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Synthetic microstructure generation algorithms have emerged as a key tool for enabling large ICME and
Materials Informatics efforts. In particular, statistically conditioned generative models allow researchers to
systematically explore complex design spaces encountered in microstructure design. In spite of the engineering
importance of polycrystalline materials, generative frameworks for these systems remain extremely limited.
This stunted development — in comparison to the N-phase microstructure generation problem — occurs because
of the complexities inherent to the representation of the polycrystalline orientation fields. For example, these
fields exhibit multiple crystal- and sample-level symmetries. In prior work, these difficulties have resulted
in instabilities in deep generative models for polycrystalline microstructures. In this work, we propose the
use of a Reduced-Order Generalized Spherical Harmonic (ROGSH) basis to address the challenge described
above. The proposed approach accounts for the complex sample- and crystal-level symmetries, and produces
well behaved and low dimensional representations whose space has a meaningful Euclidean measure. We then
demonstrate the ROGSH basis’s remarkable ability to produce stable denoising diffusion models by using our
recently established Local-Global generative framework to create visually realistic synthetic polycrystalline
microstructures. Furthermore, we demonstrate that the generation process can be conditioned on both first-
and second-order spatial statistics of the polycrystalline orientation fields.

1. Introduction particularly important in a wide range of industries, the development
of generative algorithms for this class of microstructures has been

Controllable synthetic microstructure generation has been identified extremely slow. Limited success in unconditional generation has been

as a foundational cornerstone of next generation Materials Informatics
and ICME efforts for accelerating materials discovery, design, and man-
ufacturing [1-11]. These are algorithms that facilitate the systematic
generation of synthetic microstructures corresponding to targeted fea-
tures of interest — often microstructure statistics. These tools provide a
practical avenue for generating and expanding the material microstruc-
ture datasets that support a myriad of important informatics efforts —
from building candidate pools for active learning of surrogate models
needed to practically drive materials innovation efforts [5,12-15] to
expanding design spaces in microstructure sensitive design [10,16-18].
In particular, there have been significant recent advances in develop-
ing 1- and 2-point spatial statistics conditioned generative algorithms
(i.e., second-order accurate generative algorithms) [10,19-23] because
of their extensive utility in PSP (process-structure-property) learning
efforts [9,12,13,24-30]. Although polycrystalline microstructures (en-
countered in most metals and ceramics as well as some polymers) are

reported [31-35]; there do not yet exist any frameworks that achieve 2-
point statistics conditioned polycrystalline generation. Primarily, this is
because of the subtle complexities of the local state (i.e., crystal lattice
orientation) that characterizes polycrystalline microstructures.
Single-phase polycrystalline microstructures are identified by a spa-
tial field that defines the pointwise crystallographic orientation of
the solid. While a general orientation field alone is fairly simple to
represent (they are often compactly represented using three euler an-
gles), polycrystals display several modes of symmetry that significantly
complicate the representation. These symmetries often exist at two
length scales: globally, at the sample level, and locally, at each point
within the grains (i.e., individual crystals comprising the polycrystal).
Sample level symmetries are introduced by manufacturing processes
such as rolling [36], while point-wise symmetries are due to symmetries
in the underlying atomic lattice [37]." In either case, these symmetries
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result in significant redundancies in representation as well as irregular
distances in the orientation space [4,36]. The second is especially
important; the true distance between two orientations is obfuscated by
the presence of symmetric equivalents. Both outcomes present signifi-
cant challenges to machine learning (ML) paradigms. Without proper
mitigation of these effects, ML models are forced to learn the intricate
complexities in the representations of orientation and symmetry. Large
models and datasets are necessary to achieve even humble results [31],
often in direct opposition to the data-scarcity that characterizes many
engineering applications.

N-phase generation (where the characteristic symmetries of the
salient microstructure features are ignored and each phase is simply
labeled in a one-hot encoding scheme) has seen a recent surge of
novel techniques [16,19-22,31,38-44] which have achieved second
order accuracy and beyond (e.g., [20]). Several efforts have attempted
to transfer successful techniques from N-phase generation to poly-
crystalline generation with only modest results [31,34]. The resulting
synthetic microstructures lack realistic features: e.g., synthetic grain
boundaries display unnatural smearing [31]. Recent research from
Jangid et al. on deep learning methods for polycrystalline systems
(specifically, polycrystalline super-resolution [45,46]) has indicated
that these limitations arise because of incompatibilities between com-
mon polycrystalline orientation representations — namely, Euler angles
and, to a lesser extent, quaternions — and accepted deep learning
standards - e.g., L? loss functions. This concept will be discussed in
more detail in Section 3.2. They demonstrate that super-resolution
performance can be significantly improved by directly designing the
learning paradigm to be sensitive to orientation information, instead
of forcing the model to learn it on its own. These papers present a
variety of specialized techniques, including bespoke loss functions [45]
and model architectures for orientation information [46]. While these
efforts provide excellent guiding lessons, there is much improvement
needed, particularly for complex problems such as polycrystal gen-
eration. First, such efforts address symmetries in an adhoc fashion
by mapping all orientations to one apriori selected representation.
Second, these efforts do not account for sample level symmetries.
Finally, a more general approach, which avoids the use of specialized
architectures, would be desirable.

In this paper, we propose a Local-Global Decomposition based
framework for statistically conditioned polycrystal microstructure gen-
eration. Critically, we utilize Generalized Spherical Harmonics (GSH)
to account for representational redundancies due to symmetry and sta-
bilize the local diffusion model’s performance. Our framework achieves
second order accuracy, and generates visually realistic polycrystalline
microstructures with desired 1- and 2-point statistics. The key contri-
butions of this work are divided into two sections.

1. Reduced GSH Space: We identify a 3D subspace of the infinite
GSH coefficient space suitable for compactly representing spatial
data with sample-level and pointwise symmetries for generation
problems. This subspace is low dimensional (making it suit-
able for learning efforts), invertible (allowing transformation
between this representation and other common representations
such as Euler angles), invariant to salient symmetries, and mea-
surable using standard norms (allowing it to naturally support
standard deep learning efforts).

2. Statistically Conditioned Generation: Merging this represen-
tation with our recently proposed Local-Global Decomposition
[20], we demonstrate that we can perform polycrystal genera-
tion conditioned on salient microstructure statistics - specifically,
1- and 2-point statistics [28].

2. Notation

To facilitate communication we briefly present the notation adopted
throughout the paper. Vector-valued quantities are demarcated in bold,
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e.g., a. Quantities with spatial dependency, such as spatially resolved
functions, are demarcated using a subscript for discretely sampled
quantities or a spatial dependency for continuous quantities: a, and
a(x), respectively. Components of vector-valued quantities are indexed
using a superscript, o’ = a - ef, where e’ is the f-basis vector. Powers
will be denoted outside a parenthesis to avoid confusion — except in
the case of common functions such as the exponential - for example,
(m$ )2. Finally, summations will always be written explicitly using the
summation operator and are never implied by repeated indices.

3. Background

While interest in synthetic microstructure generation has grown
significantly in recent years, methodological advancement of polycrys-
talline microstructure generation (both conditional and unconditional)
has been slow in comparison to other prominent microstructure gen-
eration efforts, such as N-phase generation [16,19-22,31,38-44,47]. A
significant roadblock is the statistical complexity and specificity of the
grain structure. Even in relatively morphologically simple materials,
like equiaxed aluminum, grains display sharp and highly geometric
grain boundaries. It has been well documented in N-phase generation
research that such geometric specificity is difficult to achieve without
powerful generative models [19,38,39,41,44,48]. This problem is sig-
nificantly exacerbated in polycrystalline microstructures. Beyond their
distinct morphology, grains are also characterized by a crystallographic
orientation. The coupling between the structure of the grains and the
spatial arrangement of the orientation field makes this problem much
more challenging than N-phase generation.

In N-phase generation, deep learning based frameworks are the
state of the art for synthesizing microstructures with highly compli-
cated local features [20,31,38-41,49,50]. However, as discussed in the
introduction, this success has not translated to polycrystalline genera-
tion [31]. The clear phase boundaries that are achieved on the N-phase
problem are replaced by murky boundaries and other artifacts. Jangid
and colleagues provide an excellent analysis of several important root
causes of these artifacts [45,46]. For example, they demonstrate that
euclidean distances (such as the L; and L,-norms) are not well suited
for measuring error in polycrystalline microstructures. Because most
deep learning paradigms rely on such distance measures, they will
naturally struggle generating non-Euclidean measurable local states
(such as Euler angles or quaternions). This demonstrates an important
point: a successful polycrystal generation framework must be sensitive
to the natural representation and distance measures of the orientation
space.

Currently, the most mature and widely adopted class of polycrys-
talline generation methods are space packing methods — the most
popular of which is Dream3D [11,35,51,52]. In brief, these methods
sample and subsequently, pack a set of individual features (i.e., grains)
to form larger microstructures [35,53]. To facilitate this process, they
adopt several important simplifications. First, they utilize simplistic
representations of the salient microstructure features (e.g., many frame-
works utilize an ellipsoid approximation to the grain shape [53]).
Second, they ignore any spatial dependency in the orientation field;
they largely decouple the placement of grains from the assignment of
their orientations. As a result, they are unable to recreate important
features such as the spatially varying textures observed in titanium
alloys [46] and the morphologically complex microstructures present
in 3D printed metals [54]. However, these methods have amassed
tremendous popularity and use because they can be conditioned to
enforce many important microstructure statistics (such as grain size dis-
tributions) during generation [6-9,11,53]. This is an important lesson;
next generation deep learning based methods designed to overcome
these simplifications must retain statistical conditioning to actualize
their practical utility.
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3.1. 1- and 2-point statistics

Statistically conditioned microstructure generation frameworks fa-
cilitate the synthetic generation of microstructures displaying target im-
portant microstructure statistics. N-point statistics are a rigorous statis-
tical framework for quantifying material microstructures derived from
statistical physics® [3,57-59]. This theoretical foundation guarantees
that similarity in two material’s n-point statistics results in similarity in
their behavior. As a result, they have been used as powerful feature de-
scriptors in a variety of Materials Informatics efforts (e.g., microstruc-
ture quantification [4,13,28,30,60,61] and advanced surrogate model-
ing for Process—Structure [8,26,62] and Structure-Property [27,63-65]
linkages). For many practical applications, 1- and 2-point statistics
are sufficient to support highly accurate data-scientific models. These
statistics can be efficiently estimated by adopting a voxelized (or pix-
elized in 2D) representation of an instantiation of a microstructure [4].
In this representation, each voxel contains a summary of the average
state within the voxel. The 1-point statistics are computed directly via
averaging while the 2-point statistics of a periodic microstructure can
be computed efficiently via the following expression.
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Here, F[-] is the discrete Fourier transform (DFT) operation (performed
using the Fast Fourier Transform algorithm); m? is the value of the «
state at the spatial index s and M/ is its DFT indexed at frequency index
t; * indicates complex conjugation; S is the total number of voxels.

