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ARTICLE INFO ABSTRACT

Keywords: This paper presents an automated machine learning framework designed to assist hydrologists in detecting
Automated machine learning anomalies in time series data generated by sensors in a research watershed in the northeastern United States
Anomaly detection critical zone. The framework specifically focuses on identifying peak-pattern anomalies, which may arise from

Deep learning models
Synthetic data
Time series data

sensor malfunctions or natural phenomena. However, the use of classification methods for anomaly detection
poses challenges, such as the requirement for labeled data as ground truth and the selection of the most
suitable deep learning model for the given task and dataset. To address these challenges, our framework
generates labeled datasets by injecting synthetic peak patterns into synthetically generated time series data and
incorporates an automated hyperparameter optimization mechanism. This mechanism generates an optimized
model instance with the best architectural and training parameters from a pool of five selected models,
namely Temporal Convolutional Network (TCN), InceptionTime, MiniRocket, Residual Networks (ResNet),
and Long Short-Term Memory (LSTM). The selection is based on the user’s preferences regarding anomaly
detection accuracy and computational cost. The framework employs Time-series Generative Adversarial
Networks (TimeGAN) as the synthetic dataset generator. The generated model instances are evaluated using
a combination of accuracy and computational cost metrics, including training time and memory, during the
anomaly detection process. Performance evaluation of the framework was conducted using a dataset from
a watershed, demonstrating consistent selection of the most fitting model instance that satisfies the user’s

preferences.
1. Introduction and contain various anomalies. One particularly problematic type of
anomaly in the project study is peak-pattern anomaly observable in a
In-stream environmental sensors are now commonly deployed in sequence of consecutive point measurements (i.e., time series samples),
various watersheds across the United States to monitor water quahty caused by a range of hydrologica] and non.hydro]ogica] events. After
However, a common limitation in these studies is the delay between a year of review, domain scientists have identified and named these

data acquisition and analysis, mostly due to the inability of many
domain scientists to rapidly identify anomalies and clean large datasets
efficiently. In this study, conducted as part of the NSF-funded Critical
Zone Collaborative Network (CZCN) project, we present a case study
of ecosystem data collected from sensors deployed at a watershed in
Vermont, which serves as a testbed for our research. These sensors mea-
sure a variety of in-stream parameters, such as fluorescent dissolved
organic matter (fDOM), turbidity, water level (to compute streamflow),
and water temperature. The raw data from these sensors are messy

patterns. However, to analyze the data efficiently, cleaning is necessary
either by removing or correcting those anomalies that are detected.
Anomaly detection in watershed time series data (WTSD) is crucial
for effectively monitoring and managing water systems and resources.
Anomaly detection in this context refers to identifying deviations from
the standard, normal, or expected behavior in WTSD. These anomalies
can provide valuable information about important events or may mis-
lead the decision process. Detecting anomalies in WTSD is challenging
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due to the unpredictable nature of natural systems. Current methods
typically focus on identifying single anomalous data points, known
as point anomalies, without considering anomalies that span multiple
points, known as pattern anomalies. These latter anomalies require
the assessment of previous data points in relation to current data
points, making their detection more complex. Therefore, there is a
need for a reliable peak-pattern anomaly detection framework that can
specifically detect and remove these repeating anomalous patterns.

Several use cases in the field of hydrology require accurate and
efficient detection of pattern anomalies. For example, detecting and
repairing anomalous peaks in dissolved organic carbon (DOC) data is
necessary for accurate analysis of the concentration—discharge (C-Q)
relation for DOC (Evans & Davies, 1998; Hamshaw, Denu, Holthuijzen,
Wshah, & Rizzo, 2019; Vaughan et al., 2017). Additionally, detecting
unusual patterns in streamflow data, such as flat lines or unmatched
peaks, can aid in model calibration and better flood forecasting. Pattern
anomaly detection in WTSD is also helpful in identifying sensor mal-
functions and understanding the impact of seasonal and precipitation
variations on hysteresis in C-Q relations.

Current trends for automating anomaly detection in WTSD use
machine learning (ML) methods. However, determining the appropriate
ML model can be challenging due to a large number of potential
models available and the varying data characteristics of different wa-
tersheds. In order to address these issues, we propose the development
of an end-to-end automated machine learning (autoML) pipeline called
Hands-Free Peak Pattern Anomaly Detection (HF-PPAD). HF-PPAD aims
to provide an automated and effective solution for detecting pattern
anomalies in WTSD, making it accessible and convenient for domain
scientists. It requires a thorough understanding of anomaly detection
algorithms for users to choose the right one, which often necessitates
a strong background in generative models and statistical assumptions.
Properly setting the parameters for these algorithms often requires a
detailed understanding of their inner workings. Most domain scientists
(often hydrologists and biogeochemists in this case) may not have
such background, and HF-PPAD is designed to assist. HF-PPAD utilizes
supervised deep learning models to deliver enhanced anomaly detection
performance compared with other unsupervised or semi-supervised
methods. In this work, we chose InceptionTime, MiniRocket, ResNet,
TCN, and LSTM as our supervised deep learning models due to their
strong results in various machine-learning tasks (Ismail Fawaz et al.,
2019). MiniRocket is a recently developed model that can extract
features from time series data with high efficiency, making it suitable
for large-scale datasets (Dempster, Schmidt, & Webb, 2021). ResNet is
a widely recognized model known for its high accuracy and has been
adapted for time series data analysis (Jing et al., 2021). InceptionTime
(Ismail Fawaz et al., 2020), on the other hand, is specifically designed
for analyzing time series data (Ismail Fawaz et al., 2019), and TCN
has been shown to perform well in time series classification tasks and
is lightweight, making it ideal for resource-constrained environments
(Pelletier, Webb, & Petitjean, 2019). Additionally, our choice of LSTM
was based on its proven effectiveness in a wide range of time series
applications (Hochreiter & Schmidhuber, 1997). These models can be
configured in a variety of ways, with ResNet, InceptionTime, and LSTM
being highly capable, while MiniRocket and TCN are more lightweight
options.

The HF-PPAD performs several tasks, including the generation of a
synthetic labeled peak pattern anomaly dataset for WTSD, automating
the generation of an optimal instance of each model in the given pool
through hyperparameter optimization, and choosing the best model
instance based on the user’s relative preference between high accuracy
and lightweight model. HF-PPAD employs a state-of-the-art time series
data synthesis tool like TimeGAN (Yoon, Jarrett, & van der Schaar,
2019) to automatically generate a significant amount of time series
data containing labeled peak pattern anomalies similar to the original
peak-pattern anomalies; this greatly reduces the expensive overhead
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of labeling anomalous pattern instances in the original data for su-
pervised learning. The model instance building and selection process
utilizes hyperparameter optimization techniques such as random forest,
HyperBand, Bayesian optimizer, and a greedy search technique (Feurer
& Hutter, 2019; Senagi, 2019).

