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Abstract
Image super-resolution is an important subject in image processing and recognition. Here,
we present an attention-aided convolutional neural network for solar image super-resolution.
Our method, named SolarCNN, aims to enhance the quality of line-of-sight (LOS) magne-
tograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI)
on board the Solar and Heliospheric Observatory (SOHO). The ground-truth labels used
for training SolarCNN are the LOS magnetograms collected by the Helioseismic and Mag-
netic Imager on board the Solar Dynamics Observatory. Solar ARs consist of strong mag-
netic fields in which magnetic energy can suddenly be released to produce extreme space-
weather events, such as solar flares, coronal mass ejections, and solar energetic particles.
SOHO/MDI covers Solar Cycle 23, which is stronger with more eruptive events than Cycle
24. Enhanced SOHO/MDI magnetograms allow for better understanding and forecasting
of violent events of space weather. Experimental results show that SolarCNN improves the
quality of SOHO/MDI magnetograms in terms of the structural similarity index measure,
Pearson’s correlation coefficient, and the peak signal-to-noise ratio.
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1. Introduction

Deep learning, which is a subfield of machine learning, has drawn significant interest in
recent years. It was originally used in speech recognition (Deng, Hinton, and Kingsbury,
2013), natural language processing (Kastrati et al., 2021), and computer vision (Hu et al.,
2018). More recently, it has been applied to astronomy, astrophysics, and solar physics
(Liu et al., 2020a; Jiang et al., 2021; Espuña Fontcuberta et al., 2023; Mercea et al., 2023;
Scully et al., 2023). Here, we present a new deep-learning method, specifically an attention-
aided convolutional neural network (CNN), named SolarCNN, for the super-resolution of
solar images. SolarCNN aims to enhance the quality of line-of-sight (LOS) magnetograms
of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI; Scherrer
et al., 1995) on board the Solar and Heliospheric Observatory (SOHO; Domingo, Fleck,
and Poland, 1995). The ground-truth labels used for training SolarCNN are the LOS mag-
netograms of the same ARs collected by the Helioseismic and Magnetic Imager (HMI;
Schou et al., 2012) on board the Solar Dynamics Observatory (SDO; Pesnell, Thompson,
and Chamberlin, 2012). Training and test samples are collected from ARs in the HMI and
MDI overlap period, between 1 May 2010 and 11 April 2011.

An AR on the solar disk usually consists of one or more sunspots and pores that are
formed because of the concentrations of strong magnetic fields. In the AR, magnetic en-
ergy can suddenly be released to produce extreme space-weather events, such as solar flares
(Mayfield and Lawrence, 1985; Hudson, 2011; Aschwanden, Xu, and Jing, 2014; Liu et al.,
2019), coronal mass ejections (Webb and Howard, 2012; Priest, Longcope, and Janvier,
2016; Liu et al., 2020b), and solar energetic particles (Abduallah et al., 2022; Reames, 2022).
SOHO/MDI covers Solar Cycle 23, which is stronger with more eruptive events than Cycle
24. Enhanced SOHO/MDI magnetograms allow for better understanding and forecasting
of violent events of space weather. As indicated in Liu et al. (2022), magnetograms with
significantly reduced resolutions would affect the accuracy of solar flare predictions.

SOHO/MDI and SDO/HMI were designed to study the oscillations and magnetic fields
at the solar surface, or photosphere. MDI was an older instrument, which was terminated
in April 2011. HMI, the successor of MDI, is still on mission. Both MDI and HMI provide
full-disk LOS magnetograms, where the LOS magnetograms of HMI have spatial and tem-
poral resolutions higher than those of MDI. In addition, HMI provides vector magnetograms
(Jiang et al., 2023). Figure 1 compares the NOAA AR 11064 LOS magnetograms collected
by MDI (shown in Figure 1a) and HMI (shown in Figure 1b), respectively, at 00:00:00 UT
on 1 May 2010. It is evident from Figure 1 that the HMI magnetogram has a better spatial
resolution than the MDI magnetogram.

