Chapter 32

2

3

5

20

23

A Spectrophotometric Turbidity Assay to Study **Liquid-Liquid Phase Separation of UBQLN2 In Vitro**

Peter Raymond-Smiedy, Barrington Bucknor, Yiran Yang, Tongyin Zheng, and Car'los A. Castañeda

Abstract

Liquid-liquid phase separation (LLPS) is hypothesized to be the underlying mechanism for how membraneless organelles or biomolecular condensates form inside both prokaryotic and eukaryotic cells. Protein 8 LLPS is a biophysical process during which proteins demix from homogeneous solution to form proteindense droplets with liquid-like properties. Disruptions to LLPS, such as changes to material properties of 10 condensates or physicochemical parameters for LLPS onset, are implicated in neurodegenerative diseases 11 and cancer. Therefore, it is essential to determine the physicochemical parameters that promote protein 12 LLPS. Here, we present our UV-Vis spectrophotometric turbidity assay to characterize the temperature and 13 concentration dependence of LLPS for UBQLN2, a protein that undergoes LLPS via homotypic interactions in vitro and forms stress-induced condensates in cells. Mutations in UBQLN2 cause amyotrophic 15 lateral sclerosis (ALS) and disrupt UBQLN2 LLPS. We present a detailed expression and purification 16 protocol for a C-terminal construct of UBQLN2 and how we use microscopy to image UBQLN2 LLPS. 17 We use our UV-Vis assay to construct temperature—concentration phase diagrams for wild-type and mutant 18 UBQLN2 constructs to determine the effects of domain deletions and/or mutations on UBQLN2 phase 19 separation.

Key words Liquid-liquid phase separation, Turbidity, Microscopy, Spectrophotometric assay, LCST, 21 UCST, Phase transitions, Phase diagrams, UBQLN2

Introduction

Liquid-liquid phase separation (LLPS) is a physical process that is 24 hypothesized to underlie the formation of membraneless organelles 25 or biomolecular condensates inside the cells, such as nucleoli, 26 nuclear speckles, stress granules, processing bodies, and many 27 more [1-4]. These condensates dynamically assemble and disas- 28 semble in response to stress and other cellular signals. Condensates 29 are heterogeneous in composition, containing many biomolecules 30 such as proteins, DNA, and RNA. Through selective enrichment 31 and exclusion of these components, condensates modulate many 32 cellular functions including transcription, translation, protein quality control, and transport mechanisms. Changes in expression levels and subcellular organization of macromolecules dynamically alter the conditions for condensate assembly and disassembly. Dysregulation of condensates is implicated in disease mechanisms of several neurological disorders and cancer [5–8]. Indeed, many disease-associated proteins including tau, TDP-43, and FUS all undergo LLPS in vitro and localize into condensates in cells [5, 9, 10].

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

51

52

53

54

55

56

57

58

59

61

62

63

64

65

66

67

68

69

70

71

72

73

74

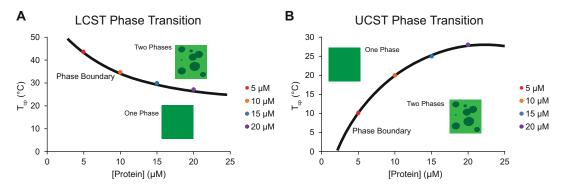
75

76

77

78

79


80

50 AU1

In LLPS, biomolecules associate with each other to demix from a homogeneous solution into a phase-separated state with at least two liquid phases, specifically a biomolecule-poor (dilute) phase and a biomolecule-rich (dense) phase. The droplet phase exhibits liquid-like properties as these droplets coalesce and wet surfaces. The conditions to induce phase separation are determined by factors such as temperature, pH, salt concentration, and overall biomolecule concentration. In addition, recent studies enumerated the molecular driving forces that promote LLPS of biomolecules. Common to all biomolecules that phase separate under physiological conditions is multivalency. Multivalency refers to a high number of sites that interact with other biomolecules. These "sites" can include multiple patches on folded domains and/or SLiMs (short linear motifs) in intrinsically disordered regions within macromolecules [4, 11-14]. Importantly, both homotypic (self) and heterotypic (e.g., protein-DNA, protein-protein) interactions promote phase separation among biological systems [15].

An important step to quantifying the phase separation behavior of a biomolecule is experimentally obtaining a phase diagram (see Fig. 1). Just as a phase diagram of water delineates the physiochemical parameters for solid, liquid, and gas phases, a phase diagram of a biomolecule delineates the conditions required for biomolecular phase separation into different liquid phases [16]. Although recent strategies enable the elucidation of phase diagrams inside the cells [17, 18], there is an extensive utility for obtaining temperature concentration phase diagrams for purified proteins in vitro, where experimentalists have control over buffer conditions, temperature, and concentrations of biomolecules. Methods for obtaining phase diagrams include static and/or dynamic light scattering, centrifugation, microscopy, and temperature-ramp turbidity assays (discussed here) [19–21]. Temperature-ramp turbidity assays are used by several research groups to obtain the threshold or saturation concentration above which proteins undergo LLPS. At protein concentrations below the threshold, the protein solution exists in a single, homogenous phase.

Depending on the nature of biomolecular interactions that promote phase separation, proteins may phase separate as temperature is increased (lower critical solution temperature or LCST phase transition) or phase separate as temperature is decreased (upper

Fig. 1 Low-concentration arms of representative temperature—concentration phase diagrams for proteins undergoing (A) LCST (lower critical solution temperature) and (B) UCST (upper critical solution temperature) phase transitions. Cloud point temperatures (T_{cp}) are used to delineate the phase boundary (shown as a thick black line). Below the phase boundary for LCST phase transitions, the protein exists as a single-phase homogeneous solution. Above the phase boundary for LCST phase transitions, the protein demixes into a phase-separated solution consisting of a protein-dilute phase (outside droplets) in equilibrium with a protein-dense phase (inside droplets). The conditions for phase separation are reversed for proteins experiencing UCST phase transitions

critical solution temperature or UCST phase transition) (*see* Fig. 1). 81 For example, systems whose phase separation is driven by hydro-82 phobic interactions typically exhibit LCST phase behavior, such as 83 PAB1 and UBQLN2 [22, 23]. Other systems whose phase separa-84 tion is driven by polar and/or aromatic interactions often exhibit 85 UCST phase transition behavior [24, 25]. Furthermore, a system 86 may exhibit both LCST and UCST phase behavior, producing a 87 closed-loop phase diagram or an hour-glass phase diagram 88 [26, 27].

We have employed temperature–concentration phase diagrams 90 to determine the molecular driving forces for UBQLN2, a protein 91 involved in protein quality control mechanisms including protea- 92 somal degradation and autophagy [28–30]. UBQLN2 is implicated 93 in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia 94 (FTD) [28, 31, 32]. UBQLN2 undergoes LLPS with both increasing salt concentration and temperature, similar to what would be 96 expected for a biopolymer undergoing a LCST phase transition 97 [23]. However, at least one UBQLN2 construct consisting of 98 C-terminal residues 450-624 exhibits both LCST and UCST 99 phase transitions between 16 and 60 °C, following the shape of a 100 closed-loop phase diagram [27, 33]. We used temperature-ramp 101 turbidity assays to rapidly screen the effects of amino acid substitutions on UBQLN2 phase separation [27, 33]. In this recent study, 103 we generated a library of 95 single point mutants in UBQLN2 104 450–624 [27]. This minimal construct is easy to express and purify 105 in bacteria, and we obtain milligram quantities that can be used for 106 spectrophotometric turbidity assays. Using this mutant library, we 107 determined that there were two classes of residues in UBQLN2, 108

specifically "stickers" and "spacers." Mutations at "sticker" positions substantially altered the shape and position of the LLPS phase boundary, whereas mutations in the "spacer" positions did not. Interestingly, hydrophobic amino acid substitutions at "stickers" modulated LLPS to the greatest extent, in line with expectations that UBQLN2 LLPS is driven in part by hydrophobic interactions. Furthermore, we also determined that certain disease-linked mutations of UBQLN2 promoted phase separation of UBQLN2 at lower temperatures and protein concentrations [33]. These same mutations also altered material properties of UBQLN2 condensates. Together, these experiments highlight the utility of elucidating temperature–concentration phase diagrams of proteins.