To the best of our knowledge, this work is the first to provide an
automated peak pattern anomaly framework that performs comprehen-
sive tasks ranging from the generation of a fully labeled peak pattern
anomaly dataset needed for supervised training of anomaly detection
in the absence of a ground truth labeled dataset. The method also
automates the selection of the best model instance based on user’s
preference on the anomaly detection accuracy and the computational
cost for the watershed time series dataset. In summary, the main
contributions of this work are as follows.

1. To propose an end-to-end automated peak anomalous pattern de-
tection framework, furthermore for watershed time series data.

2. To use TimeGAN to generate labeled synthetic watershed time
series data and peak pattern anomalies.

3. To automatically generate (i.e., design and select) the best model
instance (i.e., deep learning classifier) from a pool of models
according to the user’s preference between accuracy and model
instance size.

The remainder of this paper is organized as follows. Section 2
reviews the literature related to our study. Section 3 categorizes the var-
ious peak-pattern anomalies observable in watershed data, while Sec-
tion 4 delves into the practical applications of HF-PPAD. The method-
ology behind HF-PPAD, including data preparation and model selection
processes, is detailed in Section 5. Experimental results are presented in
Section 6, followed by an analysis of the benefits derived from employ-
ing a synthetic dataset in Section 7. The paper concludes with Section 8,
summarizing our findings and suggesting directions for future research.

2. Related work
2.1. Peak anomaly detection

Anomaly detection in time series data is a multifaceted field, en-
compassing various types of anomalies such as point anomalies, pattern
anomalies, and system anomalies (Chandola, Banerjee, & Kumar, 2009;
Lai et al., 2020). While point anomalies represent irregularities in single
data points, pattern anomalies, the focus of our study, are identified by
sequences exhibiting atypical characteristics or behaviors (e.g., trends
or changes). System anomalies involve abnormalities in a group of
sequences or systems. Despite growing interest, much of the existing
research in anomaly detection has predominantly focused on point
anomalies, employing methods like statistical thresholding and cluster-
ing (Cho & Fryzlewicz, 2015; Enikeeva & Harchaoui, 2019). However,
these techniques are not directly applicable to pattern anomalies, which
require analysis of sequential data patterns. For instance, Fearnhead
and Rigaill (2019) explored change-point detection in financial time
series, but their approach does not adequately address the complexities
of pattern anomalies in environmental data. Similarly, Tveten, Eckley,
and Fearnhead (2022) introduced an algorithm for detecting multiple
change-points in large datasets, but their method lacks the sensitivity
needed for nuanced patterns in hydrological data.

In contrast, pattern anomalies like peak-pattern anomalies in hydro-
logical time series data present unique challenges. These anomalies are
identified by the shape and sequence of data points, often requiring
more sophisticated analysis methods (Lee, Kaufmann, Rizzo, & Hagq,
2023). Efforts to detect pattern anomalies in hydrological data (Qin
& Lou, 2019; Sun, Lou, & Ye, 2017; Yu, Wan, Zhao, & Liu, 2020)
have primarily focused on deviations from established patterns, yet
do not adequately address peak anomalies. For example, Sun et al.
(2017) developed a method for detecting irregular patterns in river flow
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data, but their technique does not differentiate between types of peak
anomalies, which is crucial for our research.

Interestingly, more relevant work on peak anomaly detection is
found in other domains, such as ECG anomaly detection. The work
by Lin, Lee, and Lustgarten (2018) and Li and Boulanger (2020) on
ECG datasets provides insights into handling time series data with
annotated peak anomalies. These studies offer valuable methodologies
for identifying and classifying different types of peak anomalies based
on shape and sequence, which could be adapted for our purposes.

While the field of anomaly detection in time series data is well-
established, there is a noticeable gap in research specifically addressing
peak-pattern anomalies in hydrological data. Our work aims to bridge
this gap by adapting and extending methodologies from other domains,
such as ECG data analysis, to the context of hydrological time series,
providing a more nuanced and effective approach to peak anomaly
detection (Kulanuwat et al., 2021).

2.2. Automated machine learning in hydrology

Automated Machine Learning (AutoML) represents a significant
paradigm shift in the application of machine learning (ML) in hy-
drology, a field that has leveraged ML techniques for over seventy
years (Dramsch, 2020). The primary challenge in hydrological ML
applications has been the selection of appropriate models for specific
datasets and problems, a task traditionally demanding significant do-
main expertise (Ghobadi & Kang, 2023; Schmidt, Hel3e, Attinger, &
Kumar, 2020).

AutoML emerges as a solution to this challenge by automating the
process of model selection and optimization (Wu, Xi, & He, 2022; Yao
et al., 2018). It simplifies the model-building process and democratizes
ML use, making it accessible even to non-experts. However, despite
these advantages, the application of AutoML in hydrology is still in its
infancy. Current methods focus on optimizing models for narrowly de-
fined problems or datasets, often overlooking the broader applicability
required in hydrology (Ho & Goethals, 2022; Khan, Khan, & Alharbi,
2020).

Current AutoML tools like Auto-WEKA (Kotthoff, Thornton, Hoos,
Hutter, & Leyton-Brown, 2019) and Auto-Sklearn (Feurer et al., 2015)
have made significant advancements in automating model selection
and hyperparameter tuning. Yet, they primarily serve traditional ML
approaches and lack support for deep learning models, which are
crucial for complex hydrological datasets. The emergence of AutoKeras
(Jin, Song, & Hu, 2019) represents significant progress in automating
the optimization of deep neural networks, primarily in the realms of
text and image data. However, its application to hydrological time
series analysis may require specialized data preprocessing and model
configuration to accommodate the unique characteristics of time-series
data.

Our work addresses these gaps by developing an AutoML pipeline
specifically tailored for deep learning in hydrological time series analy-
sis. This pipeline goes beyond the traditional scope of AutoML tools by
incorporating a range of deep learning architectures and training hyper-
parameters, along with advanced optimization strategies like random
forest, Bayesian, Hyperband, and greedy search algorithms. In doing
so, it enhances model selection accuracy and optimizes computational
efficiency, crucial for processing large hydrological datasets (Prasad
et al., 2022; Sit et al., 2020).