The remainder of this paper is organized as follows. Section 2 surveys related work.
Section 3 describes the data used in this study. Section 4 presents details of our Solar-
CNN model. Section 5 reports experimental results, demonstrating that SolarCNN performs
well in terms of commonly used image quality assessment metrics (Sara, Akter, and Uddin,
2019), such as the structural similarity index measure (SSIM), the Pearson correlation co-
efficient (PCC), and the peak signal-to-noise ratio (PSNR). Section 6 presents a discussion
and concludes the paper.

2. RelatedWork

CNNs are very effective in image processing and have been extensively used by the commu-
nities of solar physics and space weather. They have been used to infer line-of-sight veloci-
ties, Doppler widths, and vector magnetic fields from Stokes profiles (Liu et al., 2020a; Jiang
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Figure 1 Comparison of LOS magnetograms, taken by a) SOHO/MDI, and b) SDO/HMI. Both images were
taken from AR 11064 at 00:00:00 UT on 1 May 2010.

et al., 2022), track magnetic flux elements (Jiang et al., 2020), trace Hα fibrils (Jiang et al.,
2021), predict flares (Jonas et al., 2018), detect filaments (Zhu et al., 2019), and so on. This
motivates us to adopt CNNs for the super-resolution of solar images. Yang et al. (2019) pre-
sented several deep-learning models for single image super-resolution. Other researchers
performed image super-resolution using a multistage enhancement network (Huang and
Chen, 2022) or diffusion probabilistic models (Li et al., 2022). Nearly all models use convo-
lution mechanisms to build multiple blocks and link these blocks with residuals. The residual
structure was originally used to enhance the performance of the VGG network (He et al.,
2016). It significantly improves deep-learning-based picture processing and has a large im-
pact on image super-resolution methods (Chen and Qi, 2018). Inspired by the success of
the residual structure, SolarCNN employs multiple blocks with convolutional layers and
residual links that link the multiple blocks.

To further improve the performance of SolarCNN, we include the Mish activation func-
tion. The Mish activation function is a modification of the ReLu activation function and
is used to obtain a loss lower than the ReLu activation function (Misra, 2020). The Mish
activation function has been observed to perform better than the ReLu activation function
(Rahim, Hassan, and Shin, 2021; Li et al., 2022). Furthermore, SolarCNN uses structures of
a frequency channel attention network (FcaNet) to increase its learning capacity (Qin et al.,
2021).

In solar physics, several researchers have developed deep-learning methods for super-
resolution of solar images. Díaz Baso and Asensio Ramos (2018) designed CNNs with
residual blocks to enhance HMI observations. Rahman et al. (2020) and Deng et al. (2021)
proposed generative adversarial networks (GANs) for super-resolution of HMI data. Rah-
man et al. (2020) used a GAN model to enhance HMI magnetograms, validated by Hinode
data. Deng et al. (2021) employed a different GAN model to enhance HMI continuum im-
ages to the GST level. Song et al. (2022) used a diffusion probability model to enhance HMI
continuum images. In contrast to the above methods, our work focuses on the enhancement
of MDI data rather than HMI data. Because of the difference in the data, SolarCNN’s archi-
tecture significantly differs from the architectures of the previously developed deep-learning
models for solar image super-resolution.
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3. Data

We consider the overlap period of MDI and HMI, between 1 May 2010 and 11 April 2011,
in which both MDI and HMI data are available from the Joint Science Operations Center
(JSOC), accessible at jsoc.stanford.edu. Our dataset includes level 1.8 full-disk MDI mag-
netograms with 2′′ per pixel taken from the mdi.fd_M_96m_lev182 series of JSOC. HMI
magnetograms with 0.5′′ per pixel from the hmi.M_720s series of JSOC are used as ground-
truth labels. The cadence of the MDI magnetograms is 96 min, while the cadence of the HMI
magnetograms is 12 min. The nearest HMI magnetogram is selected for each MDI image
to construct training pairs with an effective cadence of 96 min. Our targets are ARs with
unsigned flux peak ≥1500 G. The field of view (FOV) of each selected AR contains 256 ×
256 pixels. The original size of an MDI image is 64 × 64. To facilitate model training and
evaluation, we extend the size to 256 × 256 through bilinear interpolation. Thresholds of ±
2000 G are used, as this is a typical range of AR magnetic fields (Rahman et al., 2020). For
the minority group of pixels with stronger field strengths, their values are set to ± 2000 G
according to the polarities.

