% 

EVs in the simulated fleet, the off-peak EV priority policy and 

off-peak EV only policy can reduce CO2 emissions by 32% - 

40% while preserving the mobility performance in terms of 

deadheading, total travel distance, and average rider pick-up 

time. It is important for ride-hailing platforms to increase the 

zero-emission rides and encourage ride pooling to comply 

with California’s Clean Miles Standard.   

I. INTRODUCTION 

Transportation network companies (TNCs), such as Uber 

and Lyft, have significantly changed personal travel patterns 

and reshaped the transportation sector. As of 2023, over 7.6 

billion trips were fulfilled by Uber globally with 130 million 

monthly active users [1]. In San Francisco, Uber and Lyft 

have served approximately 15% of person trips [2]. The fast-

growing TNC business may bring new issues, including urban 

city congestion, excessive energy consumption and pollutant 

emissions due to deadheading mileage, substitution of public 

transit, and induced travel demand. An analysis conducted by 

the Union of Concerned Scientists estimated that TNC rides  

produce 69% more greenhouse gas emissions compared to the 

individual trips that riders might make on their own [3]. An 

empirical data analysis based on 1.5 million individual rides 

from Austin found 41% - 90% more energy consumption by 

TNC ride-hailing trips even under the scenario where TNC 

has high fleet efficiency and high share of pooled rides [4].  

Accelerating vehicle electrification is a key strategy to 

decarbonize the transportation sector while prioritizing the 

ride-hailing fleet electrification could bring more 

environmental and societal benefits due to the high daily 

driving mileage of ride-hailing vehicles. Based on the 1.4  

million ride-hailing trips data provided by TNCs, Jenn et al. 

found that the emission benefits of electrifying a ride-hailing 

vehicle are three times higher than those from electrifying a 

regularly used vehicle in California [5] and up to 5 times 

when considering the cleaner grid development [6]. Mohan et 

al estimated that electrification of Uber and Lyft can reduce 

the life cycle GHG emissions per trip by 40% - 45% [7]. 

Additionally, the lower operating/maintaining cost of EVs is 

attractive to drivers with high driving mileage. Taiebat et al 

utilized a Total Cost of Ownership method to model the EV 

cost in a ride-hailing service [8]. Results show that a BEV 

with an annual 10,000 VMT under a 10,000 subsidy and over 

a five-year commitment period, costs 29% less than an ICEV. 

In addition, more EVs in the TNC fleet can boost the 

utilization rate of fast charging stations, which can stabilize 

charging prices and improve the expansion of DCFC stations 

[9]. Another non-trivial benefit is that EVs on the TNC 

platform broaden consumer exposure to EVs and increase 

public awareness of EV technology and experiences [9]. 

Consistent with the trend of vehicle electrification, top 

transportation network companies (TNCs) such as Uber and 

Lyft, have announced multiple plans to support the transition 

to a zero-emission platform by 2030 [10], [11]. Uber has 

partnered with EvGo and Wallbox to provide the fast-

charging solution and all-in-one home smart EV-charging 

option. Drivers with battery electric vehicles are eligible for 

$1 incentive per ride. More than 37700 ZEV active drivers on 

the road as reported by Uber, which represents a 4-fold 

increase over the same period a year ago [1]. As directed by 

Senate Bill (SB) 1014, the California Air Resources Board 

(CARB) developed the Clean Miles Standard and Incentive 

Program, a first-of-its-kind regulation designed to reduce 

GHG emissions from TNC vehicles and increase the use of 

zero-emission vehicles (ZEV) [12]. The primary objectives of 

the Clean Miles Standard (CMS) are to increase the 

percentage of total miles driven by TNC using ZEVs, and to 

reduce GHG emissions per passenger mile traveled. The 

TNCs with 5 million annual VMT are required to comply with 

this regulation starting from 2023 [12]. 

