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0. Introduction

The familiar setting of geometric quantization is a compact Kahler manifold (X, w)
with Kéhler form w endowed with a Hermitian holomorphic line bundle (L, k"), called
prequantum line bundle, satisfying the prequantization condition

W= ERL = ci (L, h"), (0.1)
27

where RY denotes the curvature of the Chern connection on (L, h*) and ¢; (L, h%) denotes
the Chern curvature form of (L, k). The existence of the prequantum line bundle (L, k)
allows to consider the Hilbert space of holomorphic sections HY(X, L) and construct
a correspondence between smooth objects on X (classical observables) and operators
on H°(X,L) (quantum observables) [2,20], stated in terms of the semi-classical limit
in which Planck’s constant tends to zero. Changing Planck’s constant is equivalent to
rescaling the Kahler form, and this is achieved by taking tensor powers LP = L®P
of the line bundle, since the curvature of LP is pR”. In this case the Planck constant
corresponds to i = 1/p. A pivotal role in this correspondence is played by the orthogonal
projection on HO(X, LP), see [28,30]. Its integral kernel, called Bergman kernel, admits

a full asymptotic expansion as p — +oo to any order (cf. [5,12,28,29,36,37]).
Condition (0.1) is an integrality condition: a prequantum bundle exists if and only
if the de Rham cohomology class [w] is integral, [w] € H?(X,Z). What can one do in
general if w is a not necessarily integral Ké&hler form? We can then associate to w a
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more general sequence of positive line bundles (L, h;,) such that their curvatures only
approximate multiples of w. Such a sequence can be thought as a “prequantization” of
the nonintegral Kéahler form w.

In this paper we establish the asymptotic expansion of the Bergman kernel of the
holomorphic space H°(X, L,) on Kéhler manifold X under a natural approximation
assumption of w by the curvatures of the positive line bundles L,.

There are several motivations and possible applications of our result. The first one
is the Tian-Yau-Donaldson program [21,36], that studies the connection between the
existence of Kéhler metrics of constant scalar curvature and K-stability. If the metric is
polarized by a line bundle L (0.1), the expansion of the Bergman kernel of H°(X, L?)
plays a central role through its second coefficient that equals the scalar curvature of the
given metric (cf. (0.4)).

A further motivation is geometric quantization with the goal of constructing a strict
deformation quantization and obtaining the correspondence principle between classical
and quantum observables. Since on such a deformation the commutator of operators
corresponds asymptotically to ifi times the Poisson bracket in the classical limit [28,30,33],
the construction using a general sequence of approximating line bundle is quite natural.
This is linked to Fedosov’s “asymptotic operator representations” [22]. We will pursue
this direction elsewhere.

Another motivation comes from questions arising around the “transcendental” holo-
morphic Morse inequalities [14,26]. The goal here is to extend to cohomology classes
of type (1,1), which are in general not algebraic or even analytic, certain asymptotic
cohomology estimates known for tensor powers of line bundles. The estimates of the
asymptotic cohomology functions should involve Monge-Ampére integrals of the given
cohomology class.

Let (X,9,J) be a compact Kéhler manifold of dim¢ X = n with Kéhler form ¢ and
complex structure J. Let (Lp, h,), p > 1, be a sequence of holomorphic Hermitian line
bundles on X with smooth Hermitian metrics hy,. Let VZ» be the Chern connection on
(Lp, hp) with curvature RL» = (VL#)2. Denote by c1(Ly, hy) the Chern curvature form
of (L,,hp). Let g7X(-,-) = 9(-, J-) be the Riemannian metric on TX induced by ¥ and
J. The Riemannian volume form dvx has the form dvyx = 9™ /n!. We endow the space
%> (X, L,) of smooth sections of L, with the inner product

n

(1,520 1= [ (sa(0).sa(o) P s € E(X, L), (0.2)

nl’
b'e

and we set ||s[|3. = (s,s). We denote by £*(X, L,) the completion of €>(X, L,) with
respect to this norm. Let H(X, L,) be the space of holomorphic sections of L, and let
P,: L*(X,L,) — HY(X, L,) be the orthogonal projection. The integral kernel P,(x,z’)
(z,2' € X) of P, with respect to dvx (z') is smooth and is called the Bergman kernel. The
restriction of the Bergman kernel to the diagonal of X is the Bergman kernel function
of HY(X, L,), which we still denote by P, i.e., P,(z) = P,(z,x).
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The main result of this paper is as follows.

Theorem 0.1. Let (X,9) be a compact Kahler manifold of dimc X = n. Let (Lp,hy),
p = 1, be a sequence of holomorphic Hermitian line bundles on X with smooth Hermitian
metrics h,. Let w be a Kdhler form on X such that

A;lcl(Lp, hy) =w+ O(A,"), as p — +0o0, in the € -topology, (0.3)
where a > 0, A, > 0 and limy,_, { oo Ap = +00. Then as p — 400, in the € - topology,

Py(x) = Albo(x) + A2 by (z) + ...+ ATl e () + 0427, (04)

X

where by(z) = w" /9" and by = g=(w"/0")r 2

<, where r2) is the scalar curvature of w,

and |—a] the integer part of —a.

Note that the following general result was obtained in [6, Theorem 1.2]. Let (X,)
be a compact Kéhler manifold of dimension n and (L,,h,), p > 1, be a sequence of
holomorphic Hermitian line bundles on X with singular Hermitian metrics h,, that satisfy
c1(Lp, hy) = ap ¥, where a, > 0 and limy_, 4o ap = +00. If Ay = [y c1(Lp, hy) A1
denotes the mass of the current ¢; (Lp, hp), then Aip log P, — 0in £(X,9") as p — +00.
Theorem 0.1 refines this result under the stronger assumptions that the metrics are
smooth and (0.3) holds.

Our assumption (0.3) means that for any k € N, there exists Cj > 0 such that

|4, o1 (Ly, hy) — w0 < CrALC, (0.5)

where the ©*-norm is induced by the Levi-Civita connection V7X. We will give several
natural examples of sequences (L, h,) as above. The most straightforward is (L, hy) =
(L8P, h®P) for some fixed prequantum line bundle (L, k). Then it follows from (0.1) that
(0.3) holds for A, = p and all @ > 0. In this case we recover from (0.4) the known
result on asymptotic expansion of Bergman kernel of H(X,LP) (cf. [5,12,28,36,37)]).
Other examples include (L,, h,) = (L®P, h,) where h, is not necessarily the product
h?, e.g. h, = hPe™ %7, with suitable weights ¢, or tensor powers of several bundles, see
Theorem 0.3.

Our approximation assumption (0.3) (or (0.5)) is natural in the following sense. Given
a Kéhler form w one can first approximate its cohomology class [w] € H?(X,R) by
integral classes in H?(X,Z) by using diophantine approximation (Kronecker’s lemma)
and then one constructs smooth forms representing these approximating classes. By [14],
[26, Théoreme 1.3, p. 57] condition (0.5) holds true for any k, A, = pand a = 14+1/52(X),
where [2(X) denotes the second Betti number of X, but in general with a non-necessarily
holomorphic Hermitian line bundle (L,, h,). In this paper we show that if there is a good
diophantine approximation with holomorphic line bundles we obtain corresponding good
asymptotics of the Bergman kernel.
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The proof of Theorem 0.1 follows the general lines from the case of tensor powers LP
with important technical changes. The hypothesis (0.3) says roughly that the curvatures
¢1(Lyp, hp) grow to infinity at rate A, with respect to w. This implies via the Lichnerowicz
formula that the corresponding Dirac operators D,, have a spectral gap of size a, — oo,
and this allows to show, via finite propagation speed for the wave operator, that the
asymptotics have local nature and can be obtained by a scaling techniques from geometric
data brought to C™. In the case of tensor powers LP the arguments are facilitated by
the fact that once a local trivialization of L is chosen, it induces trivializations for all LP
and straightforward formulas for the connection forms T'*" = pI'" and the curvatures
c1(LP, hP) = pey (L, h). The asymptotics are computed from the asymptotics of a local
model, given by freezing the curvature of L at a given point.

