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Abstract— In this article, an efficient simulation method is
proposed to analyze extra-large electromagnetic scattering prob-
lems. With the incorporation of the traveling wave phase, the
phase-extracted basis functions (PEBFs) can be defined on very
large mesh elements, which effectively reduce the number of
unknowns by two orders of magnitude, making it possible to
simulate extra-large problems. Although the PEBFs were applied
successfully in analyzing smooth and convex objects, they cannot
accurately model the induced surface currents when geometrical
singularities or strong mutual couplings are present. In such
cases, the mesh elements must be small enough to describe the
complicated amplitude variations accurately. One way to tackle
this issue is to use a locally refined mesh. In this article, a set of
rules is proposed, based on the geometrical and physical features
of the problem, to identify elements that need to be locally refined.
The mesh refinement is performed automatically based on the
proposed rules, eliminating the need for human intervention.
The discontinuous Galerkin integral equation (DGIE) method
has been employed to handle the nonconformal mesh generated
from the automatic mesh refinement. Numerical examples from
smooth and nonsmooth objects are presented to demonstrate the
performance of the method.

Index Terms— Discontinuous Galerkin integral equation
(DGIE), electromagnetic scattering problems, phase-extracted
basis functions (PEBFs), standing wave, standing wave ratio
(SWR), traveling wave.

I. INTRODUCTION

IN ELECTROMAGNETIC scattering analysis using integral
equations, basis functions are employed to interpolate the

unknown induced currents. Most well-known basis functions,
such as the divergence-conforming curvilinear Rao–Wilton–
Glisson (CRWG) basis functions [1], are real-valued functions
that only describe the induced surface current’s amplitude.
When solving a large-scale electromagnetic problem with
such basis functions, many unknowns are required due to
their limited ability to represent the phase variation of the
unknown current, which can only be achieved through their
complex expansion coefficients. To achieve a good descriptive
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accuracy of the phase variation across one wavelength of the
current distribution, 10–20 basis functions are usually required.
This significantly limits a method’s simulation capability to
solve electrically large problems. In this work, complex-valued
phase-extracted basis functions (PEBFs) [2], [3], [4], [5], [6]
are employed to describe unknown currents. By incorporat-
ing phase variation into the definition of basis functions,
the PEBFs acquire excellent capability in describing phase
changes of the unknown currents and can be defined on
much larger elements. As a result, only two to three basis
functions are needed to expand the current distribution across
a wavelength, leading to a dramatic reduction of the total
number of unknowns and a significant improvement of the
simulation capability of the method of moments (MoMs).

The descriptive capacity of PEBFs has been demonstrated in
scattering problems involving smooth and convex objects [2],
[3]. When simulating nonsmooth objects with geometrical
discontinuities, such as edges, corners, and tips, or concave
objects that induce strong mutual couplings, the PEBFs lose
their descriptive power because, in these cases, it is the
strong amplitude variation that dominates the number of
basis functions required per wavelength. Consequently, the
PEBFs defined on large patches cannot model the ampli-
tude variations properly. To accurately describe the induced
currents in nonsmooth and/or concave cases, smaller mesh
elements or higher-order basis functions can be used. The
use of higher-order basis functions with PEBFs has been
demonstrated in [4] and [5], while the application of locally
refined mesh elements with PEBFs has not been reported.
Local mesh refinement can be achieved by refining large mesh
elements in areas that require small mesh elements, known as
h-refinement.

In general, a denser mesh is used in a numerical simulation
to provide better simulation accuracy but results in a higher
computational cost. To achieve good overall simulation accu-
racy while maintaining low computational cost, a nonuniform
mesh can be used. Here, a nonuniform mesh refers to the
mesh configuration with larger elements in some simulation
areas and smaller elements in some other areas. To generate
such a mesh, physical insights, and user experiences are
usually required. Several adaptive mesh refinement techniques
have been developed [7], [8], [9], which are used mainly
in the finite-element method (FEM) [10], to improve mesh
quality and obtain a reliable numerical solution. Although
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Fig. 1. Illustration of the MoM solution with the automated h-refinement.
In Step 1, the feature of the induced current is extracted from a rough
solution using a coarse conformal mesh. The elements that need refinement
are identified. In Step 2, a local mesh refinement is performed to generate a
nonconformal mesh, based on which an accurate solution can be obtained.