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

In this protocol, we describe how to express and purify UBQLN2 450-624, to construct the low-concentration arm of temperature-concentration phase diagrams for UBQLN2 using UV-Vis spectrophotometric assays, and to visualize UBQLN2 LLPS using bright-field microscopy. Critical issues, including salting-out purification techniques, preparation of protein samples for the turbidity assay and microscopy, preparation/cleaning of cuvettes, and spectrophotometric assay parameters, are discussed. Absorbance measurements at 600 nm are used as a proxy to monitor LLPS in the cuvette, while bright-field microscopy is used to visualize UBQLN2 droplet formation and droplet fusion. We present our methods for analyzing the temperature-ramp absorbance data using MATLAB scripts, but these can be adapted for other curve fitting software. By performing a series of temperature-based assays at different protein concentrations, a temperature-concentration phase diagram is constructed using cloud point temperatures (T_{cp}) of protein solutions. We define T_{cp} as the temperature at the midpoint (or inflection point) of the phase transition. This method has provided consistent results with UBQLN2 concentrations ranging from 5 µM to 300 µM. Our approach has enabled us to determine which domains and/or specific residues modulate phase separation of UBQLN2.

2 Materials

2.1 UBQLN2 450-624 W Expression and Purification

1.	UBQLN2 plasmid (Addgene 1/6852).	
2	Chamically competent Desetta 2 (DE2) blue Colle	

- 2. Chemically competent Rosetta2 (DE3) pLysS cells.
- 3. Ice and ice bucket.
- 4. PageRuler Unstained Protein Ladder 26614 for SDS-PAGE gel.
- 5. 10-mL Fisherbrand Pipettes, Catalog No. 13-678-11E or equivalent pipette capable of dispensing up to 13.0-mL solution.
- 6. 2.5-L Ultra Yield Flask, Part # 931136-B.

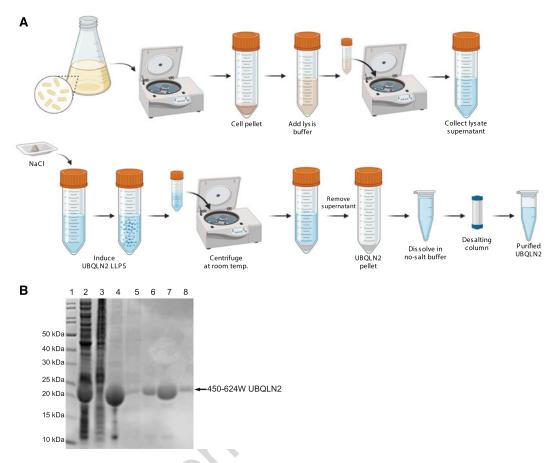
Temperature-Ramp LLPS Assay

	7.	Sterilized LB Growth Medium: 25 g LB powder, 1 L dH_2O in 2.5 L Ultra Yield Flask. Autoclave according to standard protocols.		
	8.	Isopropyl β -D-1-thiogalactopyranoside (<i>IPTG</i>).	154	
	9.	50-mM Tris pH 8, 1-mM EDTA buffer: 6.057 -g Tris and 0.372 -g EDTA in 1 -L dH_2O , pH adjusted to 8.0 (conc. HCl).		
	10.	Pierce Universal Nuclease or equivalent.	157	
	11.	Lysis buffer: pour 20-mL 50-mM Tris pH 8, 1-mM EDTA buffer into 50-mL conical tube, pipette 50 μL of 100-mM PMSF (in 100% ethanol, stored at $-20~^{\circ}C)$ and 50 μL of 1-M MgCl $_2$ into solution, and add 0.2- μL Universal Nuclease. Make immediately before use and store on ice until use.	159 160	
	12.	20-mM NaPO ₄ buffer pH 6.8 (see Note 1).	163	
	13.	5-mL HiTrap Desalting Column (GE Healthcare).	164	
	14.	Turner Model 340 Spectrophotometer or equivalent.	165	
	15.	New Brunswick Scientific Excella E24 Incubator Shaker or equivalent.	166 167	
	16.	Thermo Sorvall Legend XTR Refrigerated Centrifuge or equivalent.	168 169	
2.2 Protein Concentration Measurements at 280 nm	1.	NanoDrop ND-1000 Spectrophotometer or equivalent spectrophotometer (e.g., Thermo Scientific NanoDrop One) using 2- μ L sample sizes.		
2.3 Turbidity Assay Experiments	1.	Agilent Cary 3500 UV-Vis Multicell (eight-cell) Peltier Spectro- photometer and Thermocycler or equivalent spectrophotometer with thermal cycling function (see Note 2).		
	2.	Microsoft Excel or preferred graphing software.	176	
1.0	3.	MATLAB or preferred curve fitting software.	177	
2.4 Turbidity Assay	1.	Ice and ice bucket (for preparation of protein samples).	178	
Preparations: Proteins,	2.	Pipettes (P1000, P200, P20).	179	
Solutions, and Buffers	3.	50-mL conical tubes (centrifugable).	180	
	4.	15-mL conical tubes (centrifugable).	181	
	5.	Concentrated UBQLN2 solution (or protein of choice): Remove protein aliquots from the -80°C freezer, and place them on ice to begin the thawing process.		
	6.	20-mM NaPO ₄ buffer pH 6.8 (working buffer): Same preparation as in Subheading 2.1 .	185 186	
	7.	400-mM NaCl solution (2X Salt Solution, solution that induces phase separation of UBQLN2): Transfer 30-mL 20-mM NaPO $_4$ buffer pH 6.8 to 50-mL conical tube. Add 0.9350-g NaCl to	188	

3	Methods		22:
		8. Fiji imaging software.	22
		7. ONI Nanoimager (Oxford Nanoimaging Ltd.) or inverted microscope with at least a 20x objective; ours is equipped with an Olympus 100 × /1.4 NA objective and Hamamatsu sCMOS ORCA flash 4.0 V3 camera.	21 21 21 22
		6. Table-top incubator capable of 37 °C.	21
		10-mL 20-mM NaPO ₄ pH 6.8 buffer in a 50-mL conical tube. Store at 4 °C.	21 21
		5. 5% bovine serum albumin (BSA): Dissolve 0.5-g BSA into	21
		4. Tweezers.	21
		3. MatTek Uncoated Glass Coverslips 22×22 mm or equivalent.	21
		2. Eisco Cavity Slides Catalog # S99368 or equivalent.	21
		8. 20-mM NaPO ₄ buffer, pH 6.8: Same preparation as in Subheading 2.1.	20
2.6	Microscopy	1. Concentrated UBQLN2 solution (or protein of choice): Remove protein aliquots from -80°C storage, and place them on ice to begin the thawing process.	20 20 20
		9. Deionized water (dH_2O) : Deionized water in a wash bottle.	20
		8. Ethanol: 100% lab grade ethanol in a wash bottle.	20
		7. Cuvette cleaning solution: Transfer 800 mL of dH ₂ O into a beaker. Transfer 5 g of Sparkleen into the beaker and dissolve. Fill to 1 L with dH ₂ O. Transfer to a wash bottle.	20 20 20
		6. Laboratory grade ethanol (100%).	19
		5. Sparkleen or equivalent cleaning detergent.	19
		4. Wash bottles [3] with ability to stream solutions.	19
		3. Pressurized air.	19
		2. Starna 28B-Q-10 Spectrosil Quartz Window Micro Cell Stopper.	19
2.5	Cuvettes	1. Starna 28B-Q-10 Spectrosil Quartz Window Micro Cell, 10 mm path length, 0.7 mL.	19 19
		solution. Dissolve NaCl. Transfer to a 50-mL graduated cylinder; fill to a 40 mL with buffer. Transfer back to a conical tube. Store at 4 $^{\circ}$ C.	19 19 19

Below, we describe our expression and purification protocols for UBQLN2, our temperature-ramp turbidity assay protocol for UBQLN2, and how we image UBQLN2 LLPS via microscopy. We provide specifics on important points regarding purification of UBQLN2 without affinity tags, sample preparation,

spectrophotometer setup, as well as data analysis to extract mean- 228 ingful "cloud point" temperatures in construction of temperature- 229 concentration phase diagrams. We include notes for steps that can 230 be adapted for other proteins that phase separate with decreasing 231 temperature (UCST phase transitions). 232


Expression and 3.1 Purification of UBOLN2 450-624 W

This section explains the steps we use to express and purify 233 UBQLN2 construct 450-624 W (see Fig. 2a). UBQLN2 234 450-624 W includes residues 450-624 and an additional 235 C-terminal tryptophan for determining protein concentration via 236 A_{280} measurements. We use its phase separation property to salt out 237 UBQLN2 from bacterial lysate. This method yields milligram 238 quantities of UBQLN2 450-624 W from 1 L of bacterial culture.