In the general case of a family L,, we only have a condition on the growth of ¢1 (L, hp).
Moreover, it is not a priori clear what would be the local model. The first technical
challenge is to choose in a coherent manner trivializations and connection forms I'“» for
each L, with control of their Sobolev norms. In this way we reduce the study of the
asymptotics to a local problem, and we can construct a local potential of the metric w,
which provides a “local prequantum bundle” (a trivial bundle with non-trivial metric)
for w. We then consider the local restrictions of (L,,h,) as real powers of the local
prequantum bundle and prove that their Bergman kernels converge to the Bergman
kernel of the model operator given by its curvature, that is by w. Thus, the convergence
of the curvatures ¢1(Ly, hp) in (0.3) forces the convergence of the Bergman kernels P,
and we can deduce their asymptotics (0.4).

If 0 < a < 1, then Theorem 0.1 reduces to the following result.

Corollary 0.2. Let (X,9) be a compact Kihler manifold of dimec X = n. Let (L, hy),
p =1, be a sequence of holomorphic Hermitian line bundles on X with smooth Hermitian
metrics h,. Assume that there exists a Kdihler form w on X such that

A;lcl (Lpshp) =w+O(A, "), as p— +00, in the € - topology, (0.6)
where 0 < a <1, A, >0 and lim,_, o Ay, = +00. Then
Py(x) = Apbo(x) + O(A;™"), as p — +o0, in the € - topology, (0.7)
where bg(x) = W™ /™.
Note that a similar result was obtained in [6, Theorem 1.3] under different approxi-
mation assumptions.
An interesting situation when the previous results apply is when L, equals a product
of tensor powers of several holomorphic line bundles, L, = F""®...QF ;n **  where

{mjptp, 1 < j <k, are sequences in N such that m;, = r;p+ O(p'~?) as p — +o0,
where a > 2 and r; > 0 are given. This means that (m1 p,...,mx,) € N* approximate
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the semiclassical ray R~q - (r1,...,7%) € RE with a remainder O(p'~%), as p — 400 (cf.
also [6, Corollary 5.11]).

Theorem 0.3. Let (X, ) be a compact Kihler manifold of dime X = n. Let (Fj, hf7) be
smooth holomorphic Hermitian line bundles on X with c1(Fj,hf5) >0 for 1 < j <k
and one of them is strictly positive, say, c1(F1,hf') > €9 for some e > 0. Let r; > 0,
1 < j <k, be positive real numbers and set w = 2?21 ric1(Fy, hti). Assume that there

exist sequences {m;p}tp, 1 <j <k, in N and a > 2, C >0 such that

C

Ea

‘mj’p 1<j<k, forp>1. (0.8)

Let P, be the Bergman kernel function of HO(X, F/""" @ ...® F,"*"). Then

Py(x) = p™bo(z) + p" by (x) + ... + p" Fbr(x) + O(p"~*), (0.9)

as p — +00, in the €°°- topology,

X

where k = —|—a] — 1, bo(z) = w™ /9" and by = g=(w"/9")rYy , where 1]}

curvature of w.

is the scalar

We apply Theorem 0.1 to study the asymptotic distribution of common zeros of
random sequences of m-tuples of sections of L, as p — 400, see [6-10,18,19,34,35] for
previous results and references. Let (X, w) be a compact Kéhler manifold of dimension
n and let (Ly, hy), p > 1, be a sequence of Hermitian holomorphic line bundles on X. To
study the equidistribution problem in a more general frame, we assume that the metrics
h, are of class €% and verify condition (0.5) for k¥ = 0. Namely, there exist a Kéhler form
won X and a > 0, Cy > 0, such that for every p > 1 we have

|A, er(Ly, hy) — w| 0 < CoA,

*, where A, > 0and lim A, = +oo. (0.10)
p—r—+00

As before we endow the space of global holomorphic sections H%(X, L, ) with the inner

product (0.2) and we set ||s||2 = (s, s)p, d, = dim H°(X, L,). Let P, be the Bergman

kernel function of H°(X, L,). We assume that there exist My > 1 and pg € N such that

An
L < Pyfa) < Moy, (0.11)

holds for every x € X and p > pg. Note that, under the stronger hypothesis (0.3),
condition (0.11) follows easily from Theorem 0.1 (see (0.4)).
Given m € {1,...,n} and p > 1 we consider the multi-projective space

Xpm = (PHY(X,L,))", (0.12)
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equipped with the probability measure o}, ,,, which is the m-fold product of the Fubini-
Study volume on PH?(X,L,) ~ P% =1 If s € H°(X,L,) we denote by [s = 0] the
current of integration (with multiplicities) over the analytic hypersurface {s = 0} C X,
and we let

[sp = 0] :=[sp1 = 0] A ... A[spm = 0], for s, = (Sp1,---,Spm) € Xpms

whenever this current is well-defined (see Section 3). We also consider the probability
space

3

(Xoo,vm Uoo,m) = (Xpym’ O—Pﬂn) :

p=1

In the above setting, we have the following theorem:

Theorem 0.4. Let (X,9) be a compact Kihler manifold of dimension n and let (Ly, hy),
p = 1, be a sequence of Hermitian holomorphic line bundles on X with metrics hy, of
class €2. Assume that conditions (0.10) and (0.11) hold. Then there exist C > 0 and
p1 € N such that for every 5 > 0, m € {1,...,n} and p > py there exists a subset
Eg’m C X,,m with the following properties:

(1) opm(By ) < CALP;

(i) if sp € Xpm \ Ef’m then, for any (n —m,n —m) form ¢ of class €% on X,

(g o =0-ome)] < (5

+ 4, |l (0.13)
Moreover, if Z;il AP < +oo then estimate (0.13) holds for 0o m-a.e. sequence
{sp}tp>1 € Xoo,m provided that p is large enough.

The question of characterizing the positive closed currents on X which can be ap-
proximated by currents of integration along analytic subsets of X, and its local version
as well, are important problems in pluripotential theory and have many applications.
Results in this direction are obtained in [8,11]. Theorem 0.4 shows in particular that the
smooth positive closed form w™ can be approximated by currents of integration along
analytic subsets of X of dimension n —m, for each m € {1,...,n}.

The paper is organized as follows. In Section 1 we show that the asymptotic expansion
of the Bergman kernel can be localized. In Section 2 we establish the asymptotic expan-
sion of the Bergman kernel near the diagonal and then prove Theorem 0.1. The proof
of Theorem 0.4 is given in Section 3, using the technique of meromorphic transforms of
Dinh and Sibony [19], as in the papers [10,11].
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1. Localization of the problem

In this Section we show that the problem has local nature by using the spectral
gap for the Dirac operator (as consequence of the Lichnerowicz formula) and the finite
propagation speed for wave operators.

1.1. Lichnerowicz formula

The complex structure J induces a splitting 7X @r C = THOX @ TOD X | where
T1OX and TODX are the eigenbundles of J corresponding to the eigenvalues v/—1
and —v/—1 respectively. Let 719 X and T*(®V X be the corresponding dual bundles.
Denote by 2%9(X, L,) the space of smooth (0, j)-forms over X with values in L, and
set Q%*(X,L,) = }’:OQOJ (X,Lp,). We still denote by (-,-) the fibrewise metric on
AT*OVX) ® L, induced by g”X and h,,.

The L%-scalar product on Q%*(X, L,) is given by

(s1, 82) :=/<51(x),32(3})>%, 51,80 € QO%(X, L), (1.1)
b'e

—L,,* —L
and we set ||s||2, = (s,s). Let 9" be the formal adjoint of the Dolbeault operator 9
with respect to the scalar product (1.1). The Dolbeault-Dirac operator is given by

D, = \/5(5“ + ELP**) L Q0 (X, L,) — Q*(X, L,). (1.2)
The Kodaira Laplacian
Obr =878 + 37 L Q% (X, L,) — Q°*(X, L,), (1.3)

preserves the Z-grading on Q%*(X, L,). It is an essentially self-adjoint operator on the
space L (X, Lp), the L*-completion of Q%*(X, L,). We have

D2 =20". (1.4)

For any v € TX with decomposition v = v19 +vo1 € THOX @ TOVX | let vio €
T*OD X be the metric dual of vy . Then c(v) = V2(v} g A —iv,, ) defines the Clifford
action of v on A(T*(®VX), where A and i denote the exterior and interior product
respectively.

