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ABSTRACT

In his seminal work, Chatterjee (2021) introduced a novel correlation
measure that is distribution-free, asymptotically normal, and consistent
against all alternatives. In this article, we study the probabilistic relation-
ships between Chatterjee’s correlation and the widely used Spearman’s
correlation. We show that, under independence, the two sample-based
correlations are asymptotically joint normal and asymptotically inde-
pendent. Under dependence, themagnitudes of two correlations canbe
substantially different. We establish some extreme cases featuring large
differences between these two correlations. Motivated by these find-
ings, a new independence test is proposed by combining Chatterjee’s
and Spearman’s correlations into a maximal strength measure of vari-
able association. Our simulation study and real-data application show
the good sensitivity of the new test to different correlation patterns.
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1. Introduction

Measuring and testing the dependence between two continuous variables is a durable research

topic in statistics. Two classical and arguably the most widely used dependence measures

are Pearson’s correlation and Spearman’s correlation. Pearson’s correlation is powerful in

detecting linear dependence, especially when the two variables are bivariate normal. Spear-

man’s correlation is a non parametric alternative to Pearson’s. It is sensitive to monotonic

relations and generally robust to outliers since it is rank-based. Under the null hypothesis

of independence, the two sample-based correlations are both asymptotically normal, making

it easy to calculate p-values. However, the common drawback of these methods is that they

generally fail to detect non monotonic relationships.

In the past decades, there have been numerous tests developed that are consis-

tent against all alternatives, including the kernel-based test Pfister et al. (2018), dis-

tance correlation test Székely, Rizzo, and Bakirov (2007), sign covariance test Bergsma

and Dassios (2014), copula-based test Schweizer and Wolff (1981), graph-based test

Friedman and Rafsky (1983), and maximal information test Reshef et al. (2011),

among many others. For a recent survey, see Josse and Holmes (2016). Some of

these tests are popular among practitioners, for example, the distance correlation test.

However, one major bottleneck of these tests is the testing process: because there

is a lack of simple asymptotic theory that facilitates the analytical computation of
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p-values, an expensive permutation test is typically required. For instance, the asymptotic null

distribution of distance correlation is difficult to derive because it depends on the underlying

distributions of random variables, and the standard approach is to approximate the null

distribution of distance covariance via permutation, which requires a time complexity of

O(Rn2), where R is the number of permutations and n is the sample size.

Recently, Chatterjee (2021) introduced a rank-based correlation test that is also consistent

with all alternatives Chatterjee (2021). Different from the aforementioned tests, Chatterjee’s

correlation is asymptotically normal under independence, facilitating quick computation of

p-values. Due to its nice properties, Chatterjee’s correlation has attracted much attention over

the past two years. We begin with a brief review of this method and related literature. Let X

and Y be two continuous variables, and (Xi,Yi)i=1,...,n be n i.i.d. samples of (X,Y). Assuming

that Xi’s and Yi’s have no ties, the data can be uniquely arranged as (X(1),Y(1)), ..., (X(n),Y(n)),

such that X(1) < · · · < X(n). Here Y(1), ...,Y(n) denote the concomitants. Let Ri be the rank of

Y(i), that is, Ri =
∑n

k=1 1{Y(k) ≤ Y(i)}, Chatterjee’s correlation ξn(X,Y) is defined as

ξn(X,Y) = 1 − 3
∑n−1

i=1 |Ri+1 − Ri|
n2 − 1

. (1)

The asymptotic behavior of ξn(X,Y) and related problems have been examined in recent

papers. Here we outline a few of them that aremost relevant to this work. In his original paper,

Chatterjee (2021), Chatterjee showed that ξn(X,Y) converges almost surely to the following

quantity as n goes to infinity

ξ(X,Y) =
∫

Var(E(1{Y ≥ t|X}))dFY(t)
∫

Var(1{Y ≥ t})dFY(t)
.

The limiting quantity ξ(X,Y) is also known as Dette-Siburg-Stoimenov’s dependence mea-

sure, Dette, Siburg, and Stoimenov (2013), which is between 0 and 1 (0 if and only if X and Y

are independent, 1 if and only ifY is ameasurable function ofX). Chatterjee (2021) also estab-

lished the asymptotic normality of ξn(X,Y) under independence. Precisely,
√
nξn(X,Y)

d−→
N(0, 2/5), as n → ∞. The Central Limit Theorem of ξn(X,Y) under dependence (as long as

Y is not a measurable function of X) is recently proved by Lin and Han (2022). In addition,

Auddy, Deb, and Nandy (2021) investigated the limiting power of ξn(X,Y) under local

alternatives and obtained the exact detection threshold Auddy, Deb, and Nandy (2021). The

fast-growing literature on Chatterjee’s correlation also includes Shi, Drton, and Han (2022),

Shi, Drton, and Han (2021), Lin and Han (2021), Cao and Bickel (2020), Deb, Ghosal, and

Sen (2020), Han and Huang (2022), Azadkia and Chatterjee (2021), Zhang (2023), Chatterjee

and Vidyasagar (2022), among many others.