However, with the enforcement of California’s CMS, it is 

still unclear about the potential mobility and environmental 

impact of different TNC operation strategies (as considered 

part of Intelligent Transportation Systems) and how TNCs 

could meet the requirements while maintaining high service 

quality. To bridge this gap, we developed an optimization-

based simulation platform to actively explore feasible and 

eco-friendly vehicle dispatching policies. The contributions 

can be briefly summarized as follows. Firstly, a large-scale 

ride-hailing simulation platform was developed in a 

microscopic traffic simulator, SUMO, with a high-resolution 

city network, charging stations, parking areas, ride demand as 

inputs in the city of San Francisco. Secondly, multiple fleet 

dispatching policies were tested under the fleet electrification 

process. Thirdly, we evaluated the performance of TNC 

services and specifically quantified the greenhouse gas 

emission and eVMT share targets to discover the TNC 

operation requirements in order to comply with the CMS.  
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II. DATASET 

A. San Francisco Network 

The San Francisco network was first obtained from 
OpenStreetMap (OSM). To simulate the real-world traffic 
status, we further calibrated the OSM link speed according to 
the Uber movement dataset [13] which provide the link-level 
daily average speed of Uber driver across the city. According 
to SFCTA, the TNC vehicles were reported to cause a 15% 
average speed reduction [14]. We first multiplied a ratio of 
1.15 with the Uber speed dataset to offset the speed reduction 
incurred by TNC vehicles so that the network average speed 
can converge to the real-world Uber speed in the simulation. 
SUMO network speed was calibrated by mapping the Uber 
speed with the same link according to osmID. Only 53% of 
speed data from the Uber movement data can be mapped to the 
OSM network because Uber used an older version of OSM. 
This poses a challenge to map the Uber movement data since 
some osmID change or disappear as roads are split, combined, 
newly built, or removed. For those unmatched links, we kept 
the free flow speed from the OSM network. 

B. Charging Stations and Parking Areas 

The public charging station data in San Francisco (SF) was 

obtained from the Alternative Fuels Data Center including 

location, number of chargers, and power level [15]. Currently, 

SF has 124 DC fast chargers. However, due to our sampling 

process of the TNC travel demand and the TNC vehicles 

(explained in the following sections), 25 charging stations 

with 50 KW rated power were imported into SUMO.  

The SUMOActivityGen tool was used to generate the taxi 

parking stands inside the city [16]. A total of 60 taxi stands 

were extracted. The taxi parking stands were used as idling 

places for TNC vehicles in the simulation. As an example, 

Figure 1 presents a snapshot of the simulation environment.  

 
Figure 1. SF network with charging stations (yellow circle with C), 

parking areas (blue circle with P), TNC vehicles (yellow vehicles are GVs, 

green vehicles are EVs) and riders (dark blue triangles). 

C. TNC Demand 

San Francisco County Transportation Authority (SFCTA) 

released a dataset from the 2017 TNC Today study which 

provided the hourly pickup and drop-off numbers in 981 

traffic analysis zones (TAZ) in San Francisco [2]. The raw 

dataset collected from the Uber and Lyft APIs was not 

publicized. We instead relied on the hourly pick-up and drop-

off statistics to generate the origin-destination (OD) matrix 

and then used the od2trips tool in SUMO to generate TNC 

trips. To further ensure the trips’ connectivity, we utilized 

DUARouter (dynamic user assignment router) [17] to validate 

each trip and deleted the unconnected trips. Tuesday’s 

statistic was selected to generate the travel demand which 

indicates 150,200 TNC trips over 24 hours. Each trip has the 

features of origin, destination, trip request time. As shown in 

Figure 2, the generated TNC trips preserve the spatial patterns 

from the real-world data. Most of the ride requests are 

occurred in the northeast quadrant of SF, which is the most 

congested area in the city. In this study, we simulated the 

TNC trips from 8 am - 9 pm covering both morning peak and 

evening peak, with a 20% sample (21754 trips) to reflect a 

certain level of TNC service and avoid excessive 

computational time in the microscopic simulation. 

 

 
Figure 2. The spatial patterns of TNC today data (left) [2] and generated 

trips in SUMO (right). 