Let VX denote the Levi-Civita connection on (T'X, g7X), then its induced connection
on T19 X is the Chern connection VI X on (T X, AT X) where KT X is the
Hermitian metric on 79 X induced by g7. The Chern connection V7' X on T(10) X
induces naturally a connection VAT ""X) on A(T*OD X). Then by [28, p. 31] we have
for an orthonormal frame {ej}?gl of (X, gT™¥),
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2n )
_ Z AT OV X)QL
DP - c(ej)vej( Py (15)
Jj=1

with
VA(T*(O,I)X)@)LP _ VA(T*<O’1>X) ® Id+1d ®VLP. (16)

Denote by AMT" Y X)®Ly the Bochner Laplacian on AT*OVX)® L,. Then

2n
AA(T*(D,I)X)®LP _ Z [Vle\j(T*m,ﬂX)@Lpvé\j(T*(o.l)X)@)Lp _ vA(T*(O,l)x)®Lp:|- (1.7)

, VI
j=1

Let Ky = det(T*9X) be the canonical line bundle on X. The Chern connection
VT X on T X induces the Chern connection VKX on K% = det(T(:9 X). De-
note by REX the curvature of VX and by 7% the scalar curvature of (X, ¢”X). The
Lichnerowicz formula (cf. [28, (1.4.29)]) reads

p2 = Ao xen, T Lipn, L (€1, ¢;)c(e)cle;) (1.8)
P 4 2 2 P '
We have used Einstein’s summation convention of summing over repeated indices from
1 to 2n (or n) without sum symbol. This is also used throughout the paper.

1.2. Spectral gap of the Dirac operator

As in the case of powers LP of a single line bundle we have a spectral gap for the
square Df, of the Dirac operator acting on L. The result and the proof are analogous to
[27, Theorem 1.1], [28, Theorem 1.5.5]. For a Hermitian holomorphic line bundle (L, h)
on X set

L —
ar, = inf{M :IEX,UGTQEI’O)X\{O}}. (1.9)

|u|§TX

Note that ar(z) = inf {Rﬁ(u,ﬂ)/\uETX cue X \ {0}} is the smallest eigenvalue
of the curvature form RL with respect to g2 X for x € X and ar, = inf,ex ar(x). We
also set

| REx(u,m) (1,0)
Cx =infq ————:2eX,uecT, VX \{0},. (1.10)

Here the curvature on the anticanonical line bundle K% is induced by the Kéhler form
. Since X is compact, the quantities ay, and C'x are finite.
We denote by Spec(A) the spectrum of a self-adjoint operator A on a Hilbert space.
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Theorem 1.1. Let (X, ) be a compact Kéihler manifold. Then for every Hermitian holo-
morphic line bundle (L,h) on X, the Dirac operator D = Dy, on L satisfies the estimate

IDs||2, > 2(ar + Cx)||s|[5., s € 97X, L) @QO’J X,L). (1.11)

Moreover, Spec(D?) C {0} U [2(ar, + Cx), +00).

Proof. We will use the Bochner-Kodaira-Nakano formula [28, (1.4.63)]. The Chern con-
nection on K% ® L is given by

VEXOL — R @ 1d +1deVE, (1.12)
and its curvature is
REx®L — REXx @ 1d+1d@RE. (1.13)
Let {w;}"_; be an orthonormal frame of TMO X . Then [28, (1.4.63)] reads
OFs = A%*s + REOKX (w;, W, )@ Aigys, for s € Q%%(X, L), (1.14)
where A%* is a holomorphic Kodaira type Laplacian. More precisely, A%® is the con-

jugate by a fiberwise isometry of the (1,0)-Laplacian glekx (cf. [28, Remark 1.4.16]).
Thus (A%®s,s) > 0 so (1.14) yields

18512, + 075|122 (REXOE (w;, W )@" Aig,s,8), s€ QX,L).  (1.15)

By (1.9) we have
(R*(w;, Wy )@ A, s,8) > arl|s| ., s€Q(X,L). (1.16)

By (1.10) we have
(R¥% (w;, W)@* N ig,s,8) = Cx||s 1., s € Q0(X,L). (1.17)

Then (1.11) follows immediately from (1.4) and (1.15)—(1.16). Since X is compact, D?
has a discrete spectrum consisting of eigenvalues of finite multiplicity. Let s € €>°(X, L)
be an eigensection of D? with D?s = As and )\ # 0, then Ds # 0 and

D?*(Ds) = ADs. (1.18)

Now Ds € Q"1(X, L), so by (1.11) we have A > 2(ar, + Cx). O
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For a sequence (L, hy), p > 1, let us denote
a, = ar,, (1.19)
with ar, in (1.9). We have thus
1Dps|[2. = 2(ap + Cx)||s|[52, s € Q7O(X, L) @QO’J (X, L) (1.20)
Note that under hypothesis (0.3) we have lim, .. ap, = +00. As a consequence of

Theorem 1.1 we obtain a Kodaira-Serre vanishing theorem for the sequence L.

Corollary 1.2. Let (X,9) be a compact Kdihler manifold and let (L,, hy), p > 1, be a
sequence of holomorphic Hermitian line bundles on X such that lim, 4 ap = +00.
Then for p large enough the Dolbeault cohomology groups of L, satisfy

H%(X,L,) =0, forj#0. (1.21)
Hence the kernel of DZ is concentrated in degree O for p large enough, i.e.,
Ker(D2) = H(X,L,), p>> 1. (1.22)
Proof. By Hodge theory we know that

Ker D2 | o, ( ~ 0% (X, L,), (1.23)

X,Ly)

where H%*(X, L,) denotes the Dolbeault cohomology groups. Thus (1.21) follows from
(1.20). Moreover, (1.23) and (1.21) yield (1.22). O

We also note the following generalization of the Kodaira embedding theorem. The
proof follows the pattern of the classical proof given in [23, p. 189).

Corollary 1.3. Let (X,9) be a compact Kihler manifold and let (L,,hy), p > 1, be a
sequence of holomorphic Hermitian line bundles on X such that limy_, o ap = +00.
Then for p large enough the Kodaira map

®,: X - P(H(X,L,)"), x+—{sc H(X,L,):s(z) =0},
is well defined and a holomorphic embedding.

We also need a generalization for non-compact manifolds of Theorem 1.1. Let (X, )
be a Hermitian manifold and let (L, h) be a Hermitian holomorphic line bundle on X.
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If (X,99) is complete, then the square D? of the Dirac operator on L is essentially self-
adjoint by the Andreotti-Vesentini lemma [28, Lemma 3.3.1] and we denote by Dom(D?)
the domain of its self-adjoint extension.

Theorem 1.4. Let (X,9) be a complete Kihler manifold with Ricci curvature R¥X
bounded from below, that is, the infimum Cx in (1.10) is finite. Then for every Her-
mitian holomorphic line bundles (L,h) on X with ar, > —oco we have

IDs|7 = 2(a + Cx)||s||;., s € Dom(D?) N @D L3 (X, L). (1.24)
j=1
Moreover, Spec(D?) C {0} U [2(ar, + Cx), +00).
Proof. The proof follows from the proofs of Theorem 1.5 and [28, Theorem 6.1.1]. O

1.8. Localization of the problem

Let aX be the injectivity radius of (X, g”™), and ey € (0,a*/4). We denote by
BX(x,20) and BT=%(0,¢0) the open ball in X and T, X with the center z and radius
€0, respectively. Then we identify BT=X(0,¢q) with BX(z,¢0) by the exponential map
Z s expx (Z) for Z € T, X. Let f : R — [0,1] be a smooth even function such that
f(v) =1 for |v]| < g9/2 and f(v) =0 for |v| = &g. Set

F(a):(/f(v)dv>_l/ei”“f(v)dv. (1.25)

Then F(a) lies in the Schwartz space S(R) and F'(0) = 1.

Proposition 1.5. For any l,m € N, g € (0,aX /4), there exists Cp m ., > 0 such that for
p>1landz,z € X,

‘F(DP)(x)x/) - P;D(xvx,)

—1
E™(XxX) < Cimeody’ (1.26)

|Py(z, 2 < Cime Ayt if d(z,a') > eo. (1.27)

/!
”‘K’"(XXX)
Here the €™ norm is induced by VFr and VTX.