3.2. Generalized Spherical Harmonics

Generalized Spherical Harmonics (GSH) are an extensively studied
function basis for quantifying information in orientation space [4,36].
Congruent to the usage of Fourier expansions, any function in ori-
entation space can be compactly summarized and approximated by
identifying the coefficients of its GSH expansion. In crystallography,
the GSH basis is typically used to summarize the Orientation Distri-
bution Function (ODF), a popular 1-point statistic for polycrystalline
microstructures. The ODF is the probability distribution of orientations
present in a given volume - historically, either the entire microstructure
or a single pixel/voxel. It is denoted f(g)dg, where f is a function
which returns the probability of the orientations in the differential dg.
Its GSH representation is expressed as
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where C}"* are the coefficients which parameterize the GSH expansion,

and 7"'",*“” are the symmetrized GSH basis functions. Importantly, the

basis functions are symmetrized to naturally incorporate any of the

function’s salient symmetries [36].

More recently, GSH coefficients have been used to represent the
pointwise, spatially varying orientation state of a polycrystalline mi-
crostructure (m¢ in Section 3.1). This has been most useful in computing
second-order microstructure statistics via the equations laid out in
Section 3.1 [9,28]. In these works, it is standard to limit each voxel to
a single orientation by maintaining a voxel lengthscale much smaller
than the grain size. Consequently, the discrete local states are the GSH

2 In this paradigm, materials are conceptualized as stochastic processes. The
stochastic microstructure function (i.e., the microstructure generating process)
- not the individual instantiations of possible microstructures — are centralized
in a Process-Structure-Property conceptualization. The microstructure process
is compactly quantified via its n'" order moments — the n-point statistics [3,4,
19,55-571.
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coefficients, C;"*, of the expansion of the impulse distribution centered
around the single orientation: The integral of f(g) is equal to one
only if the domain includes the orientation of interest. For impulse
distributions there exists a special relation [36]:

Y = @1+ DT (g,) ()

Representing single orientations as the GSH expansions of impulse
distributions comes with several key benefits when compared to other
representations such as euler angles or quaternions. symmetry: the
generalized spherical harmonics can be symmetrized to naturally reflect
any salient pointwise (i.e., crystal) or sample symmetries. A subset
of the GSH (or linear combinations of subsets) are chosen such that
the set of basis functions themselves possess the same symmetries as
the physical system in question. This results in one representation for
all symmetrically equivalent orientations, in contrast to other repre-
sentations where a fundamental zone must be defined and enforced
throughout any computations. This unique representation is particu-
larly valuable for microstructure generation because it avoids the mixed
periodic and mirror boundaries of some fundamental zones [36]. These
complex fundamental zone boundaries are particularly detrimental to
learning efforts. They make it challenging to ascertain the true distance
between two orientations. For example, naively taking the distance
within the fundamental zone often neglects that the orientations may be
very close to another symmetrically identical orientation. The second
benefit of the GSH representation is extremely closely related: natural
L, distance. The L, distance is especially poorly behaved in the Euler
angle space for several reasons. First, the aforementioned challenges
of symmetry (these also apply to quaternion representations). Second,
the Euler angle space possess several degenerate planes in which all
orientations within that plane are identical [4]. The L, distance will
be non-zero within those degenerate planes indicating a difference
in orientation when there is not one. Finally, the differential volume
element in the Euler angle parameterization of orientations is nonuni-
form. It is defined as dg = #sin(di)dq&d(pldqaz. L, distances assume
a Euclidean (uniform) differential element and would assume dg =
dgdp,dp, [36].° Ignoring this difference and measuring the distance
between orientations by taking the L, norm directly on Euler angles
introduces distortions into the distance metric. The GSH representation
on the other hand naturally accepts L, distances [4,36]. Since the
GSH are the coefficients of a Fourier expansion (weights of functions
on S0;), this representation again lies in a well behaved euclidean
space [4,36]. This allows for the direct comparisons of individual
orientations (as well as ODFs) through the common L, norm [4,36].
In this work, this is critical for avoiding bespoke loss functions and
architectures created to cope with the topology of orientation spaces, as
is the case for quaternion based neural networks [45,46]. By adopting
this representation, we gain access to state-of-the-art ML techniques.
The third benefit is direct averaging. The entire microstructure’s ODF
(i.e., the 1-point statistic) can be easily computed by directly numer-
ically averaging the ODF of each voxel. This significantly simplifies
conditioning the generation process with 1-point statistics, Section 3.3.
Finally, the last benefit of the GSH space is convexity [4,36]. This
property greatly simplifies downstream tasks necessary for polycrystal
generation, because the set of well defined points is easily identifiable.
This provides an easy mechanism to check the training performance.
Additionally, for the purposes of this work convexity is necessary for
inverting back to Euler angles (see Section 4.2). Although other repre-
sentations provide subsets of these identified properties, the strength
of the GSH coefficient representation is that it uniquely provides all of
them simultaneously.

3 The Euler angles here are taken to be in the Bunge convention.
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3.3. Local-Global Decomposition

Historically, modern deep learning frameworks for microstructure
generation have excelled at generating highly realistic microstruc-
ture features [38,40-42,50] — especially spatially localized features —
at the cost of limited statistical controllability. However, the recent
Local-Global Decomposition (LGD) framework [20] develops several
statistical physics inspired mechanisms to facilitate 1- and 2-point
statistical conditioning by guiding the inference mechanism of deep
diffusion models. Importantly, this conditioning process is achieved
without any changes to the training process and, even, decreases the
amount of necessary training data (in the original examples, the models
are trained on a single experimental microstructure [20]). Additionally,
there is early evidence that the framework helps stabilize the deep
learning model [20] facilitating some extrapolation.

The LGD framework globalizes the role of 1- and 2-point statistics,
arguing that they define long range patterns. Concurrently, it localizes
the role of higher order statistics — and the deep learning algorithm —
to defining salient local microstructure features.

K
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Here, u and f, are the possibly vector valued, constant mean and au-
tocorrelation functions derived from the 1- and 2-point statistics [19].
N(+;+) is the multivariate Gaussian distribution, entities after the semi-
colon denote parameterizing statistics. N; denotes the value of the
voxels in the i spatially compact neighborhood [20]. The hat denotes
quantities of the intermediate output — the second order latent approx-
imation. The N{ denotes the neighborhood complement - the values of
the set of voxels outside of the i" neighborhood.

In practice, a deep diffusion learning model approximates the sec-
ond term: the localized neighborhood distribution. When the complete
framework is utilized, the diffusion model’s output is guided by the
output of the global model, the first Gaussian term. Robertson and
Kalidindi’s Multi-Output Gaussian Random Field (NGRF) model [19]
is employed as the global model [20]. Importantly, this approxima-
tion analytically incorporates the desired 1- and 2-point statistics and
can be efficiently sampled in O(N S InS) computational complexity (N
microstructure states, S spatial voxels). Its worth noting that, to date,
this global generative model was only validated on N-phase generation;
however, it was able to generate microstructures with large numbers of
phases and arbitrary, anisotropic 2-point statistics.

In the complete framework, the diffusion model’s inference process
is guided in two ways. First, an extension of the denoising function,
ensures that the conditional sampling process does not distort the
desired 1-point statistics.

cond uncond m’1
57 (m, 1) = s (m,0) —¢, T—a} 1 (6)

For microstructure’s with vector valued local states, the correction
is applied to each dimension individually. Here, s,4(m, o) is the trained
diffusion model with trainable parameters 6. m’1/S computes the
average of the dimension. w is the desired average for that phase. ¢, is
a constant that possibly depends on the step in the diffusion process, 7.
Second, the 2-point statistics are softly enforced by seeding a truncated
diffusion process on the output of the NGRF (i.e., replacing the initial
random noise sample with a sample from the NGRF per [20]). Tuning
is necessary to identify an optimal subset of the diffusion process
that sufficiently introduces the higher order statistics (i.e., clarifies the
salient local features) while retaining the desired 2-point statistics [20].
We refer the reader to the original work for an exhaustive analysis of
the mechanics of sampling.

It is important to emphasize that it is not necessary to use both guid-
ing processes. In the original work [20], we document that imposing
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the 2-point statistics balances the quality of the local features against
maintaining the 2-point statistics. Therefore, for systems without long
range global patterns, it might be preferable to just use the 1-point
conditioning strategy.

3.4. Denoising diffusion probabilistic models

Denoising diffusion models are the natural choice of deep distri-
butional learning model for the proposed polycrystalline generation
framework since we intend to utilize the LGD framework to incorporate
statistical conditioning. While there exist several different classes of
diffusion models [20,66-70], in this work we have chosen to use
denoising diffusion probabilistic models (DDPM) introduced by Ho [67]
because of their widespread success in a variety of engineering gen-
eration problems [71-76]. They have demonstrated state of the art
performance and empirically seem less impacted by the blurring ar-
tifacts effecting other distributional learning methods [77] and the
training instability displayed by score-based models [20,66,69,70], this
has been evidenced by the overwhelming preference of DDPM within
the machine learning community [32,76]. Training is performed by
minimizing the variational bound on the negative log likelihood. This
results in the following loss function [67].

Loss = E[||s — sZ"c"”‘l(\/aT,Xo + \/1—_07,, NI )

Once trained, we iteratively sample the trained model using the follow-
ing procedure [67].

xX,_ = L (x, — isgnnand(xr’t)> +0,z (8)
Va\" Vi

Here, a, are denoising parameters taken to follow a linear sched-

ule [67]. z ~ N'(0,1). Like before, sy(x,,t) is the learned denoising

function, additionally transformed by the identified correction in our

application, Eq. (6).

4. Reduced GSH space

In this section, we develop the foundation of the proposed gen-
erative framework; we present a local state representation, m?, for
polycrystals suitable for the polycrystal generation problem. We begin
with the GSH coefficients representation which already overcomes
many of the identified problems with other representations. First, dif-
ferences between orientations in this space are naturally measured
using standard distance measures (e.g., the L,-norm). Second, it natu-
rally accounts for symmetry without introducing complex boundaries
and artifacts. Finally, it provides a sensible notion of averages; the
average orientation - i.e., the 1-point statistic — is computed via direct
numerical averaging. Unfortunately, for all these benefits, the prin-
cipal drawback for using the GSH coefficient representation in the
context of polycrystalline generation is its high dimensionality. It is
well documented that the performance of generative algorithms rapidly
deteriorates as the dimensionality of the state space increases [20].