D. Ride-Hailing Fleet 

The fleet size is critical to serve the demand through the 
operating hours. There are around 5000 hourly active drivers 
in San Francisco with all TNC trips [2]. With the sampled 20% 
of TNC trips in this simulation study, we set the fleet size to 
be fixed at 1000. To ensure fair comparisons, all vehicles were 
loaded into the simulation in the first hour. TNC fleet 
electrification process was simulated by setting the EV ratio in 
the mixed fleet ranging from 10% to 90%, with a 10% 
increment interval. 

EVs are assumed to be typical, such as a Kia Soul EV 2020 
with calibrated energy consumption parameters provided by 
SUMO [17], which considers air drag efficiency propulsion 
efficiency, radial drag coefficient in its energy model. The 
maximum battery capacity is 64 kwh. We assumed 50% of 
EVs in the mixed fleet have the home charge option, thus 
starting the shift with a 100% SOC. While other EVs’ initial 
SOC was generated with a normal distribution with a mean of 
32 kwh and variance of 5 kwh. Gasoline Vehicles (GVs) are 
assumed to have a full tank of fuel.  

We set the charging threshold 𝑅𝑐  to be 10% of SOC to 
ensure the vehicle can reach an assigned charging station. This 
parameter can be tuned according to the driver’s preference or 
the platform’s consideration. The charging rate will decrease 
when SOC approaches to 100%. In the simulation, when an 
EV reaches 80% SOC at the charging station, it will be 
available again and wait for new rider assignment.  
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Figure 3. SUMO simulation framework for TNC mixed fleet dispatching, charging station assignment and repositioning 

 

 III. METHODOLOGY  

In this section, we described the methodology to simulate 

the TNC ride-hailing service by first presenting the simulation 

framework. Next, three key modules were explained in detail, 

including charging station assignment, mixed fleet 

dispatching, and idle vehicle repositioning.  

A. Simulation Framework 

The simulation platform was constructed with SUMO, 

which is an open-source, microscopic and continuous traffic 

simulation software [17]. The newly added Taxi module, 

Electric module, and charging station module make it possible 

to simulate the TNC mixed fleet operational scenarios. The 

overall simulation framework was presented in Figure 3. 

SUMO takes the city network, charging stations, and parking 

areas as inputs to load the TNC operating environment. There 

are two types of vehicles in the simulation: Electric Vehicles 

(EVs) and Gasoline Vehicles (GVs). TNC drivers fulfill the 

customer rides according to the platform dispatching results. 

Riders enter the system with their origins and destinations, 

anticipating having a matched driver shortly. SUMO loads 

ride requests from 8 am to 21 pm and updates the system 

status every 60 seconds.  

In each simulation time step, trip requests that haven’t been 

responded after 5 minutes will be canceled by riders. With the 

updated trip requests and driver information, the platform first 

checks the EVs’ battery status and enforces EVs to charging 

stations whose SOC is lower than 10% of battery. Secondly, 

with a mixed fleet of vehicles, the platform dispatches drivers 

to serve the travel demand. Finally, idle drivers choose to 

relocate to the areas with high demand. The behavior of riders 

and drivers were observed and controlled via TraCI (Traffic 

Control Interface). Details about these three steps are 

provided in the following subsections. At the end of the 

simulation, high-resolution trip status outputs, charging 

station utilization, and emission profiles were obtained, based 

on which we further analyze the performance and impacts of 

TNC services.  

B. Charging Station Assignment 

Assuming that there are  |𝐶| available charging stations and  
|𝑉| EVs require charging. A charging station c’s location is 

𝑐𝑜. The vehicle v’s current location is 𝑣𝑝𝑜𝑠. Then the travel 

time from the vehicle’s position to a charging station is  

𝑓𝑡(𝑣𝑝𝑜𝑠, 𝑐𝑜) . 𝑓𝑡  is the travel time function considering the 

network traffic status. The decision variable is a binary 

variable 𝑥𝑣𝑐, which equals 1 if charging station c is assigned 

to vehicle v. Otherwise, charging station c is not selected. Let 

𝛿𝑣 = ∑ 𝑥𝑣𝑐𝑐  to indicate whether vehicle c is assigned to a 

charging station. If 𝛿𝑣  = 1, then vehicle v is dispatched. 