Proof. We adapt here the proof of [12, Proposition 4.1], [28, Proposition 4.1.5]. For
a € R, set

Pp(a) = L ya; 1o0) (la]) F(a). (1.28)

For a, > —2Cx we have by Theorem 1.1 and (1.19),
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F(Dp) - b= ¢p(Dp)» (1.29)

here we use the fact that the eigenspaces of the elliptic operator D, furnish complete
orthonormal systems for Egy.(X ,Lp), ie., there is a Hilbert space decomposition of
L3 (X, Ly) into the sum of the eigenspaces of D,. By (1.25), for any m € N there
exists C,,, > 0 such that

sup |a|™|F(a)| < Cp. (1.30)
acR
Since X is compact there exist {z;}7_; such that {U; := BX(x;,e0)}7_, is a covering

of X. We identify BT=X(0,eq) with BX(x;,&0) by the exponential map as above. For
Z € BT=:%(0,¢0) we identify

(Lp)z = (Lp)e,, ATV X) 7 2 IOV X),

by parallel transport along the curve [0,1] > u — uZ with respect to the connection
VEr and VA(T*(O’UX), respectively.
Let {e;}32, be an orthonormal basis of T, X. Let €;(Z) be the parallel transport of e;

T*(U,I)X

with respect to V7 along the above curve. Let T'tr, TA( ) be the corresponding

connection forms of VZr and VAT VX)) with respect to any fixed frame for L, and
A(T*©1 X)) which is parallel along the above curve under the trivialization on ;.
Denote by Vi the ordinary differentiation operator on 7, X in the direction U. By

(15),
2n o1
Dy =" (&) (Ve, +TEr(g;) + TAT "0 (6))). (1.31)
j=1

Let {p;} be a partition of unity subordinate to {¢4;}. For £ € N, let Hf be the set of
sections of L, over X which lie in the /-th Sobolev space. We define a Sobolev norm on
the ¢-th Sobolev space Hf) by

r 4 2n
I S5 DD DI AR 7R 132)

G=1 k=0 i1,...,ig=1

Denote by R = 3= ; Zje; the radial vector field. By [28, (1.2.32)], Lr['"*» = ig R*». Set
2n

Ihr =3 "a;(2)dZ;, a; € € U;). (1.33)
=1

Then
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2n n
(LpTtr), = j;l (Zk ggﬂ ))de + Z a;(Z)dZ;. (1.34)

Evaluating at the point tZ yields

%(taj(tZ))de = (LrT?)1y = (irR'").4. (1.35)

From (1.35) we obtain immediately FOLP =0 and (cf. also [16, (2-16)])

1 1
= /(LRF tZd / ZRR tZ dt, (136)
0 0

which allows us to estimate the term I'l» in (1.31). From (0.5), (1.31), (1.32) and (1.36),
sl < C(I1Dps[ > + Aplislire). (1.37)

The quantity A, appears in (1.37) through formula (1.31) for D), which involves the
connection form I'’» given by (1.36), where we can apply the estimate (0.5) of the
curvature.

Let @ be a differential operator of order m with scalar principal symbol and with
compact support in U;, then

2n 2n
[0y, Q) = > [c(@))T™ (), Q) + > [e(&))(Ve, + TAT 0 (E)),Q),  (1.38)

j=1 j=1

where the sums are differential operators of orders m — 1 and m, respectively. By (1.37)
and (1.38),

Qs < CUIDpQs] 22 + A, Q3] 22) (1.39)
C(IQDys] 2 + Apllsllexy )-

Due to (1.39), for every m € N there exists C/, > 0 such that for p > 1,

HSHH;'”r1 < O (11 Dys] Hy + APHSHH;;L)- (1.40)
This means that
m—+1
Isllgp+r < Cr At >~ AJ7|[D)s]| o (1.41)
j=0

Using the Sobolev estimate (1.41) we can now repeat the proof of [12, Proposition 4.1],
[28, Proposition 4.1.5] and conclude the proof of (1.26).
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By (1.25) we have

€0

F(Dp):(/f(v)dv>71/cos(va)f(v)dv. (1.42)

—€g0

By [28, Theorem D.2.1] (finite propagation speed of solutions of hyperbolic equations),
F(Dp)(z,2") =0if d(z,2") > e. This yields (1.27). O

Proposition 1.5 shows that for & € (0,a™ /4), P,(z, ') is negligible of order O(A,>°)
outside a neighborhood {(z,2') € X x X : d(z,2") < €} of the diagonal of X x X.
In this neighborhood P, (z, ") is approximated up to O(A,>°) by F(D,)(x,2'). In the
next section (Proposition 2.3) we show that given 7o € X and ¢ € (0,a™ /4), the kernel
F(Dp)(x,2) for x,2’ € B¥ (x¢,¢) is close up to a term of order O(A; *) to the Bergman
kernel P)(z,z') constructed from the local data given by restrictions of (L, h,) and 9
to BX(z¢,¢). Thus the asymptotics of P,(x, ") for 2,2’ € BX(z¢,) depend only on the
local geometric data in BX (xg,¢), up to a negligible term O(A,;™>).

2. Asymptotic expansion of Bergman kernel

In this Section we establish the asymptotic expansion of the Bergman kernel and then
prove Theorem 0.1.

2.1. Uniform trivialization

To get uniform estimates of the Bergman kernel in terms of p, we adapt the approach
of [16, §2] by using holomorphic coordinates instead of normal coordinates as it was
done in [12, §4.2] and [28, §4.1.3]. The advantage of using holomorphic coordinates is
that we can recover the holomorphic structure of a Hermitian holomorphic line bundle
under a unitary trivialization by solving the d-equation for the local weight function as
in Lemma 2.1, and then we can transfer the problem of having to deal with different
holomorphic line bundles by working directly with the corresponding weight functions.

Let v : U — V C C™, U C X, be a holomorphic local chart on X such that V is
convex and 0 € V' (we identify & with V and by abuse of notation, we sometimes write
x instead of ¢(x)). Let B(x,¢€) be the standard ball in C™ with center x and radius e.
Then for z € 1V := {y € C",2y € V}, we will use the holomorphic coordinates induced
by 1 and let 0 < g9 < 1 be such that B(0,8¢p) C V.

Recall that the Riemannian volume form dvy is given by 9" /n!. The L?-norm on
B(0,e) C V is given by

Is[12.. = / ls(y)Padux (y). (2.1)
B(0,¢)
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Let S, be a unitary section of (L, h,) which is parallel with respect to VEr along the

curve [0,1] 3 u — uZ for |Z| < 8gy.

Lemma 2.1. For each p > 1 there exists a holomorphic frame o, = e~'»S, of L, over
B(0,8¢q) such that for any k € N there exists Cy, > 0 independent of p, so that

I foller (B0,6c0)) < CrllR™ |[k4nt1, (2.2)
where || - ||g+n+t1 denotes the Sobolev norm.

Proof. Denote by I'l» the connection form of V7 with respect to the frame S, of L,
and by (I'f»)%! the (0, 1)-part of T't». As (I'F»)%! = 0, by [15, Chapter VIII, Theorem
6.1 and (6.4)], there exists f, € €>(B(0,8¢)) orthogonal to Ker(d) in the L?-space
satisfying

af, = (TL»)01 (2.3)
and

ol 2 50 < cLITE7 ]2 82, (2.4)

where ¢; is a constant independent of p. Using elliptic estimates we obtain

1 fplles1e < c2pee (10fplle + [fpllzze), (2.5)

where || - ||« denotes the Sobolev norm on the Sobolev space H*(B(0,¢)) and ca k. ¢ is
a constant dependent on k, 0 < € < ¢ < 1 and independent of p. Denote by ¢, be the
real part of f,. From (2.3) we know that o, := e fr Sp forms a holomorphic frame of L,
on B(0, 8p) with

opli, (2) = e72r ). (2.6)

The estimate (2.2) follows from (1.36), (2.3)-(2.5), and the Sobolev embedding theo-
rem. O

Remark 2.2. Note that on a Stein manifold M we have H'(M,0*) = H?*(M,Z) due
to Cartan’s theorem B (see e.g. [25, p.201]), thus any holomorphic line bundle L over
a Stein contractible manifold, for example a coordinate ball, is holomorphically trivial
(this is due to Oka [31]). Lemma 2.1 gives a proof with estimates of this result over a
coordinate ball.