Furthermore, our framework represents a application of AutoML
in transforming peak-pattern anomaly detection in WTSDs from a
complex, expert-driven task to a more accessible, automated process.
This innovative approach converts anomaly detection to a supervised
multi-class classification task, enabling more accurate and efficient
identification of anomalies in hydrological data (Shen, Chen, & Laloy,
2021).
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2.3. Unsupervised/semi-supervised versus supervised anomaly detection

In the diverse landscape of anomaly detection, the distinction be-
tween unsupervised, semi-supervised, and supervised learning methods
is pivotal, especially in the context of time series data (Deng & Yu,
2014; Khan, Niu, Nyamawe, & Haq, 2021). Unsupervised and semi-
supervised methods have gained significant traction, largely due to
the difficulty in obtaining labeled datasets for anomalies. These ap-
proaches, including clustering, LSTM-based regression, autoencoders,
and GANSs, excel in identifying unknown patterns without pre-labeled
data (Bahri et al., 2022; Ergen, Mirza, & Kozat, 2017; Schmidl, Wenig,
& Papenbrock, 2022).

However, their ability to distinguish between normal variability and
true anomalies can be limited, often leading to reduced precision. Un-
supervised learning, in particular, demands substantial computational
resources, which can impede its practicality for large-scale applications
(Bahri et al., 2022; Zhu, Wu, & Liu, 2023).

The introduction of AutoML into unsupervised learning tasks has
significantly automated the detection of anomalies, including point
anomalies and change-points, across various domains. Systems such
as PyOD (Zhao, Nasrullah, & Li, 2019), PyODDS (Li, Zha, Venugopal,
Zou, & Hu, 2020), MetaAAD (Zha, Lai, Wan, & Hu, 2020), and TODS
(Lai et al., 2021) represent substantial advancements in this field, fa-
cilitating broad-spectrum anomaly detection capabilities. Despite these
advancements, the emphasis of these systems on unsupervised learning
scenarios poses limitations, particularly in the domain of hydrological
time series analysis, as detailed in our research (Lee et al., 2023).
Peak-pattern anomalies inherent to hydrological data, characterized
by their requirement for nuanced interpretation and contextual under-
standing, challenge the generalized models employed by these existing
AutoML systems. This limitation is evident in the comparative anal-
ysis presented in Table 1, which highlights the unique capabilities
of our HF-PPAD framework in addressing these specialized anomalies
through a tailored approach, leveraging supervised learning methods
for enhanced precision and specificity. The specific nature of peak-
pattern anomalies in hydrological time series underscores the necessity
for approaches that go beyond the capacities of current unsupervised
learning frameworks, advocating for a system like HF-PPAD that is
adept at handling such specialized tasks.

Pivoting towards supervised learning for peak-pattern anomaly de-
tection, our research tackles the challenge of creating a labeled dataset
for hydrological data. While the acquisition of such data can be de-
manding, it offers significant advantages in anomaly detection ac-
curacy and specificity (Li, Jamieson, DeSalvo, Rostamizadeh, & Tal-
walkar, 2017; Ryzhikov, Borisyak, Ustyuzhanin, & Derkach, 2021).
Constructing a domain-specific labeled dataset enables our model to
achieve heightened accuracy and efficiency in detecting peak-pattern
anomalies, addressing the shortcomings of current unsupervised and
semi-supervised methods (Li & Boulanger, 2020).

Our work reveals the potential and advantages of supervised learn-
ing in anomaly detection, particularly for specialized tasks like peak-
pattern anomaly detection in hydrological time series data. By mov-
ing beyond the limitations of existing AutoML systems, we demon-
strate a more precise and efficient approach, underlining the emerging
importance of supervised learning in this field.

3. Watershed data and peak-pattern anomaly types
3.1. Watershed time series data

Sensor data were collected from the study watershed over a period
of eight years (from October 1, 2012 to October 1, 2020), encompass-
ing a comprehensive dataset crucial for our analysis. Measurements
of stream stage, turbidity, and fluorescent dissolved organic matter
(fDOM) were taken at regular intervals—every 5 min for stream stage
and every 15 min for turbidity and fDOM. These measurements were
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Table 1

Comparison of anomaly detection frameworks with a focus on hydrological time series data analysis.
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Feature

HF-PPAD (our Work)

TODS

PyOD

PyODDS

MetaAAD

Domain Focus

Hydrological time
series data

General time series data

Multivariate data

Online data streams

Meta-learning for
anomaly detection

Anomaly Types

Peak-pattern anomalies
(e.g., SKP, PLP, FPT,
FSK, PP)

Broad time series
anomalies

Broad multivariate
anomalies

Data drift and broad
anomalies

Broad anomalies across
tasks

Data Type Specialization

Specialized for
environmental
monitoring sensors

Broad applicability

Broad applicability

Broad applicability,
with a focus on drift

Broad applicability

User Preference Integration Yes (Model selection No No No No
based on w)
Model Selection Automated (Accuracy & Automated (Broad Automated (Broad Automated (Drift Automated

efficiency)

algorithms)

algorithms)

detection)

(Meta-learning)

Synthetic Data Generation

Yes (Using TimeGAN
for anomaly injection)

No

No

No

No

Targeted Anomalies

Yes (Specific to
hydrology)

No (General anomalies)

No (General anomalies)

No (General anomalies)

No (General anomalies)

Deep Learning Models

Specialized (e.g.,
InceptionTime,
MiniRocket)

Limited
(General-purpose)

Limited
(General-purpose)

Limited
(General-purpose)

Limited (Adaptable, not
hydrology-specific)

Framework Adaptability

High (Tailored for
hydrological analysis)

Medium (General time
series analysis)

Medium (Broad
anomaly detection)

Medium (Online
streaming data)

Medium (Adapts to
new tasks)

Fig. 1. Turbidity/fDOM sensor mounted on a board immersed in the water. The image in the corner is a Turner Designs Cyclops-7 submersible sensor (Lee et al., 2023).

captured using Turner Designs Cyclops-7 submersible sensors, known
for their reliability and precision in environmental monitoring (see
Fig. 1). The Turner Designs Cyclops-7 sensors are specifically designed
for detecting fluorescence and turbidity in natural waters, making them
ideal for assessing the stream fluxes of dissolved and particulate organic
carbon in our study. Additionally, to account for variations in environ-
mental conditions, the fDOM measurements were adjusted based on the
turbidity values and water temperature. This data collection process
forms the basis for our analysis, with further details on the dataset’s
preparation and utilization provided in Section 6.1.