Otherwise, 𝛿𝑣 = 0.  𝑒𝑣𝑐 is the energy required for vehicle v to 

travel to charging station c. 𝑁𝑐  is the number of available 

chargers at charging station c. The optimization model can be 

formulated as follows: 

𝑚𝑖𝑛 ∑ ∑ (𝑓𝑡(𝑣𝑝𝑜𝑠, 𝑐𝑜)) 𝑥𝑣𝑐

𝑐∈𝐶𝑣∈𝑉

− ∑ 𝐵

𝑣∈𝑉

𝛿𝑣 (1) 

subject to  

∑ 𝑥𝑣𝑐

𝑣∈𝑉

≤ 𝑁𝑐   ∀𝑐 ∈ 𝐶 (2) 

 

∑ 𝑥𝑣𝑐

𝑐∈𝐶

= 𝛿𝑣   ∀𝑣 ∈ 𝑉 (3) 

𝑒𝑣𝑐𝑥𝑣𝑐  ≤ 𝑅𝑣    ∀𝑣 ∈ 𝑉, ∀𝑐 ∈ 𝐶 (4) 

𝑥𝑣𝑐 ∈ {0, 1}   ∀𝑣 ∈ 𝑉, ∀𝑐∈C (5) 
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This model aims to minimize the total travel time to visit 

the charging stations. This objective function is designed to 

allow the EVs to visit a nearby available charging station to 

alleviate the range anxiety. Besides, to avoid ignoring 

available charging stations, a high penalty factor B is enforced 

in the objective function. Constraint (2) sets the number of 

vehicles assigned to a charging station c should be no more 

than the available chargers 𝑁𝑐  to avoid long queues. 

Constraint (3) enforces each vehicle can only be assigned to 

at most one charging station. Constraint (4) guarantees the 

assignment feasibility by ensuring the vehicle has enough 

battery to reach the charging station. Constraint (5) defines 

the decision variables.  

C. TNC Mixed Fleet Dispatching 

With the updated availability of drivers and ride requests, a 

weighted bipartite graph can be constructed with |𝑉| 
available drivers and |𝑅| rider requests. At time step 𝑇,  if a 

rider places a request at 𝑡𝑟 , then the rider waiting time is 

max(0, 𝑇 − 𝑡𝑟 ). The travel time from vehicle v’s current 

location 𝑣𝑝𝑜𝑠 to rider’s origin location is defined as 

𝑓𝑡(𝑣𝑝𝑜𝑠, 𝑟𝑜), where 𝑓𝑡 is the travel time function considering 

the network traffic status. The decision variable is a binary 

variable 𝑥𝑣𝑟, which takes value 1 if rider r is served by vehicle 

v; otherwise, 𝑥𝑣𝑟 equals 0. To simplify the model construction, 

we use 𝛿𝑟 = ∑ 𝑥𝑣𝑟𝑣  to indicate whether rider r is dispatched. 

If 𝛿𝑟 = 1, then rider r is dispatched. Otherwise, 𝛿𝑟 = 0. The 

mixed fleet consists of 𝑚𝐺  gasoline vehicles (GV) and 

𝑚𝐸  electric vehicles (EVs). The indicator 𝑦𝑣  is utilized to 

indicate the vehicle type. If v is an EV, then 𝑦𝑣 =
0. Otherwise, 𝑦𝑣 = 1. Then the mixed fleet dispatching model 

can be formulated as follows: 

𝑚𝑖𝑛 ∑ ∑ (𝑚𝑎𝑥(0, 𝑇 − 𝑡𝑟) + 𝑓𝑡(𝑣𝑝𝑜𝑠, 𝑟𝑜)) 𝑥𝑣𝑟

𝑟∈𝑅𝑣∈𝑉

− ∑ 𝐵

𝑟∈𝑅

𝛿𝑟 
(6) 

subject to  

∑ 𝑥𝑣𝑟

𝑟∈𝑅

≤ 1   ∀𝑣 ∈ 𝑉 (7) 