4.1. Selecting the ROGSH basis

We overcome the high dimensionality of the full GSH expansion by
restricting the type of ODF that can exist in each pixel or voxel. In
general, this high dimensionality is incurred because many terms are
required to accurately describe an arbitrary ODF (e.g., [28]). However,
for the purposes of microstructure generation, it is standard to assign a
single orientation to each pixel or voxel [31,33,34,45,46]. Therefore,
we restrict the ODFs to impulse distributions. Considering Eq. (4),
the entire expansion associated with an impulse distribution can be
computed using only the three Euler angles as input. Therefore, we
argue that there must be a reduced set of — at minimum - three GSH
coefficients for the restricted set of impulse functions which are equiva-
lent to the Euler angle representation within symmetry. In other words,
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an invertible transformation between the two representations exists. As
a result, since we are only interested in describing a single orientation,
we can exploit these redundancies in the full GSH coefficient set to
describe the polycrystal microstructure local state, m%, with only three
coefficients from the expansion.

In general, there is not a consistent approach for distilling the
ROGSH basis; a bespoke ROGSH basis must be derived for each sym-
metry group. The selection process begins with the complete GSH
basis for that symmetry group. Importantly, the three GSH coefficients
comprising the ROGSH basis must be selected carefully to ensure the
unique mapping constraint is met. Consider the unsymmetrized GSH
set [36] as an informative example to illuminate the challenges in this
process.

T[mn(g) — eiquz P]mn(d))eimpl (9)

The basis depends on the complex Legendre polynomials P(-), while
also containing multiple exponential terms. Therefore, a random se-
lection of these functions is not guaranteed to provide the desired
one to one mapping from ROGSH to Euler angles. The selection is
further complicated when utilizing the symmetrized GSH basis, as
the symmetrized GSH are formed through linear combinations of the
unsymmetrized GSH [36]. This results in many possible degeneracies
which are symmetry specific and not necessarily obvious. The ROGSH
basis functions for hexagonal-triclinic [78] and cubic-triclinic systems
- the focuses of the upcoming case studies — are reported in Ap-
pendix B. The unique mapping of these bases was verified numerically
by thoroughly sampling the fundamental zones, and ensuring that all
orientations yielded unique values in the ROGSH space.

4.2. Converting from ROGSH back to Euler angles

Once microstructure generation is completed in the ROGSH space,
further analysis and simulation of the generated microstructures neces-
sitates they be converted back into an Euler representation. However,
finding an analytical inverse can be challenging. The ROGSH basis
often consists of long expressions which contain many trigonometric
terms. This makes it difficult to algebraically formulate the inverse,
even though it theoretically exists — for example, the inverse for the
hexagonal symmetry is derived in the appendix, but we were unable to
do the same for the cubic case. In this work, we use a database of known
ROGSH-Euler pairs along with a nearest neighbor projection to perform
the inverse mapping when an analytical inverse cannot be found. The
database is constructed by sampling Euler angles from the fundamental
zone [79] of the symmetry in question, then converting those angles to
the ROGSH basis. When inverting the ROGSH basis, we simply look
up the nearest point in the database and return the associated Euler
angles. This is done efficiently with KDTrees [80]. The fundamental
zone can be sampled to allow for arbitrary accuracy. In this work we
sampled such that the greatest distance between two Euler angles in
the database was 1 degree.

An important observation is that using a database for inversion
is not equivalent to binning the Euler angle space and treating the
structure as an n-phase microstructure, as other works have done in
the past [81]. In binning approaches, the fundamental zone is broken
into sectors, and any angle within a sector receives the corresponding
label of that sector. While the database approach is similar to binning
in the sense that it discretizes the Euler angle space and prohibits
returning an arbitrary Euler angle, it does so after generation. It does
not incur the associated dimensionality explosion that binning causes
during generation. To achieve the same 1 degree fidelity as this work by
binning before generation, tens of thousands of bins would be required.
This results in an untenable number of phases for current generative
frameworks.

5. Experiments

We demonstrate and test the proposed framework as well as doc-
ument its strengths and weaknesses by performing two case studies
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involving statistically conditioned generation. Here, we maintain a
specific focus on generation in a data constrained environment. In
both cases, we perform a standard benchmarking exercise [19-21,44,
48,82,83]; we aim to synthesize polycrystalline microstructures which
are statistically equivalent to a experimentally collected reference. The
reference microstructures have the dual purpose of (1) providing exem-
plary microstructure neighborhoods for training the diffusion models
for the LGD generation framework and (2) being a statistical bench-
mark to quantitatively assess the generative framework’s performance.
The first case also will serve as an overview of the application of the
polycrystalline LGD framework by outlining each step in detail. The
complete process is visually summarized in Fig. 1.

5.1. Case study 1: Rolled Ti64

In the first case study, we demonstrate the generation of a rolled
Ti64 polycrystalline microstructure. The experiential EBSD used as
reference is shown in Fig. 2. Rolled Ti64 is a natural benchmark
for polycrystal generation (in fact, it was used in recent works on
polycrystal super resolution [45,46]), because it is both challenging
to generate and of engineering interest in many applications. This
material system poses several challenges for generation because it
contains salient microstructure features on multiple length scales. At
the grain length scale, it is characterized by a reasonably complex grain
morphology (i.e., size and shape distributions of grains). As a result, it
serves as a good benchmark to assess the capacity to generate the grain
morphologies typically seen in real applications. We leave much more
complex grain structures to the next case study. The selected reference
microstructure for this case study also exhibits distinct features at a
larger length scale because of the spatially heterogeneous texturing of
rolled Ti64. It contains characteristic banded, highly textured regions
appearing on a lengthscale much larger than that of individual grains.
With respect to engineering applications, these bands are extremely
important because they are the initiation site of several important
engineering phenomena (such as fracture and fatigue phenomena) [84].

The proposed framework is capable of capturing the multiscale
characteristic features described above. In Local-Global Decomposition
based generation, several generation techniques are combined to con-
struct the complete generative model. Each technique is designed to
target features on a specific lengthscale. The following two sections of
this case study analyze the performance of these individual methods on
polycrystalline generation. Importantly, we see the stabilizing benefit
of the ROGSH basis. In addition, this case study outlines the complete
usage of the polycrystalline LGD framework in practice.

5.1.1. Global estimate

The Local-Global Decomposition framework begins with a second
order approximation of the generating process: a Multi-Output Gaus-
sian Random Field model (GRF). Because previous literature has only
benchmarked this model for N-phase generation [19], we briefly ad-
dress its compatibility with polycrystal generation. Excitingly, the GRF
model is still able to generate random field instantiations whose second
order statistics match those of the selected reference. A comparison of
the experimental microstructure’s statistics and the average statistics
of 200 samples generated from the GRF are shown in Fig. 3 . Note
that we adopt the ROGSH microstructure representation throughout
generation. The presented statistics are the 2-point statistics of the first
ROGSH coefficient field (see Appendix B). The statistics display signif-
icant visual similarity; both share the same qualitative characteristics
such as the shape of the center peak and vertical bands. The blue plot
in Fig. 3 shows the difference between the two statistics (please note
the change in scale of the color bar). Quantitatively, the statistics show
excellent agreement. The differentiating errors are approximately two
orders of magnitude smaller than the original statistics. We note that
the error is not randomly distributed, instead the highest errors are
localized around the long vertical features (x = +175) that quantify the
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Fig. 2. The original sample image shown in the Euler angle space. This sample is rolled Ti64 with hexagonal crystal symmetry (a). Its orientation distribution function (c), and
2-point statistics of the first ROGSH coefficient (b) are also shown.
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Fig. 3. A comparison of the 1-1 autocorrelation (i.e., the first ROGSH coefficient, Appendix B) of an experimental Ti64 micro-graph compared to the average of 200 samples from
the GRF. The statistics are shown in gray, and their difference is shown in blue using a magnified scale to highlight small discrepancies. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Slices of the sampled statistics generated by the GRF compared to the experimental microstructure. The top plot shows a slice in the X direction, the bottom shows a slice
in the Y direction. The experimental microstructure is shown in black, the average GRF statistics in dotted blue, and the samples in solid blue. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

repeating banding in the microstructure. This is not surprising. As noted
in the previous work, this occurs because of the long lengthscale of the
bands. These long lengthscale features are underrepresented in an RVE
(compared to, for example, the short range features like grains) which
introduces higher noise in these statistics. While the nonuniformity of
the error is not ideal, the error remains acceptably low throughout and
the good statistical performance of the GRF is clear.

In order to better understand the variability in statistics between
samples from the GRF, two cross-sections of the statistics are plotted
in Fig. 4. These “slices” allow us to plot the statistics of each sample
on a single plot, rather than the average statistics which were shown
previously. The top plot shows the slice along the X direction. Here
we can see that the average output of the GRF aligns almost exactly
with the experimental microstructure. This is unsurprising because we
adopt no post processing at this stage, so convergence is analytically
guaranteed given well sampled statistics. Looking at the variability of
the samples, we see good agreement in line with prior work utilizing
GRFs [19,20]. Turning our attention to the slice in the Y direction, we
see again the slight bias introduced by the poor sampling of the banded
features. We also note the slight increase in variability in the samples
when compared to the X direction that this under sampling causes. It
should be noted that the slice taken in the Y direction is directly across
the central ridge seen in Fig. 3. This is precisely where the error is the
largest. For other slices in the Y direction the variability is improved
and more closely resembles the agreement seen in the X direction.

Fig. 5 shows a sampled output from the GRF. The color scheme is
changed to reflect the transition to an ROGSH representation of the
polycrystalline microstructure. While Figs. 3 and 4 demonstrated that
the GRF structures attain excellent second order statistical agreement
with the reference, Fig. 5 demonstrates that the realism of the second
order approximation is obviously wanting. Looking closely, the vague
impression of grains is given by regions with consistent color (i.e., simi-
lar GSH coefficients), but these regions fail to form defined boundaries.
In this case, even more than the N-phase case [19], the separation
between individual features is blurry at best. A suitable local refinement
is necessary to achieve a visually realistic microstructure. Fortunately,
the local element of the LGD framework — a ROGSH stabilized diffusion
model - provides exactly that.

5.1.2. Local approximation and refinement

The second step of our polycrystalline LGD framework utilizes a
DDPM model to locally refine the second-order approximation from the
previous step into a finalized microstructure in the reduced GSH space.
To train the DDPM model, we cut the original reference into 14,000
128 x 128 local patches. Patch sizes should be chosen such that there
is a clear separation between the global and local length-scales, while
also being large enough to accurately quantify the neighborhoods. We
found that a patch size large enough to capture 2-3 grains was suffi-
cient. During training we utilized the standard dropout regularization
technique to prevent over fitting. In exchange for slightly increased
inference times, this highly stabilized the training process, allowing
us to avoid much of the painful manual architecture design pursued
in our previous work [20]. Further information concerning the model
architecture and training can be found in Appendix A. We found for
this problem that the ideal number of diffusion steps was 300. This
was determined by running the diffusion process for varying numbers
of iterations and observing how much the n-point statistics changed
between iterations. After 300 steps the statistics started to be perturbed
significantly. We found that 300 steps was ideal in most situations.