1. Transform UBQLN2 450-624 W in pET-24b(+) plasmid into 240 Rosetta2 (DE3) pLysS cells using standard protocols. Select for 241 plasmid-containing cells using LB plate containing 50 $\frac{\mu g}{mL}$ Kanamycin (Kan) and $35 \frac{\mu g}{mL}$ Chloramphenicol (Chl). 243 (Or streak UBQLN2 450-624 W in pET-24b(+) plasmid in 244 Rosetta2 (DE3) pLysS cells from previously prepared glycerol 245 stock onto a Kan/Chl plate.) Grow overnight at 37 °C.

246

- 2. Inoculate a 25-mL "starter" culture with a colony from over- 247 night plate (autoclaved 225 mL Erlenmeyer containing 25-mL 248 LB; add antibiotics to the final concentrations of $50 \, \frac{\mu g}{mL}$ Kan and 249 35 $\frac{\mu g}{mL}$ Chl prior to inoculation). Allow the starter to grow at 250 37 °C in shaking incubator until turbid (usually 4 to 4.5 h).
- 3. Transfer 12.5-mL starter to 1 L "culture flask" (autoclaved 252 2.5-L Ultra Yield Flask containing 1-L LB solution prepared 253 using tap water; add antibiotics as noted in step 3). Allow 254 bacteria to grow in the culture flask at 37 °C in a shaking 255 incubator until A_{600} of 0.6 to 0.8 is reached (approximately 256 4-5 h).
- 4. Induce expression with 500-μL 1-M IPTG in a shaking incu- 258 bator at 37 °C overnight (12–16 h). To prepare 1-M IPTG, 259 dissolve 11.915-g IPTG into 35-mL dH₂O, and bring up to a 260 total of 50 mL with dH₂O. Mix well, aliquot into microfuge 261 tubes, and store at -20 °C.
- 5. Pellet cells by centrifuging 1-L culture at $4000 \times G$ for 15 min 263 at 4 °C. Remove supernatant and properly dispose (e.g., bleach). Place a centrifuge bottle with a cell pellet in -80 °C 265 freezer for >1 h. 266
- 6. Begin to thaw centrifuge bottle on bench. Before pellet is 267 completely thawed, add 20-mL lysis buffer and mix with disposable pipette until the mixture is not chunky or viscous. 269
- 7. Transfer mixed lysis solution into centrifuge tubes. Centrifuge 270 at $20,000 \times G$ for 20 min at 4 °C. 271

Fig. 2 (a) Schematic of "salting-out" UBQLN2 450-624 W purification method. Warm solution containing concentrated UBQLN2 450-624 W turns turbid when salt is added. Centrifugation of the turbid solution results in a pellet containing UBQLN2 450-624 W. Redissolving the pellet in fresh 20-mM NaPO₄ buffer and repeating salting-out steps purify the protein further. Please note that some protein is lost with each salting-out step. Created with Biorender.com. (b) SDS-PAGE gel of UBQLN2 450-624 W samples. (Lane 1) PageRuler Unstained Protein Ladder. (Lane 2) "Soluble" from step 9. (Lane 3) "Supernatant of 1st Salting Step" from step 11. (Lane 4) "Post-Salt" from step 12. (Lane 5) "Pre-Desalting Column" from step 14. (Lane 6) "Flow-Through" from step 17. (Lane 7) "E1" from step 17. (Lane 8) "E2" from step 17. The source of E1 is the fraction that is aliquoted and stored for later use. Refer to Subheading 3.1 for methods that produce these samples

- 8. Collect only the lysate supernatant into a 50-mL conical tube while not disturbing the pellet (*see* **Note 3**). Place 50-mL conical tubes into warm water for 10 min; before adding to the warm water, your solution should be translucent.
- 9. Obtain seven microfuge tubes to collect SDS-PAGE gel samples (see Note 4). Collect 10 μ L sample from the soluble lysate fraction, and mix with 10- μ L SDS buffer. This gel sample is labeled "Soluble" and kept refrigerated at 4 °C.

278

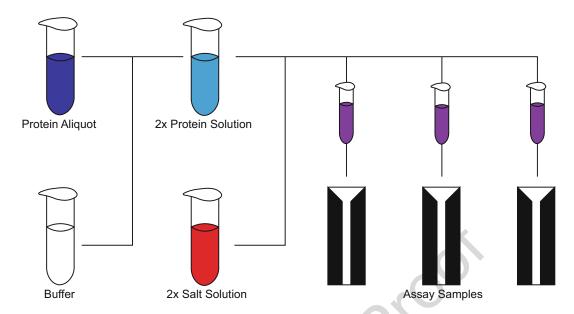
296

306

- 10. Induce phase separation of UBQLN2 by adding NaCl to a final 280 concentration of 500 mM to the warmed conical containing 281 lysate supernatant. Usually, you will have about 22-mL sample 282 in the tube, so add 2.5-mL 5-M NaCl. Upon NaCl addition, 283 solution should turn turbid.
- 11. Collect phase-separated UBQLN2 by spinning down conical 285 tube in a room temperature centrifuge at $5000 \times G$ for 15 min, 286 and save the pellet (see Note 5). After spinning, quickly retrieve 287 tubes and remove supernatant (take 10-µL sample from super- 288 natant, and label this "Supernatant of 1st Salting Step" for 289 AU4 SDS-PAGE gel). Collect and save the UBQLN2 pellet on ice. 290
- 12. Dissolve UBQLN2 pellet in 5-mL 20-mM NaPO₄ pH 6.8 291 buffer (without adding NaCl); this may take a while as protein 292 solution may be gel-like. Use disposable pipette to mix while 293 on ice; solution will be clear. Place tube in warm water for 294 around 10 min. Take 10 µL of this "Post-Salt" sample for SDS- 295 PAGE.
- 13. To further clean up the UBQLN2 sample, induce phase sepa- 297 ration again by adding NaCl to a final concentration of 298 500 mM to the UBQLN2 Post-Salt solution. Solution should 299 turn white. Centrifuge at room temperature at 5000 × G for 300 15 min.
- 14. Collect phase-separated UBQLN2 pellet on ice. Take 5-µL 302 SDS-PAGE sample from supernatant ("Pre-Desalting Column"). Dissolve pellet in 1.5-mL 20-mM NaPO₄ buffer. 304 This will be the longest dissolve during this protocol, so let 305 the solution sit on ice for as long as it takes (see Note 6).
- 15. Transfer dissolved solution to 2-mL microfuge tube. Centri- 307 fuge for 3 min at $21,000 \times g$ and 4 °C to remove any debris or 308 aggregated protein. Keep sample on ice.
- 16. Prepare the 5-mL HiTrap Desalting/Exchange Column: After 310 rinsing a 10-mL syringe with cold NaPO₄ pH 6.8 buffer, 311 equilibrate column with this same buffer avoiding bubbles. 312 Take up 3 mL of cold NaPO₄ pH 6.8 buffer into a 3-mL 313 syringe and set aside.
- 17. Pour UBQLN2 sample (~1.5 mL) into a 3-mL syringe, and 315 inject this sample into Desalting Column. Collect the 1.5-mL 316 liquid in a microfuge tube labeled "Flow-Through." Next, 317 inject 3-mL cold NaPO₄ pH 6.8 buffer into column. Collect 318 the first 1.5-1.8 mL of eluent into a microfuge tube labeled 319 "E1." Collect the remaining solution (1.5 mL) in "E2" micro- 320 fuge tube. Leave all tubes on ice. Make 5-µL SDS-PAGE 321 samples from each microfuge tube.
- 18. Check protein concentration using NanoDrop ND-1000. 323 Record A_{280} and A_{280}/A_{280} . Use A_{280} to calculate protein 324

concentration in μM ($(A_{280}*10^6)/5500$). Check each microfuge tube three times to take average and standard deviation. Also, wash the Desalting Column with H_2O and then 5-mL 20% ethanol.