∑ 𝑥𝑣𝑟

𝑣∈𝑉

= 𝛿𝑟    ∀𝑟 ∈ 𝑅 (8) 

(1 − 𝑦𝑣)𝑅𝑣 ≥ 𝑅𝑐   ∀𝑟 ∈ 𝑅 (9) 

∑ ∑ 𝑥𝑣𝑟(1 − 𝑦𝑣)

𝑟∈𝑅𝑣∈𝑉

≤ 𝑚𝐸 (10) 

∑ ∑ 𝑥𝑣𝑟𝑦𝑣

𝑟∈𝑅𝑣∈𝑉

≤ 𝑚𝐺 (11) 

𝑥𝑣𝑟 , 𝛿𝑟 , 𝑦𝑣  ∈ {0, 1}   ∀𝑟 ∈ 𝑅, ∀𝑣∈𝑉 (12) 

  

This model aims to minimize the total request waiting time 

and rider pick-up time to guarantee both customer equity and 

system efficiency. If a request has been waiting for a long time, 

then in the next time step, it will have a higher opportunity to 

be matched. In this way, the platform can avoid rider 

cancellation. Besides, we add an extremely high penalty 𝐵 to 

avoid ignoring long-waiting riders. Each vehicle will serve at 

most one rider every time, and each rider will be served by at 

most one vehicle, as defined by constraints (7) and (8) 

respectively. When matching a rider with an EV, the solution 

is constrained by the EV’s remaining range. As stated in 

constraint (9), the EV’s remaining range should be higher 

than the charging threshold 𝑅𝑐  which can be customized 

according to the distribution of charging stations, vehicle’s 

energy efficiency, drivers’ preferences, etc. Constraints (10) 

and (11) guarantee the number of dispatched EVs and GVs 

complies with the fleet composition. Constraint (12) defines 

the decision variables 𝑥𝑣𝑟  and auxiliary variables  𝛿𝑟 

according to the problem setting. 

To explore the strategies that utilize EVs efficiently to 

serve the ride requests, we investigated three dispatching 

policies during the fleet electrification process.  

• Baseline policy (B): EVs and GVs are dispatched 
equally in the platform. |𝑉| consists of all available 
EVs and GVs. 

• Off-peak EV Priority policy (EV Priority): During 
the off-peak hours, the platform utilizes EVs with 
higher priority. If EVs are not sufficient to serve all 
ride requests, GVs are randomly selected and added to 
the fleet set |𝑉|. During the morning peak and evening 
peak, the platform employs the baseline policy to 
dispatch riders. 

• Off-peak EV Only Policy (EV Only): This policy 
enforces more constrained requirements, in which 
only EVs are allowed to serve ride requests during the 
off-peak hours and the fleet set |𝑉| only contains EVs.  

D. Repositioning Strategy 

In this module, a greedy algorithm was implemented to 
search for vehicle repositioning areas. It includes two steps: 

(1) Hot Zone Identification: The probability of selecting 

each parking area is calculated according to the zone-

level rider number.  

(2) Reposition Zone Selection: The platform selects a 

parking area for each idle vehicle according to the zone 

probability. It's important to note that even as the driver 

is heading to an assigned parking area, the platform 

retains the capability to dispatch new rider requests to the 

repositioning vehicles.  