Fig. 6 visually summarizes the denoising process of the GRF output.
The yellow circles highlight a single example grain which forms from
a noisy, but relatively uniform region during the denoising process.
The consistent sharpening throughout the process, without excessive
distortion, qualitatively demonstrates the successful application of the
proposed denoising post-processing. Like in the N-phase case, it is able
to correct the local features in the microstructure without significantly
perturbing the original samples. Importantly, in addition to clear grains
emerging, the long range patterning described earlier is maintained
and becomes clearly visible. This is especially clear once we use the
identified inversion procedure, Section 4.2, to transition back to Euler-
angles and the IPF visualization, as shown in Fig. 7. Inspecting these
microstructures we can see that the generative framework is able to
successfully reconstruct both sets of important features in the original
reference. Locally, clear grain boundaries are present. This result is
especially exciting because of the repeated historic difficulty associ-
ated with using deep learning to generate clean Euler angle fields
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Fig. 5. A microstructure instance in ROGSH space generated by a Gaussian Random Field with its covariance parameterized by the 2-point statistics of the original experimental
microstructure. Note: The color change in the image represents the transformation into the ROGSH basis. (For interpretation of the references to color in this figure legend, the
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Fig. 6. Initial noise from the Gaussian Random Field undergoing an iterative transformation into a final polycrystalline microstructure. Inside the yellow circle a purple region
is highlighted to show how the final microstructure maintains the patterns from the initial noising field. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

(e.g., [31]). In addition, globally, the texturing and orientation prefer-
ence of the generated microstructures visually agrees with the original
reference showing the same alternating vertical bands in the red/blue
orientations. We emphasize that the banding occurs on a lengthscale
larger than the diffusion model’s 128 x 128 window.

5.1.3. Generative quality

Contrasting salient microstructure statistics between the generated
microstructures and the experimental reference, we quantity the obser-
vations described above. The original statistics are taken directly from
the reference microstructure. They are compared with the statistics of
200 synthetic microstructures generated by conditioning the proposed
framework using the reference statistics.

Fig. 8 contrasts the experimental and generated Orientation Distri-
bution Functions (ODFs). The angles were extracted from the generated
microstructures, and the ODFs were estimated and visualized in MTEX

using the DeLaVallee Poussin Kernel* [79]. The ODFs are nearly identi-
cal, and only vary slightly in low density regions. This agreement, while
maintaining visual realism, is very important in the context of previous
efforts. Historically, methods have achieved visual realism by using
corrective measures to remove artifacts [35]. However, these methods
introduce systematic biases in the generated ODFs. In contrast, the
direct ODF conditioning in the used DDPM model, Eq. (6), accurately
yields the correct ODF despite also acting as a denoising measure for
the GRF.

Fig. 9 contrasts the 2-point statistics of the reference and the average
2-point statistics from the generated ensemble of microstructures. These
are seen to be in good agreement with each other. The variation within

4 MTEX estimated the optimal kernel halfwidth, selecting a kernel
bandwidth of 102 and a halfwidth of 2.2 degrees.
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Fig. 7. Several samples from the generative process converted back to an Euler representation.

(1291) 2.5 2.5
2 2
1.5 1.5
1 1

- 0.5 I = 05
EXP. LGD
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EXP. LGD EXP. - LGD

-300 - -300 -300

0.12 0.12
0.002
0.11 0.11
01 010 97 o0 O 0.000

0.09 0.09 ~0.002

300 1 300 1 300

- i 1N . . .
200 0 200 200 0 200

Fig. 9. The errors in 1-1 ROGSH autocorrelation between the generated microstructures and the experimental microstructure.
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Fig. 10. Slices of the sampled statistics generated by the LGD compared to the experimental microstructure. The top plot shows a slice in the X direction, the bottom shows a
slice in the Y direction. The experimental microstructure is shown in black, the average statistics of the full LGD framework in dotted blue, and the samples in solid blue. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the distribution of generated microstructures is largely bound within
+0.003 of the reference. This is nearly two orders of magnitude less
than the peak value of 0.125 in the original statistics. Importantly, the
agreement demonstrates that the denoising process is not significantly
altering the long range statistics produced by the GRF while it corrects
the local features. The error is only slightly higher than that observed in
the GRF (approx. 0.001). We can analyze the statistical fluctuations in
the ensemble by looking at Fig. 10. In the cross sections, we see similar
errors to that of the GRF, but now slightly exaggerated. Again, the slice
in X direction matches well, and the average output nearly coincides
perfectly with the experimental microstructure. Most importantly, the
secondary peaks corresponding to the long range layering are clearly
present. In the Y direction, the bias associated with the vertical bands
has increased slightly. Additionally, the peak of the generated sample
is now noticeably wider than the peak of the experimental sample. This
increase occurs because the banding features are larger than the chosen
neighborhood size of 128 x 128 in the vertical direction. As a result,
the local approximation struggles to learn these features, since it cannot
observe them in their entirety. Because of this, grains inside the bands
struggle to resolve. This can be seen clearly in Fig. 7 where inside the
red bands some grains do not become distinctly separate. This high-
lights a fundamental boundary to the LGD framework’s performance;
when there is a pattern that fully saturates the “field of view” of either
component model (i.e., the bands being poorly sampled in the GRF,
or the bands being too large to be captured in a neighborhood), some
error will be introduced. Although a larger neighborhood size which
fully contains the salient patterns would likely reduce these artifacts,
the selected size is also limited by other practical limitations — such as
the availability of training data. Overall, the deviations remain small.
The framework achieves excellent first- and second-order agreement.
Finally, contrasting salient grain statistics, we see that synthetic mi-
crostructures locally approximate the reference as well. The agreement
in the 2-point statistics near zero shown in Figs. 9 and 10 provides
an initial indication that the grain structure attains good agreement
in the eccentricity of the grains. Additionally, we use chord-length
distributions to quantify the distribution of grain sizes present in the mi-
crostructures. As can be seen in Fig. 11, the synthetic microstructure’s
chord-length distribution approximates the reference well. Briefly,
again we see the previously identified effect of the neighborhood size:
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the generated microstructures are slightly biased towards longer cord
lengths. This visually is apparent in the generated microstructures, as
there is slight smoothing of the grain boundaries in regions with a high
density of highly similar orientations (i.e., the bands) when compared
to the original microstructure. Unsurprisingly, we can see that this
effect is slightly worse for the CLD in the Y direction.

5.2. Case study 2: Additively manufactured Inconel 625

The first case study showcases the ROGSH stabilized LGD frame-
work’s ability to generate polycrystals with both local and global het-
erogeneity. For this second case study, we explore the full capabilities
of the local distribution approximation by generating a microstructure
with very rich local features. For this purpose, we have selected a
sample of additively manufactured Inconel 625 from the AFRL AM
Bench challenge [54]. This sample is an ideal case study to showcase
the local approximation, as it has sharp grain boundaries of varying size
and shape, and is visually much less predictable than the previous Ti64
sample. Furthermore, we take this opportunity to highlight our ability
to deal with microstructures with cubic crystal symmetry by using the
more complex cubic ROGSH basis rather than the HCP ROGSH basis
used before, Appendix B.

The sample in question is shown in Fig. 12. We can immediately
see from the EBSD image on the left that the microstructure displays
extremely complex local features, characteristic of additive manufactur-
ing. There exists a wide variety of grain sizes and shapes. The smaller
grains take on a plate like appearance, and are visually almost rect-
angular. The larger grains take on ill defined asymmetric shapes with
very rough and noisy grain boundaries. Furthermore, the larger grains
are also partially bifurcated by smaller grains. Turning our attention
to more global features, we can see that the inconel microstructure
lacks the same global ordering as the Ti64, as there are no long range
patterns such as banding present. For this reason, we will generate
inconel microstructures using only the local approximation, and forgo
the global approximation using the GRF. This highlights a key benefit
of the LGD framework in that we are approximating the ordering across
different length scales quasi-independently. Therefore when performing
generation we are able to modularize our approach, and incorporate
information from each approximation one at a time in a successive
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Fig. 11. Experimental (black outline) compared to generated (red) chord length distributions. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 12. Experimental and Generated Inconel samples shown in the Cubic ROGSH Space.

manner. This gives the user the freedom to generate microstructures
using whatever subset of information is relevant to the microstructure
or the problem at hand.

The local approximation method was applied to the inconel sample
following a similar protocol to the TI64 sample. We aimed to pick
a patch size that captures 2-3 grains on average, which in this case
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was 64 x 64 pixels. We took a total of 128 images of the AM Inconel
from the AFRL AM Bench challenge which resulted in a dataset of
approximately 16000 local patches. We can see sample generated
microstructures from the trained model in Fig. 12. Qualitatively the
generated microstructures are very similar to the original, displaying
both large and small grains. The smaller grains have plate like structure
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Fig. 13. Slices of the sampled statistics generated by the LGD compared to the experimental microstructure. The top plot shows a slice in the X direction, the bottom shows a slice
in the Y direction. The experimental microstructure is shown in black, the average statistics of the LGD in dotted blue, and the individual samples in solid blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

similar to those in the original, and the larger grains take on asymmet-
ric amorphous shapes with rough grain boundaries. Furthermore, we
see the same bifurcation of larger grains by smaller grains that was
present in the original microstructure.

Quantitatively, we briefly compare the same statistics as Case Study
1. They display strong agreement with the experimental reference.
Here, we will highlight 2-point statistics and chord length distributions.
The remainder of the comparisons can be found in Appendix C. As in
Case Study 1, the generated statistics are averaged over 200 generated
microstructures.

Fig. 13 compares cross-sections of the experimental and generated
2-point statistics. Looking at the experimental statistics we can confirm
our initial observation that these microstructures contain no long range
ordering. This is clear from the nearly flat tails of the 2-point statistics.
The values of the statistics within these flat tails hovers around the
square of the peak value, further indicating that they correspond to
random spatial patterns [4]. Making note of this is key as it validates
our decision to forgo the global approximation method in this case
study, and utilizing only the learned local statistics initialized on ran-
dom noise. Furthermore, we can see that the generated microstructures
agree on average with the experimental microstructure, and that the
variance between individual samples is far tighter than in the previous
case study. We believe the improved agreement is primarily due to the
lack of global ordering in this microstructure. As previously discussed,
long range patterns become more difficult to generate because we
observe fewer examples of them when compared to local features. In
the case of the inconel samples, we can clearly see the obtainable
fidelity of these methods when trained on properly sampled spatial
patterns.

Turning our attention to chord length distributions we see similar
results to that of the previous case study. Fig. 14 compared the gener-
ated samples to the experimental reference. The agreement is strong,
with the exception of a slight bias towards larger grains. While the
same phenomena was observed in the previous case study, the causes
seem to be different. Previously this shift seemed to be due to the
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merging and smoothing some grains in particularly challenging regions,
but these artifacts are not observed in the generated inconel samples.
Instead, we believe the shift to be from a reduction of noise in the
generated samples when compared to the original. The experimental
data contains small single pixel artifacts which artificially reduce the
length of chords. The regularization in the learned local approximations
prevents it from learning these small, truly random, perturbations
resulting in cleaner overall microstructures.