many refinement techniques have been developed for FEM,
it was not until recently that new developments were made
in the MoM solution of surface integral equations (SIEs)
for electromagnetic scattering problems [11], [12], [13], [14],
[15], [16], [17], [18]. These refinement methods are based
on local error estimations using either the residual error of
the SIEs or reference solution obtained from higher-order
basis functions, based on which an iterative process is usually
performed to generate a series of gradually refined meshes.
Simulations employing these meshes are then performed to
obtain numerical solutions with increasing accuracy. As a
result, the overall computational cost of such an approach can
be very high, especially when many iterations are needed to
achieve convergence.

In this article, a novel two-step method is proposed to
solve electrically extra-large problems very efficiently [19].
Instead of requiring repeated solutions to the problem with
gradually refined meshes, only two solutions to the problem
are needed, as illustrated in Fig. 1. First, a fast simulation
of the problem using the PEBFs defined on a very coarse
mesh is performed to obtain a rough solution of the induced
currents. This can be completed very efficiently as a result
of the very small number of unknowns involved. The rough
solution of the induced currents is then processed by an
identification method to locate the areas that need mesh refine-
ment, which are referred to as the refining areas hereinafter.
Such identification is based on the geometrical feature of
the scatterer and the physical feature of the electromagnetic
problem. The concept of standing wave ratio (SWR) has been
utilized in this work to distinguish traveling from standing
surface currents. Once identified, the elements are refined
locally to construct a nonuniform and nonconformal mesh for
the second solution of the problem, resulting in an accurate
solution with a minimum computational cost. As will be shown
in the numerical examples, the computational overhead of the
proposed approach is very low, and the total computational
time is much shorter than that of the traditional methods.
To handle nonconformal mesh efficiently, a discontinuous
Galerkin integral equation (DGIE) method [20], [21] is used
with the PEBFs and the multilevel fast multipole algorithm
(MLFMA) [22], [23] is used to accelerate the solution. While
the use of the SWR concept in mesh refinement identification
was proposed in [24], [25], and [26], its cohesive integration
with PEBFs, DGIE, and MLFMA is detailed in this work,

representing a significant step forward from our earlier work.
The analysis and applications of the proposed method to solve
large and complex problems have been presented in this article
to showcase the method’s versatility and wide applicability in
electromagnetic scattering analysis.

II. FORMULATIONS

In this section, the PEBFs for solving electromagnetic
scattering from smooth and convex objects are first reviewed,
followed by the application of PEBFs in the context of the
DGIE solution of integral equations. This covers the rough
and improved solutions on the coarse and refined meshes,
respectively, as illustrated in Fig. 1. Adaptive mesh refinement
strategies will be introduced in Section III.

A. Phase-Extracted Basis Function

To reduce the number of unknowns in an electromagnetic
calculation, much effort has been devoted to the development
of new basis functions since three decades ago. Different
basis functions have been proposed on the basis of analytical
expressions or numerical solutions. One well-known example
is the higher-order hierarchical basis functions based on the
modified Legendre polynomials [27]. When the order is rel-
atively high, the hierarchical basis functions can be defined
on mesh elements as large as two wavelengths. However, the
increasing order also leads to a rapid increase in the number
of basis functions. Approximately 30 basis functions and
the same number of unknown coefficients are needed within
one square wavelength on the surface of a smooth perfectly
electric conducting (PEC) object. Furthermore, as the order
increases, the convergence of the iterative solution becomes
slower. On the other hand, low-order basis functions, such as
the CRWG basis functions, cannot be applied to large mesh
elements due to the limited capability to describe the phase
variation of the surface currents. One common issue of both
types of basis functions is that they are both real-valued,
leaving the phase variation of the current to be described
only by their complex expansion coefficients. As a result, the
number of basis functions on a unit area of the surface has to
be maintained at a remarkably high level.