E.  Model Initialization 

During each simulation step, the charging station 

assignments model was instantiated by finding the current 

locations of all EVs that need to get the battery charged and 

the locations of charging stations. We queried the travel time 

between the combination of all possible charging station and 

EV pairs by calling the DUARouter. Similarly, in the mixed 

fleet dispatching model, we first obtained all driver locations 

and rider locations and then queried the travel time of all 

possible combinations from the drivers’ location to the rider’s 

pick-up location. The rider waiting time was calculated with 

𝑇 − 𝑡𝑟. The Gurobi solver was employed to solve these two 

models optimally. Finally, idle drivers are repositioned to 

high demand areas. Each driver only repositions once to wait 

for the next trip assignment.  
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Table 1. Scenario requirement for TNC to compliance with the CMS in year 2023(252 g 𝐶𝑂2/PMT & 2% eVMT, colored in pink), year 2026 (161 g 

𝐶𝑂2/PMT & 30% eVMT, colored in yellow), year 2029 (30 g 𝐶𝑂2/PMT & 80% eVMT, colored in green)  

Policy B (Baseline Policy) E_P (off- peak EV Priority) E_O (off-peak EV Only) 

EV 

ratio 

7% 

pooled 

(g/pmt) 

15% 

pooled 

(g/pmt) 

30% 

pooled 

(g/pmt) 

eVMT 

ratio 

(%) 

7% 

pooled 

(g/pmt) 

15% 

pooled 

(g/pmt) 

30% 

pooled 

(g/pmt) 

eVMT 

ratio 

(%) 

7% 

pooled 

(g/pmt) 

15% 

pooled 

(g/pmt) 

30% 

pooled 

(g/pmt) 

eVMT 

ratio 

(%) 

10% 291 277 254 9% 340 324 297 10% 256 243 223 20% 

20% 261 248 227 18% 284 270 248 22% 200 190 174 35% 

30% 228 217 199 28% 220 210 192 36% 150 142 131 51% 

40% 199 190 174 37% 168 160 147 49% 118 113 103 61% 

50% 166 158 145 48% 115 109 100 63% 94 90 82 69% 

60% 135 128 117 57% 90 86 79 71% 78 74 68 75% 

70% 95 91 83 70% 61 58 53 81% 58 55 51 81% 

80% 66 63 58 79% 42 40 36 87% 39 37 34 88% 

90% 34 32 29 89% 21 20 18 93% 21 20 18 93% 

 

IV.  EVALUATION AND RESULTS  

The SUMO simulation was run for each EV ratio (10% - 

90%) in the mixed fleet according to three dispatching 

policies: baseline (B), off-peak EV priority (E_P), and off-

peak EV only (E_O). A total of 27 simulation runs were 

conducted, holding fixed the TNC ride demand, EV charging 

behaviors and other model assumptions. In this section, we 

compared the results of our simulation studies and 

specifically quantified the criteria in Clean Miles Standard to 

understand the compliance of it. Finally, extra simulation 

studies were conducted to study the necessary redundancy of 

the EV fleet during the day and explore the potential to 

enforce EV only strategy across the overall simulating hours.   

A. Impact Evaluation   

 
Figure 4.  TNC system performance under three fleet dispatching policy 

The four subgraphs in Figure 4 illustrate key performance 

metrics: the dispatching rate (ratio of riders where a driver is 

assigned to the rider within 5 minutes), rider average pickup 

time, total VMT (total travel miles), and deadheading ratios 

(the percentage of driving miles without a rider onboard). 

Notably, the dispatching rates of B and E_P policies surpass 

those of the E_O policy when the EV ratio is below 40%. This 

is because the dispatching rate is heavily influenced by the 

available vehicles to serve the ride requests. With a limited 

number of EVs in the mixed fleet, relying solely on EVs to 

fulfill ride requests during off-peak hours is impractical. The 

average pickup time under both E_P and E_O policies is 

initially higher than that of the baseline policy but eventually 

converges to a similar level. This inefficiency is attributed to 

the scarcity of EVs in the system, leading to longer distances 

traveled to pick up riders. On the other hand, the E_P policy 

exhibits higher VMT and deadheading ratios when the EV 

ratio is lower owing to the random selection of GVs to serve 

riders when there are insufficient EVs during off-peak hours. 

All metrics ultimately converge to similar levels as the EV 

ratio increases in the system, which underscore the potential 

of implementing eco-friendly policies to efficiently serve a 

larger number of riders. 