In addition to the simple asymptotic theory, as an empirical finding, Chatterjee’s test is

powerful to detect non monotonic associations, especially those with an oscillating nature

such as the W-shaped scatterplot and the sinusoid Chatterjee (2021). The only disadvantage

of Chatterjee’s test is that it may have less statistical power for smoother alternatives (such as

linear or other monotonic relationships) compared to other popular tests, including distance

correlation test and Bergsma-Dassios test. For instance, as shown in Figure 5 of Chatterjee

(2021), the power of ξn(X,Y) quickly deteriorates as the noise level increases, which could

be a matter of concern in practice. Motivated by these facts, we propose a versatile test by

taking the maximum of Chatterjee’s correlation and Spearman’s correlation, where the latter
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one is powerful to detect monotonic and smoother associations. Two questions arising from

this proposal are

(1) What is the asymptotic joint distribution of the two correlations under independence?

(2) How much can they differ as a measure of dependence?

The first question is about the analytical calculation of p-values. The second question

investigates if the two correlations to be combined are complementary in the sense that they

measure different dependencies. In this article, we give a complete answer to the first question.

For the secondquestion,we provide two extreme examples featuring large differences between

the two correlations. The idea of combining two complementary correlation metrics is not

new. For instance, Zhang, Qi, and Ma (2011) showed the asymptotic independence between

Pearson’s correlation and a quotient-type correlation and proposed a new test by combining

them into a maximal type measure Zhang, Qi, and Ma (2011).

The remainder of this article is structured as follows: Section 2 derives the asymptotic

joint distribution of Sn(X,Y) and ξn(X,Y) under independence. Section 3 investigates how

much the two correlations can differ under dependence. Section 4 proposes the new test of

independence, validated by both synthetic data and a real-world dataset. Section 5 discusses

the paper with some future perspectives.

2. Asymptotic joint distribution under independence

With the same notations in previous section, Spearman’s rank correlation can be written as

Sn(X,Y) = 1 − 6
∑n

i=1(i − Ri)
2

n(n2 − 1)
,

where Ri represents the rank of Y(i), i = 1, ..., n. Under the hypothesis of independence, it

is well known that E(
√
nSn(X,Y)) = 0, Var(

√
nSn(X,Y)) = n/(n − 1), and

√
nSn(X,Y)

d−→
N(0, 1), as n → ∞. Though ξn(X,Y) and Sn(X,Y) are both asymptotically normal, their joint

behavior remains unexplored. In this section, we derive the asymptotic joint distribution of

ξn(X,Y) and Sn(X,Y) under independence.

Let [n] := {1, 2, ..., n} be the sample indices. Under independence, {R1, ...,Rn} is a random
permutation of [n]. We first show that ξn(X,Y) and Sn(X,Y) are uncorrelated for a finite

sample, as stated in the following lemma:

Lemma 1. If X and Y are independent, we have

Cov [Sn(X,Y), ξn(X,Y)] = 0,

for any n ≥ 2.

Proof. Spearman’s correlation can be rewritten as

Sn(X,Y) = −3(n + 1)

n − 1
+ 12

∑n
i=1 iRi/n

(n2 − 1)
.
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For the covariance between ξn(X,Y) and Sn(X,Y), we have

Cov

⎡

⎣

n−1
∑

i=1

|Ri+1 − Ri|,
n
∑

j=1

j

n
Rj

⎤

⎦

=
n−1
∑

i=1

n
∑

j=1

Cov

[

Ri+1 + Ri − 2min(Ri+1,Ri),
j

n
Rj

]

=
n−1
∑

i=1

n
∑

j=1

j

n
Cov

[

Ri+1,Rj
]

+
n−1
∑

i=1

n
∑

j=1

j

n
Cov

[

Ri,Rj
]

− 2

n−1
∑

i=1

n
∑

j=1

j

n
Cov

[

min(Ri+1,Ri),Rj
]

. (2)

The following results (Lin andHan (2021), Lemma6.1, page 13) are needed for our derivations

Cov[R1,R2] = −n + 1

12

Var[R1] = (n − 1)(n + 1)

12

Cov[R1, min(R1,R2)] = (n + 1)(n − 2)

24

Cov[R1, min(R2,R3)] = −n + 1

12
.

For the first term in Equation (2), we have

n−1
∑

i=1

n
∑

j=1

j

n
Cov[Ri+1,Rj] =

n−1
∑

i=1

⎧

⎨

⎩

i + 1

n
Var[R1] +

∑

j �=i+1

j

n
Cov[R1,R2]

⎫

⎬

⎭

=
n−1
∑

i=1

{

(n + 1)(i + 1)

12
− (n + 1)2

24

}

= (n + 1)(n − 1)

24

Similarly for the second term, we have

n−1
∑

i=1

n
∑

j=1

j

n
Cov

[

Ri,Rj
]

= − (n + 1)(n − 1)

24
.