Based on such understandings, the number of basis func-
tions is expected to be reduced dramatically if the basis
functions are capable of properly describing the induced
currents’ phase distribution. As theoretically proven in [2], the
induced surface currents in a PEC scattering problem have a
phase dependence as same as that of the incident plane wave

J ∼ eikinc
·r (1)

if the surface of the scatterer is smooth and convex. In (1),
kinc

= k0 k̂inc represents the vector wavenumber of the incident
plane wave with k0 and k̂inc being the wavenumber and
incident wave vector in free space, respectively, and r stands
for a point on the surface of the scatterer. Separating the
dominant plane-wave phase dependence from the induced
surface currents J(r) leads to [2], [3], and [4]

J(r) = j(r)eikinc
·r (2)
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with j(r) being the amplitude-dominant function, which can
be approximated as the linear superposition of the CRWG
basis function jn(r) as

j =
N∑

n=1

an jn(r). (3)

The induced current can finally be expanded as

J(r) =
N∑

n=1

an jn(r)eikinc
·r (4)

in which jn(r)eikinc
·r is known as the PEBF.

The application of PEBFs in MoM is similar to that
of conventional CRWG basis functions. When the Galerkin
method is used, vm(r)e−ikinc

·r is used as a testing function.
Implementation details can be found in [2] and [3].

B. DGIE Solution With PEBFs

The PEBFs described above work very well when the
scatterers are smooth convex objects. When nonsmooth or
concave surfaces are encountered, the wave reflection and
mutual coupling destroy the nice behavior of the traveling
wave phase variation of the induced surface currents. As a
result, PEBFs can no longer be defined on very large mesh
elements. To properly describe induced currents, larger mesh
elements can be used in areas dominated by traveling waves,
and smaller mesh elements can be used in areas dominated by
standing waves. An automatic mesh refinement procedure will
be detailed in Section III to construct such a nonuniform and
nonconformal mesh since it is easier to generate and involves
less number of elements compared to a similar nonuniform
but conformal mesh. To process the nonconformal mesh, the
DGIE method [20] is employed in this work. Unlike [20],
where half RWG basis functions defined on single triangular
elements are used throughout the mesh, half PEBFs are defined
only along the nonconformal interfaces of the mesh in this
work. In the conformal regions, full PEBFs defined on pairs of
triangles are still used. Along the nonconformal interfaces, the
discontinuous Galerkin method weakly enforces the normal
current continuity by permitting and penalizing a slight normal
current discontinuity along the interfaces.

Consider the combined-field integral equation (CFIE) [28]

J
2
− P.V.

∫
S′

n̂ ×∇G0 × J dr ′ − n̂ × n̂

×

∫
S′

ik0

(
G0 J +

1
k2

0
∇∇G0 · J

)
dr ′

= n̂ × H inc
+ n̂ × n̂ ×

1
η0

Einc (5)

where the magnetic-field integral equation (MFIE) and the
electric-field integral equation (EFIE) are equally weighted.
In (5), G0 = eik0|r−r ′|/4π

∣∣r − r ′
∣∣ stands for the scalar Green’s

function in free space with the wavenumber k0, η0 stands for
the wave impedance in free space, and P.V. stands for the
Cauchy principal value integration.

Using half RWG basis functions and the interior penalty
presented in [20] along the nonconformal elemental interfaces,
the CFIE can be discretized as

N∑
n=1

{
1
2

∫
S
vm · jn dr − P.V.

∫
S

∫
S′

vm · n̂ ×∇G0 × jn dr ′ dr

+ ik0

∫
S

∫
S′

G0

(
vm · jn −

1
k2

0
∇ · vm∇

′
· jn

)
dr ′ dr

+
i

k0

∮
C

∫
S′

t̂m · vm ∇
′
· jn G0 dr ′ dℓ

+
i

k0

∫
S

∮
C ′

∇ · vm t̂n · jn G0 dℓ′ dr

−β
i

k0

∫
Cmn

t̂m · vm
(
t̂mn · jm + t̂nm · jn

)
dℓ

}
an

=

∫
S

vm ·

(
n̂ × H inc

+
1
η0

Einc
)

dr (∀m ∈ [1, N ]) (6)

where v, j , t̂ , and β denote the testing function, basis function,
outward pointing unit normal vector on triangular boundaries
as shown in Fig. 2, and the penalty/stabilization coefficient
presented in [20], respectively.