3.2. Peak-pattern anomaly types

Anomalies in the fDOM and turbidity data were identified through
visual examination and verified by a domain scientist. These identified
anomalies were labeled and used to generate anomalies in the fully
labeled synthetic peak pattern anomaly dataset. There are five types
of such anomalies: skyrocketing peak (SKP), plummeting peak (PLP),
flat plateau (FPT), flat sink (FSK), and phantom peak (PP). Fig. 2
shows examples of such peak patterns from the fDOM time series data.
Skyrocketing peaks are characterized by a sharp upward spike or a
narrow peak with a short base width, while a sharp downward spike

characterizes plummeting peaks. These types of peaks may be caused
by electronic sensor noise. Flat plateaus and flat sinks are characterized
by a nearly constant signal amplitude at the top (plateau) and the
bottom (sink), respectively, and may be caused by sediment deposits
near or around the sensors. Flat sinks are only observed in fDOM data.
Phantom peaks appear as normal peaks, but do not have a preceding
stage rise that would trigger the peak. Non-hydrological events, such as
animal activity in the water near the sensor may be the cause. To detect
phantom peaks and plummeting peaks, it is necessary to consider the
relationships between two data time series, while the other peak types
can be identified using only one type of time series data.

4. Hydrology applications of the HF-PPAD

Our AutoML peak-pattern anomaly detection framework, HF-PPAD,
aims to address a significant bottleneck in the field of hydrology —
efficient removal of anomalous data from watershed time series data,
which is necessary to analyze and model the data accurately. The
HF-PPAD framework will improve the ability to find and access high-
quality data and analysis codes, enabling scientists and educators to
maximize the value of watershed data and produce transparent and
reproducible research outcomes.
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fDOM

turbidity

(a) fDOM normal peak.

(b) Skyrocketing turbidity.

(c) Plummeting fDOM.

r OOM

e Y slage

(d) Flat plateau fDOM.

(e) Flat sink fDOM.

(f) Phantom fDOM.

Fig. 2. Examples of anomalous peak-patterns types identified in fDOM time series data (Lee et al., 2023).

)
—

Flow (Q)

Concentration

Fig. 3. Depiction of a C-Q hysteresis loop (Evans & Davies, 1998).

One specific application of the HF-PPAD framework is the analysis
of concentration—discharge (C-Q) hysteresis, a phenomenon in which
the concentration of a solute in a stream follows different trajectories
on the rising and falling limbs of a storm or snowmelt discharge
hydrograph. When the relationship between C and Q is nonlinear, this
creates a loop on a plot of concentration against discharge (as shown in
Fig. 3) and has long been of interest to hydrologists and biogeochemists
seeking to interpret the size and direction of the loop over time as an
indication of solute source and interactions with the watershed. The
widespread deployment of in-stream sensors, measuring high-frequency
chemistry at the same resolution as stream discharge has made it
possible to construct finely-resolved hysteresis loops.

The testbed site is a small (41-ha) forested watershed in Vermont.
At the outlet of the catchment, sensors are in place to measure stream
water level, fluorescent dissolved organic matter (fDOM), turbidity,
and water temperature. The water level is used to calculate stream
discharge, fDOM is used as a proxy for dissolved organic carbon, and
turbidity is a measure of particles in the water. fDOM is corrected
for turbidity and water temperature following the method described
in Downing et al. (2012). As is common at most sites, f{DOM at W-9
generally increases with increasing discharge but with a delay such that
it peaks after the stream discharge and has a long tail. This creates a
counterclockwise hysteresis loop, with higher DOC concentrations at a
given discharge on the falling limb compared with the same discharge
on the rising limb (as shown in Fig. 4).

This application focuses on an fDOM time series that has already
been corrected for turbidity and temperature using an automated pro-
cess. However, the data still contain errors, often in the form of false
peak patterns, that must be corrected before the time series can be
used and accurately interpreted. The challenge is distinguishing normal
peaks in fDOM (i.e., natural increases in fDOM with increases in flow)
from false peaks caused by sensor malfunction, electrical surges, or
other non-hydrological events such as a moose stirring up sediment in
the gauge pool. Normal fDOM peaks should be accompanied by a rise
in water level and usually a rise in turbidity. The HF-PPAD framework
takes these clues into account and also is trained to differentiate peak

types based on their shapes, with normal peaks generally having a
broad base and an asymmetry skewed towards a long tail. Previous
work on WTSD at SRRW (described in Lee et al. (2021) and Lee et al.
(2023)) has identified normal and several anomalous peak types.

5. The AutoML pipeline of HF-PPAD framework

The fully automated pipeline of HF-PPAD framework is divided into
two parts: one that automates creating a training set, and another
that generates the best deep learning classifier through the tuning
of architectural and training parameters of each model in the given
pool. The generation of a model involves building and comparing
different architectural instances of the model in conjunction with dif-
ferent training parameters. Additionally, the framework includes tools
for generating time series data and injecting pattern anomalies into
synthetic data. Fig. 5 shows an instance of the framework implemented
in the current work.

5.1. Sub-models

Within this implementation, HF-PPAD encompasses a diverse array
of sub-models, each selected from a pool of state-of-the-art deep learn-
ing models, to ensure a comprehensive approach. The sub-models are
summarized below.

InceptionTime: A model inspired by the Inception network, known
for its efficacy in handling time series data. It utilizes a combination of
convolutional operations at different scales to capture time-dependent
patterns effectively.

MiniRocket: Standing for 'Minimally Random Convolutional Kernel
Transform’, MiniRocket is highly efficient and scalable, using a diver-
sified set of convolutional kernels to rapidly transform time series data
for classification tasks.

ResNet: Short for Residual Network, ResNet is renowned for its
deep architecture. It employs residual connections to facilitate the
training of deeper networks by addressing issues like vanishing gradi-
ents, making it suitable for complex time series analysis.

TCN: Temporal Convolutional Networks (TCN) are specialized for
sequence modeling, using causal convolutions to ensure that predic-
tions for a specific time point are only dependent on past data, main-
taining temporal coherence.

LSTM: Long Short-Term Memory (LSTM) networks are a type of
recurrent neural network (RNN) particularly adept at learning depen-
dencies in sequence data. They are capable of capturing long-term
dependencies, making them ideal for time series analysis where past
information is crucial.
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Fig. 4. Counterclockwise fDOM-Q hysteresis loops at Sleepers River, W-9 (Shanley, Sebestyen, McDonnell, McGlynn, & Dunne, 2015).
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Fig. 5. The implemented HF-PPAD automated supervised machine learning framework.

5.2. Synthetic data generation

To generate synthetic watershed time series data (WTSD), we uti-
lized TimeGAN, a state-of-the-art generative adversarial network (GAN)
specifically designed for time series data synthesis. The initial step
in this process involved selecting a subset of clean WTSD, typically
encompassing one year of data, as a foundational dataset for generating
synthetic data. The goal of creating a larger volume of synthetic data
was to ensure the inclusion of a comprehensive and diverse set of peak
pattern anomalies. This approach was crucial to provide enough train-
ing examples for the effective training and validation of our models,
thereby improving the robustness and accuracy of anomaly detection.

TimeGAN was parametrized with several hyperparameters, care-
fully chosen to accurately replicate the characteristics of the WTSD.
These parameters were configured as shown in Table 2.