For the third term, we have

n−1
∑

i=1

n
∑

j=1

j

n
Cov

[

min(Ri+1,Ri),Rj
]

=
n−1
∑

i=1

⎧

⎨

⎩

2i + 1

n
Cov[R1, min(R1,R2)] +

∑

j �=i,i+1

j

n
Cov[R1, min(R2,R3)]

⎫

⎬

⎭
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Table 1. A special case when n = 3.

(R1 , R2 , R3) ξ3(X , Y) S3(X , Y) |S3(X , Y)|

(1, 2, 3) 1/4 1 1
(1, 3, 2) −1/8 1/2 1/2
(2, 1, 3) −1/8 1/2 1/2
(2, 3, 1) −1/8 −1/2 1/2
(3, 1, 2) −1/8 −1/2 1/2
(3, 2, 1) 1/4 −1 1

=
n−1
∑

i=1

{

(2i + 1)(n + 1)(n − 2)

24n
− (n + 1)2

24
+ (2i + 1)(n + 1)

12n

}

= 0.

Therefore, Cov [Sn(X,Y), ξn(X,Y)] = 0. This completes the proof of Lemma 1.

Remark 1. It is noteworthy that Lemma 1 only indicates the uncorrelatedness

between Sn(X,Y) and ξn(X,Y). In fact, under a finite sample, Sn(X,Y) and ξn(X,Y)

are generally dependent. A simple example is given in Table 1, where n = 3 and

Cov [|S3(X,Y)|, ξ3(X,Y)] = 1/24.

Next, we present a lemma that establishes the Central Limit Theorem for

{Sn(X,Y), ξn(X,Y)}. The key steps to prove Lemma 2 include (1) the coupling method

for permutation oscillation proposed by Angus (1995) (2) the Central Limit Theorem for

m-dependent sequence, and (3) Cramer-Wold device. The detailed proof is a bit lengthy, and

we provide it in Appendix.

Lemma 2. If X and Y are independent,
√
nSn(X,Y) and

√
nξn(X,Y) are asymptotically joint

normal.

By Lemmas 1 and 2, our main theorem follows immediately.

Theorem 1. If X and Y are independent,
√
nSn(X,Y) and

√
nξn(X,Y) are asymptotically joint

normal and asymptotically independent. To be specific,

[ √
nSn(X,Y)√
nξn(X,Y)

]

d−→ N

[(

0

0

)

,

(

1 0

0 2/5

)]

as n → ∞.

Theorem 1 answers the first question that we asked in Section 1, which enables the

analytical calculation of p-values for the proposed integrated test (to be further discussed in

Section 4). Theorem1, togetherwith Lemma1 andRemark 1, give a complete characterization

for the joint behavior of Sn(X,Y) and ξn(X,Y) under independence. The convergence

of {Sn(X,Y), ξn(X,Y)} to joint normality, as sample size n increases, is illustrated in the

Figure 1 below.
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Figure 1. Scatterplots of Sn(X , Y) and ξn(X , Y) under n = 10, 30, 100, 500.

3. Chatterjee’s and Spearman’s correlations - howmuch can they differ?

In this section, we explore the second question outlined in Section 1, that is, howmuch the two

correlations can differ as a metric of dependence. We focus on some extremal cases where the

magnitudes of ξn(X,Y) and Sn(X,Y) are largely different. For dependent variables X and Y ,

ξn(X,Y) is generally, though not always, between 0 and 1, while Sn(X,Y) is between−1 and 1,

therefore we take the absolute value of Sn(X,Y), and compare ξn(X,Y) and |Sn(X,Y)| instead.
We first provide an extremal case where the absolute Spearman’s correlation is small but

Chatterjee’s correlation is large. This extremal case is easy to construct using simple symmetric

patterns such as Y = |X| or Y = X2, −1 < X < 1.

Case 1: For any ε > 0, there exist ranks {R1, ...,Rn}, such that |Sn(X,Y)| < ε and ξn(X,Y) >

1 − ε.

Proof. Without loss of generality, suppose n is odd. We construct the following ranks

Ri =
{

n − 2(i − 1), 1 ≤ i ≤ (n + 1)/2

2i − (n + 1), (n + 3)/2 ≤ i ≤ n.

It is straightforward to show that

ξn(X,Y) = 1 − 6n − 9

n2 − 1
.
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To derive Sn(X,Y), first we have

n
∑

i=1

(i − Ri)
2 =

(n+1)/2
∑

i=1

(i − Ri)
2 +

n
∑

i=(n+3)/2

(i − Ri)
2

= (n − 1)(n + 1)(n + 2)

8
+ n(n + 1)(n − 1)

24

= (n − 1)(n + 1)(2n + 3)

12
,

then

|Sn(X,Y)| = 3

2n
.