- 19. Flash-freeze 100- μ L aliquots of "E1" using liquid N₂. Store at $-80~^{\circ}$ C.
- 20. Run a 15% SDS-PAGE gel to check protein purity and relative abundance. Visualize using Coomassie Blue Staining (see Fig. 2b).


3.2 Sample
Preparation for
Spectrophotometric
Turbidity Assays

We explicitly describe preparation of turbidity assay samples for one point on the low-concentration arm of the temperature–concentration phase diagram, specifically the final concentrations of 100-µM UBQLN2 protein and 200-mM NaCl solution in 20-mM NaPhosphate buffer at pH 6.8. Note that the range of protein concentrations will need to be optimized for each protein and/or mutants (see Note 7). To ensure consistency and reproducibility, we recommend that turbidity assays be run with replicates of three for each protein concentration. As we typically load the cuvettes with 400-μL total solution, enough solution must be prepared at the correct protein and salt concentrations for a total of 1200 µL to account for the three replicates. We prepare turbidity assay samples by 1:1 mixing of 2X Protein Solution and 2X Salt Solution on ice (see "Materials" and Note 8). To account for potential pipetting errors, total amounts of 650-µL volume are prepared of each 2X Salt Solution and 2X Protein Solution for the three replicates. A summary of this protocol is presented in Fig. 3.

These preparatory steps can be used for other proteins that phase separate with increasing temperature (LCST phase transitions) and with increasing salt (e.g., systems whose phase separation is driven by hydrophobic interactions). It is important to prepare protein samples such that they are under conditions where phase separation does not occur (low salt and low temperature in the case of UBQLN2). For these reasons, we prepare UBQLN2 solutions on ice using a buffer without any added NaCl. UBQLN2 (and various constructs described in [23, 27, 33]) is expressed and purified from bacteria. During the last stage of purification as described in Subheading 3.1, UBQLN2 is exchanged into a 20-mM NaPO₄, 0.2% sodium azide, and pH 6.8 aqueous buffer solution (referred to as buffer from now on). In this buffer, UBQLN2 does not phase separate. All solutions for the turbidity assay will use buffer.

- 1. Using the protein stock concentration, estimate the volume necessary to make 2X Protein Solution in 650-μL buffer.
- 2. Frozen protein samples should be thawed on ice to minimize protein aggregation (*see* **Note** 9).

t.1

Fig. 3 Schematic for preparing turbidity assay samples. First, the concentrated protein aliquot is diluted with buffer to make the 2X Protein Solution (see Table 1). Then, 200 μ L of 2X Protein Solution is mixed with 200 μ L of 2X Salt Solution in microfuge tube before transferring to cuvettes for assay

Table 1 Preparation of the 2X Protein Solution for a turbidity assay using ${\bf C_1V_1}={\bf C_2V_2}$

Desired protein concentration for assay	Volume of protein stock solution	Volume of buffer	t.2
100 μΜ	$\frac{(200\mu M)(650\mu L)}{950\mu M} = 136.8\mu L$	$650\mu L - 136.8\mu L = 513.2\mu L$	t.3
20 μΜ	$\frac{(40\mu M)(650\mu L)}{950\mu M} = 27.4\mu L$	$650\mu L - 27.4\mu L = 622.6\mu L$	t.4

- After thawing UBQLN2 aliquots, invert the tubes several times 370 to homogenize protein solution (see Note 10).
- 4. Centrifuge the thawed protein solution sample at 4 $^{\circ}$ C 372 21,000 g for 3 min.
- 5. Transfer the supernatants to a single new tube using a P200 374 pipette. Be careful not to disturb the pellet if present (*see* 375 **Note 11**).
- 6. Measure protein concentration using Nanopore ND-1000 377
 Spectrophotometer. Take the average of three A280 and 378 AU5
 A260/A280 measurements for protein concentration calculations (see Note 12).
 380 AU6
- 7. Prepare 650 μ L of 2X Protein Solution into a separate micro- 381 fuge tube, and place on ice for at least 5 min. If the desired 382 protein concentration is 100 μ M, the concentration of 2X 383

Protein Solution should be 200 µM (see Table 1). In this example, 136.8 µL of the protein stock solution (950 µM) will be diluted into 513.2 μL buffer for a final 650 μL of 2X Protein Solution. The extra 50 µL is present to account for pipette errors.

384

385

386

387

388

389

390

391

392

393

404

422

- 8. Pipette 200 µL of 2X Salt Solution into three microfuge tubes (for each replicate), and incubate on ice.
- 9. Prepare the reference solution that will be used to zero cuvette readings on the spectrophotometer. In a separate microfuge tube, mix 200-µL 2X Salt Solution with 200-µL buffer.

3.3 Preparing **Cuvettes and Loading** Samples for Turbidity Assay

- 1. Prepare a total of four cuvettes (see Note 13): three will be 394 protein samples, with the fourth being the reference solution.
- 2. Clean the cuvettes (see Note 14) and dry using pressurized air 396 or nitrogen. This should be done before and after every assay. Set dried cuvettes in ice alongside the microfuge tubes.
- 3. Pipette 200-µL diluted protein sample into each of the microfuge tubes already containing 200 µL of 400-mM NaCl, and 400 mix by gently pipetting up and down. Immediately transfer the 401 mixed solutions into their respective cuvettes (being careful not 402 to introduce bubbles), place lid on top, and keep the cuvettes 403 on ice (see Note 15).

3.4 Spectrophotometer and Thermal Cycle Setup

These next steps describe our spectrophotometric temperature- 405 ramp turbidity method, assuming that we will monitor an LCST 406 phase transition (protein phase separation as temperature is 407 increased). As the protein solution begins to phase separate, the 408 absorbance will increase rapidly. While our protocol is specific for 409 the Cary UV-Vis Multicell Peltier, the method can be adapted for 410 other equipment.

In this method, we monitor absorbance at 600 nm; however, 412 absorbance can be monitored at other wavelengths (e.g., 350 nm; 413 see Note 16). After a wait step for 2 min at 16 °C, we ramp 414 temperature between 16 °C and 60 °C at 1 °C/min (see Note 415 17). We do not increase beyond 60 °C to avoid protein denatur- 416 ation; however, this is specific to the UBQLN2 system. We include 417 the wait step to ensure that the entire system is equilibrated before 418 starting the temperature-ramp experiment (see Note 18). To mon- 419 itor reversibility of the phase transition, the method can be further 420 modified to include a temperature-ramp between 60 °C and 16 °C 421 at 1 °C/min (see Note 19).

1. Turn on the Cary UV-Vis Multicell Peltier spectrophotometer. 423 Open the "Cary UV Workstation" program on the computer. 424 Click the plug icon toward the top right corner of the menu to 425 connect to the spectrophotometer. 426

t.1

435

Table 2 Parameters employed for turbidity assay using spectrophotometer

Wavelength (s)	600.00 nm	t.2
Averaging time (s)	1.000	t.3
Spectral bandwidth (nm)	2.00	t.4
Stirring	No	t.5
Multiple experiments	1 zone	t.6
Start (°C)	16.0	t.7
Return (°C)	16.0	t.8
Detector module	Multicell Peltier UV-vis	t.9
Applied temperature	16.0 °C	t.10
Number of stages	2	t.11
Stage 1 settings		t.12
Collect data	Yes	t.13
Data interval	1.0 °C	t.14
Rate	1.0 °C/min	t.15
End	16.0 °C	t.16
Hold	2 min	t.17
Stage 2 settings		t.18
Collect data	Yes	t.19
Data interval	0.2 °C	t.20
Rate	1.0 °C/min	t.21
End	60.0 °C	t.22
Hold	0 min	t.23

- 2. Select the method used for the desired assay, or design a new 427 one from the home screen (see Table 2) (see Note 20). 428 AU7
- 3. Set up the eight-slot configuration for the spectrophotometer 429 on the method setup screen. Check to ensure each box 430 signifying a well is correctly selected as "Unused" or "Sample." 431 We place our reference solution (buffer + salt solution; see 432 Subheading 3.2) in slot 8. Check the boxes corresponding to 433 the wells that will be used for the experiment, and label the 434 contents appropriately (to be used in the output .csv file).
- 4. Cool the spectrophotometer to 16 °C so that the spectropho- 436 tometer reaches equilibrium prior to the start of the assay by 437 clicking "Apply Temperature."