The choice of Gated Recurrent Units (GRUs) as the module, cou-
pled with a hidden dimension of 32 and four layers, was effective
in capturing the temporal dynamics of the WTSD. To prevent any
potential data leakage, the datasets used for generating synthetic data
and anomalies were completely isolated from the datasets used for
model testing The batch size of 256 and sequence length of 30 were
selected to balance training efficiency with the model’s ability to learn
complex data patterns. The learning rate was set at 0.001 to ensure
stable convergence during training. Additionally, the generator and dis-
criminator activation functions, tanh and relu respectively, were chosen
to improve the model’s capacity to generate data closely resembling the
original series.

Table 2

TimeGAN parameters for synthetic data generation.
Parameter Value
Module GRU
Hidden Dimension 32
Number of Layers 4
Iterations 5000
Batch Size 256
Sequence Length 30
Learning Rate 0.001
Generator Activation Function tanh
Discriminator Activation Function relu

Upon creating the synthetic dataset, we proceeded to augment
it with synthetic anomalies. By generating altered versions of the
identified peak pattern anomalies, we acquired a sufficient number of
instances for each anomaly type, necessary for the effective training
of our deep learning models. These synthetic anomalies were then
randomly injected into the synthetic fDOM and turbidity data, ensuring
a realistic representation of anomaly distribution.It is important to
note that all testing datasets were strictly segregated from any data
used in the synthetic generation and training processes, guaranteeing
the integrity of our evaluation. The result was a comprehensively
labeled training dataset, primed for deep learning classifier training.
Fig. 6 illustrates the typical labeled peak-pattern anomalies injected
into the generated synthetic time series data. This step was vital in
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Fig. 6. Labeled anomalous peak patterns injected into synthetic time series data.

creating a dataset with diverse and authentic peak-pattern anomalies,
facilitating the training of classifiers for effective anomaly detection in
environmental time series data.

5.3. Generating the best deep learning classifier

The HF-PPAD framework employs a systematic process to determine
the best deep learning classifier configuration from a set of potential
models. This task is framed as optimizing a well-defined hyperparame-
ter space, unique to each model type. The process involves automated
tuning of model-specific architectural and training hyperparameters,
utilizing advanced optimization algorithms. These algorithms explore
various hyperparameter combinations to identify configurations that
effectively balance accuracy and computational efficiency. This ap-
proach is particularly useful for domain experts in hydrology, who may
lack in-depth machine learning expertise. By automating the complex
task of hyperparameter tuning, the HF-PPAD framework provides an
accessible pathway to deploy advanced deep learning models tailored
to the specific needs of watershed time series data analysis.

5.3.1. Model instance search using hyperparameter optimization

Algorithm 1 outlines the AutoML algorithm of the HF-PPAD frame-
work. This algorithm tunes each model in the given model pool one
at a time using hyperparameter optimization techniques and outputs a
model instance expected to achieve the top performance based on the
evaluation results.

There are three aspects important to the efficacy of Algorithm 1:
search space, search strategy, and evaluation strategy. Each is discussed
below.

The search space is defined by a set of hyperparameters and their
ranges. These ranges can be defined based on the specific needs and
knowledge of the user. In our implementation of HF-PPAD, the hy-
perparameters are the machine learning models in the input pool,
the architectural parameters pertaining to each model (see Table 3),
and the training parameters that are common across all models (see
Table 4). Overall, the search space allows for thoroughly exploring and
optimizing various hyperparameters to identify the most suitable model
instance and hyperparameter settings for a given data set.

The search strategy determines the process for iteratively select-
ing and evaluating combinations of hyperparameter values within the
search space. The search strategy may be modified based on prior
evaluations to improve future trials, or it may loop through all possible
combinations within the search space. An effective search strategy can

Algorithm 1: AutoML algorithm of HF-PPAD against the WTSD.
Input : a pool of models {M, M,, ..., M, };
synthetic watershed time series data (WTSD);
user’s performance preference;
Output: the model instance showing the highest performance
for the WTSD;
for each model M; (i = 1,2, ...,n) in the pool do
2 Generate the best model instances /; from the models in
the pool that achieves the highest accuracy during training
on synthetic WTSD by tuning M,’s architectural and
training parameters through hyperparameter optimization;
3 Get the user’s performance preference w and recommend
the best model instance using Equation (1);
4 Test the recommended best model instance Tr(/i;) against
the real test dataset to detect peak-pattern anomalies;
s end for
Return the trained model instance that has the highest
performance score in the result pool;

—-

(=)

reduce the time required for the optimization process. For this work,
we use Optuna, a tool for hyperparameter optimization that includes
the four hyperparameter optimizers chosen in this work (i.e., ran-
dom forest, Bayesian, Hyperband, and greedy). These optimizers are
included as hyperparameters themselves in the search space, and on
each trial, the AutoML algorithm selects the optimizer that provides
the best result. The select optimizer then optimizes the architectural
and training hyperparameters of the chosen model. The search time
is directly proportional to the number of trials conducted. Increasing
the number of trials can potentially improve the results but can also
increase the tuning time.

The evaluation strategy is crucial, as it determines how the effec-
tiveness of a model is evaluated with respect to its hyperparameters.
The evaluation criteria, such as the validation performance and the
total number of model parameters, are typically the same as those
used in manual tuning. We also consider such factors as time/epoch,
the number of parameters, and the memory usage for each model.
By thoroughly evaluating the performance of each model and its cor-
responding hyperparameters, HF-PPAD can identify the most suitable
model instance for a given data set.
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Table 3
Architectural hyperparameters of the individual deep learning model types used in HF-PPAD.
Hyperparameter Domain Hyperparameter Domain
Number of layers [18, 34, 50, 101, 152] Number of Inception modules [1-6]
Number of filters [16-1024] Number of filters [32-512]
Kernel size [1, 3, 5, 7] Filter size [3, 5, 7, 11]
Stride [1, 2] Stride [1, 2]
Padding [0, 1] Pooling layer window size [3-7]
Pooling layer window size [2x2,3%3] Dropout rate [0.1-0.5]
(a) ResNet. (b) InceptionTime.
Hyperparameter Domain Hyperparameter Domain
Number of layers [1-5] Number of layers [2-100]
Number of hidden units [16-512] Kernel size [1, 3, 5]
Dropout rate [0.1-0.5] Dropout rate [0.1-0.5]
Recurrent dropout rate [0.1-0.5] Number of input channels [1-64]
Bidirectional [yes, no] Number of filters [32-1024]
Activation function [Sigmoid, Tanh, ReLU] Stride [1, 2]
Recurrent activation function [Sigmoid, Tanh, ReLU] Dilation [1-4]
Layer normalization [yes, no] Padding [0, 1]
(c) LSTM. (d) TCN.
Hyperparameter Domain
Number of random kernels [100-5000]
Kernel sizes [7-21]
Subsampling factor [2-10]

Normalization

Number of random Fourier features

[true, false]
[1000-5000]

(e) MiniRocket.