For x € B(0,2¢() consider the holomorphic family of holomorphic local coordinates

Yo 1 7 (B(w,420)) — B(0,4e0),  ¥a(y) = v(y) —x. (2.7)
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Consider the holomorphic family of holomorphic trivializations of L, associated with the
coordinate 1, and the frame o,,. These trivializations are given by

\Ilp,w : Lp|w—1(3(x74€0)) — B(0,4€0) x C (28)

with U, . (y,vp) == (Y2 (y), vp/0p(y)) for v, a vector in the fiber of L, over the point y.
Consider a point zy € B(0,2¢0). Denote by fpz, = fp ot ¢pa, = @po ¥y, the
function f,, ¢, in (2.6) in local coordinate 1),,. Denote by <p£,1,]xo and <p£,2,]$0 the first and

second order Taylor expansion of ¢y, 4, i.e.,

n

Oy 8g0 _
ok (2) = 3 (G )z + 52 o)), (29)
j=1 J
" /1 0%p, 0?
2 (7).= R , 9 ¥ =
Sﬁp,xo( ) ejﬁk: (2 8zj(9zk (wo)zj2k + 02,07 (1'O)Z]Zk)a
where we write z = (21, ..., z,) the complex coordinate of Z.

Let p: R — [0,1] be a smooth even function such that
p(t) =1 1if |t|<2; pt) =0 if [¢t| >4 (2.10)

We denote in the sequel Xo = R?" ~ T, X and equip X with the metric g7*0(Z) :=
9" (W (p(1Z]/€0) Z)). Now let 0 < & < ¢ be determined and define

p,e(Z) = p(12]/€)¢pae (2) + (1 = p(1Z1/2)) (wp(@0) + 0y (2) + 0 (2)). (2.11)
Let h2»° be the metric on L,y = Xo x C defined by

|1|h L0(Z) i= e 20e(D), (2.12)

Let V2 be the Chern connection of (vao,hg”’o) and let RE7° be the curvature of
vire, By (0.5), (2.2) and the Taylor expansion of the function fp 2 there exists C' > 0
independent of p such that for xg € B(0,2¢¢), |Z] < 4e, 0 < j < 2, we have

Foan(2) = (o) + Fi1,(2) + 2,(2)|_ < CAplzP. (2.13)

From (0.5) and (1.19), we may assume that a,/A, > po holds for all p € N*, here pq is
a constant depending only on w. By (2.11)—(2.13), there exists 0 < £ < g small enough
such that the following estimate holds for every zo € B(0,2¢g), we have BX (xg,e) C U
and

4
inf {\/—1R€Lf§° (u, Ju) /Jul?rx, = u € Tz Xo \ {0} and Z € XO} > za,. (2.14)



18 D. Coman et al. / Advances in Mathematics 414 (2023) 10885/

In the sequel we fix € > 0 small such that (2.14) holds. Let
DY = v2(9" + @) (2.15)
A )

be the Dolbeault-Dirac operator on X, associated to the above data, where (3L”’0)* is
the adjoint of 5LP’O with respect to the metrics ¢g7*° and hELP’O. Note that over the ball
B(x0,2¢), Dy is just the restriction of D;f.

Let VT X0 be the holomorphic Hermitian connection on (719 X, hT(l’O)XO) with
curvature RT"”Xo_ Tt induces naturally a connection VTV Xo o 7O Xy, Set vTXo =
v Xo &) VTV Xo, Then V70 is a connection on TXy,®r C.

Let Ty be the torsion of the connection vTXo and Tp,qs be the anti-symmetrization of
the tensor V, W, Y — (To(V,W),Y). Let VC be the Clifford connection on A(T*(1 X;)
(cf. [28, (1.3.5)]). Define the operator ¢(-) on A(T*Xy) ®g C by ¢(e®* A ... Ae%i) =
c(ei,) ... cle;) for 1 <ip < ... <ij <2n. Set

1.,
Vi =V = 1 “(ivThas). (2.16)
Then as explained in [28, (1.4.27)-(1.4.28)], VA preserves the Z-grading on A(T*(*1) Xj).
Let VA40®Lro be the connection on A(T*OVX0) @ L, o induced by VA0 and VI as
in (1.6). Denote by A40®Lr.0 the Bochner Laplacian on A(T*(*Y X)) ® L, ¢ associated
with VA0®Loo, By [3, (2.29)], [28, (1.2.51), (1.4.29)], we have

X
(D)X0)? = Ao®lvo 4 —r40 + C(RLM - %Tr[RT“'O%])
(2.17)

)

1
C(dTO,as) - g |T0,as ’2

NG

where the norm |A| for A € A3(T*X,) is given by |A|? = Dici<k |A(ei, ej,e)|?. By
Theorem 1.4 we get from (2.14) the existence of C' > 0 such that for any p € N*,

Spec((DfO)z) c{0}Ulap, — C,+). (2.18)

Note that (D;)? preserves the Z-grading on Q%*(Xo, L).
Let Sy », be a unit section of (Ly o, hp,o) which is parallel with respect to vivo along
the curve [0,1] > u — uZ for any Z € Xy. As in [16, p. 78] we choose

1
Sp.ao(Z) =exp | —pp(z0) + 2/(2'28425},75),52 dt | 1. (2.19)
0

The unit frame S, ;, provides an isometry L, o ~ C. Let Pg be the orthogonal projection

PV L*(Xo, Lp,o) ~ L*(Xo,C) — Ker DX, (2.20)
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and let P)(x,z’) be the smooth kernel of P with respect to the volume form dvx,(z').

Proposition 2.3. For anyl,m € N, there exists C ,, > 0 such that for z,2’ € BT=0%X(0,¢),

P)(x,2") — Py(z,2') oo < CimA,t (2.21)
Proof. Using (1.25) and (2.18), we know that P — F(D,,) verifies also (1.26) for z, 2’ €
BT=0X(0,¢), thus we get (2.21). O

This shows that the asymptotics of P,(x,z’) depend only on the local geometric data
given by the restrictions of (L,,h,) and 9 to a neighborhood of a fixed point up to a
negligible term O(A;>°).

2.2. A family of holomorphic line bundles on X

Up to now we have shown that P,(z,z’) has the same asymptotics as the local
Bergman kernel PY(z,2’) associated to the local model D)X of D,. The next task is
to find the asymptotics of PJ(x,z’) in terms of a local model defined by the Kéhler
form w. In the case of powers L? of a line bundle L, we used in [12,16,28,29] the scaling
technique of Bismut-Lebeau [4] with scaling parameter 1/,/p. This allows to use con-
tinuous parameter ¢ in the neighborhood of 0, take derivatives with respect to ¢ as in
(28, (4.1.56), (4.1.58)] and set t = 1/,/p at the end. In the general case of an arbitrary
sequence (L, h,) we will construct a local smooth family (L;), of Hermitian holomor-
phic line bundles that interpolates between (L, h,) and the Hermitian holomorphic line
bundle Ly with curvature w (cf. (2.43)). This allows to perform analysis with respect
to 7. The associated Bergman kernels will then interpolate between the Bergman kernel
P)(z,2') and the limit Bergman kernel.

The idea is that the proof of Lemma 2.1 and (0.3) allow us to approximate the line
bundle L;|px (5 4c,) by powers of a locally defined holomorphic line bundle with curvature
w. Note that this is not possible globally on X since w is not an integral class. Although
w is not the curvature of a line bundle we define on X a “connection form” I' inspired
by (1.36). We set

1
I = —2W¢j1/(inw)tzdt. (2.22)
0

Since we work with complex coordinates, the (0, 1)-part of T is

1
ol — —QW\/—l/(izw)tzdt, (2.23)
0
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with 2 = >0, zja%j. Set

1

A—cl(Lp,hp) - w. (2.24)
P

Qp:

Lemma 2.4. There exists f € €°°(B(0,8¢)) such that for any k € N there exists Cy, > 0
so that

f =T%, |IflerB06e0)) < Crllwllhtntr, (2.25)

and for every p > 1 we have

HAipfp - f

¢ e 2.26
&+ (B(0,6¢0)) k||ap||k+ +1 ( )

Proof. By the argument (1.33)-(1.36), we get

1 1
v—1
2—sz = /t(dinw)tzdt = /t(LRw)tzdt =Wz, (2.27)
m
0 0
and
irl' =0, T|z=0 = 0. (2.28)