Next, we normalize the magnetic-field strengths in a magnetogram by dividing them by
2000, giving a range of [−1, 1]. ARs outside ± 70° of the central meridian are excluded
to minimize projection effects. This process yields a set of 1,569 pairs of aligned images
(AR patches) from MDI and HMI. Among the 1,569 pairs, we select 1,493 pairs for model
training and the remaining 76 pairs for model testing. The ARs from which the 1,493 training
image pairs are taken differ from the ARs from which the 76 test image pairs are collected.
Thus, SolarCNN can make predictions on ARs that it has never seen during training. To
avoid overfitting and increase the diversity of the training set, image rotation is applied
to the training samples, producing 5,972 pairs of aligned training images and 76 pairs of
aligned test images, where the size of each image is 256 × 256. A random sample of 10%
of the training data is used for validation.

4. Methodology

SolarCNN employs downsampling and upsampling techniques, which are often used in
deep-learning-based image super-resolution (Yang et al., 2019; Huang and Chen, 2022; Li
et al., 2022). Figure 2 shows the architecture of SolarCNN for enhancing an MDI magne-
togram to the HMI level. The size of the input image is 256 × 256. The input image is first
sent to a two-dimensional (2D) convolutional layer with 64 filters (kernels) of size 13 × 13
followed by a ReLU activation function. The output of the 2D convolutional layer is sent to
an L2 regularization layer, whose output is then sent to two Down Sample Blocks for down-
sampling, and ten Res Blocks for feature optimization. The output of the last Res Block is
sent to two Up Sample Blocks.

We also design an Fca Block as a subblock of the Res Block and Up Sample Block.
The purpose of the Fca Block is to make the learned features self-update. Since SolarCNN
aims to preserve and optimize as much as possible the original physical meaning of the
input magnetogram, which is very different from the color images used in other color image
super-resolution studies, we combine the input magnetogram and the output of the last Up
Sample Block using a concatenation layer. The output of the concatenation layer is then sent
to a 2D convolutional layer with 1 filter of size 1 × 1 to obtain the final output.

The concatenation layer mentioned above is reminiscent of the connection structure used
in U-Net (Falk et al., 2019). The difference is that in U-Net, the connections, which exist

http://jsoc.stanford.edu
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Figure 2 Architecture of SolarCNN. After the initial 2D convolutional layer and regularization, the input
image is downsampled by two consecutive Down Sample Blocks. Then, the data flow goes through ten Res
Blocks to complete feature optimization. Next, the data flow passes through two Up Sample Blocks. Finally,
the data flow is concatenated with the input image, where the concatenated result is sent to a 2D convolutional
layer to obtain the output.

between the encoder and the decoder, are for maintaining spatial information during the
data resizing process, while in SolarCNN, the concatenation layer, which exists outside the
Down Sample Blocks and Up Sample Blocks, is for generating an enhanced image based on
the input magnetogram.

Figure 3 presents the configuration details of the Down Sample Block, Res Block, Up
Sample Block, and Fca Block. In the Down Sample Block, which is shown in Figure 3a, the
input image is first convolved twice and regularized once with L2. Then it goes through a
max-pooling layer for downsampling. The first 2D convolutional layer has 64 filters of size
3 × 3, and the second 2D convolutional layer has 128 filters of size 3 × 3. These filters
(kernels) are followed by a ReLu activation function. In addition, we add a dropout layer
between the two 2D convolutional layers. The dropout rate is 0.2. The kernel size of the
max-pooling layer is 2 × 2. After that, the number of filters doubles for each new Down
Sample Block connected in the model. We use two Down Sample Blocks. Thus, the input
size of the Down Sample Blocks is 256 × 256 × 64, and the output size is 64 × 64 × 256.