3.5 Starting Data Collection

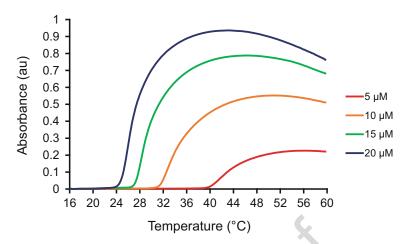
1. Remove each cuvette from the ice bucket, and wipe cuvette clean with lens paper (or Kimwipe). Set cuvette in its respective slot in the spectrophotometer. Ensure that the reference solution is in slot 8. Slide to close the lid, and click "Start a Collection" (triangle icon). Two prompts will appear: the first asks for a file name to save, and the second confirms sample names for each slot. Begin the assay by clicking "Save" and "OK," respectively.

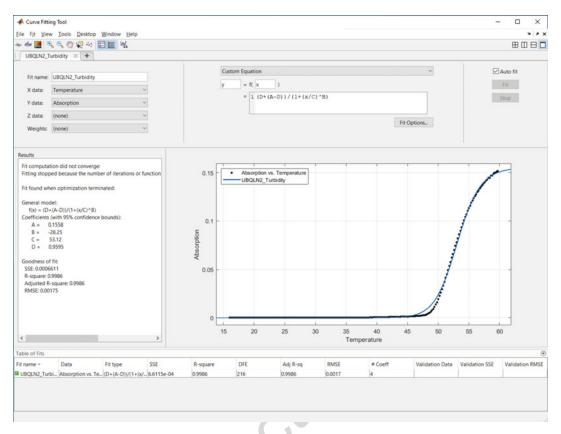
- 2. Once the assay begins, ensure that data points are being properly collected according to the method and that the reference solution is properly zeroing the solution absorbances (*see* **Note 21**).
- 3. Upon completion, click the three dots toward the upper right corner, and select "Export to CSV"; this will place the .csv file in the "Downloads" folder. Use a USB stick to copy your data to a computer for data analysis.
- 4. Remove all cuvettes from the *Cary UV-Vis Multicell Peltier*, and clean them (*see* **Note 22**).

3.6 Data Analysis

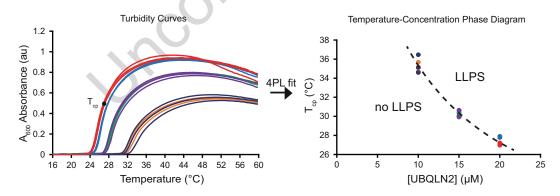
This section will describe how to handle the data obtained from the turbidity assay. Please note that other methods will be required to confirm that the protein is indeed phase-separating and not aggregating (see Subheading 3.8 for verification via microscopy). We present two methods of obtaining the cloud point temperature at the midpoint (or inflection point) of the phase transition, either by GUI-based fitting to the data or by running a short script. We use MATLAB for data fitting, although other programs may be used.

- 1. Open the .csv file obtained from the assay. Data are organized in sets of two columns (temperature, absorbance reading) per stage of the method. If there is a wait stage in the method, delete the associated two columns (one column will be a stagnant temperature, and the other should be an unchanging absorbance value).
- Normalize the data such that the minimum absorbance is zero for each sample. For each absorbance column, record the lowest value. Subtract this value from each of the absorbance values in the column.
- 3. Plot absorbance vs. temperature on a graph as shown in Fig. 4. Do note the decrease in absorbance at high temperatures (*see* **Note 23**).
- 4. Prepare for data analysis by importing the data file into MATLAB as "Column Vectors."
- 5. Remove row and column entries after the maximum absorbance value is reached for a given sample, to ensure a proper curve fit to the 4PL function in MATLAB.




Fig. 4 Plot of four different turbidity assays for a UBQLN2 construct (not UBQLN2 450-624 W) varying in protein concentrations between 5 and 20 μM. All protein samples were prepared at pH 6.8, 20-mM NaPhosphate buffer with 200-mM NaCl. Absorbance (A₆₀₀) is used as a proxy for monitoring LLPS

- 6. Prepare for curve fitting by selecting the "Apps" tab and click- 483 ing "Curve Fitting" in the Apps window. Choose the tempera- 484 ture column as the x-axis and absorbance column as the y-axis. 485
- 7. Prepare fitting model by selecting" Custom Equation" and 486 entering the following equation: f(x) = D+(A-D)/(1 + (x/C)) 487 ^B). This function is the four-parameter logistic regression 488 eq. A and D are the minimum and maximum absorbance 489 values, respectively, B is the slope of the transition, and C is 490 the temperature at the inflection point of the curve (see 491 Note 24).
- 8. Estimate the fitting variables (e.g., enter estimate for inflection 493 point temperature and maximum absorbance value).
- 9. Record variable values and curve-fit statistics from the graph 495 shown in Fig. 5. Check for curve fit accuracy. In some cases, 496 you may need to decrease the range of temperature to improve 497 the curve fit.
- 10. Alternatively, the code in Heading 4 may be used to analyze 499 data in lieu of the Curve Fitting Tool App. The script prepares 500 the data for analysis and executes the curve fit. Before running 501 the code, delete the wait period columns from the .csv file if a 502 wait period was used in the method. The code generates a .csv 503 file containing variable values and goodness of fit statistics (see 504 Note 25).

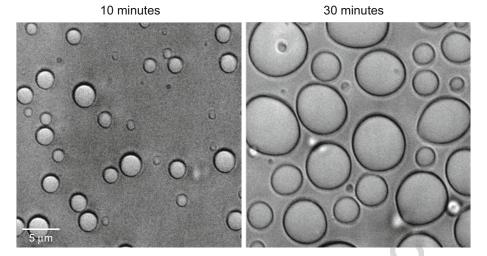

3.7 Construction of Low-Concentration Arm of Phase Diagram This section describes the transformation of data from turbidity 506 assays to assembling the low-concentration arm of a temperature- 507 concentration phase diagram as shown in Fig 6.

508

492

Fig. 5 Screen of the Curve Fitting Tool in MATLAB as applied to an example temperature-ramp spectrophotometric assay. Box A is where the 4PL equation is inputted. Box B contains the imported MATLAB objects to be used in the data fit. Box C is the graph and fit of data from Box B using the 4PL equation in Box A. Box D contains the fit parameter values in addition to statistical analysis based on the goodness of fit

Fig. 6 Conversion of turbidity assay data into temperature—concentration phase diagram. Cloud point temperatures (T_{cp}) are extracted from individual turbidity assays for a UBQLN2 construct (not UBQLN2 450-624 W). Shown are actual data from two protein preparations (e.g., black and orange) with three replicates at each concentration. Dotted line on phase diagram indicates phase boundary with phase separation occurring above the line. Good practice requires running multiple turbidity assays and comparing the phase diagrams of at least two different preparations of the same protein