When PE basis functions jeikinc
·r ′ and testing functions

ve−ikinc
·r are employed in the discretization of the CFIE using

the DGIE method, the discretized system becomes
N∑

n=1

{
A1

mn + A2
mn + A3

mn

}
an = Vm (∀m ∈ [1, N ]) (7)

where

A1
mn =

1
2

∫
S
vm · jn dr

− P.V.
∫

S

∫
S′

g vm · n̂ ×∇G0 × jn dr ′ dr (8)

A2
mn = ik0

∫
S

∫
S′

g G0

[
vm · jn − k̂inc

· vm k̂inc
· jn

−
i

k0

(
∇ · vm k̂inc

· jn − k̂inc
· vm ∇

′
· jn

)
−

1
k2

0
∇ · vm∇

′
· jn

]
dr ′ dr

+

∮
C

∫
S′

g G0 t̂m · vm

(
i

k0
∇

′
· jn − k̂inc

· jn

)
dr ′ dℓ

+

∫
S

∮
C ′

g G0

(
i

k0
∇ · vm + k̂inc

· vm

)
t̂n · jn dℓ′ dr

(9)

A3
mn = −β

i
k0

∫
Cmn

t̂m · vm
(
t̂mn · jm + t̂nm · jn

)
dℓ (10)

Vm =
1
η0

∫
S

vm ·
(
n̂ × ĥi

+ êi) dr. (11)

In (8) and (9), g = eikinc
·(r ′−r), while in (11), ĥi and

êi denote the polarization vector of the incident magnetic
and electric fields, respectively. In these expressions, A1

mn is
obtained by discretizing the MFIE operator, A2

mn is obtained
from the EFIE operator, which involves a contour integration
when either the basis or the testing function is a half PE
function, and A3

mn is the contour penalty term that penalizes
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Fig. 2. Schematic of the half RWG basis functions defined on conformal
elements. A full RWG function is divided into two half RWG basis functions
along the common edge highlighted in red.

Fig. 3. Neighborhood Nk of triangle k. Direct neighbors are those sharing
a node with triangle k, labeled as n.

any normal discontinuity of the induced current. Equation (7)
can then be solved iteratively using either the MoM or
the MLFMA [22], [23].

III. ADAPTIVE MESH REFINEMENT BASED ON
GEOMETRICAL AND PHYSICAL FEATURES

As illustrated in Fig. 1, a two-step approach is proposed
to identify the refining areas automatically. In the first step,
a coarse mesh is used in the MoM solution to obtain a rough
solution quickly using the PEBFs. In this work, two to three
mesh elements per wavelength are used in constructing such
a coarse mesh. If the induced surface currents are traveling
wave-dominant, the PEBFs can describe their phase variations
properly. This will result in a slowly varying amplitude in the
solution of the surface currents. In contrast, in cases where
the induced surface currents are standing wave dominant, their
amplitude varies drastically and cannot be expressed properly
by PEBFs defined on large mesh elements. In such cases,
the mesh elements must be refined such that the amplitude
oscillations can be captured properly by PEBFs. Based on such
a physical understanding, the SWR of the surface current can
be employed to identify standing wave-dominant areas. The
SWR in the triangular element k is defined and estimated as

SWR(k) =
max∀i∈Nk∥J(r i )∥

min∀i∈Nk∥J(r i )∥
(12)

where Nk denotes triangle k and its direct neighbors as
illustrated in Fig. 3 and J can be calculated using the rough
solutions obtained by the PEBFs defined on the coarse mesh.
The selection of the mesh density should balance two factors.
First, the element size should be relatively small so that the

rough solution can capture important variations of the surface
currents, leading to reasonable SWR estimations. Second,
the element size should be relatively large to reduce the
overall computational cost and ensure that the estimation of
SWR is performed in a relatively large area. Taking into
account these two factors, the initial mesh density is chosen
as λ/2.5 in the rough first-step solution. As a result, the SWR
is calculated for every triangular element in a neighborhood
of approximately one wavelength in diameter. This ensures
that a sufficiently large area is considered when estimating
the SWR. A larger SWR indicates a stronger standing wave
component, which requires a finer mesh to resolve the current
amplitude variation [24], [25], [26]. If a neighborhood contains
a purely traveling wave without any current reflection or
mutual coupling, the SWR reaches its minimum value of
one. It must be pointed out that the use of PEBFs in the
rough solution is necessary because they describe the traveling
wave phase explicitly, leaving a constant amplitude in a purely
traveling wave case and resulting in the SWR being one. In the
meanwhile, it has been demonstrated in [2], [3], [4], and [5]
that the PEBFs can be defined on large mesh elements with
a small number of unknowns without losing their expressive
capability significantly. This is extremely important in obtain-
ing a rough but reasonable solution with a low computational
cost to have a fast and accurate estimation of the SWR. The use
of traditional real-valued basis functions, such as the CRWG
basis functions, cannot achieve these goals.