In the Res Block shown in Figure 3b, the input data flow passes through two 2D con-
volutional layers. The activation function of the first 2D convolutional layer is ReLu, and
the activation function of the second 2D convolutional layer is tanh. Both 2D convolutional
layers have 256 filters of size 3 × 3. We also add a dropout layer between the two 2D
convolutional layers with a dropout rate of 0.2. The output data flow of the second 2D con-
volutional layer passes through an Fca Block. We use ten Res Blocks in SolarCNN. The
input and output size of this part is 64 × 64 × 256.

In the Up Sample Block shown in Figure 3c, the input flow passes through a transposed
2D convolutional layer, a dropout layer, and another 2D convolutional layer (the second 2D
convolutional layer) to obtain the output flow. The transposed 2D convolutional layer has
128 filters of size 2 × 2 with a stride of (2, 2), followed by a Mish activation function. The
dropout rate of the dropout layer is 0.2. The second 2D convolutional layer has 128 filters
of size 3 × 3, also followed by a Mish activation function. The data flow of the second 2D
convolutional layer passes through an Fca Block. For each new Up Sample Block connected
in the model, the number of filers is halved. The number of Up Sample Blocks is the same
as the number of Down Sample Blocks. Therefore, the input size of the Up Sample Blocks
is 64 × 64 × 256, and the output size is 256 × 256 × 64.
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Figure 3 Configuration details of the a) Down Sample Block, b) Res Block, c) Up Sample Block, and d) Fca
Block. In the Down Sample Block, the data flow first passes through two 2D convolutional layers, followed
by L2 regularization and max pooling. A dropout rate of 0.2 is added between the two 2D convolutional
layers. In the Res Block, the data flow passes through two 2D convolutional layers with a dropout rate of 0.2
between them. The data flow then passes through an Fca Block. Finally, the output data is residual connected
with the input flow to obtain the output of the Res Block. In the Up Sample Block, the data flow passes
through a transposed 2D convolutional layer and another 2D convolutional layer with a dropout rate of 0.2
between them. Then, the data flow goes through an Fca Block to obtain the output of the Up Sample Block.
In the Fca Block, the data flow goes through a discrete cosine transform (DCT) layer, then passes through
two fully connected layers, and finally is multiplied by the input of the Fca Block to obtain the output of the
Fca Block. The Res Block and the Up Sample Block contain an Fca Block as a subblock.

In the Fca Block shown in Figure 3d, the input features first go through a discrete cosine
transform (DCT) layer and then go through two fully connected layers. In the first fully
connected layer, the number of nodes is twice the number of filters for the input features,
and the activation function is ReLu. In the second fully connected layer, the number of
nodes is the same as the number of filters for the input features, and the activation function
is Sigmoid. The result of the second fully connected layer is filled to the same shape as the
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Table 1 Configuration details of SolarCNN.

Block Layer Kernel Size Activation

Input Convolutional Layer 13 × 13 ReLu

Down Sample Block

Convolutional Layer 1 3 × 3 ReLu

Convolutional Layer 2 3 × 3 ReLu

Max Pool Layer 2 × 2

Res Block
Convolutional Layer 1 3 × 3 ReLu

Convolutional Layer 2 3 × 3 tanh

Up Sample Block
Transposed Convolutional Layer 2 × 2 Mish

Convolutional Layer 3 × 3 Mish

Fca Block
Fully Connected Layer 1 ReLu

Fully Connected Layer 2 Sigmoid

Output Convolutional Layer 1 × 1

Table 2 The training hyperparameters of SolarCNN.

Optimizer Learning Rate Weight Decay Batch Size Epoch

Adam 1 × 10−5 1 × 10−5 64 1000

input features. The product of the input features and the filled result is the output of the Fca
Block.