Temperature-Ramp LLPS Assay

	Temperatures at the inflection point/midpoint of phase transitions (C variable from Subheading 3.5) are plotted against the protein concentration. These values are used to construct the low-concentration arm of the temperature–concentration phase diagram.	510 511	AU9
	Repeat turbidity assays for different protein concentrations and for at least two different protein purifications (<i>see</i> Note 26).	514 515	
tein Con UB(such scale Sub per reac	bidity assays monitor LLPS only by proxy, particularly as proaggregation can also increase the turbidity of proteintaining solutions. Therefore, we use microscopy to image QLN2 droplet formation and monitor liquid-like behavior as wetting and droplet fusion. Droplet sizes are on a micron e. Sample preparation is conducted following the same steps as theading 3.2 except that 50 - μ L 2X Protein Solution is required sample instead of $650~\mu$ L. Samples should remain on ice until by for the experiment. Cavity slides may be reused, but we do reuse glass coverslips (<i>see</i> Note 27).	518 519 520 521 522 523	
1.	Soak glass coverslip in 5% BSA solution for at least 1 h at room temperature up to overnight at 4 $^{\circ}\text{C}$ (see Note 28).	526 527	
2.	Use tweezers to remove glass coverslip from 5% BSA.	528	
3.	Fill two 50-mL conical tubes with 50-mL dH_2O , and label them "1" and "2." Using tweezers, dip coverslip into the conical tubes sequentially to wash the BSA off.	529 530 531	
4.	Tap corner of coverslip on dry Kimwipes several times until dripping stops.	532 533	
5.	Set on a slant in a closed container with Kimwipes lining the bottom and until dry.	534 535	
6.	Flush cavity slide with dH ₂ O at least ten separate times.	536	
7.	Set cavity slide on a slant in a closed container with one side touching a paper towel until dry.	537 538	
8.	Ready the microscope (we use an ONI Nanoimager). Turn on the computer connected to the microscope, and open the microscopy software to connect to the microscope. Set the chamber temperature to 37 $^{\circ}\text{C}$. This may take up to an hour to equilibrate.	540 541	
9.	When both the coverslip and cavity slide are dry, mix the 2X Protein Solution with 2X Salt Solution 1:1. In this case, we mix 50- μ L 2X Protein Solution with 50- μ L 2X Salt Solution to make a 100 μ L sample in a microfuge tube (<i>see</i> Note 29). Keep the sample on ice.	545	
10.	Pipette $50~\mu L$ sample into the cavity of the cavity slide. As it can be hard to tell which side of the cavity slide you are looking at, be sure to pipette the sample into the cavity instead of the flat	550	

3.8 Confirming LLPS

Behavior Using Bright-

Field Microscopy

Fig. 7 Bright-field microscopy image of UBQLN2 450-624 W under phase-separating conditions. UBQLN2 droplets are round, fuse, and wet uncoated surfaces. Image is of $100-\mu M$ UBQLN2 450-624 W dissolved in 20-mM NaPO₄ buffer with 200-mM NaCl at 37 °C at indicated time points. Scale bar is 5 μm

surface on the opposite side. Practice can ensure you recognize the correct side without the need to touch the slide and risk contamination.

- 11. Set the coverslip over the cavity. The goal is to cover the cavity without introducing bubbles in the sample. Bubbles make imaging more difficult because they take up space where you could be imaging droplets (*see* **Note 30**). Gently press the edge of the coverslip with Kimwipes, and wipe off excess liquid to ensure that coverslip is set.
- 12. Set the covered slide into a 37 °C incubator for 15 min with coverslip facing down. We keep this incubator next to the microscope. As coverslip movement can displace the sample from the cavity, try to leave the coverslip undisturbed (*see* Note 31).
- 13. Immediately prior to imaging, place a small drop of oil immersion solution onto the coverslip (*see* **Note 32**).
- 14. Open the sample chamber on the microscope, and set the slide coverslip down so the oil droplet is above the objective (the ONI uses a 100X objective). Use the z-axis control to bring the stage down until the oil immersion solution contacts the objective.
- 15. Using z-axis control, adjust the stage until you see droplets that are not moving. This z-plane is the surface of the coverslip (*see* Fig. 7).
- 16. Move the x- and y-axes to image different parts of the slide. Keep in mind that most, if not all, protein-containing droplets

- will sink to the coverslip as time goes on; thus droplet size will 578 increase. As time continues, droplets may not be easily distinguishable as they will wet the entire coverslip surface. 580
- 17. Acquire and save images to a desired folder on the computer, 581 and open TIFF files in Fiji. 582

3.9 Modifications to Monitor UCST Phase Transitions

Several systems undergo UCST phase transitions. Our UBQLN2 450–624 construct undergoes both LCST and UCST phase transitions over the 16 °C to 60 °C temperature range described in this protocol. To monitor the UCST phase transition, it is critical to prepare protein samples by mixing protein and buffer/salt solutions at temperatures above the UCST phase transition (e.g., incubation at 63 °C for at least 10 min). Cuvettes and microfuge tubes should be warmed to the incubation temperature to avoid any change that could result in phase separation prior to the assay. The UCST method for the spectrophotometer uses the same base parameters as shown in Table 1, with the exception of Stage 1 temperature set to 60 °C, and Stage 2 temperature range is set between 60 °C and 16 °C with a decreasing temperature rate of 1 °C/min.

4 Notes

1. Due to the nature of the preparation, these buffers contain approximately 20-mM Na⁺. While UBQLN2 does not phase separate using this buffer, other systems may phase separate at these salt concentrations. Therefore, one can prepare a "nosalt" buffer, i.e., 20-mM HEPES pH 7.0 buffer. We have also prepared UBQLN2 solutions for turbidity assays using this alternative buffer. In preparing this buffer, we use ammonium hydroxide to adjust pH to 7.0. To prepare 20-mM NaPO₄ buffer pH 6.8, obtain clean beaker and measure out 500 mL dH₂O. Place stirring magnet in beaker and set to 600 rpm. Transfer 12.0 mL of 1-M NaH₂PO4 into solution. Transfer 8.0 mL of 1-M Na₂HPO₄ into solution. Transfer 1.0 mL 20% sodium zzide into solution. Transfer solution to 1 L graduated cylinder. Fill to 950 mL with dH₂O. Measure pH to ensure pH is 6.8 and fill to 1 L. Filter using 0.2-µm filter paper. Store at 4 °C. 1 M NaH₂PO4: Transfer 30 mL dH₂O into 50 mL conical tube. Weigh out 5.998-g sodium phosphate monobasic anhydrous, and dissolve in dH₂O. Fill to 50 mL using a graduated cylinder, and transfer back to the conical tube. Store at room temperature. 1-M Na₂HPO₄: Transfer 30-mL dH₂O into 50 mL conical tube. Weigh out 7.098 g sodium phosphate dibasic anhydrous, and dissolve in dH₂O. Fill to 50 mL using a graduated cylinder, and transfer back to the conical tube. Store at room temperature. 20% sodium azide:

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

583

584

585

586

587

588

589

590

591

592

593

594

Add 8-mL dH_2O to 15-mL conical tube. Weigh out and dissolve 2-g sodium azide in dH_2O . Bring volume up to 10 mL. Store at 4 $^{\circ}C$.

- 2. We previously used a Beckman DU-640 instrument with a six-slot thermal unit for turbidity assay measurements; however this instrument is no longer in production. It is not expected that exact turbidity measurements will be transferable across spectrophotometers as each uses different heating elements, different cuvettes, and detectors. It is important to use the same spectrophotometer and cuvettes to ensure reproducibility of experiments. Periodically, it is recommended to rerun protein samples to ensure that the spectrophotometer is operating properly.
- 3. This separates other cell debris from the fraction containing UBQLN2 450-624 W. You may have to transfer into another centrifuge tube to spin again because spinning again removes even more cell debris from the desired fraction with a less likely chance of transferring unwanted debris into the 50-mL conical tube. The soluble fraction should be translucent.
- 4. These samples will be used for an SDS-PAGE gel to check protein purification at each step. This can be useful for troubleshooting any issues during the process. Samples are as follows: Soluble, Supernatant of first Salting Step, Post-Salt, Pre-Desalting Column, Flow-Through, Elution 1, and Elution 2.
- 5. This centrifuge step is done at room temperature to keep UBQLN2 under phase-separating conditions. If UBQLN2 is centrifuged at cold temperatures such as 4 °C, then it will dissolve in solution and no pellet will form.
- 6. Dissolving UBQLN2 in 1.5 mL is the last step before the Desalting Column. We have found that a single round of dissolving and salting-out (see Subheading 3.1, steps 13–14) yields clean samples of UBQLN2 450-624 W after elution from the Desalting Column. We define "clean" as A260/A280 ≤ 0.9 and >95% pure by SDS−PAGE. If a single round of salting-out does not clean the sample enough, you should repeat steps 13–14 in Subheading 3.1 at least once before desalting using the column again.
- 7. To find an initial range of protein concentration needed for this assay, you will likely need to test several initial concentrations over a broad range. For instance, assay a pure concentrated solution, then dilute by an order of magnitude repeatedly while assaying each dilution. For example, if the protein stock concentration was 1 mM, prepare protein solutions for turbidity assays at 100-μM, 10-μM, and 1-μM protein solutions.