For any given ε > 0, we can find an odd number n, such that (6n − 9)/(n2 − 1) < ε and

3/(2n) < ε, therefore |Sn(X,Y)| < ε and ξn(X,Y) > 1 − ε.

Next, we seek an opposite extremal case where |Sn(X,Y)| is large but ξn(X,Y) is small.

This extremal case is not straightforward because when |Sn(X,Y)| = 1, {R1, ...,Rn} are mono-

tonically increasing or decreasing, therefore ξn(X,Y) = (n − 2)/(n + 1), which means when

|Sn(X,Y)| is close to 1, the minimum possible value of ξn(X,Y) may not be close to 0.

Mathematically, this can be formulated as the following optimization problem

For a given 0 < ε < 1, find

max
{R1,...,Rn}

perm= [n]

∣

∣

∣

∣

1 − 6
∑n

i=1(i − Ri)
2

n(n2 − 1)

∣

∣

∣

∣

,

where {R1, ...,Rn}
perm= [n] represents that {R1, ...,Rn} is a permutation of {1, ..., n}, given the

following inequality constraint

1 − 3
∑n−1

i=1 |Ri+1 − Ri|
n2 − 1

< ε.

Unless n is small enough to enumerate all permutations of {R1, ...,Rn}, the optimization

problem above is difficult because of the complicated constraints. It may require advanced

integer programming techniques, which are beyond the scope of this work. We leave the

optimization problem as an open question and try to give a simple example instead, where

ξn(X,Y) is relatively small but |Sn(X,Y)| is substantially larger. Our intuition is that Spear-

man’s correlation measures the overall monotonic relations, while Chatterjee’s correlation is

sensitive to local changes. Accordingly, we construct a case that is overall monotonic but has

wiggly local patterns.

Case 2: For any ε > 0, there exist ranks {R1, ...,Rn}, such that ξn(X,Y) = ε + O(1/n) and

|Sn(X,Y)| = 1 − √
2/27(1 − ε)3/2 + O(1/n).

Proof. Weconstructn = 2m + p rankswhich can be partitioned into twoparts: the part of 1 ≤
i ≤ 2mhas an oscillating pattern, while the part of 2m + 1 ≤ i ≤ n ismonotonically increasing

Ri =

⎧

⎪

⎨

⎪

⎩

(i + 1)/2, 1 ≤ i ≤ 2m and i is odd

i/2 + m, 1 ≤ i ≤ 2m and i is even

i, 2m + 1 ≤ i ≤ n.
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Let c = p/m, the following results can be obtained

ξn(X,Y) = 1 − 3[m2 + (m − 1)2 + p]
(2m + p)2 − 1

= 1 − 6

(c + 2)2
+ O(1/n),

|Sn(X,Y)| = 1 − 2m(m + 1)(2m + 1) − 6m2

[(2m + p)2 − 1](2m + p)

= 1 − 4

(c + 2)3
+ O(1/n).

For any 1 > ε > 0, there exists c > 0 such that ε = 1 − 6/(c + 2)2, therefore ξn(X,Y) = ε +
O(1/n). By the same c, we have |Sn(X,Y)| = 1 − √

2/27(1 − ε)3/2 + O(1/n).

We give two examples for this extremal case (1) when n = 100, m = 40 and p = 20,

ξn(X,Y) ≈ 0.058 while Sn(X,Y) ≈ 0.753 (2) when n = 60, m = 23 and p = 14, ξn(X,Y) ≈
0.144 while Sn(X,Y) ≈ 0.789, both show substantial difference between the two metrics.

Beyond extremal cases 1 and 2, we explore the magnitude of the difference when both

coefficients clearly showdependence, that is, when both |Sn| and ξn exceed a certain threshold,

for example 0.4. Case 3 is constructed such that |Sn| is close to any given threshold η while ξn
approaches 1.

Case 3: For any 1 > η > 0, there exist ranks {R1, ...,Rn}, such that |Sn(X,Y)| = η + O(1/n)

and ξn(X,Y) = 1 + O(1/n).

Proof. Without loss of generality, suppose n = m + p, where m is odd. We construct the

following ranks

Ri =

⎧

⎪

⎨

⎪

⎩

m − 2(i − 1), 1 ≤ i ≤ (m + 1)/2

2i − (m + 1), (m + 3)/2 ≤ i ≤ m

i, m + 1 ≤ i ≤ n

It is straightforward to show that

ξn(X,Y) = 1 − 3(n + m − 3)

n2 − 1
= 1 + O(1/n),

and

Sn(X,Y) = 1 − (m − 1)(m + 1)(2m + 3)

2n(n − 1)(n + 1)
= 1 − (m/n)3 + O(1/n),

For a given 1 > η > 0, one can choose n andm, such thatm/n = (1 − η)1/3. As an example,

for η = 0.4, n = 94 andm = 79, we have Sn(X,Y) = 0.4 and ξn(X,Y) = 0.94.