5.3. Comparison against other methods and representations

We provide a comparison against alternative generation approaches
as a final showcase of the proposed framework. Our goal in this com-
parison is two-fold. First, we demonstrate the strengths of higher-order
generation with respect to the current first-order approaches in use
today. We do this through a direct comparison against the popular poly-
crystalline generation/reconstruction software Dream3D® [85]. Second,
we validate our prior claims concerning the strengths of the ROGSH
basis representation — that the representation is ideally suited for learn-
ing tasks by, for example, providing sensible notions of averages and
distances while accounting for symmetry. We utilize the Euler angles
directly in the LGD framework (EULER-LGD), and compare the output
to the ROGSH generations (ROGSH-LGD). Quaternions were excluded
from this comparison because training diffusion models on quaternion
representations is a non-trivial task requiring highly specialized models
and techniques (e.g., [86]). We leave the exploration of quaternions for
polycrystalline generation as a possible opportunity for future work.
However, we would like to reiterate that a key benefit of the ROGSH
basis is that it does not require such bespoke models, and can be

5 For the Dream3D structure the raw EBSD data was fed into the software,
and the example protocols were followed for extracting the first-order mi-
crostructure statistics. The standard generation procedure was then executed
using the computed statistics.
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Fig. 15. A comparison of various generation approaches. The original microstructure is shown on the left followed by a synthetic generation from Dream3D, then the LGD

framework using Euler angles, and finally the LGD framework using the ROGSH basis.

readily combined with any future state of the art generative modeling
techniques without modification.

The generated structures in Fig. 15 contrast the three techniques
against the experimental reference from Case Study 1. Comparing them
qualitatively, we can immediately see the strengths of the proposed
ROGSH-LGD method. The Dream3D microstructure contains the ex-
pected outcome for a first-order generation. Primarily, the long range
vertical banding in the original microstructure is absent. Additionally,
the grains display simple isotropic geometric forms which are repre-
sentative of the complex, elongated grains in the original morphology.
We also see a greater homogeneity in the grain size. The original
microstructure contains both large and small, fleck like grains. The
Dream3D generation grains visually seem biased towards the average
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grain size. Nevertheless, the ODF (the most important first-order statis-
tic) seems to match reasonably well as the coloring of the image is
similar to the original (we will later numerically confirm this as well).

In contrast, the EULER-LGD qualitatively displays the opposite
strengths and weaknesses. Inspecting this microstructure we can clearly
see a shift in grain orientations as the entire structure has a “washed
out” appearance. This indicates that the generated microstructure
will have very little statistical agreement in both 1- and 2-order
statistics since the generated orientations are fundamentally shifted.
Furthermore, in comparison to the ROGSH-LGD, we see an increase
in blurring artifacts as well as grains which are ill formed. This is
most evident in the gray grains observable throughout. Despite the
apparent statistical inaccuracies, the inclusion of 2-point statistics has
resulted in some capture of the vertical banding phenomenon from the
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Metrics comparing the performance of the various generations. The most desirable result is bolded for each

Trow.

Dream 3D Euler-LGD ROGSH-LGD
ODF (MSE Error) 0.050 0.319 3.240-10°°
2-Point statistics (MSE Error) 0.203 0.312 5759 -10~°
Generation time (Min) 1.8 6.7 2.1
# Trainable parameters (Millions) N/A 230 12

original microstructure. When comparing the ROGSH-LGD structures to
the original we can see that they are nearly visually indistinguishable
except for the small amount of smoothing discussed earlier.

To facilitate a quantitative comparison, we compute the ODF and 2-
Point statistics via a 43 term expansion in to the generalized spherical
harmonics [4] and compute the MSE errors between the original and
generated structures. This comparison provides a comprehensive statis-
tical comparison; the 1- and 2-point statistics computed on the typical
GSH expansion have been shown to be a super-set of many important
polycrystalline descriptors (ODF, Misorientation Distribution Function,
Grain size Distributions, etc.) [4,36]. Please note that this is not the
ROGSH basis. While statistics computed on the ROGSH basis clearly
contain some of this information, evidenced by the successful efforts in
this paper, no guarantees have yet been shown. Therefore we will use
the GSH in the typical way for the comparison here [28].

Table 1 shows the summarized results of this comparison. First look-
ing at the statistical accuracy, we can see the ROGSH-LGD approach
hits the target statistics with orders of magnitude more accuracy than
the other approaches. The Dream3D microstructures have acceptable
accuracy in their first order statistics, and, as expected, do not match
with respect to second-order statistics. The EULER-LGD structure is
highly inaccurate with respect to all statistical measures. This is due
to having incorrect predictions of the orientations as discussed earlier.
Beyond statistical accuracy there are also practical implications which
result for the different techniques.

We found that to get even visually reasonable results the EULER-
LGD method required a much larger diffusion model (230 Million
parameters compared to 12 Million). This is a clear demonstration of
the sum total of the benefits of the ROGSH representation discussed
in Sections 3.2 and 4.1. Without the ROGSH basis the model is now
forced to learn internal representations of orientations as well as ef-
fect of symmetry and mirror/periodic boundaries in the fundamental
zone. Not only did this hurt the model performance as these internal
representations are sub-par, but the increased parameter count results
in a much more difficult training process as well as a slower generation
time.® This increased computational cost can become very limiting for
downstream tasks, such as dataset generation or structure optimization,
where many tens of thousands of microstructures may need to be
generated. By using the ROGSH basis the model can focus only on
capturing high-order spatial information, thus performing generation
tasks more accurately and efficiently.

6. Conclusions

In conclusion, this paper presents a novel approach to statistically
conditioned polycrystalline microstructure generation through a Local—
Global Decomposition-based framework. By leveraging the ROGSH
basis, we address representational redundancies caused by symme-
try and stabilize the training of a deep diffusion generative model.
This allows our framework to successfully produce visually realistic
polycrystalline microstructures while preserving desired 1- and 2-point
statistics.

The case studies shown in this work highlight the tremendous
fidelity diffusion models offer as local approximations within the LGD

6 All tests were run on an RTX 6000 with 24 GB of VRAM.
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framework. We believe that the microstructures shown here are near
the upper limit of complexity that one would face when desiring to
perform generation. This suggests that diffusion models may be flexible
enough to model any spatial phenomena typical in materials science.
However, the use of these models (and any future generative models
which have yet to be developed) is predicated on identifying a suitable
data representation. This avoids the construction of bespoke models
made to address peculiarities unique to the domain, and allow for
the direct application of the most sophisticated techniques from the
machine learning and generative Al communities. This observation is
one of the key messages of this work.

This work also lays the foundation for several important future
efforts. Importantly, in this work, we are evaluating the generation
performance of our model for the application of “statistical recon-
struction”: generating a microstructure with the same statistics as an
example reference. A major area for future development is explor-
ing the extrapolation stability of these methods (i.e., changing the
global conditioning statistics, while using the same local model). This
would allow for the generation of microstructures with unseen 2-
point statistics, and allow for exploration to novel microstructures.
The extrapolation abilities for the LGD framework were investigated
in our prior work [20], where we outline the necessity of picking
lower order statistics which introduce viable neighborhoods. Due to the
more complex lower order statistics in polycrystalline generation (ODFs
rather than volume fractions), choosing compatible statistics becomes
a much more challenging task. Furthermore, we observed that there is
an extremely strong tie between the neighborhood distribution and the
generated orientation distribution function, making it possible that the
stability degrades if the target ODF is perturbed significantly away from
the training data. Defining this range of suitable ODFs is a significant
open problem.

Another future effort of high interest is the generation of 3D struc-
tures from 2D micrographs. The method proposed in this work can
be applied to 3D generation when 3D data is present, but performing
3D generation with only 2D data remains an open problem. Recent
work has shown that 2D generative models can be used in an iterative
fashion on individual planes of a 3D volume [87]. This approach, while
promising, has yet to be applied to polycrystalline materials due to (1)
the lack of a suitable generative model (which this work directly has
addressed), and (2) challenges with ensuring the generated structures
are physically reasonable. From the authors experience, ensuring com-
patibility between the statistics from each direction is critical to get
a physically sensible structure, and the difficulty of ensuring compati-
bility increases with the sophistication of the microstructure. Most 2D
to 3D generation efforts have focused on two phase systems [31,87]
where issues with compatibility seem to only arise in edge cases. For
polycrystalline materials the complex local state makes these issues
much more pervasive. If suitable data is available (orthogonal images
along each axis), then this compatibility is guaranteed from the physical
system. However this is typically not the case, and enforcing this
compatibility without three orthogonal images is another high value
open problem.

Code availability

Code will be made available upon request.
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Fig. 16. The UNet model architecture used throughout this work. The overall block diagram is shown on the left. Direct connections between blocks are shown with solid arrows.
Skip connections are shown with dashed arrows where arrows with the same pattern represent the same connection. Fourier time embedding is used, and is represented by arrows
with a circular tail. The number of channels per block vary depending on the case study, and are denoted by A, B, and C.
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Appendix A. Model architecture

The UNet shown in Fig. 16 shows the model architecture used
in the work. While case studies 1 and 2 both used the same overall
architecture, different numbers of channels were used in each block.
The more complex local neighborhoods shown in case study 2 required
a larger network. The number of channels in each block are denoted
by A,B,C, and their values are shown in Table 2.
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Table 2
The values of A, B, and C for Case Study 1 and 2.

Case Study 1

Case Study 2

A 64 128
B 128 256
C 128 512

Appendix B. Symmetrized ROGSH basis
All Euler angles are taken to be in the Bunge convention [36].
B.1. Hexagonal-triclinic ROGSH basis

The following are the basis functions for a sample with hexagonal
crystal symmetry and triclinic sample symmetry. A direct inverse exists,
and is unique within symmetry (there are six unique solutions to
these equations but all are symmetrically equivalent). Note that these
are symmetrized bases, so the indices are transformed from the prior
unsymmetrized discussion.

. 1 27‘:'0'1
T = Z(3cos?® — 1) = @ = cos™! 2 (10)
2 2 3
. 6 . . P
Re(T2 1‘l) = £ sing, sin2® = ¢ = sin”! ;Re(Tz 1‘1) an
4 \/gsin2<1>
0,2
V462 327>
Tﬁo'2 =— D) sin® @ cos 60, = @y = écos_l(——ﬁ) 12)

/462 sin® @

The first and third equations also form a reduced-order set of the
surface spherical harmonics [36] (within a proportionality constant),
and can be used for problems with a dependence on only two angles.