- 8. The rationale for preparing 2X Salt Solutions for UBQLN2 is 666 as follows. First, titrating in salt from a higher stock concentra- 667 tion (e.g., >5X) may induce localized phase separation in a 668 small portion of the sample when salt is added. This could 669 trigger nucleation events for LLPS if the sample is not subse- 670 quently properly mixed. Second, using a 2X solution ensures 671 accuracy when pipetting as opposed to potentially pipetting 672 small volumes from a 10X solution. Therefore, we aim for 673 consistency and reproducibility across these experiments.
- 9. After purifying UBQLN2, the concentrated solution is divided 675 into 100 µL or 200 µL aliquots and snap frozen in liquid 676 nitrogen. The frozen samples are then stored at -80 °C. The 677 protein is aliquoted to avoid repeated freeze-thaw cycles. Note 678 that this procedure is specific to the protein of interest, and 679 other proteins may be stored differently.
- 10. Concentrated protein solutions must be made homogeneous 681 by inverting the tube or by gently pipetting up and down. Be 682 careful not to introduce bubbles. This step is to eliminate 683 locally concentrated portions of the solution from cryostorage.

- 11. After centrifuging, inspect the microfuge tube for any protein 686 precipitant at the bottom. In our experience, we have seen little 687 or no protein precipitant.
- 12. Use Beer-Lambert Law A = ε cl to calculate the protein con- 689 centration. A is unitless absorbance at 280 nm, ε is the extinc- 690 tion coefficient specific to each protein in M⁻¹ cm⁻¹, c is the 691 concentration of protein in M, and l is the light path length in 692 cm. The NanoDrop typically reports A280 assuming a 1 cm 693 path length. Additionally, the 260/280 ratio should be noted. 694 For a turbidity assay, we do not use protein with a 260/280 ratio greater than 0.90, as this indicates possible DNA/RNA 696 contamination or microphase separation. We have noted that 697 samples with higher 260/280 ratio (>1.0) phase separate 698 more readily, possibly due to these contaminants.
- 13. We store our cuvettes in conical tubes containing 20 mL of 700 cuvette cleaning solution. 701
- 14. We have found that the best way to clean these specific cuvettes 702 is to use a stack of litmus pH paper that can be made into a 703 brush. Use a stack as thick as can fit into the cuvette to scrub 704 the insides. This is necessary as phase-separated protein may 705 occasionally stick to the cuvette walls. Rinse cuvette with 706 dH₂O to remove any leftover soap in the cuvette. After rinsing 707 with dH₂O, use 100% ethanol to rinse the cuvettes. Let the 708 ethanol sit for about 1 min before removing by flicking the 709 cuvette gently. Use pressurized air for about a minute to dry 710 the cuvette completely. Ensure ethanol is completely removed 711

as even trace amounts will disrupt the assay. Be sure to hold the cuvette up to a light source to spot any residual trace moisture inside.

- 15. We recommend recording the amount of time between preparing a protein sample and starting the assay. If there are differences in reproducing turbidity assay experiments, we suggest keeping this time consistent across sample preparations and turbidity assays.
- 16. In our experience, we have used a wavelength of 600 nm, but other labs have used wavelengths such as 400 nm or 350 nm. These lower wavelengths offer greater signal to noise, but these wavelengths should not be used if chromophores in the sample absorb light in this range (e.g., if the protein is fluorescently labeled). You may choose alternative wavelengths as long as you stay consistent across all turbidity experiments.
- 17. We choose a temperature-ramp rate of 1 °C/min as a tradeoff between keeping conditions at pseudo-equilibrium and minimizing protein sticking to the walls of the cuvette. Ideally, a slower temperature-ramp rate should be used to attain equilibrium conditions. However, we have noticed that the absorbance steadily decreases if the solution is left sitting at a given temperature (*see* Fig. 6). We notice this is a result of droplets fusing and sticking to the sides of the cuvette.
- 18. We have found that 2 min in the Agilent 3500 spectrophotometer is the minimal amount of time for our UBQLN2 sample to equilibrate; however, this will need to be optimized for each system.
- 19. Please note that the phase transition as temperature is decreased is unlikely to overlap with the phase transition when temperature was increased. This is due to system hysteresis. Droplet disassembly typically occurs at a different rate than droplet assembly. Hysteresis can be diminished if a slower temperature-ramp rate is used (e.g., 0.5 °C/min), but this is not ideal if protein droplets adhere to the cuvette surfaces.
- 20. Two stages are used here. The first stage is designed to equilibrate the cuvettes at 16 °C prior to the start of the turbidity experiment. The second stage is the actual temperature-ramp turbidity experiment.
- 21. The absorbance values should be zero or very close to zero at the start of the experiment. If they significantly deviate from this value, this means that the sample may already be phase-separating at these temperatures or the cuvette exteriors were not properly dried before placing in the spectrophotometer. If the former, the turbidity assay cannot be used to reliably determine the cloud point temperature. You will need to repeat the

- assay by adjusting the starting temperature to a value below 757 which the sample does not phase separate. 758
- 22. Rinse the cuvettes first with dH₂O, and let sit with dH₂O for a 759 few minutes. This reduces the chance for residual protein to 760 precipitate inside the cuvette. Next, use ethanol washes to 761 remove residual protein, followed by dH₂O washes and rinses 762 with cuvette cleaning solution. Store the cuvette in 50 mL 763 conical tubes containing at least 20 mL of cuvette cleaning 764 solution.
- 23. Note that the absorbance begins to decrease as temperature is 766 further increased to 60 °C. This is a result of protein droplets 767 sticking to the walls of the cuvette. For some systems, this 768 behavior can be eliminated by coating the cuvettes, but this is 769 system dependent.
- 24. The C value obtained from this method is equivalent to the 771 midpoint of the curve. Other methods for T_{cp} calculation exist 772 such as using the temperature at 10% the maximum absorbance 773 or the inflection point. The most important thing is to be 774 consistent throughout experiments when calculating T_{cp} . 775
- 25. MATLAB code to process turbidity assay data and fit the 4PL 776 model to the data. This code is specific to modified data output 777 from the Agilent 3500 spectrophotometer. With modifica- 778 tions, the code can be adapted to other instruments. High- 779 lighted are file names to be changed.

```
% extract_Tcp_from_turbidity_assay.m
clear;
data_raw = xlsread (Turbidity_Data_File.xlsx');
data = data_raw;
% Correct baseline.
[numRows,numCols]=size(data_raw)
    for Col=[2:2:numCols]
    %Find the min value in a columnm
    M=min(data_raw(:,Col))
    %Subtract the value from all elements in the column
    data(:,Col)= bsxfun(@minus,data_raw(:,Col),M)
% Delete data after maximum absorbance value is reached
for Col=[2:2:numCols]
    % Find max value in the absorbance column.
    [val,idx] = max(data_raw(:,Col))
    % Delete all absorbance readings past the max value.
    data(idx+1:end,Col) = [NaN]
    % Delete all temperatures past the max value.
    data(idx+1:end,Col-1) = [NaN]
% 4-parameter non-linear curve fitting.
ncol=size(data,2)
for n=1:2:ncol
    temp=data(:,n)
    abs=data(:,n+1)
[xData, yData] = prepareCurveData( temp, abs );
% Set up fittype and options.
% a and d are minimum and maximum absorbance values;
% b is the Hill slope, reflecting steepness; c is the temperature at the inflection point/ midpoint.
ft = fittype( 'd+(a-d)/[1+(x/c)^b]', 'independent', 'x', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
% adjust these values if necessary.
opts.Lower = [-Inf -Inf 16 -Inf];
opts.Upper = [Inf Inf 60 Inf];
opts.StartPoint = [0.01 10 30 1];
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
% Plot fit with data.
figure( 'Name', '4PL' );
h = plot( fitresult, xData, yData );
legend( h, 'abs vs. temp', '4PL', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'temp', 'Interpreter', 'none' );
ylabel( 'abs', 'Interpreter', 'none' );
grid on
% Write fitted parameters and goodness of fit to result.
result(:,n)=coeffvalues(fitresult);
result(1,n+1)=gof.rsquare(1,1);
result(2,n+1)=gof.dfe(1,1);
result(3,n+1)=gof.adjrsquare(1,1);
result(4,n+1)=gof.rmse(1,1);
disp(fitresult)
csvwrite(' Turbidity_Data_File .csv', result)
```