As wis a (1,1)-form, from (2.23) and (2.27) we get
or®! =o. (2.29)

Again by [15, Chapter VIII, Theorem 6.1 and (6.4)], there exists f € €*°(B(0,8¢))
orthogonal to Ker(9) in L?-space satisfying

af =1t (2.30)
and

1 £1lz2,850 < c1l|T|L2 82, (2.31)

Applying the above procedure for AL(I‘LP)O’1 —T'%! we obtain also
P

HAipf ~f] (2.32)

1
< CIH_(FLP)OJ _ F0,1’
L2,8¢¢ Ap

12,8

where ¢; is a constant independent of p. Using elliptic estimates as in (2.5), we get
Lemma 2.4 from (2.30), (2.31) and (2.32). O
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Denote by ¢ the real part of f and identify f,y as functions on U via 1. From (2.25)
we know o = e~ forms a holomorphic frame of Ly = C|B(0,850) Which is trivial as
smooth line bundle with metric h,

lol(2) = e3¢ (2.33)
and its curvature of Chern connection on (C|p(g,sc,),h) is
Rl = 27/~ 1w. (2.34)

For 0 <7 <1, set
1 a
fT,p:f+T(A_fp_f)Ap7 ¢T,p:RefT,p- (235)
7
Now we get a smooth family of holomorphic line bundles L, , on B(0,8¢¢) given by

B(0,8¢0) x C = L;,, (y,v) — (y,ve_fw). (2.36)

Thus we have the isomorphism of holomorphic line bundles on B(0, 8¢¢) via (2.8) and
(2.36):

L, =L, and Lo, = Lo. (2.37)
p P

Thus for z € B(0, 2¢¢),

B(O,460) x C — B(J},4€0) x C = LT,plB(zAso)

(2.38)
(y,v) = (y + z,ve~TrrloH9))

is an isomorphism of holomorphic line bundles.
For g € B(0,2¢¢) endowed with the local coordinates 1., from (2.7), denote by

Prg = PO w;017 fﬂco =fo ¢;01a (239)

and we can define apgj,apg&, . fa[&)],f;g} asin (2.9) and (2.11) by replacing ¢, f, by ¢, f.
Then we have for xg € B(0,2¢), |Z] < 4e, 0 < j < 2,

fan(2) = (o) + 110(2) + f2(2))|_ < clzi. (2:40)

Let ¢;,c be defined as in (2.11) by replacing f, by frp. Let hé’,’) be the metric on
L, = Xy x C defined by

|1|}21£; (Z) _ €_2¢T’p’6(z)~ (241)
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Let Vf’; be the Chern connection on (L, hé;,) and R{i’; be the curvature of Vf,;,, then
by (0.5), (2.26), (2.35) and (2.40), we can take € small enough and 79 > 0 such that

(2.14) holds and for any p large enough, = € B(0,2¢¢) and 7 € [0, 7o),

4
inf {\/—lRf7;7Z(u, Ju)/Jul2ex, s u € Tz X\ {0} and Z € XO} > cpo. (242)
We can summarize the above discussion as follows. We work on the trivial holomorphic
line bundle L. = Xy x C with the canonical section 1, and the metric hé; defined by
(2.41). Then the curvature RZ7 of the Chern connection VE7 on (L., hZ7) verifies (2.42),
and for z¢ € B(0,2¢), we have the isometry of holomorphic line bundles on B(0, 4¢)

(LT,hE{;)mp,T:A;a ~ (Lp,hy), and (L;,h%7)

o= (Lo, h). (2.43)

Since L, is trivial we can consider real powers of L. This means that the global weight
of the Hermitian metric is multiplied by the corresponding real number. Let Vfﬁg be the
Chern connection on (L., hEL);)@N for N € Ryq. Let D;f%N be the Dolbeault-Dirac opera-
tor defined in (2.15) associated with the holomorphic Hermitian line bundle (L, hZ7)®.

Now for (L, hEL’;), we use as frame a unit section Sy, 5, of (L, hé;) which is parallel

with respect to ny;, along the curve [0,1] > u — uZ, in particular, we can take as in
(2.19):

1
Srpzo(Z) =exp | = p(z0) +2 /(iZa(j)T,p’s)tZ dt | 1. (2.44)
0

The unit frame S;,, ;, provides an isometry L, ~ C, where the trivial line bundle C is

endowed with the canonical metric. Thus under this identification we consider (D;fg, N2

acting on €°°(Xy, C) and we have

Do = D;f;;a7 A (2.45)

Let Py p,-,n be the orthogonal projection

Poprn : LP(Xo, LY) ~ L*(Xy,C) — Ker(D)® )? (2.46)

and Py p - v (z,2") be the smooth kernel of P ,,  ny with respect to dvx, (z'). Let durx be
the Riemannian volume form of (T, X, gT=0%). Let x(Z) be the smooth positive function
defined by the equation

d'UXo (Z) = H(Z)dUTx(Z), (247)

with x(0) = 1. For s € ¥*°(R?",C), Z € R*" and t = ﬁ, set
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(6:5)(Z) =s(Z/1),
Vite :5;1m1/2v£,gn*1/25t, (2.48)

Ly =67 1RVP(DY ()25,

Denote by (-,-) and || - ||o the inner product and the L?-norm on *°(Xy, C) induced by
dvrx (Z). For s € €§5°(Xo,C), set

Isll? o = llsll§ = / |5(2)Pdvrx (Z),

R2n
(2.49)

m 2n
HS||72',t7m = Z Z Hvr,t,eh . vr,t,ejl 3”?,0 :

=0 ji,...,51=1

Let Popri(Z,Z") = Poprtz(Z, Z") be the smooth kernel of the spectral projection
Popira + (L2(X0, ©), [ llo) — Ker(£L,) (2.50)

with respect to dvrx(Z').

2.8. Asymptotics of the scaled operators and Bergman kernel

Let {w;}"_; be an orthonormal basis of ngé’O)X. Then
1 _
egj_1 = ﬁ(w] +w;) and ey; =

form an orthonormal basis of T,,, X. Set

1
Vo,e =Ve + 5%0(Z, ), with v = —=27v —1w,

2n (2.52)
Ly == (Vo.e,)” = Yoo (W, ;).
j=1

Then by [28, Theorem 4.1.7], we have:

Theorem 2.5. The operator .Z&Q has the following expansion as t — 0,

k
Lo =23+ 170+ O(F), (2.53)

r=1

where O, are second order differential operators on €>°(R?",C).
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Now we discuss the eigenvalues and eigenfunctions of . in detail. We choose {w; -

an orthonormal basis of Téi ’O)X such that
Yzo (wj,wj) =a;, a; > 0. (254)

Let {w’}%_, be its dual basis. Then {e;}3", given by (2.51) forms an orthonormal basis
of T, X. We use the coordinates on R?" ~ T, X induced by e; as

2n
R 5 (Zy, ..., Zon) — Y _ Zjej € Ty X. (2.55)
j=1
In what follows we also introduce the complex coordinates z = (z1,...,2,) on C" ~ R2",

Thus Z = 2+ %, and w; = vV2-2-, W, = V2-2. We will also identify z to 22 and
J 0z; J 0%Z; j <7 0z

Zto )., zji, when we consider z and Z as vector fields. Remark that
J 0Z;
2 = 2| = L o that |22 = |72 = |Z|2. (2.56)
8zj 8@- 2
It is very useful to rewrite .3 by using the creation and annihilation operators. Set

bj :—QVQ%, bf :2VO,%, b= (by,...,by). (2.57)

Then by (2.52) and (2.54), we have

o 1 _ .
_l+§(],ij, bj 82:]

1
2— 4 + aij. (258)

Then
n
= bb}. (2.59)
j=1
Let & : (L2(R?™),]| - ||z2) — Ker(Z)) be the orthogonal projection. Denote by 2 (z,y)
the Schwartz kernel of &2. By [28, (4.1.84)],

H exp[ - i Za] (Iz* + 1257 = 22:]'?;)}. (2.60)
Jj=1

In particular,

H 2_] _ _n. (2.61)
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2.4. Proof of Theorem 0.1

By the arguments of [28, p. 194] we know that the constant in [28, Theorem 4.1.16]
is uniformly bounded if with respect to a fixed metric g7, the @2 +m+m +7+4 porms
on B(0,6¢0) of the metric hl are bounded (here we use the power N as parameter).
Moreover, the 4™ -norms in [28, (4.1.58)] can also include the parameters if the 4™ -
norms with respect to the parameter and xg € B(0,2¢q) of the derivatives of the data
h* with order < 2n+m +r+4 are bounded. Here we have a family of metrics hEL,; which
certainly verify these conditions for 7 € [0, 79] and p large enough. Thus applying [28,
Theorem 4.1.16] with parameter 7 € [0, 7] and r = 0, we obtain the following statement.