In Case 4, ξn(X,Y) is close to the given threshold η while |Sn(X,Y)| is significantly larger.
This can be easily achieved by adapting Case 2. For instance, when n = 60,m = 38, we obtain

ξn(X,Y) = 0.41 and Sn(X,Y) = 0.88. Figure 2 below presents examples for all four cases

discussed here.
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Figure 2. Some illustrative examples for extremal cases 1–4. Case 1: ξn(X , Y) ≈ 0.941, Sn(X , Y) ≈ 0.016;
Case 2: ξn(X , Y) ≈ 0.144, Sn(X , Y) ≈ 0.789; Case 3: ξn(X , Y) ≈ 0.942, Sn(X , Y) ≈ 0.400; Case 4: ξn(X , Y) ≈
0.411, Sn(X , Y) ≈ 0.883.

4. A new test for independence

Motivated by the findings in Sections 2 and 3, we propose the following new metric

In(X,Y) = max{|Sn(X,Y)|,
√

5/2ξn(X,Y)}.

As In(X,Y) takes advantage of both Sn(X,Y) and ξn(X,Y), it can be used as a versatile test

for detecting bothmonotonic and nonmonotonic associations. Moreover, by Theorem 1, one

can calculate the asymptotic p-value as follows

P(
√
nIn(X,Y) > z) ≈ 1 − �(z) [1 − 2�(−z)] ,

where z ≥ 0 and �(·) represents the standard normal distribution function. For a given

significance level of α, we reject the null hypothesis if
√
nIn(X,Y) > cα , where cα satisfies

1 − �(cα) [1 − 2�(−cα)] = α.

The consistency of the new test under fixed alternatives can be established using Shi, Drton,

and Han (2022). Precisely, the testing power satisfies

P(
√
nIn(X,Y) > cα|Ha) = P(max{

√
n|Sn(X,Y)|,

√

5n/2ξn(X,Y)} > cα|Ha)

≥ P(
√

5n/2ξn(X,Y) > cα|Ha)

= P(
√
nξn(X,Y) >

√

2/5cα|Ha).

By Proposition 5 of Shi, Drton, and Han (2022), Chatterjee’s independence test is consistent

for any given α, that is,

lim
n→∞

P(
√
nξn(X,Y) >

√

2/5z1−α|Ha) = 1.
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Figure 3. Power comparison of the seven independence tests under different alternatives and sample sizes.

Therefore for any given α, there exists α′ such that cα = z1−α′ , thus we have

lim
n→∞

P(
√
nIn(X,Y) > cα|Ha) ≥ lim

n→∞
P(

√
nξn(X,Y) >

√

2/5cα|Ha) = 1.

We conducted two simulation studies to evaluate the performance of the proposed test. In

the first study, we compared the empirical power of seven independence tests, including Sn, ξn,

In, Hoeffding’s DHoeffding (1948), Blum-Kiefer-Rosenblatt’s R Blum, Kiefer, and Rosenblatt

(1961), Bergsma-Dassios’ τ ∗Bergsma and Dassios (2014), and the symmetrized version of

ξn Zhang (2023), under different sample sizes {20, 40, 60, 80, 100}. The calculations of Sn, ξn,
and In are by our own implementations, and those of Dn, Rn and τ ∗

n are made by R package

independence Even-Zohar (2020). The following six alternatives were considered, where Z ∼
N(0, 1) and Z ⊥ X

1. Linear: X ∼ Unif (−1, 1), Y = X + Z

2. Quadratic 1: X ∼ Unif (−1, 1), Y = X2 + 0.3Z.

3. Quadratic 2: X ∼ Unif (−3/4, 5/4), Y = X2 + 0.4Z.

4. Sinusoid: X ∼ Unif (−1, 1), Y = cos(2πX) + 0.75Z.

5. Stepwise 1:X ∼ Unif (−1, 1), Y = 1{−1≤X≤−0.5} + 2 ∗ 1{−0.5<X≤0} + 3 ∗ 1{0<X≤0.5} + 4 ∗
1{0.5<X≤1} + 2Z.

6. Stepwise 2:X ∼ Unif (−1, 1), Y = 1{−1≤X≤−0.5} + 2 ∗ 1{−0.5<X≤0} + 3 ∗ 1{0<X≤0.5} + 2 ∗
1{0.5<X≤1} + Z.

Figure 3 summarizes the empirical power over 5, 000 simulation runs (at the significance

level of 0.05). As expected, Spearman’s test has the highest power for the monotonic settings,

that is, ”Linear” and ”Stepwise 1”, but extremely low power for some non monotonic settings

including ”Sinusoid” and ”Quadratic 1”. Chatterjee’s test is most powerful for two non
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Table 2. Empirical size of the seven independence tests (α = 0.05).

n Integrated Chatterjee Spearman Symmetrized Hoeffding Blum-Kiefer-Rosenblatt Bergsma-Dassios