Table 1 summarizes the configuration details of SolarCNN. Table 2 presents the settings
of SolarCNN’s hyperparameters. We use a mixture of SSIM (to be defined in Section 5) and
L1 loss as the loss function for the SolarCNN model. SSIM is a positive direction indicator,
so our loss function is the sum of the L1 loss and the negative of SSIM. The optimizer we
choose is Adam with a learning rate of 1 × 10−5 and a weight decay rate of 1 × 10−5.

Although we use image rotation in the image augmentation process to increase the data
complexity, there is still the possibility of overfitting. During training, the loss on the training
set decreases steadily, whereas the loss on the validation set may bounce back after decreas-
ing to a certain level. To avoid overfitting, we adopt an early stop approach, which works as
follows. When the loss in the validation set can no longer drop and starts to rebound slightly,
the SolarCNN model training is terminated and the model parameters are saved.

5. Experiments and Results

5.1. EvaluationMetrics

We conduct a series of experiments to assess the components of SolarCNN and compare it
with related methods. The evaluation metrics used in the experiments include the structural
similarity index measure (SSIM), Pearson’s correlation coefficient (PCC), and peak signal-
to-noise ratio (PSNR).
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The SSIM of two equal-sized magnetograms A and B , each having n pixels, is defined
as:

SSIM = (2μAμB + C1)(2σA,B + C2)

(μ2
A + μ2

B + C1)(σ
2
A + σ 2

B + C2)
, (1)

where μA is the mean of the pixel values of all pixels in A, μB is the mean of the pixel
values of all pixels in B , σA,B is the covariance of A and B , σ 2

A is the variance of the pixel
values of all pixels in A, σ 2

B is the variance of the pixel values of all pixels in B , C1 and C2

are constants. The covariance of A and B is:

σA,B = 1

n

n∑

i=1

(Ai − μA)(Bi − μB), (2)

where Ai (Bi , respectively) is the pixel value of the ith pixel in A (B , respectively). SSIM
ranges from −1 to 1, with a larger SSIM value indicating a greater similarity between A and
B .

PCC represents the strength of correlation between A and B , which is defined as:

PCC =
∑n

i=1(Ai − μA)(Bi − μB)
√∑n

i=1 (Ai − μA)2
√∑n

i=1 (Bi − μB)2
. (3)

PCC also ranges from −1 to 1, with a higher value indicating a stronger correlation between
A and B . A scatter plot is often used to visualize the correlation between A and B . The
closer the scatter plot dots to the diagonal line Y = X, the stronger the correlation between
A and B .

PSNR is commonly used in image super-resolution research, which is defined as:

PSNR = 10 log10(
MAX2

MSE
), (4)

where MAX is the maximum fluctuation of pixel values in a magnetogram. Because we limit
the maximum magnetic-field strength of a pixel to 2000 G, MAX is set to 4000 to take into
account both positive and negative magnetic flux regions. The mean squared error (MSE) is:

MSE = 1

n

n∑

i=1

(Ai − Bi)
2. (5)

The larger the PSNR, the closer A to B .

5.2. Ablation Study

In conducting ablation tests to assess the components of SolarCNN, we considered
seven variants of SolarCNN: SolarCNN-L, SolarCNN-R, SolarCNN-F, SolarCNN-LR,
SolarCNN-LF, SolarCNN-RF, and SolarCNN-LRF. SolarCNN-L denotes SolarCNN with
the L2 regularization layer being removed, where the L2 regularization layer is used to
prevent overfitting. SolarCNN-R denotes SolarCNN with the Res Blocks being removed.
SolarCNN-F denotes SolarCNN with the Fca Blocks being removed where the discrete
cosine transform (DCT) layer in an Fca Block is used for contrast enhancement. SolarCNN-
LR denotes SolarCNN with the L2 regularization layer and Res Blocks being removed.
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Table 3 Results of the ablation study.