Table 4

Training hyperparameters common to all the deep learning models in
the pool.

Hyperparameter Domain

Batch size 32, 64, 128, 256, 512

Optimizer SGD, Adam

Learning rate le—6, le-5, le—4, 1le-3, 1le-2
Regularization L1, L2, dropout

5.3.2. User preference-based best model instance selection

Consistent with recognized optimization practices in machine learn-
ing, which include aggregating objectives through linear or convex
combinations, our framework facilitates model selection with a focus
on user input. Following an optimization phase that identifies a set
of top-performing models, the HF-PPAD framework introduces a step
where a user-defined weight (w) is employed to guide the final model
choice among these top models.This mechanism is crucial for aligning
the selection with the user’s specific requirements, as illustrated in the
subsequent equation.

Qmi:(l—w)XAml-+wX(1_Smi) (1)

In this formulation, Q,,; balances anomaly detection accuracy (4,,;)
with computational efficiency (,,), with w enabling users to adjust
this balance. A higher value of w signals a user preference for accu-
racy, whereas a lower value indicates a preference for efficiency, thus
allowing for an informed selection from the top candidates based on
precise needs regarding accuracy and computational resource alloca-
tion. For practical interpretation, we convert the size §,,; into a more
relatable metric like megabytes (MB) or gigabytes (GB), based on the
data type used (typically float32). This step of incorporating user-
defined weighting is designed to enhance the decision-making process
within the automated machine learning context. It acknowledges the
difficulty of predetermining an optimal balance between model perfor-
mance and computational demand and provides a means for users to
make decisions that reflect their operational constraints and priorities.
Opting for user input to determine the final model selection from top
performers is a deliberate choice to increase the framework’s adapt-
ability and user engagement. It bridges the optimization outcomes with
user-specific application requirements, facilitating the use of advanced

machine learning in diverse real-world scenarios without assuming
prior optimization or machine learning expertise.

6. Evaluations

The HF-PPAD implementation performed on the WTSD used here
has been evaluated thoroughly. There are three main questions an-
swered through experiments:

» How similar is the synthetic time series dataset (with labeled
peak-pattern anomalies injected) to the original real dataset from
the WTSD? (See Section 6.3.)

» How well do the generated best individual deep learning models
perform? (See Section 6.4.)

+ How well does the autoML pipeline adapt to the user-specified
preference between accuracy and computational cost to select
the deep learning model that meets the preference best? (See
Section 6.5.)

6.1. Datasets and data preparation

Our analysis focused on the fDOM and turbidity datasets collected
over a period from October 1, 2012 to October 1, 2020. This extensive
data range provided a diverse array for detailed exploration. In partic-
ular, data from October 1, 2016, to September 30, 2017, meticulously
curated by domain experts, yielded about 35,000 data points for each
of the fDOM and Turbidity datasets. These subsets formed the basis for
our synthetic data generation. The synthetic data generation process,
encompassing over 5000 epochs of training with TimeGAN, was piv-
otal to ensure a high-fidelity replication of the intrinsic features and
patterns found in the original datasets.

In crafting our synthetic training dataset, we generated a total of
1,048,575 data points for each dataset, which included both clean data
points and synthetic anomaly instances. For the fDOM dataset, 401,374
synthetic anomaly instances were introduced, amounting to 400-500
instances per anomaly type. The turbidity dataset similarly saw the
introduction of 230,686 synthetic anomaly instances, translating to
500-600 instances per type. These numbers were specifically chosen
to mirror the frequency and distribution of anomalies observed in the
original datasets, ensuring a realistic and representative training set.
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Combined data statistics for synthetic training and original test datasets for fDOM and turbidity.

Synthetic training dataset

Dataset Anomaly types Synthetic training Injected anomalous Synthetic anomalies
Set Points points Per Type

fDOM PLP, SKP, FPT, PP, FSK 1,048,575 401,374 400-500

Turbidity SKP, FPT, PP 1,048,575 230,686 500-600

Original test dataset

Dataset Anomaly types Total test points Anomalous points Real anomalies
in Test Set Per Type

fDOM PLP, SKP, FPT, PP, FSK 276,120 96,642 150-183

Turbidity SKP, FPT, PP 276,120 60,500 233-260

This alignment with real-world data patterns was crucial for modeling
the complex dynamics of peak-pattern anomalies in WTSD (as detailed
in Table 5).

For model evaluation, we compiled test sets from the comprehensive
dataset. Our initial research, documented in Lee et al. (2023), identified
various anomaly types, including ‘NAP’ (Not A Peak). Subsequent
analysis over an entire year extended our understanding of anomaly
types. The resulting test sets consist of 276,120 fDOM data points
containing 96,642 real anomaly points and 276,120 Turbidity data
points containing 60,500 real anomaly points. The range of anomalies
in the test sets is thoroughly detailed in the same Table 5. The f{DOM
dataset included anomalies such as PLP, SKP, FPT, PP, and FSK, each
represented by 150-183 real instances. The Turbidity dataset featured
anomalies types like SKP, FPT, and PP, with each type having 233-260
real instances. This extensive categorization of anomalies in the test sets
significantly bolstered the robustness of our model evaluation, high-
lighting the intricate process of anomaly detection in environmental
time series data.

This methodical approach, encompassing both the generation of
advanced synthetic data via TimeGAN and the integration of real-world
anomalies, ensured that our models were trained and validated under
conditions that closely resembled the intricate scenarios of environmen-
tal time series data.

6.2. Experimental setup

The experimental setup for this study involved the use of an AutoML
framework, HF-PPAD, to identify anomalous peak-pattern anomalies in
WTSD.

Deep learning models. The deep learning models in the pool included
InceptionTime, MiniRocket,ResNet,TCN and LSTM. Each model has its
own search space for architectural hyperparameters and a common
search space for training hyperparameters as discussed in Section 5.3.1.
The tuning of these hyperparameters was carried out using Optuna, a
hyperparameter optimization library. Four such optimizers, including
random forest, Bayesian, Hyperband, and greedy search, were included
in the search space to find the best model instance for each deep learn-
ing model. The hyperparameter optimization process for each deep
learning model was run for 1000 trials with early stopping triggered
when the validation loss did not improve for ten consecutive epochs.
For validation, we used 70% of the training dataset, selected through
shuffling. The resulting best model instances of the models were then
trained for 50 epochs and tested against the WTSD test dataset using the
user-provided performance objective (see Eq. (1)). The model instance
that achieves the highest performance score in the test was then output.