20 0.0406 0.0411 0.0513 0.0225 0.0497 0.0485 0.0490
40 0.0438 0.0462 0.0507 0.0299 0.0503 0.0493 0.0508
60 0.0464 0.0469 0.0499 0.0331 0.0500 0.0501 0.0501
80 0.0489 0.0487 0.0512 0.0333 0.0489 0.0497 0.0492
100 0.0496 0.0492 0.0504 0.0370 0.0502 0.0492 0.0497

monotonic settings, ”Quadratic 1” and ”Sinusoid”, but it has much lower power for the

monotonic settings. For instance, in the linear setting when n = 60, Chatterjee’s test has a

power of 0.532, while Sn and In both have a power higher than 0.98. The symmetrized ξn
is slightly less powerful than ξn because of its conservativeness, Zhang (2023). Hoeffding’s

D, Blum-Kiefer-Rosenblatt’s R, and Bergsma-Dassios’ τ ∗ have high power in the linear,

quadratic, and stepwise settings, but low power in the sinusoidal setting. The new test has

satisfactory power for all settings, especially for the monotonic settings where the new test is

comparable to Spearman’smethod.When comparing ”Quadratic 2” and ”Stepwise 2” settings,

where Spearman’s and Chatterjee’s tests exhibit similar performance, the integrated test

demonstrates superior performance, outperforming both. Table 2 summarizes the empirical

size over 10, 000 simulation runs, where X ⊥ Y , X ∼ Uniform[−1, 1] and Y ∼ N(0, 1). It can

be seen that all seven tests control the Type I error rate at 0.05. The symmetrized version of

ξn is slightly conservative.

In the second study, we examined the p-value bias. The exact p-value was approximated

using 5, 000 permutations and the bias was computed as the asymptotic p-value minus the

exact p-value. In each simulation run, we generated X from Uniform[−1, 1] and Y from

N(0, 1) independently with sample size {20, 40, 60, 80, 100}. Figure 4 summarizes the bias

over 1, 000 simulations runs. It can be seen that the asymptotic p-values are overall close

to the exact p-values. However, for a relatively small sample size, for example, n = 20, the

asymptotic p-values is positively biased, indicating the conservativeness of the test. The bias

vanishes as sample size increases. In practice, if the sample size is small, for example, n < 30,

we recommend a permutation test based on In(X,Y) to avoid power loss.

The proposed method was also tested on a transcriptomics dataset by Spellman et al.

(1998), which contains the expression levels of 6,223 yeast genes over 23 successive time points

during the cell cycle Spellman et al. (1998). This dataset was processed by Reshef et al. (2011),

where genes withmissing observations were excluded. The processed dataset has 4,381 genes,

which are available through the R package minerva. There have been many papers testing

different correlation measures using this particular dataset including Chatterjee (2021).

We analyzed this data using Sn, ξn and In. For all three methods, p-values were calculated

using asymptotic formulas and then adjusted by the Benjamini-Hochberg procedure to

control the false discovery rate (FDR) at the level of 0.05. Figure 5 summarizes the number of

significant genes identified by three tests. Out of a total of 4,381 genes, the new test selected

734 genes whose expression levels change during the cell cycle, while the other two tests

selected 619 and 385 genes, respectively. This is due to the existence of different expression

patterns in the data, that is, some genes have smoother expression change while others have

non monotonic such as oscillating expression change. Figure 6 presents a random sample of

four genes that were identified by the new test but missed by Spearman’s test. It can be seen

that the expression levels of all four genes exhibit certain oscillating patterns. Figure 7 shows
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Figure 4. Comparison of the asymptotic and exact p-values. Bias is computed as the asymptotic p-value
minus the exact p-value.

Figure 5. Number of significant genes identified by three methods.

a random sample of four genes that are identified by the new test but missed by Chatterjee’s

test, where all genes have smoother expression change during the cell cycle.

5. Discussion and conclusions

Chatterjee’s rank correlation has attracted a lot of attention during the past two years due to its

simplicity and nice statistical properties. However, the cost we pay for this simplemethod is its

inferior performance in detecting smoother correlation patterns, such as linear relationships.
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Figure 6. A random sample of four genes selected by the new test but missed by Spearman’s test.

Figure 7. A random sample of four genes selected by the new test but missed by Chatterjee’s test.

To boost the power of this ingenious measure, in this article, we proposed a max-type test by

combining Chatterjee’s correlation with Spearman’s correlation, as the latter one is also rank

based but sensitive to smooth correlation patterns.We derive the asymptotic joint distribution
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of these two correlations under independence, which enables the analytical calculation of p-

values. Our simulation study and the transcriptomics application illustrated the promise of

the new test. Due to the simple calculation and satisfactory performance, the test is readily

applicable to many correlative analyses, for example, the gene–gene interaction and protein–

protein interaction network construction.