838

- 26. It is very important to repeat turbidity assays using at least two 783 or three separate protein purifications. This is a standard 784 practice in our lab as we find it ensures consistency and 785 reproducibility while also identifying problems with protein 786 purifications.
- 27. Cavity slides may be reused using the following method: Soak 788 cavity slide in 0.5 M KOH and set in a sonicator for 15 min. 789 Flush both sides of the cavity slide with running dH₂O at least 790 ten times each. It is recommended to repeat the wash at least 791 once to ensure the cavity slide is cleaned. Dry using the same 792 method as in Subheading 3.8, and store in a closed container 793 where slides are not touching any other surfaces, including 794 each other.
- 28. 5% BSA is used to prevent interaction of UBQLN2 with the 796 coverslip surface.
- 29. When using microscopy to confirm protein LLPS, concentra- 798 tion can become an issue as LLPS is dependent on LLPS. In 799 this example, we use 100-µM UBQLN2 for microscopy. That 800 means the 2X Protein Solution contains 200-μM UBQLN2.
- 30. There are a few helpful considerations to avoid bubbles. 802 Ensure the coverslip is completely dry and free of dust or 803 other small particles as bubbles may nucleate on them when 804 setting the coverslip. Try to set the coverslip at an angle to 805 allow air to escape from one side as the coverslip lowers. 806 Finally, care when pipetting the sample can reduce the chance 807 that bubbles are introduced before setting the coverslip over 808 the sample.
- 31. The cavity acts as a well for the sample. If the coverslip moves 810 while in contact with the sample, it can drag sample out of the 811 well and onto the flat surface of the slide. The droplets can wet 812 the surface of the slide which prevents imaging of circular 813 droplets as they would be in solution. 814
- 32. Oil should only be used with oil immersion lenses. Oil can 815 ruin a lens that is not compatible with oil immersion 816 technique. 817

References 819

821

822 823

824

825

826

827

828

- 1. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732
- 2. Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108: 4334-4339
- 3. Wippich F, Bodenmiller B, Trajkovska MG et al 830 (2013) Dual specificity kinase DYRK3 couples 831 stress granule condensation/dissolution to 832 mTORC1 signaling. Cell 152:791–805
- 4. Mitrea DM, Cika JA, Guy CS et al (2016) 834 Nucleophosmin integrates within the nucleo- 835 lus via multi-modal interactions with proteins 836 displaying R-rich linear motifs and rRNA. elife 837 5:e13571

- 5. Conicella AE, Zerze GH, Mittal J et al (2016) 839 ALS mutations disrupt phase separation 840 mediated by α -helical structure in the 841 TDP-43 low-complexity C-terminal domain. 842 Structure 24:1537-1549 843
- 844 6. Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 845 53:171-194 846
- 7. Kato M, Han TW, Xie S et al (2012) Cell-free 847 formation of RNA granules: low complexity 848 sequence domains form dynamic fibers within 849 hydrogels. Cell 149:753-767 850
- 8. Bouchard JJ, Otero JH, Scott DC et al (2018) 851 852 Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-853 separated compartments. Mol Cell 72: 854 855 19-36.e8
- 9. Ambadipudi S, Biernat J, Riedel D et al (2017) 856 Liquid-liquid phase separation of 857 the microtubule-binding repeats 858 the 859 Alzheimer-related protein tau. Nat Commun 8:275 860
- 861 10. Murakami T, Qamar S, Lin JQ et al (2015) ALS/FTD mutation-induced phase transition 862 of FUS liquid droplets and reversible hydrogels 863 864 into irreversible hydrogels impairs RNP granule function. Neuron 88:678-690 865
- 11. Banani SF, Rice AM, Peeples WB et al (2016) 866 Compositional control of phase-separated cel-867 868 lular bodies. Cell 166:651-663
- 12. Li P, Banjade S, Cheng H-C et al (2012) Phase 869 870 transitions in the assembly of multivalent signalling proteins. Nature 483:336-340 871
- 13. Jonas S, Izaurralde E (2013) The role of disor-872 dered protein regions in the assembly of decap-873 ping complexes and RNP granules. Genes Dev 874 27:2628-2641 875
- 14. Martin EW, Holehouse AS, Peran I et al 876 877 (2020) Valence and patterning of aromatic resi-878 dues determine the phase behavior of prion-879 like domains. Science 367:694-699
- 15. Dignon GL, Best RB, Mittal J (2020) Biomo-880 lecular phase separation: from molecular 881 driving forces to macroscopic properties. 882 Annu Rev Phys Chem 71:53–75 883
- 16. Posey AE, Holehouse AS, Pappu RV (2018) 884 Phase separation of intrinsically disordered 885 proteins. In: Methods in enzymology. Aca-886 887 demic Press, pp 1–30
- 17. Bracha D, Walls MT, Wei M-T et al (2018) 888 Mapping local and global liquid phase behavior 889 890 in living cells using photo-oligomerizable seeds. Cell 175:1467-1480.e13 891
- 18. Riback JA, Zhu L, Ferrolino MC et al (2020) 892 Composition-dependent thermodynamics of 893 894 intracellular phase separation. Nature 581: 209-214 895

- 19. Peran I, Martin EW, Mittag T (2020) Walking 896 along a protein phase diagram to determine 897 coexistence points by static light 898 scattering. In: Kragelund BB, Skriver K (eds) Intrinsically disordered proteins: methods and protocols. Springer US, New York, pp 901 715-730 902
- 20. Milkovic NM, Mittag T (2020) Determination 903 protein phase diagrams centrifugation. In: Kragelund BB, Skriver K 905 (eds) Intrinsically disordered proteins: methods and protocols. Springer, US, New York, 907 NY, pp 685–702

918

921

922

925

926

929

930

932

933

935

940

945

946

948

- 21. Holland J, Crabtree MD, Nott TJ (2020) In 909 vitro transition temperature measurement of 910 phase-separating proteins by microscopy. In: 911 Kragelund BB, Skriver K (eds) Intrinsically dis- 912 ordered proteins: methods and protocols. 913 Springer US, New York, pp 703–714
- 22. Riback JA, Katanski CD, Kear-Scott JL et al 915 (2017) Stress-triggered phase separation is an 916 adaptive, evolutionarily tuned response. Cell 917 168:1028-1040.e19
- 23. Dao TP, Kolaitis R-M, Kim HJ et al (2018) 919 Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69:965-978.e6
- 24. Martin EW, Mittag T (2018) Relationship of 923 sequence and phase separation in protein low-complexity regions. Biochemistry 57: 2478-2487
- 25. Molliex A, Temirov J, Lee J et al (2015) Phase 927 separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123-133
- 26. Ruff KM, Roberts S, Chilkoti A et al (2018) 931 stimulus-Advances in understanding responsive phase behavior of intrinsically disordered protein polymers. J Mol Biol 430: 934 4619-4635
- 27. Yang Y, Jones HB, Dao TP et al (2019) Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase 938 transitions and dense phase material properties. 939 J Phys Chem B 123:3618-3629
- 28. Renaud L, Picher-Martel V, Codron P et al 941 (2019) Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun 7: 944 103
- 29. Zheng T, Yang Y, Castañeda CA (2020) Structure, dynamics and functions of UBQLNs: at 947 the crossroads of protein quality control machinery. Biochem J 477:3471-3497
- 30. Kleijnen MF, Shih AH, Zhou P et al (2000) 950 The hPLIC proteins may provide a link 951

Temperature-Ramp LLPS Assay

952 953	between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419	3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol	
954	31. Deng H-X, Chen W, Hong S-T et al (2011)	Aging 33:2949.e13–2949.e17	962
955	Mutations in UBQLN2 cause dominant	33. Dao TP, Martyniak B, Canning AJ et al (2019)	963
956	X-linked juvenile and adult onset ALS and	ALS-linked mutations affect UBQLN2 oligo-	964
957	ALS/dementia. Nature 477:211–215	merization and phase separation in a position-	
958	32. Synofzik M, Maetzler W, Grehl T et al (2012)	and amino acid-dependent manner. Structure	966
959	Screening in ALS and FTD patients reveals	27:937–951	967