Performance metrics. For the anomaly detection task, the performance
achieved by a trained deep learning model comprises accuracy and
computational cost. The accuracy used in this work are balanced accu-
: 1 TP TN : Precision-Recall
racy (i.e., 2 (TP+FN TN+FP)) arlld F-1 score (i.e., 2 Precision+Reca[l)
The computational costs are the time and memory consumed during

model training. For simplicity, we use the number of model parameters

as a proxy measure of computational cost, as both the training time
and memory are proportional to it. We also report other parameters
relevant to the model training, such as validation loss, epoch time, and
the number of epochs.

Computing platform. All experiments were performed on Google Colab
Pro platform, which provided access to a NVIDIA Tesla T4 GPU with
16 GB of memory and an Intel Xeon E5-2670 v3 CPU with 8 cores and
30 GB of memory. The programming language used was Python, with
libraries including PyTorch and pandas.

6.3. Similarity of the synthetic dataset to the real dataset

As mentioned, the synthetic data points were generated using
TimeGAN based on a clean dataset collected from the WTSD at SRRW.
In order to evaluate the accuracy of the generated synthetic dataset, we
selected two dominant variables, turbidity (for the x axis) and fDOM
(for the y axis), from stage, turbidity, and fDOM through dimensionality
reduction by PCA and by t-SNE, respectively, and generated clusters
of the resulting data points in the 2D space of turbidity x fDOM.
Fig. 7 shows the clusters of data points generated through PCA (left)
and t-SNE (right). In both plots, the clusters of the original data
points (blue) and the synthetic data points (red) are almost the same,
which demonstrates the high similarity between the real and synthetic
datasets.

To further verify the similarity, we aimed to assess the predictive
accuracy of models trained on synthetic data compared to those trained
on real data. This involved training an RNN regression model separately
on real data and on synthetic data, and testing the two trained models
against a separate real dataset. The RNN model consists of a single GRU
(Gated Recurrent Unit) layer with 12 units and a dense output layer
with six units and a Sigmoid activation function. The optimizer used is
Adam, and the loss function is mean absolute error (MAE). This setup
allowed us to directly evaluate the model’s ability to predict future
states based on the learned patterns from either real or synthetic data.

Table 6 summarizes the test accuracy (R-squared (R?), mean abso-
lute error (MAE), and mean squared error (MSE)) achieved by the two
trained RNN models. The test accuracy of the model trained on the
synthetic data was close to the test accuracy of the model trained on
real data (within 4% for R%, 2% for MAE, and 5% for MSE), confirming
that the synthetic data generated by TimeGAN is a suitable substitute
for real data in training machine learning models for the WTSD. This
comparison underscores the synthetic data’s efficacy in replicating the
essential dynamics of the real dataset, thereby validating the use of
TimeGAN-generated data for predictive modeling in water treatment
studies.

6.4. Anomaly detection performances of the best instances of the models

HF-PPAD generated optimal model instances using synthetic
datasets derived from the WTSD for training, and then tested these op-
timized model instances on the real dataset. Tables 7 and 8 summarize
the performance results for each optimally trained model instance from
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Fig. 7. Clusters of the synthetic and the original time series data points in a 2D turbidity x fDOM space generated by PCA (left) and t-SNE (right). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Test accuracy of RNN regression models trained on synthetic dataset and real dataset
and then tested on real dataset.

Training data Test accuracy

R2 MAE MSE
Synthetic 0.301858 0.016981 0.003859
Real 0.315577 0.016683 0.003672
Table 7

fDOM peak-pattern anomaly detection performance by the best trained model instance
of each model in the HF-PPAD’s model pool.

Model Balanced F-1 Number of Training  Epoch Number
accuracy  score  parameters time time of epochs
InceptionTime  97.3% 93.6% 1,817,888  350.5 s 7s 50
ResNet 95.3% 90.1% 8,130,502 550.2 s 11s 50
MiniRocket 93.4% 88.2% 89,974 150.6 s 3s 50
LSTM 70.2% 64.7% 17886 50.8 s 1s 50
TCN 90.7% 85.9% 68,556 60.2 s 1.2s 50
Table 8

Turbidity peak-pattern anomaly detection performance by the best trained model
instance of each model in the HF-PPAD’s model pool.

Model Balanced F-1 Number of Training Epoch  Number
accuracy score  parameters time time of epochs

InceptionTime  95.3% 89.9% 4,082,884  467.2s 9.34s 50

ResNet 98.3% 94.6% 11,921,636 721.5s 14.43s 50

MiniRocket 91.6% 85.1% 118,974 349.7 s 6.94s 50

LSTM 74.2% 67.7% 23886 70.8 s 14s 50

TCN 88.1% 81.9% 96,556 90.4 s 1.8 s 50

the pool of models. All five models achieved notable accuracy (ranging
from 70.2% to 97.3% for balanced accuracy and 64.7% to 94.6% for
F-1 score across fDOM and turbidity), which suggests the effective
model generation capability of HF-PPAD. The computational costs
varied across models, with some showing more significant differences
than others. Notably, the optimally trained LSTM model instance,
which recorded the lowest accuracy, also incurred the lowest compu-
tational cost. This observation highlights the trade-off and leads to the
user-provided performance preference addressed below in Section 6.5.

To further examine model performance with a focus on the anomaly
detection accuracy, we have created the confusion matrices shown
in Fig. 8 for fDOM and Fig. 9 for turbidity. Overall, the detection
accuracy for all peak-pattern anomaly types is notably high, which
indicates the efficacy of the optimal model instance generation and
training using the synthetic dataset. Particularly, the accuracy for the
peak-pattern anomaly types FSK and FPT is 100% for all the optimal

10

model instances; we attribute this accuracy to the long sequence of their
anomaly instances that differentiate them from the other types of peak
pattern anomalies. The accuracy for NAP is somewhat lower than for
other anomaly types, as some instances are incorrectly classified as PP,
PLP, or SKP peaks. It’s important to note that NAP is not an anomalous
peak type.

6.5. User input based best model instance selection

Recall that, the HF-PPAD approach recommends the best model
instance for a dataset based on user preferences for accuracy and
model size. Output quality was measured for the best trained model
instance of each model using Eq. (1) and varying the weight parameter
w from 0 to 1 at the increment of 0.2 for the fDOM and turbidity
datasets. The results are shown as clustered bar charts in Fig. 10.
The InceptionTime model instance had the highest accuracy for fDOM
(0.973) at w = 0, whereas the TCN and MiniRocket model instances
achieved the highest output quality (0.977 and 0.974, respectively)
at w 0.8. For turbidity, ResNet had the highest accuracy (0.983)
at w = 0, while TCN and MiniRocket had the highest output quality
(0.975 and 0.969, respectively) at w = 0.8. We can summarize that TCN
and MiniRocket are recommended for users who prioritize accuracy
and low computational cost, while InceptionTime and ResNet are best
for users who prioritize high accuracy; and additionally that LSTM is
recommended for users who prioritize low computational cost, despite
its lower accuracy, as it has a smaller model size compared to the other
models.