There are several possible extensions of this work. First, the new test statistic In(X,Y) is

generally asymmetric because ξn(X,Y) is asymmetric, that is, ξn(X,Y) �= ξn(Y ,X). When a

symmetric measure is more suitable, one can consider the following modification

I
sym
n (X,Y) = max{Sn(X,Y),

√

5/2ξn(X,Y),
√

5/2ξn(Y ,X)}.

In previous work, Zhang (2023), we established the asymptotic joint normality of ξn(X,Y)

and ξn(Y ,X) and showed that the symmetrized metric, that is, max{ξn(X,Y), ξn(Y ,X)},
converges to a skew normal distribution under independence. The proof is based on

Chatterjee’s Central Limit Theorem Chatterjee (2008). The joint asymptotic behavior of

{Sn(X,Y),
√
5/2ξn(X,Y),

√
5/2ξn(Y ,X)} could be studied in a similar way, and the first and

most important step is to construct a valid interaction rule for I
sym
n (X,Y) Auddy, Deb, and

Nandy (2021); Zhang (2023). Although the asymptotic theory of I
sym
n remains unknown, it

is easy to carry out a permutation test for independence using this statistic. Figure 8 shows

the empirical power of I
sym
n and In under the same simulation settings as those described

in Section 4, where I
sym
n exhibits satisfactory performance in all settings, albeit with slightly

lower power than In.

Second, one can consider generalizing our test by replacing ξn with its modified version,

Lin and Han (2021). The modified statistic ξn,M incorporates M right nearest neighbors,

which is also asymptotically normal but generally more powerful than ξn. Notably, Lin and

Han (2021) showed that the modified test achieves near-parametric efficiency in testing

against Gaussian rotation alternatives. The simulations using permutation tests (Figure 9)

confirm that replacing the traditional Chatterjee’s coefficient ξn with ξn,M results in consistent

power improvement. Notably, the generalized test (In,M = √
nmax(|Sn|,

√
5M/2ξn,M), where

M = 10, 20) outperforms the original test across all six settings with different sample sizes,

albeit with slight but consistent gains.

Theoretically, it would be important to study the joint behavior of Sn and ξn,M and derive

the asymptotic null distribution of In,M . One possible approach involves leveraging the Hájek

representation from Lin and Han (2021). However, a significant obstacle exists concerning

the application of Chatterjee’s CLT to locally dependent sequences. Recall that ξn,M is

defined as

ξn,M = −2 + 6
∑n

i=1

∑M
m=1min{Ri,Rm(i)}

(n + 1)[nM + M(M + 1)/4] ,

wherem(i) is the index of themth right nearest neighbor ofXi. Lin andHan (2021) established

its asymptotic normality under independence by leveraging the Hájek representation of ξn,M
(see ξ̂n,M in Section A.2.1, proof of Theorem 3.2). Their proof hinges on demonstrating the

asymptotic equivalence in distribution between ξn,M and its Hájek representation. This allows

them to focus on the asymptotic normality of ξ̂n,M , which can be further established using

Chatterjee’s CLT based on a well-defined interaction rule.
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Figure 8. Power comparison of the integrated test and its symmetrized version under different alternatives
and sample sizes.

Following this approach, we define the Hájek representation of aξn,M + bSn for constants

a and b as follows

aξ̂n,M + bŜn = 6an

(n + 1)[nM + M(M + 1)/4]

n
∑

i=1

M
∑

m=1

min{F(Yi), F(Ym(i))}

− 6a

(n − 1)(n + 1)

∑

i�=j

min{F(Yi), F(Yj)} + b

n
∑

i=1

[

2i

n + 1
− 1

]

F(Yi).

Then an asymptotically equivalent version with local dependence is

aξ̌n,M + bŠn = 6an

(n + 1)[nM + M(M + 1)/4]

n
∑

i=1

M
∑

m=1

min{F(Yi), F(Ym(i))}

− 12a

n + 1

n
∑

i=1

(

F(Yi) − 1

2
F2(Yi) − 1

3

)

− b

n
∑

i=1

[

2i

n + 1
− 1

]

F(Yi) − 2an

n + 1
.

It suffices to show the asymptotic normality of aξ̌n,M + bŠn. However, applying Chatterjee’s

CLT necessitates a valid interaction rule G that satisfies all conditions outlined in Theorem

2.5 of Chatterjee (2008). The interaction rule employed by Lin andHan (2021), unfortunately,

does not apply in this regard. Specifically, the function fi(Z) in their proof (see Section A.2.1,

Step III-1, Lin and Han (2021)) becomes

fi(Z) = 6an

(n + 1)[nM + M(M + 1)/4]

M
∑

m=1

min{F(Yi), F(Ym(i))} + 2bi

n + 1
F(Yi),
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Figure 9. Power comparison of the integrated test and two modifications based on ξn,M=10 and ξn,M=20

under different alternatives and sample sizes.

which in general does not satisfy fi(Z) − fi(Z
k) = fi(Z

l) − fi(Z
kl). Identifying an alternative

interaction rule that fulfills all conditions for applying Chatterjee’s CLTwithin our framework

remains a critical task for future research.