The SWR is an indicator of the physical characteristics of
the problem, which accounts for the frequency, polarization,
and direction of incidence of the incident wave. It is also an
indicator of the geometrical features of the problem, which
accounts for multiple reflections and mutual couplings of the
wave due to the geometrical structure of the scatterer. In addi-
tion, other geometrical features must also be considered. This
mainly includes the geometrical discontinuities, such as geo-
metrical edges, corners, and tips, that can cause strong current
reflection or edge singularity. In such cases, a finer local mesh
is also required to provide a good geometrical and physical
resolution. In summary, the following set of three rules is
proposed to identify the refining areas in the initial coarse
mesh. Specifically, when an element: 1) is associated with
an open geometrical boundary; 2) is located at a geometrical
discontinuity (e.g., edges, corners, or tips); and 3) has an SWR
higher than a preset threshold κ , and has a current amplitude
greater than a preset percentage ξ of the maximum current
amplitude in the entire simulation domain, the element needs
to be refined. In this work, κ = 10 and ξ = 1% are used.
The values of these parameters are selected after extensive
numerical examples by considering the balance and tradeoff
between numerical accuracy and computational efficiency. The
use of parameter ξ ensures that elements with very small
current amplitudes, for example, those in the shadow region,
do not get refined even if they satisfy one of the above three
rules, since their overall contribution to the radar cross section
(RCS) is insignificant.

Together, Rules 1 and 2 apply to both open and closed
objects to identify elements at geometrical discontinuities
that induce current reflections and singularities. To identify
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Fig. 4. Numerical results from the PEC sphere scattering example. (a) Real part. (b) Amplitude. (c) SWR of the induced current on the PEC sphere with a
radius of 1 m.

geometrical discontinuities, the angle θ between the normal
directions of two adjacent elements can be calculated. When
θ ≥ (π/4), the two adjacent elements constitute a geometrical
discontinuity and need to be refined.

It is important to note that the concept of SWR is specif-
ically employed with the application of the PEBFs, which
describes only traveling waves properly on smooth and convex
objects. What cannot be properly described include singu-
lar currents along geometrical discontinuities and strongly
standing-wave-dominant currents. In the above rules, Rules
1 and 2 identify geometrical discontinuities while Rule 3 cap-
tures excitation- and geometry-related multiple reflections and
mutual couplings.

Once all refining areas are identified, the mesh elements in
those areas can be refined automatically in the computational
code without the need for any third-party mesh generator or
human intervention. In this work, the mesh refinement is done
by connecting the midpoints of three edges of a triangle,
so one triangle is refined to four. This procedure is done
twice for all identified triangles so that one original triangle
is refined into 16 smaller ones. The scattering problem will
then be solved again using PEBFs defined on the nonuniform
and nonconformal mesh and the DGIE method presented
in Section II-B. In our numerical examples that will be
presented in Section IV, the initial coarse mesh has a mesh
density of λ/2.5. After mesh refinement, each small triangle
is approximately λ/10 in size. Employing PEBFs on such
small triangles is almost the same as using traditional CRWG
basis functions up to a difference of a constant phase factor.
Therefore, there is no need to use CRWG basis functions
on the refined elements, for the sake of implementation
simplicity.

IV. NUMERICAL EXAMPLES

In this section, several numerical examples are given to
demonstrate the accuracy, efficiency, and capability of the
proposed algorithm in the numerical simulation of electro-
magnetic scattering problems. Since either MoM or MLFMA
is used in solving the scattering problems, the computational
complexities are O(N 2) or O(N logN ), respectively, with N
being the total number of unknowns.

A. Validation Examples

In this section, three examples are particularly designed and
presented to demonstrate the effectiveness of the proposed

method in distinguishing standing waves from traveling waves.
The first example is a PEC sphere, which is the simplest and
smoothest object. It is used here to demonstrate the traveling-
wave-dominant case. The second example is a PEC plate,
which is an open target and has edges that can cause current
reflection. This example is designed to demonstrate a standing
wave caused by geometrical discontinuities. The last example
is a PEC corner reflector, which is a concave object with many
edges that can cause multiple current reflections and strong
mutual couplings. It is a standing wave-dominant case.