Fig. 11 shows a line graph of the output quality of the best model
instance of each model as the user preference input w increases (at
the increment of 0.1). It visualizes the trends of the output qualities
changing between the different models. Specifically, it exhibits a de-
crease in the output quality of a model with a larger size as the w value
increases. Notably, the MiniRocket and TCN models are competitive
options for users who prioritize accuracy and low cost computational
requirements. In contrast, the LSTM model only achieves higher output
quality when w is 0 due to its smaller size. Overall, the figure highlights
the varying output quality of the models and provides valuable insights
into selecting the appropriate model based on user preferences.

7. Efficacy of the synthetic dataset

In this study, we examined the efficacy of using synthetic datasets
in training machine learning models for anomaly detection in environ-
mental time series data. This analysis was important in understanding
the impact of synthetic data on model performance, especially given
the scarcity of real-world training examples.
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Fig. 8. Confusion matrix of fDOM peak-pattern

Fig. 9. Confusion matrix of turbidity peak-pattern anomaly detection accuracy by the best trained model instance of each model in the HF-PPAD’s model pool.
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Fig. 10. Comparison of the output quality achieved by the best model instance of each model for different values of the weight w € [0, 1]; the weight indicates how much the

user prefers small model size to high accuracy.

Table 9
Model performance comparison using manually labeled anomalies.

Model fDOM Dataset Turbidity Dataset

Balanced accuracy  F1 score  Balanced accuracy  F1 score
InceptionTime  50.3% 45.1% 47.6% 44.9%
ResNet 52.7% 47.5% 49.1% 47.3%
MiniRocket 49.8% 44.2% 45.8% 42.5%
LSTM 30.1% 25.6% 37.1% 33.8%
TCN 45.2% 40.8% 44.0% 40.9%

Initially, the models were trained using only manually labeled
anomalies, which represented a limited range of training examples. This
approach, while offering a valuable opportunity to evaluate the model’s
learning efficacy under constrained conditions, highlighted notable
limitations. As shown in Table 9, the models exhibited a reduction in
performance metrics, such as balanced accuracy and F1 scores, when
trained exclusively on manually labeled data.

However, when the models were trained with synthetic datasets,
there was a significant improvement in their performance. For the
fDOM dataset, as illustrated in Fig. 12(a), and the turbidity dataset,
shown in Fig. 12(b), the models demonstrated increased accuracy with
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the inclusion of synthetic data. The line graphs in these figures clearly
show the progression of model accuracy as the percentage of synthetic
data used in training increased from 0% to 100%.

The balanced accuracy for the fDOM dataset improved from 50.3%
to 97.3% for InceptionTime and from 30.1% to 70.2% for LSTM, indi-
cating a substantial enhancement in model performance with the inclu-
sion of synthetic data. Similarly, for the turbidity dataset, the balanced
accuracy saw an increase from 47.6% to 95.3% for InceptionTime and
from 37.1% to 74.2% for LSTM.

These results underscore the importance of having extensive and
varied training datasets in machine learning applications, particularly
those involving complex environmental time series data. The intro-
duction of synthetic data not only compensates for the scarcity of
real-world labeled anomalies but also enriches the model’s learning
experience by introducing a broader spectrum of anomaly types and
patterns. This study, adhering to rigorous standards of machine learn-
ing research, clearly demonstrates the necessity and effectiveness of
comprehensive training datasets, including synthetic data, to enhance
the learning capabilities of models and their subsequent performance
in anomaly detection tasks.
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Fig. 11. Changes of the output quality achieved by the best model instance of each model for the weight w increasing from 0 to 1.

8. Conclusion and future work

This paper introduced the HF-PPAD framework, a pioneering ap-
proach employing automated machine learning (AutoML) for detecting
peak-pattern anomalies in watershed time series data (WTSD) from the
northeast US critical zone. Our framework, which integrates a synthetic
labeled dataset generator and an automated model instance generator,
is tailored to assist hydrologists in identifying anomalous events in their
data, such as peak-pattern anomalies in fDOM and turbidity, without
requiring in-depth expertise in machine learning or anomaly detection
algorithms.

While the framework demonstrates high performance in our exper-
iments, particularly in its application to the WTSD, we acknowledge
specific areas where further development and validation are essential.
The validation of the framework, as it stands, is focused on specific
datasets, and the nature of our anomaly identification process, which
took almost a year to categorize peak pattern anomalies, highlights the
challenge in generalizing this approach to other datasets. Future appli-
cations will necessitate a similar process of anomaly identification and
categorization, underscoring the need for extensive testing to ensure
the framework’s adaptability to various datasets.

Moreover, the performance scalability of the framework with in-
creasingly large and complex datasets remains an area for further
exploration. The complexity of the proposed algorithms, particularly in
managing the vastness of hyperparameter space and ensuring computa-
tional efficiency, poses significant challenges. As datasets grow in size
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and complexity, ensuring that the framework maintains its efficacy and
efficiency becomes paramount. The balance between the accuracy of
anomaly detection and computational resources, which is a cornerstone
of our approach, needs to be constantly evaluated and optimized as we
scale to larger datasets.

Our contribution is a notable first in utilizing AutoML for peak
pattern anomaly detection in WTSD. By leveraging TimeGAN for syn-
thetic dataset generation and incorporating a diverse pool of machine
learning models (InceptionTime, ResNet, MiniRocket, TCN, and LSTM),
we demonstrate the potential of AutoML for complex time series classi-
fication tasks in hydrology. However, we are cognizant that the current
scope of our framework is primarily suited to the datasets and anomaly
types we have studied. Expanding this scope to include additional ma-
chine learning models and a broader range of environmental data types,
such as snow and air humidity, is an integral part of our future work.
This expansion will not only test the framework’s generalizability but
also its applicability to other domains of anomalous events observed in
water quality monitoring and flood forecasting.

In conclusion, the HF-PPAD framework stands as a significant step
towards automated, efficient peak pattern anomaly detection in WTSD.
By continuing to refine and expand its capabilities, and addressing the
challenges highlighted in this study, we aim to establish HF-PPAD as an
essential tool for hydrologists and stakeholders in water management.
Our ongoing efforts will focus on enhancing the framework’s general-
izability, scalability, and computational efficiency, thereby broadening
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Fig. 12. Model’s accuracy for varying percentage of synthetic training data.

the horizons of AutoML applications in environmental science and
beyond.
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