Model SSIM PCC PSNR

SolarCNN 0.9039 0.8842 37.40

SolarCNN-L 0.8884 0.8703 36.23

SolarCNN-R 0.8857 0.8765 35.89

SolarCNN-F 0.9017 0.8818 37.34

SolarCNN-LR 0.8702 0.8683 35.31

SolarCNN-LF 0.8784 0.8697 36.07

SolarCNN-RF 0.8687 0.8701 35.34

SolarCNN-LRF 0.8622 0.8664 35.13

None 0.8334 0.8627 34.73

SolarCNN-LF denotes SolarCNN with the L2 regularization layer and Fca Blocks being
removed. SolarCNN-RF denotes SolarCNN with the Res and Fca Blocks being removed.
SolarCNN-LRF denotes SolarCNN with the L2 regularization layer, Res and Fca Blocks
being removed. Table 3 presents the metric values of the eight models.

The eight models use the same training and test sets as described in Section 3, and the
same hyperparameter values as shown in Table 2. The results in Table 3 are the averages of
the metric values for all the test magnetograms in the test set. For each test magnetogram,
we compare its enhanced image with the corresponding ground-truth label (HMI magne-
togram) and use the formulas in Section 5.1 to calculate the metric values. For comparison
purposes, we also include the case where no model is used, denoted by “None”, in Table 3.
The metric values in the “None” row in Table 3 are obtained by comparing each MDI mag-
netogram directly with the corresponding HMI magnetogram without using any model. The
best metric values in the table are in bold.

It can be seen from Table 3 that SolarCNN performs best with the largest value in
each metric. These results indicate the importance and usefulness of the L2 regularization
layer, Res and Fca Blocks to improve the performance of the proposed method. SolarCNN
achieves, on average, an SSIM of 0.9039, PCC of 0.8842, and PSNR of 37.40 when com-
paring the SolarCNN-enhanced MDI magnetograms with their corresponding ground-truth
labels (HMI magnetograms). When comparing the original MDI magnetograms with their
corresponding HMI magnetograms, we obtain, on average, an SSIM of 0.8334, PCC of
0.8627, and PSNR of 34.73. These numbers indicate that the SolarCNN-enhanced MDI
magnetograms are closer to the corresponding HMI magnetograms than the original MDI
magnetograms, demonstrating the effectiveness of the proposed method.

5.3. Comparative Study

In this experiment, we compare SolarCNN with two related methods. The first method,
named CNNr, is also a CNN model with residual blocks. The CNNr architecture is inspired
by the work of Díaz Baso and Asensio Ramos (2018) for the enhancement of the SDO/HMI
image. The residual blocks and the up sample blocks of CNNr, together with the optimizer
and loss function, are taken from Díaz Baso and Asensio Ramos (2018). To handle the im-
age sizes at hand, we added down-sample blocks of SolarCNN to CNNr. The other hyper-
parameters of CNNr are the same as those of SolarCNN. The second is the bicubic method
(Rahman et al., 2020), which uses mathematical interpolation to enhance the image.



36 Page 10 of 16 C. Xu et al.

Figure 4 Performance comparison between SolarCNN and two related methods (CNNr and the bicubic
method).

Figure 4 compares the three methods, where the results are the averages of the metric
values for all the test magnetograms in the test set. For each test MDI magnetogram, we
compare its enhanced image with the corresponding ground-truth label (HMI magnetogram)
and calculate the metric values. To facilitate visualization, the PSNR values in Figure 4 are
obtained by dividing the original PSNR values by 100. It can be seen from Figure 4 that
SolarCNN is the best of the three methods. The two CNN models (SolarCNN and CNNr)
perform better than the bicubic method.

5.4. Case Studies

Here, we present several case studies to further demonstrate the effectiveness of SolarCNN.
Figure 5 shows an MDI magnetogram, its enhanced magnetogram, and the corresponding
HMI magnetogram of AR 11183 at 20:48:00 UT on 2 April 2011. The top row in the figure
displays, from left to right, the MDI magnetogram, the enhanced MDI magnetogram, and
the HMI magnetogram. The second row displays, from left to right, the FOV (field of view)
of the region highlighted by the yellow box in the corresponding magnetogram in the top
row. Visually, the enhanced MDI magnetogram is closer to the HMI magnetogram than the
original MDI magnetogram. Quantitatively, we obtain an SSIM of 0.8984, PCC of 0.8897,
and PSNR of 37.04 when comparing the enhanced MDI magnetogram with the HMI mag-
netogram, and we obtain an SSIM of 0.8240, PCC of 0.8691, and PSNR of 33.23 when
comparing the original MDI magnetogram with the HMI magnetogram.