B. Clean Miles Standard (CMS) Compliance 

  In this section, we quantified the greenhouse gas factor 

(gram CO2 emission per passenger miles travelled) and the 

eVMT ratio (the number of miles driven by EVs as a 

percentage of total VMT). The CO2 emission rate was set as 

232 g/mile, which was obtained by averaging the CO2 rates 

from vehicle model years ranging from year 2008 to year 

2020 provided in CMS. We then calculated the greenhouse 

gas factor with equation (13). The compliance occupancy was 

defined as 1.5 for non-pooled rides and as 2.5 for pooled rides 

in CMS. According to TNC report 2020 in SF, 7% of trips 

were successfully pooled [18]. Thus, we tested the pooled 

scenarios with 7%, 15% and 30% of pooled rides with the 

compliance occupancy set to be 1.57, 1.65 and 1.80.  

𝑔𝐶𝑂2

𝑃𝑀𝑇
=  

∑(𝑉𝑀𝑇 × 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 )

∑(𝑉𝑀𝑇𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)
          (13) 

Table 1 presents the results of greenhouse gas factor and 

eVMT ratio under different dispatching policies and ride 

pooling ratios. We marked the results in pink, yellow and 

green color to represent the scenario which could meet with 

the CMS target at year 2023, 2026, and 2029. We found that 

the eVMT ratio is easier to achieve compared to the 

greenhouse gas target. For example, with ev_ratio of 30%, the 

E_P policy could meet the year 2026 targeted eVMT ratio of 

30%. But it requires 40% - 50% of EVs in the mixed fleet to 

compliance with the greenhouse gas target depending on the 

ride pooling rate. The compliance of greenhouse gas target 
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relies on the occupancy factors. With the 7% and 15% ride 

pooling, the baseline policy is unable to comply with the CMS 

at year 2029 even with 90% of EVs in the mixed fleet. These 

results emphasize the importance of encouraging ride pooling 

to comply with the CMS during the fleet electrifying process.  

C. EV Redundancy in the Fleet 

 
Figure 5. EV redundancy changes with the EV-priority policy 

In this section, to further explore the EV requirements to 

support the TNC operation during the entire simulation hours, 

we simulated the EV Priority policy for all simulation hours. 

The EV redundancy is recorded in every simulation step, 

which is defined as the number of available EVs minus the 

number of riders at the time step. A positive value indicates 

EV redundancy while a negative value indicates EV shortage.  

The result is plotted in Figure 5. With EVs ratio higher than 

50%, it is practical to enforce the off-peak (10 am – 16 pm) 

EV only policy since the EV redundancy is above zero. When 

ev_ratio is at 90%, the simulated fleet can cover the morning 

peak (8 am-10 am) demand. However, it is still not sufficient 

to cover the evening peak demand within the simulated 

scenario as there is a negative gap between the available EVs 

and travel demand. More advanced strategies should be 

developed to guide the off-peak hour charging in order to 

prepare the fleet for the peak demand. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a simulation-based platform was developed 

to model and evaluate the performance of ride-hailing 

services with a mixed fleet of electric vehicles (EVs) and 

gasoline vehicles (GVs). A large-scale ride-hailing simulation 

has been designed in San Francisco with the SUMO simulator, 

along with the charging station assignment module, mixed 

fleet dispatching module, and vehicle repositioning module to 

support realistic TNC operations. We evaluated the ride-

hailing service performance and its compliance with Clean 

Miles Standard under different dispatching policies. 

Experiment results showed that the performance of the E_P 

and E_O policies, in terms of dispatching rate and rider 

pickup time, is dependent on the available number of EVs in 

the mixed fleet. With a higher penetration rate of EVs, the 

performance of these two policies reaches the same level as 

in the baseline policy. The compliance with the eVMT target 

is much easier than that of the greenhouse gas target. Meeting 

the latter objective requires a more focused effort on 

encouraging ride pooling and increasing the zero-emission 

rides. In the future, more realistic demand setting and 

charging behavior of ride-hailing drivers will be investigated.  
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