1) PEC Sphere: As the first example, a PEC sphere with
a radius of 1 m is illuminated by a 300-MHz plane wave.
Obtained from the CFIE and PEBFs defined on triangular
elements of size λ/2.5, the real part and amplitude of the
surface current distribution are shown in Fig. 4(a) and (b),
respectively. From Fig. 4(b), a very smooth and uniform
current amplitude is observed, indicating a traveling-wave
characteristic. This is verified by the SWR values shown in
Fig. 4(c), which are all smaller than the preset threshold of
κ = 10. According to the proposed rules, no refinement
is needed for this example. Due to the use of the PEBFs,
a total of only 258 unknowns are involved in the simulation.
As defined in (13), the relative root-mean-square (rms) error
of the calculated RCS (not shown in the article) is only 4.88%
compared to the Mie series solution

rRMS =

√√√√∑N
p=1

∣∣σ cal(r̂ p) − σ ref(r̂ p)
∣∣2∑N

p=1

[
σ ref(r̂ p)

]2 . (13)

In (13), N is the number of scattering angles and σ cal
(
r̂
)

and σ ref
(
r̂
)

are the calculated and reference RCS at the pth
scattering angle in the direction of r̂ p, respectively.

2) PEC Plate: In the next example, a 5-by-5 m2 PEC plate
is illuminated by a 300-MHz incident plane wave. Since it is
an open object, the EFIE is employed to solve the scattering
problem. The induced current obtained by solving the problem
with CRWG basis functions defined on a dense mesh with a
mesh size of λ/10 and 8555 unknowns is used as the refer-
ence solution and presented in Fig. 5(a). Using the proposed
method, this problem is first solved with PEBFs defined on a
coarse mesh with a mesh size of λ/2.5 and 559 unknowns,
as shown in Fig. 5(e). The rough solution is shown in Fig. 5(b)
based on which the SWR is calculated and shown in Fig. 5(d),
where elements with SWR values greater than 10 are shown in
red. Apparently, the large SWR values in this case correspond
to a strong current reflection from both vertical edges of the
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Fig. 5. Numerical results from the 5-by-5 m2 PEC plate scattering example. The amplitude of the induced surface currents obtained from (a) CRWG basis
functions defined on a dense mesh with an average mesh size of λ/10, (b) PEBFs defined on a coarse mesh with an average mesh size of λ/2.5 shown in
(e), and (c) PEBFs defined on the mesh shown in (f). (d) SWR of the induced current on the PEC plate based on the solution in (b). (e) Identified triangular
elements are to be refined as highlighted in orange. (f) Refined nonuniform and nonconformal mesh.

Fig. 6. Numerical results from the PEC corner reflector scattering example. The amplitude of the induced surface currents obtained from (a) CRWG basis
functions defined on a dense mesh with an average mesh size of λ/10, (b) PEBFs defined on a coarse mesh with an average mesh size of λ/2.5 shown in
(e), and (c) PEBFs defined on the mesh shown in (f). (d) SWR of the induced current on the PEC corner reflector based on the solution in (b). (e) Identified
triangular elements are to be refined as highlighted in orange. (f) Refined nonuniform and nonconformal mesh.

plate. According to the set of rules proposed in this article,
elements that require refinements are highlighted in orange
in Fig. 5(e), and the automatically refined mesh is shown in
Fig. 5(f), resulting in a total of 3826 unknowns. Based on
such a nonuniform and nonconformal mesh, the scattering
problem is solved again with PEBFs. The improved current
solution is shown in Fig. 5(c). The RCS values calculated in
these two steps have a relative rms error of 6.81% and 1.83%,
respectively, using the CRWG solution on the dense mesh as
a reference.