B.2. Cubic-triclinic ROGSH basis

The following are the basis functions for a sample with cubic crystal
symmetry and triclinic sample symmetry. A direct inverse may exist,
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Fig. 17. A comparison between the experimental and generated ODFs for AM Inconel.
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Fig. 18. A comparison between the experimental and generated 1-1 ROGSH autocorrelation for AM Inconel.

but could not be found. It is therefore inverted with a nearest neighbor
projection using KDTrees to within 1 degree of accuracy (on the order
of experimental noise). Note that these are symmetrized bases, so the
indices are transformed from the prior unsymmetrized discussion.
/30
192
+(cos (@) + 1)? cos (4.09, +4.0p,))

Re(T;*') = ((14 (cos (@) — 1) cos (4.0¢, )

(cos (@) + 1)? + (cos (@) — 1)* cos (4.0¢, —4.09,))  (13)
= % (5sin* (@) cos (4¢,) + 35 cos* (@) — 30cos® (@) +3.0)  (14)
202 V166305594
T = T (1025 (cos (@) — 1)° (cos (@) + 1)° cos (12¢,)

+66 (cos (@) — 1)* (cos (@) + 1)* - (161.0sin* (@)

—280.0sin* (@) + 120.0) cos (8, + 99 (cos (@) — 1)* (cos (@) + 1)

(7429 cos® (@) — 9044 cos® (@) + 3230 cos* (®) — 340 cos (®) + 5) cos (4¢,)

+ 1352078 cos'? (@) — 3879876 cos'® (@) + 4157010 cos® (@) — 2042040 cos® (®)

+450450 cos* (@) — 36036 cos® (@) + 462) 15)
The second and third equations also form a reduced-order set of the

surface spherical harmonics [36] (within a proportionality constant),
and can be used for problems with a dependence on only two angles.
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Appendix C. Comparison of inconel statistics

Here we show the remainder of the comparisons for AM inconel.
Looking at the ODFs in Fig. 17 we can see they match nearly exactly.
Fig. 18 shows good agreement for the 1-1 autocorrelation consistent
with the slices shown in case study 2. We also see further confirmation
that the inconel samples have no long range ordering, as the 2-point
statistics have a noisy random pattern away from the peak. The dif-
ferences between the generated and experimental 2-point statistics is
also generally randomly distributed and has little spatial dependence.
This corroborates our conclusions that errors are introduced via spatial
patterns which exceed the length-scale of a generative approach -
analytical or learned. Since the inconel has no such patterns the error
is therefore minimal.

References

[1] N. Brodnik, C. Muir, N. Tulshibagwale, J. Rossin, M. Echlin, C. Hamel, S.
Kramer, T. Pollock, J. Kiser, C. Smith, S. Daly, Perspective: Machine learning
in experimental solid mechanics, J. Mech. Phys. Solids 173 (2023) 105231,
http://dx.doi.org/10.1016/j.jmps.2023.105231.

D. Dimiduk, E. Holm, S. Niezgoda, Perspective on the impact of machine
learning, deep learning, and artificial intelligence on materials, processes, and
structures engineering, Integr. Mater. Manuf. Innov. 7 (2018) 157-172, http:
//dx.doi.org/10.1007/s40192-018-0117-8.

S. Torquato, Random Heterogeneous Materials, Springer, New York, NY, 2002.
B. Adams, S. Kalidindi, D. Fullwood, Microstructure Sensitive Design for
Performance Optimization, Butterworth-Heinemann, Waltham, MA, 2013.

[2]

[3]
[4]


http://dx.doi.org/10.1016/j.jmps.2023.105231
http://dx.doi.org/10.1007/s40192-018-0117-8
http://dx.doi.org/10.1007/s40192-018-0117-8
http://dx.doi.org/10.1007/s40192-018-0117-8
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb3
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb4
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb4
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb4

M.O. Buzzy et al.

[5]

(6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Marshall, S. Kalidindi, Autonomous development of a machine-learning model
for the plastic response of two-phase composites from micromechanical finite
element models, JOM 73 (2021) 2085-2095, http://dx.doi.org/10.1007/s11837-
021-04696-w.

F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview
of constitutive laws, kinematics, homogenization and multiscale methods in
crystal plasticity finite element modeling: Theory, experiments, applications, Acta
Mater. 58 (2010) 1152.

M. Diehl, M. Groeber, C. Haase, D. Molodov, F. Roters, D. Raabe, Identifying
structure-property relationships through DREAM.3D representative volume ele-
ments and DAMASK crystal plasticity simulations: An integrated computational
materials engineering approach, JOM 69 (2017) 848-855, http://dx.doi.org/10.
1007/s11837-017-2303-0.

S. Hashemi, S.R. Kalidindi, Gaussian process autoregression models for the
evolution of polycrystalline microstructures subjected to arbitrary stretching
tensors, Int. J. Plast. 162 (2023) 103532, http://dx.doi.org/10.1016/j.ijplas.
2023.103532.

S. Hashemi, S. Kalidindi, A machine learning framework for the temporal
evolution of microstructure during static recrystallization of polycrystalline
materials simulated by cellular automaton, Comput. Mater. Sci. 188 (2021)
110132, http://dx.doi.org/10.1016/j.commatsci.2020.110132.

Y. Gao, Y. Liu, Relibaility-based topology optimization with stochastic heteroge-
neous microstructure properties, Mater. Des. (2021) http://dx.doi.org/10.1016/
j.matdes.2021.109713.

S. Krishnamoorthi, R. Bandyopadhyay, M.D. Sangid, A microstructure-based
fatigue model for additively manufactured Ti-6Al-4V, including the role of prior
boundaries, Int. J. Plast. 163 (2023) 103569, http://dx.doi.org/10.1016/j.ijplas.
2023.103569.

A. Generale, S. Kalidindi, Reduced-order models for microstructure-sensitive
effective thermal conductivity of woven ceramic matrix composites with resid-
ual porosity, Compos. Struct. 274 (2021) 114399, http://dx.doi.org/10.1016/j.
compstruct.2021.114399.

M.C. Barry, J.R. Gissinger, M. Chandross, K.E. Wise, S.R. Kalidindi, S. Kumar,
Voxelized atomic structure framework for materials design and discovery,
Comput. Mater. Sci. 230 (2023) 112431, http://dx.doi.org/10.1016/j.commatsci.
2023.112431.

D. Khatamsaz, B. Vela, P. Singh, D.D. Johnson, D. Allaire, R. Arréyave,
Multi-objective materials Bayesian optimization with active learning of design
constraints: Design of ductile refractory multi-principal-element alloys, Acta
Mater. 236 (2022) 118133, http://dx.doi.org/10.1016/j.actamat.2022.118133.
N. Wilson, D. Willhelm, X. Qian, R. Arrdyave, X. Qian, Batch active learning for
accelerating the development of interatomic potentials, Comput. Mater. Sci. 208
(2022) 111330, http://dx.doi.org/10.1016/j.commatsci.2022.111330.

N.N. Vlassis, W. Sun, Denoising diffusion algorithm for inverse design of
microstructures with fine-tuned nonlinear material properties, Comput. Methods
Appl. Mech. Engrg. 413 (2023) 116126, http://dx.doi.org/10.1016/j.cma.2023.
116126.

J. Jung, J.I. Yoon, H.K. Park, H. Jo, H.S. Kim, Microstructure design using
machine learning generated low dimensional and continuous design space,
Materialia 11 (2020) 100690, http://dx.doi.org/10.1016/j.mtla.2020.100690.
A. Generale, A. Robertson, C. Kelly, S. Kalidindi, Inverse stochastic microstructure
design, 2023, http://dx.doi.org/10.2139/ssrn.4590691, SSRN: Preprint.

A. Robertson, S. Kalidindi, Efficient generation of N-field microstructures from
2-point statistics using multi-output Gaussian random fields, Acta Mater. 232
(2022) 117927, http://dx.doi.org/10.1016/j.actamat.2022.117927.

A. Robertson, C. Kelly, M. Buzzy, S. Kalidindi, Local-global decompositions
for conditional microstructure generation, 2023, http://dx.doi.org/10.2139/ssrn.
4388214, URL https://ssrn.com/abstract=4388214.

Y. Gao, Y. Jiao, Y. Liu, Ultra-efficient reconstruction of 3D microstructure and
distribution of properties of random heterogeneous materials containing multiple
phases, Acta Mater. 204 (2021) 116526, http://dx.doi.org/10.1016/j.actamat.
2020.116526.

P. Seibert, M. Ambati, A. Rabloff, M. Kastner, Reconstructing random heteroge-
neous media through differentiable optimization, Comput. Mater. Sci. 196 (2021)
110455, http://dx.doi.org/10.1016/j.commatsci.2021.110455.

P. Seibert, A. Rabloff, M. Ambati, M. Kastner, Descriptor-based reconstruction
of three-dimensional microstructures through gradient-based optimization, Acta
Mater. 227 (2022) 117667, http://dx.doi.org/10.1016/j.actamat.2022.117667.
S. Torquato, Effective stiffness tensor of composite media: 1. Exact series
expansions, J. Mech. Phys. Solids 45 (1997) 1421-1448.

M. Safdari, M. Baniassadi, H. Garmestani, M. Al-Haik, A modified strong-constrast
expansion for estimating the effective thermal conductivity of multiphase
heterogeneous materials, J. Appl. Phys. 112 (2012) 114318.

D.M.d. Zapiain, J. Stewart, R. Dingreville, Accelerating phase field based
microstructure evolution predictions via surrogate models trained by machine
learning methods, NPJ Comput. Mater. 3 (2021) 1-11, http://dx.doi.org/10.
1038/541524-020-00471-8.

N. Paulson, M. Priddy, D. McDowell, S. Kalidindi, Reduced-order microstructure-
sensitive protocols to rank-order the transition fatigue resistance of polycrys-
talline microstructures, Int. J. Fatigue 119 (2019) 1, http://dx.doi.org/10.1016/
j.ijfatigue.2018.09.011.

17

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Acta Materialia 267 (2024) 119746

N. Paulson, M. Priddy, D. McDowell, S. Kalidindi, Reduced-order structure-
property linkages for polycrystalline microstructures based on 2-point statistics,
Acta Mater. 129 (2017) 428, http://dx.doi.org/10.1016/j.actamat.2017.03.009.
P.R. Kaundinya, K. Choudhary, S.R. Kalidindi, Machine learning approaches for
feature engineering of the crystal structure: Application to the prediction of the
formation energy of cubic compounds, 2021, http://dx.doi.org/10.48550/arXiv.
2105.11319, ArXiv.

P. Altschuh, Y.C. Yabansu, J. Hotzer, M. Selzer, B. Nestler, S.R. Kalidindi, Data
science approaches for microstructure quantification and feature identification
in porous membranes, J. Membr. Sci. 540 (2017) 88-97, http://dx.doi.org/10.
1016/j.memsci.2017.06.020.

S. Kench, S. Cooper, Generating three-dimensional structures from a two-
dimensional slice with generative adversarial network-based dimensionality
expansion, Nat. Mach. Intell. 3 (2021) 299-305, http://dx.doi.org/10.1038/
$42256-021-00322-1.