Theorem 2.6. For any m,m’ € N, ¢ > 0, there exists C > 0 such that for t € [0,%],
Z,7' € Tp, X, |Z|,|12'| < ¢, T € [0, 7],

lal+la’l 9
sup

0Zez' or "7 <G 2.62
lal+la’|<m | 022" Br Ot (2.62)

¢m (B(0,2¢0))

By (2.62) we get

glal+le’| ,
sup W(Po’p’o’t - PO,p,A;“,t)(Z’ zZ")

lal+|a’|<m

< CAZ“. 2.63
€™’ (B(0,2e0)) p ( )

Taking Z = Z' = 0 in (2.63) yields

< CA (2.64)

‘Po,p,o,t(x07$0) = Pop,aze (%0, 70) €™ (B(0,2¢0))

By [28, (4.1.96)] we have
Py prn(0,0) = NPy, -:(0,0). (2.65)

Moreover, Py p.0.+(Z0, o) does not depend on p and by the argument in [28, §4.1.4-4.1.5]
and Theorem 2.5, we see that for any k € N there exists C' > 0 such that for ¢ € [0, (],
we have

k

Po.,p,0,t(x0, o) — Z t*"b,.(z0) ‘

r=0

< Ot (2.66)
™' (B(0,2¢0))

with b, (z¢) is computed exactly as in [28, Theorem 4.1.21] associated with —2m/—1w.
In particular, by(z) = £2(0,0) is given by (2.61). By (2.45) we have also

Pg((ﬂo, .To) = PO,p,A;“,Ap (Zo, Io). (267)

Proposition 2.3, relations (2.64), (2.65), (2.66) for t = \/}4—1) and (2.67), yield the conclu-

sion of Theorem 0.1.
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3. Equidistribution of zeros of random sections

In this section we prove Theorem 0.4. We assume throughout this section the setting
of Theorem 0.4 and let m € {1,...,n}. We will denote by w, the Fubini-Study form on
a projective space P4, normalized so that w;ls is a probability measure.

Let us start by introducing notation and recalling some facts needed for the proof. If
{57 }?”:1 is an orthonormal basis of H°(X, L,) then the Bergman kernel function P, of
HY(X, L,) is given by

dp
By@) =15 @), = € X. (3.1)

Let U be a contractible Stein open set in X and write Sf = ffep, where e, is a
local holomorphic frame of L, and fJP is a holomorphic function on U. The Fubini-Study
current 7y, of H°(X, L,) is defined by

d
1 P
Wl =5 ddlog Y _|f77, (3:2)

J=1

where d = 9+ 0, d° = 5:(9 — 0). These are positive closed currents of bidegree (1,1),
smooth away from the base locus Bs H°(X, L,) of H°(X, L,). We have

1
W = 1(Ly, hy) + 5 dd°log Py (3.3)

Let @, : X --» P4 ~! be the Kodaira map defined by the basis {Sjp}j”zl, SO
O, (z) =[fT(x):...: ff;p (x)] for x € U. (3.4)
Then v, = @) (wys)-

If s € H'(X, L,) we denote by [s = 0] the current of integration (with multiplicities)
along the analytic hypersurface {s = 0}. One has the Lelong-Poincaré formula (see [28,
Theorem 2.3.3])

[s = 0] = c1(Lyp, hyp) + ddlog |s|p, - (3.5)
Recall that X, = (PHO(X, Lp))m, dp = dim H%(X, L,). Set

dp o = dim X, = m(d, — 1). (3.6)

Let 7y, : Xp,m — PHO(X, L,) be the canonical projection onto the k-th factor. We endow
Xp,m with the Kéhler form
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. * *
Wp,m = Cp,m (Wles +...t ﬂ—m(“)Fs)v

where the constant ¢, , is chosen so that wgf’;n’" = 0p,m is a probability measure on X, .
It follows that

dp,m!

m\ 1/dpm
c=<u> . (3.7)

Lemma 3.1. In the hypotheses of Theorem (., the following hold for p > pg:
(i) vp are smooth (1,1) forms on X.

(ii) For opm-a.e. Sp = (Sp1,---,Spm) € Xpm we have that the analytic set {sp;, =
0} N ...N{spi, = 0} has pure dimension n —k for each 1 <k <mandl<i; <...<
i < m. In particular the current [s, = 0] := [sp1 = O] A ... A [spm = 0] s well defined

and is equal to the current of integration with multiplicities over the common zero set
{sp =0} :={sp1 =0} N...N{spm = 0}.

Proof. By (0.11) we have P,(z) > 0 for all z € X and p > pg, hence Bs H(X, L,) = ()
and (i) follows from (3.3). Since Bs H(X,L,) = 0 for p > po, [9, Proposition 4.1]
implies that, for o, m,-a.e. s, = (Sp1,-- -, Spm) € Xp,m, the analytic hypersurfaces {s,; =
0},...,{spm = 0} are in general position, i.e. {sp;;, = 0}N...N{sp;, = 0} has dimension
at most n —k foreach 1 <k<mand1l<i; <...<i, <m. Hence

R .= [Spil = 0] VANIRAN [Spik = 0] (38)

is a well defined positive closed current of bidegree (k,k) by [13, Corollary 2.11], sup-
ported in the set {s,;, =0} N...N{sp;, = 0}. Moreover, by the Lelong-Poincaré formula
(3.5),

/R/\f}""“ = /cl(Lp,hp)k AR >0,
X X

So {spi, =0}N...N{sp;, = 0} # 0, hence it has pure dimension n — k. The last assertion
of (i) now follows from [13, Corollary 2.11, Proposition 2.12]. O

The proof of Theorem 0.4 uses results of Dinh and Sibony [19, Section 3.1] on
meromorphic transforms. As in [19, Example 3.6 (c)], [10, Section 4.2], [17] we con-
sider the meromorphic transform ®,; from X to PH°(X,L,) defined by its graph
1 = {(z,5) € X x PHY(X,L,) : s(z) = 0}. This is related to the Kodaira map
®,, from (3.4). Its m-fold product ®,, ,,, (see [19, Section 3.3]) is the meromorphic trans-
form from X to X, ,,, with graph

Tpm = {(a:,spl,...,spm) EXXXpm: spi(x) =...=spm(x) = O}.
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Using Lemma 3.1 (i7) and arguing as in [10, Section 4.2], it follows that ®,,, is a
meromorphic transform of codimension n — m, with fibers

D1 (sp) ={z €X: sp1(x) =...=spm(x) =0}, where s, = (sp1,-- -, 5pm) € Xpm -
Moreover, for s, € X, , generic, the current

Q) 0 (0s,) =1[8p =0l = [sp1 = O] Ao Afspm = 0] = @7 1(65,,) Ao APy 1 (0s,,)
is a well defined positive closed current of bidegree (m,m) on X. Here ¢, denotes the
Dirac mass at a point =, and F*(T') denotes the pull-back of a current T by a meromor-

phic transform F as defined in [19, Section 3.1]. Following the proof of [9, Theorem 1.2]
(see also [10, Lemma 4.5]), we can show that

@) (opm) =1y, forall p> po.

We consider the intermediate degrees of ®,, ,,, of order dy ., resp. d, m — 1 [19, Section
3.1]:

Spom = / OF L (winm ) A9 SE = / ®F (w1 A 9T (3.9)
X X
We have
1
Spm = /cl(Lp,hp)m AT S = - /cl(L,D,hp)W1 AYmTmTL(3.10)
p,m
X

Indeed, using (3.3), we infer by above that

X X

and the formula for &2, follows as in the proof of [10, Lemma 4.4]. We will need the
following estimates:

Lemma 3.2. (i) For every p > 1 and m € {1,...,n}, we have 52— < ¢y < 2.
(ii) There exist constants My > 1 and p1 > po such that, for every p > p1, we have

M{'AY < dp < My A} (3.11)

51
m SMAT . M{T'A, < 2 < MIA,, Yme{l,...,n}. (3.12)

2
517,7’”
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Proof. (i) We have that [32, p. 200]

< e, forevery k> 1.