3) A PEC Corner Reflector: The third validation example
concerns a trihedral PEC corner reflector with an edge length
of 10 m and excited by a 300-MHz plane wave that illuminates
its concave side. This corner reflector consists of three mutu-
ally perpendicular, intersecting flat surfaces that directly reflect
the incident electromagnetic wave back toward the emission
source. It is a useful device for the calibration of the radar
system and is usually used as a retroreflector. Fig. 6(a)–(c)
presents the current amplitude distributions obtained with
the CRWG basis functions defined on a dense mesh, the
PEBFs defined on a coarse mesh, and the PEBFs defined on
a refined mesh, respectively. Clearly, the PEBFs defined on

Fig. 7. Bistatic RCS of the PEC corner reflector at 300 MHz.

large triangles cannot capture the strong amplitude oscillation
since the low-order function, the CRWG function, is used to
account for the amplitude variation in the PEBFs. The refined
solution shown in Fig. 6(c) resembles that in Fig. 6(a) much
better, indicating a much-improved solution accuracy. This
is also confirmed in Fig. 7 which shows the comparison of
the RCS results obtained from these three cases. Using the
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Fig. 8. Geometrical discretizations and induced current distributions over the surface of a missile-like object using (a) CRWG basis functions defined on
a dense mesh with an average mesh size of λ/10, (b) PEBFs defined on a coarse mesh with an average mesh size of λ/2.5, and (d) PEBFs defined on a
nonuniform and nonconformal mesh. (c) Identified triangular elements are to be refined as highlighted in orange.

Fig. 9. Simulation results of the scattering from a PEC car at 6 GHz. (a) Real part and (b) amplitude of the surface current distribution. (c) SWR distribution
(top) and nonconformal mesh after automatic mesh refinement (bottom).

CRWG results as a reference, the relative rms errors of the
two PEBF results are 13.41% and 3.79%, respectively. Based
on the solution shown in Fig. 6(b), the SWR is calculated
and presented in Fig. 6(d). From this figure, it is obvious
that most of the elements have SWR values larger than 10,
indicating strong mutual couplings of the wave due to multiple
reflections that create standing waves almost on the entire
structure. Shown in Fig. 6(e) and (f) are the identified refining
areas and the refined nonuniform and nonconformal mesh,
respectively.

B. Scattering From a PEC Missile-Like Object

Electromagnetic scattering from a PEC missile-like object
is presented in this section. With a total length of 4.7 m, this
object is under the illumination of a 1.5-GHz VV-polarized
incident plane wave coming toward its nose. The geometrical
discretizations and the surface current distributions obtained
using the CRWG basis functions defined on a dense mesh,
the PEBFs defined on a uniform coarse mesh, and the PEBFs
defined on a nonuniform and nonconformal mesh are presented
in Fig. 8(a), (b), and (d), respectively. It is clear that the
solution from the coarse mesh cannot resolve the strong
induced current oscillation on the wings and tail fins. Shown
in Fig. 8(c) are the highlighted refining areas identified by

the proposed method. When the mesh is refined over the nose
and all four wings and tail fins, the current distribution on
the nonconformal mesh matches the reference CRWG solution
very well. Evidently, the proposed method successfully iden-
tifies geometrical discontinuities and strong mutual coupling
regions. From the bistatic RCS shown in Fig. 11(a), it can be
seen that the nonuniform mesh results in a much more accurate
solution than the coarse mesh. The computational data and the
relative rms error of this example are presented in Table I. With
the use of a coarse mesh, the rms error is as high as 51.5%.
But when the adaptively refined mesh is used, the error is
effectively reduced to 12.7%. This is a good demonstration
of the application of a coarse mesh in the first step. Even
though it results in a large rms error, it can still generate a
reasonable estimation of SWR to capture all elements that
need refinement. Furthermore, while the error 12.7% seems
high, it can mostly be attributed to the differences of very
small values around the dips of the highly oscillatory RCS
curve, as observed in Fig. 11(a). From Table I, it is clear that
the memory and the total CPU time requirements of the two
PE solutions are significantly less than those of the CRWG
solution. In this table and Tables II and III, the CPU time of the
second step includes the time spent on calculating SWR and
identifying geometrical singularities, since all these operations
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Fig. 10. Simulation results of the scattering from a PEC helicopter at 6 GHz. (a) Top and side views of the induced surface current. (b) SWR distribution
over a uniform and conformal coarse mesh (top) and zoomed-in view of the induced surface current over the locally refined mesh (bottom).