P. Zelaia, J. Cheng, J. Mayeur, A. Ziabari, M. Kirka, Digital polycrystalline
microstructure generation using diffusion probabilistic models, 2023, http://dx.
doi.org/10.2139/ssrn.4419461, SSRN.

A. Senthilnathan, P. Acar, M.D. Graef, Markov random field based microstructure
reconstruction using the principal image moments, Mater. Charact. 178 (2021)
111281, http://dx.doi.org/10.1016/j.matchar.2021.111281.

1. Javaheri, V. Sundararaghavan, Polycrystalline microstructure reconstruction
using Markov random fields and histogram matching, Comput. Aided Des. 120
(2020) 102806, http://dx.doi.org/10.1016/j.cad.2019.102806.

M. Groeber, S. Ghosh, M. Uchic, D. Dimiduk, A framework for automated
analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic
microstructure generation, Acta Mater. 56 (2008) 1274-1287, http://dx.doi.org/
10.1016/j.actamat.2007.11.040.

H.-J. Bunge, Texture Analysis in Materials Science: Mathematic Methods,
Butterworth & Co., Berlin, 1982.

C. Hammond, The Basics of Crystallography and Diffraction,

International Union of Crystallography texts on crystallography, 2015.
L. Mosser, O. Dubrule, M. Blunt, Stochastic reconstruction of oolitic limestone
by generative adversarial networks, Transp. Porous Med. 125 (2018) 81-103,
http://dx.doi.org/10.1007/s11242-018-1039-9.

C. Dureth, P. Seibert, D. Rucker, S. Handford, M. Kastner, M. Gude, Conditional
diffusion-based microstructure reconstruction, 2022, ArXiV.

J. Tang, X. Geng, D. Li, Y. Shi, J. Tong, H. Xiao, F. Peng, Machine learned-based
microstructure prediction during laser sintering of alumina, Sci. Rep. 11 (2021)
10724, http://dx.doi.org/10.1038/s41598-021-89816-x.

A. Bhaduri, A. Gupta, A. Olivier, L. Graham-Brady, An efficient optimization
based microstructure reconstruction approach with multiple loss functions,
Comput. Mater. Sci. 199 (2021) 110709, http://dx.doi.org/10.1016/j.commatsci.
2021.110709.

R. Bostanabad, A. Bui, W. Xie, D. Apley, W. Chen, Stochastic microstructure
characterization and reconstruction via supervised learning, Acta Mater. 103
(2016) 89-102, http://dx.doi.org/10.1016/j.actamat.2015.09.044.

X. Liu, V. Shapiro, Random heterogeneous materials via texture synthesis,
Comput. Mater. Sci. 99 (2015) 177-189, http://dx.doi.org/10.1016/j.commatsci.
2014.12.017.

S. Cheng, Y. Jiao, Y. Ren, Data-driven learning of 3-point correlation functions
as microstructure representations, Acta Mater. 229 (2022) 117800, http://dx.doi.
org/10.1016/j.actamat.2022.117800.

D. Jangid, N. Brodnik, M. Goebel, A. Khan, S. Majeti, M. Echlin, S. Daly, T.
Pollock, B. Manjunath, Adaptable physics-based super-resolution for electron
backscatter diffraction maps, NPJ: Comput. Mater. 8 (2022) 255, http://dx.doi.
org/10.1038/541524-022-00924-2.

D. Jangid, N. Brodnik, M. Echlin, T. Pollock, S. Daly, B. Manjunath,
Q-RBSA: High-resolution 3D EBSD map generation using an efficient quater-
nion transformer network, 2023, http://dx.doi.org/10.48550/arXiv.2303.10722,
ArXiv.

P. Seibert, M. Husert, M. Wollner, K. Kalina, M. Kastner, Fast reconstruction
of microstructures with ellipsoidal inclusions using analytic descriptors, 2023,
http://dx.doi.org/10.48550/arXiv.2306.08316, ArXiv.

Y. Jiao, F. Stillinger, S. Torquato, A superior descriptor of random textures and
its predictive capacity, Proc. Natl. Acad. Sci. USA 106 (2009) 17634-17639,
http://dx.doi.org/10.1073/pnas.0905919106.

T. Hsu, W.K. Epting, H. Kim, H.W. Abernathy, G.A. Hackett, A.D. Rollett,
P.A. Salvador, E.A. Holm, Microstructure generation via generative adversarial
network for heterogeneous, topoligically complex 3D materials, JOM 73 (2021)
90-102, http://dx.doi.org/10.1007/5s11837-020-04484-y.

O. Ogoke, K. Johnson, M. Glinsky, C. Laursen, S. Kramer, A. Farimani,
Deep-learned generators of porosity distributions produced during additive
manufacturing, 2022, ArXiv: Submitted to Additive Manufacturing.

R. Quey, P. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite
element method: Generation, meshing and remeshing, Comput. Methods Appl.
Mech. Engrg. 200 (17-20) (2011) 1729-1745.

M. Prasad, N. Vajragupta, A. Hartmaier, Kanapy: A python package for generat-
ing complex synthetic polycrystalline microstructures, J. Open Source Softw. 4
(2019) 1732, http://dx.doi.org/10.21105/j0ss.01732.

vol. 21,


http://dx.doi.org/10.1007/s11837-021-04696-w
http://dx.doi.org/10.1007/s11837-021-04696-w
http://dx.doi.org/10.1007/s11837-021-04696-w
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb6
http://dx.doi.org/10.1007/s11837-017-2303-0
http://dx.doi.org/10.1007/s11837-017-2303-0
http://dx.doi.org/10.1007/s11837-017-2303-0
http://dx.doi.org/10.1016/j.ijplas.2023.103532
http://dx.doi.org/10.1016/j.ijplas.2023.103532
http://dx.doi.org/10.1016/j.ijplas.2023.103532
http://dx.doi.org/10.1016/j.commatsci.2020.110132
http://dx.doi.org/10.1016/j.matdes.2021.109713
http://dx.doi.org/10.1016/j.matdes.2021.109713
http://dx.doi.org/10.1016/j.matdes.2021.109713
http://dx.doi.org/10.1016/j.ijplas.2023.103569
http://dx.doi.org/10.1016/j.ijplas.2023.103569
http://dx.doi.org/10.1016/j.ijplas.2023.103569
http://dx.doi.org/10.1016/j.compstruct.2021.114399
http://dx.doi.org/10.1016/j.compstruct.2021.114399
http://dx.doi.org/10.1016/j.compstruct.2021.114399
http://dx.doi.org/10.1016/j.commatsci.2023.112431
http://dx.doi.org/10.1016/j.commatsci.2023.112431
http://dx.doi.org/10.1016/j.commatsci.2023.112431
http://dx.doi.org/10.1016/j.actamat.2022.118133
http://dx.doi.org/10.1016/j.commatsci.2022.111330
http://dx.doi.org/10.1016/j.cma.2023.116126
http://dx.doi.org/10.1016/j.cma.2023.116126
http://dx.doi.org/10.1016/j.cma.2023.116126
http://dx.doi.org/10.1016/j.mtla.2020.100690
http://dx.doi.org/10.2139/ssrn.4590691
http://dx.doi.org/10.1016/j.actamat.2022.117927
http://dx.doi.org/10.2139/ssrn.4388214
http://dx.doi.org/10.2139/ssrn.4388214
http://dx.doi.org/10.2139/ssrn.4388214
https://ssrn.com/abstract=4388214
http://dx.doi.org/10.1016/j.actamat.2020.116526
http://dx.doi.org/10.1016/j.actamat.2020.116526
http://dx.doi.org/10.1016/j.actamat.2020.116526
http://dx.doi.org/10.1016/j.commatsci.2021.110455
http://dx.doi.org/10.1016/j.actamat.2022.117667
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb24
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb24
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb24
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb25
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb25
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb25
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb25
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb25
http://dx.doi.org/10.1038/s41524-020-00471-8
http://dx.doi.org/10.1038/s41524-020-00471-8
http://dx.doi.org/10.1038/s41524-020-00471-8
http://dx.doi.org/10.1016/j.ijfatigue.2018.09.011
http://dx.doi.org/10.1016/j.ijfatigue.2018.09.011
http://dx.doi.org/10.1016/j.ijfatigue.2018.09.011
http://dx.doi.org/10.1016/j.actamat.2017.03.009
http://dx.doi.org/10.48550/arXiv.2105.11319
http://dx.doi.org/10.48550/arXiv.2105.11319
http://dx.doi.org/10.48550/arXiv.2105.11319
http://dx.doi.org/10.1016/j.memsci.2017.06.020
http://dx.doi.org/10.1016/j.memsci.2017.06.020
http://dx.doi.org/10.1016/j.memsci.2017.06.020
http://dx.doi.org/10.1038/s42256-021-00322-1
http://dx.doi.org/10.1038/s42256-021-00322-1
http://dx.doi.org/10.1038/s42256-021-00322-1
http://dx.doi.org/10.2139/ssrn.4419461
http://dx.doi.org/10.2139/ssrn.4419461
http://dx.doi.org/10.2139/ssrn.4419461
http://dx.doi.org/10.1016/j.matchar.2021.111281
http://dx.doi.org/10.1016/j.cad.2019.102806
http://dx.doi.org/10.1016/j.actamat.2007.11.040
http://dx.doi.org/10.1016/j.actamat.2007.11.040
http://dx.doi.org/10.1016/j.actamat.2007.11.040
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb36
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb36
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb36
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb37
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb37
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb37
http://dx.doi.org/10.1007/s11242-018-1039-9
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb39
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb39
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb39
http://dx.doi.org/10.1038/s41598-021-89816-x
http://dx.doi.org/10.1016/j.commatsci.2021.110709
http://dx.doi.org/10.1016/j.commatsci.2021.110709
http://dx.doi.org/10.1016/j.commatsci.2021.110709
http://dx.doi.org/10.1016/j.actamat.2015.09.044
http://dx.doi.org/10.1016/j.commatsci.2014.12.017
http://dx.doi.org/10.1016/j.commatsci.2014.12.017
http://dx.doi.org/10.1016/j.commatsci.2014.12.017
http://dx.doi.org/10.1016/j.actamat.2022.117800
http://dx.doi.org/10.1016/j.actamat.2022.117800
http://dx.doi.org/10.1016/j.actamat.2022.117800
http://dx.doi.org/10.1038/s41524-022-00924-2
http://dx.doi.org/10.1038/s41524-022-00924-2
http://dx.doi.org/10.1038/s41524-022-00924-2
http://dx.doi.org/10.48550/arXiv.2303.10722
http://dx.doi.org/10.48550/arXiv.2306.08316
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1007/s11837-020-04484-y
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb50
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb50
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb50
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb50
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb50
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb51
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb51
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb51
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb51
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb51
http://dx.doi.org/10.21105/joss.01732

M.O. Buzzy et al.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

S. Mandal, J. Lao, S. Donegan, A. Rollett, Generation of statistically repre-
sentative synthetic three-dimensional microstructures, Scr. Mater. 146 (2018)
128-132, http://dx.doi.org/10.1016/j.scriptamat.2017.11.034.