Figure 5g shows the scatter plot between the MDI magnetogram and the HMI magne-
togram. Figure 5h shows the scatter plot between the enhanced MDI magnetogram and the
HMI magnetogram. Clearly, the enhanced MDI magnetogram correlates better with the HMI
magnetogram than the original MDI magnetogram. We note that the enhanced MDI mag-
netogram is close to the HMI magnetogram in not only resolution but also magnetic-field
strengths.

Figure 5i shows the azimuthally averaged power spectrum of the three magnetograms,
which is a measure of the amount of information in an image based on the Fourier trans-
form (Wedemeyer-Böhm and Rouppe van der Voort, 2009; Deng et al., 2021). It can be seen
from Figure 5i that the HMI magnetogram has the most information with the highest reso-
lution, and the enhanced MDI magnetogram is closer to the HMI magnetogram in terms of
information and resolution than the MDI magnetogram.
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Figure 5 Comparison among an MDI magnetogram, its SolarCNN-enhanced magnetogram, and the cor-
responding HMI magnetogram of AR 11183 at 20:48:00 UT on 2 April 2011. a) MDI magnetogram. b)
Enhanced MDI magnetogram. c) HMI magnetogram. d) FOV of the region highlighted by the yellow box
in a). e) FOV of the region highlighted by the yellow box in b). f) FOV of the region highlighted by the
yellow box in c). g) Scatter plot of the MDI magnetogram versus the HMI magnetogram. h) Scatter plot of
the enhanced MDI magnetogram versus the HMI magnetogram. i) Azimuthally averaged power spectrum of
the three magnetograms.

Figure 6 presents scatter plots of the enhanced MDI magnetograms versus the corre-
sponding HMI magnetograms from three additional active regions (ARs). These active re-
gions are AR 11185 at 12:48:00 UT on 6 April 2011, AR 11186 at 16:00:00 UT on 9 April
2011, and AR 11189 at 00:00:00 UT on 9 April 2011. It can be seen from Figure 6 that
SolarCNN transforms the MDI magnetograms into HMI-like magnetograms, in the sense
that the enhanced MDI magnetograms are close to the corresponding HMI magnetograms
in magnetic-field strengths, a finding consistent with that in Figure 5h. When considering all
76 samples in the test set, the factor between the magnetic-field strengths of the enhanced
MDI magnetograms and those of the corresponding HMI magnetograms is approximately
0.937, showing that SolarCNN can generally transform MDI magnetograms into HMI-like
magnetograms.
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Figure 6 Scatter plots of the SolarCNN-enhanced MDI magnetograms versus the corresponding HMI mag-
netograms from a) AR 11185 at 12:48:00 UT on 6 April 2011, b) AR 11186 at 16:00:00 UT on 9 April 2011,
and c) AR 11189 at 00:00:00 UT on 9 April 2011, respectively.

5.5. Comparison with Hinode Data

To further understand the behavior of SolarCNN, we applied it to an active region outside
the overlap period of MDI and HMI (between 1 May 2010 and 11 April 2011). Specifi-
cally, we picked an MDI magnetogram of AR 11024 on 7 July 2009, and used it as input
to the trained SolarCNN model. We compared the enhanced MDI magnetogram with the
corresponding magnetogram of the same AR at the same day obtained from Hinode/SP.
Hinode/SP (Spectro-Polarimeter) is an instrument designed to analyze the Sun’s magnetic
fields and their influence on solar activity (Tsuneta et al., 2008). The resolution of Hinode/SP
is 0.16′′ per pixel.