TABLE I
COMPARISON OF COMPUTATIONAL DATA AND RELATIVE RMS ERROR OF

THE MISSILE SCATTERING AT 1.5 GHZ

TABLE II
COMPARISON OF COMPUTATIONAL DATA AND RELATIVE RMS ERROR OF

THE CAR SCATTERING AT 6 GHZ

are regarded as the preprocessing of the second step. The
complexity of these operations is O(N ).

C. Scattering From a PEC Car

An electrically larger problem is considered in this example
as a 5-m-long PEC car, which is very similar to a Tesla model.
A 6-GHz HH-polarized incident plane wave is coming from
the top of the car at θ = 0◦ and φ = 0◦. At 6 GHz, the
electrical size of the object is 100λ. The real part of the surface
current distribution solved with PEBFs defined on the auto-
matically refined nonconformal mesh is presented in Fig. 9(a)
from different perspectives. Similarly, the amplitude of the
current is presented in Fig. 9(b). The SWR distribution and the
nonconformal mesh are presented in Fig. 9(c). In Fig. 11(b)
and Table II, the bistatic RCS and the computational data are
compared among the reference solution from CRWG basis
functions on the dense mesh, PEBFs on the coarse mesh,
and PEBFs on the refined mesh, respectively. From Table II,
it is clear that the computational and storage requirements of

TABLE III
COMPARISON OF COMPUTATIONAL DATA OF THE HELICOPTER

SCATTERING AT 6 GHZ

the proposed method are smaller than those of the traditional
method with CRWG basis functions. With the adaptive refined
mesh, the number of unknowns and the relative rms error have
been effectively reduced.

D. Scattering From a PEC Helicopter

As the last example, electromagnetic scattering from a PEC
helicopter is presented. This object has a physical length of
4.86 m and an electrical size of 97.2λ under the illumination
of a 6-GHz VV-polarized incident plane wave coming from
θ = 90◦ and φ = 45◦. Solved with the PEBFs, the surface
current distribution on the object is presented in Fig. 10(a)
from different viewing angles. The SWR distribution and the
nonconformal mesh after the automatic mesh refinement are
presented in Fig. 10(b), from which a complicated current
distribution is observed, indicating multiple current reflections
and mutual couplings. The numerical solution of this problem
using the traditional method with CRWG basis functions failed
to converge due to the large number of unknowns needed and
the complex structure under consideration, which manifests
the unique descriptive power of the PEBFs and the simulation
capability of the proposed method. In Table III, the number of
unknowns and the computational resources are summarized.
In this table, “N/C” stands for not converged. The bistatic
RCS is presented in Fig. 11(c), from which notable differ-
ences can be observed at scattering angles φ = 250◦, 290◦,
and 340◦.
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Fig. 11. Bistatic RCS of (a) missile-like object at 1.5 GHz, (b) PEC car at
6 GHz, and (c) PEC helicopter at 6 GHz.

V. CONCLUSION

In this article, a two-step adaptive mesh refinement method
is proposed to solve electromagnetic scattering problems

accurately and efficiently. Thanks to the proper description
of the phase variation in the PEBFs, low-order amplitude
functions can be employed and defined on very large mesh
elements. The use of the PEBFs alone can readily solve
scattering from smooth and convex objects accurately with
much smaller computational and storage costs. When com-
plicated objects involving nonsmooth and concave surfaces
are considered, this work has proposed and demonstrated an
efficient way to identify, from a rough solution on an initial
coarse mesh, elements that require local refinements. This is
made possible by the recognition of geometrical discontinu-
ities and the investigation of the SWR of the induced surface
currents. By automatically refining the identified elements,
the scattering problems are solved again with PEBFs defined
on the nonuniform and nonconformal mesh using the DGIE
method. Multiple numerical examples have shown that even
with two solutions, the proposed method still outperforms
the traditional method with CRWG basis functions in terms
of both memory and CPU time requirements and generates
numerical solutions with an accuracy comparable to those of
the traditional method. With the proposed method, the initial
geometrical discretization can be obtained much more easily
due to the use of a coarse mesh, which is then automatically
refined in the simulation code without any human intervention.
This work paves the way for a more intelligent algorithm that
recognizes the geometrical and physical characteristics of a
given problem and provides a powerful simulation tool that
calculates electromagnetic scattering from extra-large objects
accurately and efficiently.
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