M.G. Chapman, M.N. Shah, S.P. Donegan, J.M. Scott, P.A. Shade, D. Menasche,
M.D. Uchic, AFRL additive manufacturing modeling series: Challenge 4, 3D
reconstruction of an IN625 high-energy diffraction microscopy sample using
multi-modal serial sectioning, Integr. Mater. Manuf. Innov. 10 (2021) 129-141.
D. Fullwood, S. Niezgoda, B. Adams, S. Kalidindi, Microstructure sensitive
design for performance optimization, Prog. Mater. Sci. 55 (2010) 477-562,
http://dx.doi.org/10.1016/j.pmatsci.2009.08.002.

S. Niezgoda, Y. Yabansu, S. Kalidindi, Understanding and visualizing microstruc-
ture and microstructure variance as a stochastic process, Acta Mater. 59 (2011)
6387-6400, http://dx.doi.org/10.1016/j.actamat.2011.06.051.

W. Brown Jr., Solid mixture permittivities, J. Chem. Phys. 23 (1955) 1514-1517.
E. Kroner, Bounds for effective elastic moduli of disordered materials, J. Mech.
Phys. Solids 25 (1977) 137-155.

D. Fullwood, B. Adams, S. Kalidindi, A strong contrast homogenization for-
mulation for multi-phase anistropic materials, J. Mech. Phys. Solids 56 (2008)
2287-2297.

T. Fast, O. Wodo, B. Ganapathysubramanian, S. Kalidindi, Microstructure tax-
onomy based on spatial correlations: Application to microstructure coarsening,
Acta Mater. 108 (2016) 176, http://dx.doi.org/10.1016/j.actamat.2016.01.046.
A. Robertson, S. Kalidindi, Digital representation and quantification of discrete
dislocation structures, JOM 73 (2021) 2143-2158, http://dx.doi.org/10.1007/
511837-021-04669-z.

Y.C. Yabansu, P. Steinmetz, J. Hotzer, S.R. Kalidindi, B. Nestler, Extraction
of reduced-order process-structure linkages from phase-field simulations, Acta
Mater. 124 (2017) 182-194, http://dx.doi.org/10.1016/j.actamat.2016.10.071.

M. Yuan, S. Paradiso, B. Meredig, S. Niezgoda, Machine learning-based reduced
order polycrystalline modelling for ICME applications, Integr. Mater. Manuf.
Innov. 7 (2018) 214-230, http://dx.doi.org/10.1007/s40192-018-0123-x.

A. Castillo, A. Venkatraman, S. Kalidindi, Mechanical responses of primary-a Ti
grains in polycrystalline samples: Part II — Bayesian estimation of the crystal-level
elastic-plastic mechanical properties from spherical-indentation measurements,
Integr. Mater. Manuf. Innov. 10 (2021) 99-114, http://dx.doi.org/10.1007/
$40192-021-00204-9.

J. Rossin, P. Leser, K. Pusch, C. Frey, S. Vogel, A. Saville, C. Torbet, A. Clarke,
S. Daly, T. Pollock, Single crystal elastic constants of additively manufactured
components determined by resonant ultrasound spectroscopy, Mater. Charact.
192 (2022) 112244, http://dx.doi.org/10.1016/j.matchar.2022.112244.

Y. Song, J. Sohl-Dickstein, D.P. Kigma, A. Kumar, S. Ermon, B. Poole, Score-based
generative modeling through stochastic differential equations, in: International
Congress for Learning Representation, 2021, pp. 1-36.

J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, 2020, CoRR
abs/2006.11239. arXiv:2006.11239, URL https://arxiv.org/abs/2006.11239.

C. Luo, Understanding diffusion models: A unified perspective, 2022, http://dx.
doi.org/10.48550/arXiv.2208.11970, ArXiV.

Y. Song, S. Ermon, Generative modeling by estimating gradients of the data
distribution, in: NeurIPS 2019, 2019.

18

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Acta Materialia 267 (2024) 119746

Y. Song, D. Kingma, How to train your energy based models, 2021, pp. 1-22,
ArXiv 1.

J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, D. Fleet, Video diffusion
models, 2022, http://dx.doi.org/10.48550/arXiv.2204.03458, ArXiV.

W. Harvey, S. Naderiparizi, V. Masrani, C. Wilbach, F. Wood, Flexible diffusion
modeling of long videos, 2022, http://dx.doi.org/10.48550/arXiv.2205.11495,
ArXiv.

N. Anand, T. Achim, Protein structure and sequence generation with equivari-
ant denoising diffusion probabilistic models, 2022, http://dx.doi.org/10.48550/
arXiv.2205.15019, ArXiVv.

E. Hoogeboom, V. Satorras, C. Vignac, M. Welling, Equivariant diffusion for
molecule generation in 3D, in: International Conference on Machine Learning,
2022, http://dx.doi.org/10.48550/arXiv.2205.15019.

C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet,
M. Norouzi, Palette: Image-to-image diffusion model, in: ACM SIGGRAPH
Conference Proceedings, 2022, http://dx.doi.org/10.1145/3528233.3530757.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional
image generation with CLIP latents, 2022, http://dx.doi.org/10.48550/arXiv.
2204.06125, ArXiVv.

D.P. Kingma, P. Dhariwal, Glow: Generative flow with invertible 1x1 con-
volutions, in: Advances in Neural Information Processing Systems, vol. 31,
2018.

A. Muth, A. Venkatraman, R. John, A. Pilchak, S.R. Kalidindi, D.L. McDowell,
Neighborhood spatial correlations and machine learning classification of fatigue
hot-spots in Ti-6Al-4V, Mech. Mater. 182 (2023) 104679.

F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX-Free and
open source software toolbox, Solid State Phenomena 160 (2010) 63-68.

J.L. Bentley, Multidimensional binary search trees used for associative searching,
Commun. ACM 18 (9) (1975) 509-517.

D. Fullwood, S. Niezgoda, S. Kalidindi, Microstructure reconstruction from 2-
point statistics using phase recovery algorithms, Acta Mater. 56 (2008) 942-948,
http://dx.doi.org/10.1016/j.actamat.2007.10.044.

C. Yeong, S. Torquato, Reconstructing random media, Phys. Rev. E 57 (1998)
495-506.

Y. Jiao, F. Stillinger, S. Torquato, Modeling heterogeneous materials via two-
point correlations. II. Algorithmic details and applications, Phys. Rev. E 77
(2008) 031135, http://dx.doi.org/10.1103/PhysRevE.77.031135.

Z. Xu, A. Liu, X. Wang, Influence of macrozones on the fatigue cracking behavior
and fracture mechanisms of rolled Ti-6A1-4V alloy, Mater. Sci. Eng. A 824 (2021)
141824.

M. Groeber, M. Jackson, Dream.3D: A digital representation environment for the
analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 3 (2014) 56-72,
http://dx.doi.org/10.1186/2193-9772-3-5.

A. Leach, S.M. Schmon, M.T. Degiacomi, C.G. Willcocks, Denoising diffusion
probabilistic models on so (3) for rotational alignment, in: ICLR 2022 Workshop
on Geometrical and Topological Representation Learning, 2022.

K.-H. Lee, G.J. Yun, Multi-plane denoising diffusion-based dimensionality expan-
sion for 2D-to-3D reconstruction of microstructures with harmonized sampling,
2023, arXiv:2308.14035.


http://dx.doi.org/10.1016/j.scriptamat.2017.11.034
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb54
http://dx.doi.org/10.1016/j.pmatsci.2009.08.002
http://dx.doi.org/10.1016/j.actamat.2011.06.051
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb57
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb58
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb58
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb58
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb59
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb59
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb59
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb59
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb59
http://dx.doi.org/10.1016/j.actamat.2016.01.046
http://dx.doi.org/10.1007/s11837-021-04669-z
http://dx.doi.org/10.1007/s11837-021-04669-z
http://dx.doi.org/10.1007/s11837-021-04669-z
http://dx.doi.org/10.1016/j.actamat.2016.10.071
http://dx.doi.org/10.1007/s40192-018-0123-x
http://dx.doi.org/10.1007/s40192-021-00204-9
http://dx.doi.org/10.1007/s40192-021-00204-9
http://dx.doi.org/10.1007/s40192-021-00204-9
http://dx.doi.org/10.1016/j.matchar.2022.112244
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb66
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb66
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb66
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb66
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb66
http://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
http://dx.doi.org/10.48550/arXiv.2208.11970
http://dx.doi.org/10.48550/arXiv.2208.11970
http://dx.doi.org/10.48550/arXiv.2208.11970
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb69
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb69
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb69
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb70
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb70
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb70
http://dx.doi.org/10.48550/arXiv.2204.03458
http://dx.doi.org/10.48550/arXiv.2205.11495
http://dx.doi.org/10.48550/arXiv.2205.15019
http://dx.doi.org/10.48550/arXiv.2205.15019
http://dx.doi.org/10.48550/arXiv.2205.15019
http://dx.doi.org/10.48550/arXiv.2205.15019
http://dx.doi.org/10.1145/3528233.3530757
http://dx.doi.org/10.48550/arXiv.2204.06125
http://dx.doi.org/10.48550/arXiv.2204.06125
http://dx.doi.org/10.48550/arXiv.2204.06125
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb77
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb77
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb77
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb77
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb77
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb78
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb78
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb78
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb78
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb78
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb79
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb79
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb79
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb80
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb80
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb80
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb82
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb82
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb82
http://dx.doi.org/10.1103/PhysRevE.77.031135
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb84
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb84
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb84
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb84
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb84
http://dx.doi.org/10.1186/2193-9772-3-5
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb86
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb86
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb86
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb86
http://refhub.elsevier.com/S1359-6454(24)00099-5/sb86
http://arxiv.org/abs/2308.14035

	Statistically conditioned polycrystal generation using denoising diffusion models
	Introduction
	Notation
	Background
	1- and 2-point statistics
	Generalized Spherical Harmonics
	Local-Global Decomposition
	Denoising diffusion probabilistic models

	Reduced GSH Space
	Selecting the ROGSH Basis
	Converting from ROGSH back to Euler Angles

	Experiments
	Case Study 1: Rolled Ti64
	Global Estimate
	Local approximation and Refinement
	Generative Quality

	Case Study 2: Additively Manufactured Inconel 625
	Comparison Against Other Methods and Representations
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest

	Acknowledgments
	Appendix A. Model Architecture
	Appendix B. Symmetrized ROGSH Basis
	Hexagonal-Triclinic ROGSH Basis
	Cubic-Triclinic ROGSH Basis

	Appendix C. Comparison of Inconel Statistics
	References