Figure 7 presents the comparison result. The first row shows the MDI magnetogram and
the FOVs of the two regions highlighted by the black boxes in the MDI magnetogram. The
second row shows the SolarCNN-enhanced MDI magnetogram and the FOVs of the two
regions highlighted by the black boxes in the enhanced MDI magnetogram. The third row
shows the Hinode/SP magnetogram and the FOVs of the two regions highlighted by the
black boxes in the Hinode/SP magnetogram. HMI did not exist in 2009, so no HMI image
is shown in Figure 7.

It can be seen from Figure 7 that the SolarCNN-enhanced MDI magnetogram has a higher
resolution than the MDI magnetogram, although the Hinode/SP magnetogram is the most
clear. This is understandable given that SolarCNN is trained by HMI magnetograms and
its output is, at best, equivalent to an HMI magnetogram. On the other hand, the resolution
of a Hinode/SP magnetogram is approximately three times that of an HMI magnetogram,
and therefore the Hinode/SP magnetogram is more clear than the SolarCNN-enhanced MDI
magnetogram in Figure 7.

6. Discussion and Conclusion

In this paper, we present a new deep-learning method (SolarCNN) for image super-
resolution of solar ARs. We use SolarCNN to enhance MDI magnetograms to the HMI
level. Training, test, and validation data are taken from the HMI and MDI overlap period,
between 1 May 2010 and 11 April 2011, when MDI and HMI obtained data simultaneously.
Our experimental results show that the proposed method works well in terms of SSIM,
PCC, and PSNR. Furthermore, our ablation study indicates that the L2 regularization, resid-
ual structures, and Fca mechanism used in the SolarCNN model are effective, improving
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Figure 7 Comparison among an MDI magnetogram (top), its SolarCNN-enhanced magnetogram (middle),
and the corresponding Hinode/SP magnetogram (bottom) of AR 11024 on 7 July 2009.

the performance of the model. Our comparative study shows that SolarCNN performs better
than two related methods.

An MDI magnetogram is approximately 1.4 times stronger than an HMI magnetogram
in terms of magnetic-field strengths (Liu et al., 2012), though this factor is close to 1.1 when
examining all the 76 samples in our test set. The decrease in the factor is probably due to
the data reprocessing at JSOC. On the other hand, the factor between the magnetic-field
strengths of the SolarCNN-enhanced MDI magnetograms and those of the corresponding
HMI magnetograms in our test set is approximately 0.937. We divide the magnetic-field
strength of each pixel of a test MDI magnetogram by 1.1, and calculate the average of
evaluation metric values between the resulting MDI magnetograms and corresponding HMI
magnetograms in the test set. We obtain an SSIM of 0.8480, PCC of 0.8702, and PSNR of
35.80. In contrast, SolarCNN achieves an SSIM of 0.9039, PCC of 0.8842, and PSNR of
37.40 (see Table 3). This result shows that SolarCNN not only increases the resolution of
MDI magnetograms, but also changes the pixel values of MDI magnetograms, transforming
MDI magnetograms into HMI-like magnetograms.

As indicated above, MDI and HMI observations overlap for approximately 1 year. Conse-
quently, we have a relatively small dataset. To further understand the performance and gen-
eralization of SolarCNN, we conducted an additional experiment based on a cross-validation
scheme. This is a standard technique for assessing how well a machine-learning model gen-
eralizes to new, unseen data. Specifically, our dataset covers 12 months in total. We divided
the dataset into 12 different subsets by month. In the run i, we used the subset i as test data
and the union of the other 11 subsets as training data. There are 12 subsets and, therefore,
12 runs. The mean values of SSIM, PCC and PSNR obtained by SolarCNN over the 12 runs
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are 0.9171, 0.8911, and 38.31, respectively. These results are similar to the metric values
obtained by SolarCNN in Table 3.

On the basis of the above results, we conclude that SolarCNN is a feasible tool for en-
hancing the quality of SOHO/MDI magnetograms of solar ARs using SDO/HMI data.
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