E

1
Since k** < 2 this implies that £ < (k!)" < 2k. Hence by (3.7) and (3.6),

Cp,m =

1 ((dp_ 1>!)1/(dp—1) %%
1

% (dp,m') /dp,m < E '

(79) We infer from (0.10) that there exists p; € N such that

1
2 < —c1(Ly, hy) < 2w, for all p > p;. (3.13)
2 T A,

By (3.10) we obtain

2 AT / WA S < am AT / W™ AP

X X

which readily implies the first estimate from (3.12). Using this and part (i), we obtain
the estimate on 4} ,,/62 , from (3.12), by increasing the constant M. Finally, using
(0.11), we get

MIZ) Hgdp:/PpmgMoAp/m,fOI'a,Hp>p0. O
X X X

Our next result deals with the part of the proof of Theorem 0.4 which uses the Dinh-
Sibony meromorphic transform technique and equidistribution theorem [19, Theorem
4.1, Lemma 4.2 (d)]. For p > pg, m € {1,...,n} and € > 0, let

Eypm(e) == U {sp € Xpm 1 |{[sp = 0] — 72", ¢)| > Ae}, (3.14)
6]l <1

where ¢ is a (n — m,n — m) form of class 2 on X. We also assume that the set of
sp € Xy, for which the current [s, = 0] is not well defined is contained in E,, ,,,(¢). Note
that, by Lemma 3.1, this is a set of measure 0 since p > py.

Proposition 3.3. In the hypotheses of Theorem 0.4, there exist constants v,a,( > 0 and
p1 > po, such that for every p > p1, m € {1,...,n} and € > 0 we have

Op,m(Ep,m(€)) < VA; e e,
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Proof. Fixm € {1,...,n}. We apply [19, Lemma 4.2 (d)] to the sequence of meromorphic
transforms @, ., : (X, 9) --» (Xpm,wpm) of codimension n — m and the probability
measures oy, = Wpm ol X, m. Let

E;),m(g) = U {SP € X:mm : |<[SP = O] - ’7;17¢>| 2 5;,m€}7
llpll2<1

where p > po and 4, ,,, is the degree of ®,, ,,, defined in (3.9). By [19, Lemma 4.2 (d)] it
follows that

1
opm(E) () < Ap(nep), wheren.,:=¢ (sg—’m —3R,.
p,m

p,m
Here
Ry := R(Xpm, Wpm: 0p,m) s Ap(t) == AXpm, Wp,ms Op,m t), where ¢ >0,

are quantities defined in [19, Sections 2.1, 2.2] and are related to the Alexander-Dinh-
Sibony capacity [1,19,24]. We recall their definition in the present situation. Let S,
denote the class of quasiplurisubharmonic functions ¢ on X,, ,,, such that dd®¢ > —mwp m
and [y @dopm =0. Then

R, = sup{&naxgo tpeS 7m}, A,(t) =sup{opm(p < —t): ¢ € Spm}.
By the appendix of [19] (see also [10, Lemma 4.6]) we infer that
R, <v'm(1+4logdym), Ap(t) < I//(dp’m)c et ¢ >0,

where 1/, (', o’ > 0 are constants depending only on m. Let Mj,p; be as in Lemma 3.2.
Then by (3.12) we have for p > py,

A A
Nep = ij—p —3R, > ij—p — SV'm(l +logd ,m).
1 1

Hence

1"

o (Bl (€)) < Dp(11e,p) < V" (dpm) €= A0,

where v/, (" > 0 are constants depending only on m and o’ = o' /M. Using again (3.12)
we have 6, ,, < M1 A, so Epm(e) C By, (¢/My). Therefore

p,m
pn (Epn(€) < 0pm (Bl (€/M1)) <V (dpm)® e Are/Mo,

Since by (3.11), dpm < md, < mM; A} for p > py, the conclusion follows. O
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Proposition 3.4. In the hypotheses of Theorem 0./, there exist C > 0 and p1 € N such
that for every 8 >0, m € {1,...,n} and p > p; there exists a subset E{f,m C Xp,m with
the following properties:

(%) ap,m(Egm) < CA;ﬁ;

(i) if sp € Xpm \ E{im then, for any (n —m,n —m) form ¢ of class €% on X,

log A,
Ap

‘%<[Sp:0]—’7;n7¢>‘ <C(B+1) I

Moreover, if Z;O:l A;B < 400 then the last estimate holds for oo .m-a.e. sequence
{sp}p>1 € Xoo,m provided that p is large enough.

Proof. For every 8> 0, m € {1,...,n} and p > p1, let

(B+¢)log A
E€p = Ot—App ) Eg,m = Epam(gp)a
where p1, @, are as in Proposition 3.3 and the set E, ,,(¢) is defined in (3.14). By
Proposition 3.3, we have that
Up,m(Eg,m) < VA;’; e e — Z/A;ﬁ.
If sp = (Sp1y-- -5 Spm) € Xpm \Egm then, by the definition of Eg,m, the current [s, =
0] = [sp1 = 0] A ... A [Spm = 0] is well defined and

5 (= 01— 357.9)] < ol

for any (n—m,n—m) form ¢ of class €. So assertions (i) and (ii) hold with the constant
C := max {V7 57 é} The last assertion follows from these using the Borel-Cantelli lemma

(see e.g. the proof of [10, Theorem 4.2]). O

Proposition 3.5. In the hypotheses of Theorem 0.4, there exist C > 0 and p1 € N such
that for every m € {1,...,n}, p > p1 and every (n —m,n —m) form ¢ of class €* on
X, we have

(G —am o) <o (B2 + 450 o

Proof. There exists ¢ > 0 such that for every real (n —m,n —m) form ¢ of class €2,

m € {1,...,n}, and every real (1,1) form 6 on X one has

—c[[dllg2 0" < dd°¢ < || Pl 9T, (3.15)
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—cl|éllo|0]lwo 9" < 6 A O < cllgllgol|0l o 9T

. (3.16)
For p > po let
m—1
' 3 V3 (Lyp, hyp)
R p _.m — p A m—1—j _ D>
PrAm Yo = A . > Y A, v

By (0.10), respectively by (3.3), we have that

Co

7 c
laplleo < Aa ) _Az; —w=o0p+ A dd°log P, .
Hence if ¢ is a real (n — m,n —m

) form of class €2 we obtain that

<Rp’¢>:<(zl_1;_w>/\pp7¢>:/pp/\ap/\¢+/10gpp

o4 Pr ANdd¢. (3.17)
X X
Using (3.16) we infer that
cCy 1 cCo —mt1
—— 1@llgo 0" < ap A p < = I llgo 9T,
A5 A7
hence
C
’ /pp A ap A gzb) o /pp AgnTmEL (3.18)
X X
By (3.15), the total variation of the signed measure p, A dd°¢ verifies
|op A dd°¢| < c|[pllg2 pp AT
Therefore

IOg P c | ]'Og Pp‘ n—m-+1
/ i e P dd%0] < cloller | S e A
X

We choose pi > pg such that (3.13) holds for p > p; and A, > M, for p > py,
where Mj is the constant from (0.11). By (0.11) it follows that A?~! < P, < A2t so
|log P,| < (n+1)log A, hold on X for p > p;. We infer that

N ﬂnferl

log P, 2log A
’/ o8 pp N ddd| < %/% for p > p;. (3.19)
p
b'e

Using (3.3) and (3.13) we have, for p > p; and 0 < j < m — 1, that
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/ T 13 pgrmt / LRy’ ) m1i g gnmtt ¢ i / WL AL

A X A X
Hence
m—1 ~
/p AL = /—p/\wm 1=3 g gnmm+t <2m/ m=l A gnTmHl - (3.90)
X =0 X X

By (3.17), (3.18), (3.19) and (3.20) we conclude that if p > p; then

cC nclogA — nem
Ryl <27 (] R o) [t o
X
for every m € {1,...,n} and every real (n —m,n —m) form ¢ of class €2. This implies

the proposition. O

Proof of Theorem 0.4. Theorem 0.4 follows at once from Propositions 3.4 and 3.5. O
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