Third, as enlightened by a reviewer, it is also possible to define the appropriate version of the

new test statistic for testing conditional independence, that is, H0 : X ⊥ Y|Z, although there

are some technical hurdles in (1) defining the rank-based estimator of conditional Spearman’s

correlation and (2) deriving the asymptotic distribution of the integrated statistics. To make

it suitable for conditional independence test, first, we can replace ξn(X,Y) with the following

Tn(X,Y|Z), a multivariate analogue of Chatterjee’s correlation, proposed by Azadkia and

Chatterjee (2021). Let (Xi,Yi,Zi)i=1,...,n be i.i.d. samples of (X,Y ,Z)

Tn(X,Y|Z) =
∑n

i=1(min{Ri,RM(i)} − min{Ri,RN(i)})
∑n

i=1(Ri − min{Ri,RN(i)})
,

where Ri is the rank of Yi, M(i) is the j such that Xj is the nearest neighbor of Xi, N(i) is

the j such that Zj is the nearest neighbor of Zi. Azadkia and Chatterjee (2021) showed that

Tn(X,Y|Z) converges almost surely to a limit quantity T(X,Y|Z), such that T(X,Y|Z) = 0

if and only if X and Y are conditionally independent given Z, and T(X,Y|Z) = 1 if and

only if Y is almost surely equal to a measurable function of X given Z. Second, we need to

replace Sn(X,Y) with its conditional counterpart. However, this presents a challenge due to

the absence of a straightforward, rank-based estimator for conditional Spearman’s correlation.
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The partial rank correlation, defined as

Sn(X,Y|Z) = Sn(X,Y) − Sn(X,Z)Sn(Y ,Z)
√

(1 − S2n(X,Z))(1 − S2n(Y ,Z))

is an adaptation of Pearson’s partial correlation that replaces the actual values with their ranks.

However, as noted in Kendall (1942), this definition lacks justification, and its interpretation

is unclear (e.g., whether it truly measures conditional linear relationships). Liu et al. (2018)

proposed a sound definition for conditional Spearman’s correlation based on a kernel-based

estimator involving residual calculations (see Sections 3.2–3.3 in Liu et al. (2018)). This

definition, however, is not rank-based, making it challenging to analyze its joint behavior

with Tn(X,Y|Z).

Deriving the asymptotic distribution of the integrated statistic presents another significant

challenge. Even for the simple rank-based estimator Sn(X,Y|Z), obtaining its asymptotic

null distribution is difficult (although simulations suggest normality). For instance, applying

Lin and Han (2021)’s method proved unfeasible due to the difficulty in establishing a Hájek

representation of Sn(X,Y|Z) that readily transforms into a locally dependent sequence. The

Hájek representation of Tn(X,Y|Z) is more straightforward, which can be written as a linear

combination (see the representation ξ #n in A.2.2, proof of Theorem 3.1, Shi, Drton, and Han

(2021)). Additionally, even under conditional independence, the asymptotic distributions of

S2n(X,Y), S2n(X,Z) and S2n(Y ,Z) remain elusive due to potential pairwise dependencies among

X, Y and Z.

Finally, as we discussed in the simulation study, the asymptotic p-value is generally close

to the true p-value, but it tends to be positively biased for small sample, for example, n < 30,

resulting in certain power loss. In the case of small sample, we recommend a permutation

test for better testing performance. Another way to reduce the potential p-value bias is

to use asymptotic expansion method, for example, Edgeworth expansion, Cornish-Fisher

expansion, or saddle point approximation, which may improve p-value approximation by

incorporating higher-order moments such as skewness and kurtosis.

Appendix: Proof of Lemma 2

Proof. We first define F(y) = P(Y < y), Ui = F(Y(i)), Fn(y) =
∑n

i=1 1{Y(i) ≤ y}/n, and

Hn(x) =
∑n

i=1 1{Ui ≤ x}/n. For Chatterjee’s correlation, using Equations (5)–(8) in Angus

(1995), we have

∑n−1
i=1 |Ri+1 − Ri| − n(n − 1)/3√

n(n − 1)
= 1√

n

n−1
∑

i=1

[

|Ui+1 − Ui| + 2Ui(1 − Ui) − 2

3

]

+ Z,

where Z
P−→ 0. For Spearman’s correlation, we define the following function

Gn(x) = 1

n

n
∑

i=1

2i

n + 1
1{Ui ≤ x}.

Since

1

n

n
∑

i=1

2i

n + 1
1{Ui ≤ x} ≤ 1

n

n
∑

i=1

2i

n + 1
= 1,
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we have 0 ≤ Gn(x) ≤ 1. The expectation and variance of Gn(x) are E [Gn(x)] = x and

Var [Gn(x)] = 2x(1 − x)(2n + 1)

3n(n + 1)
≤ 2n + 1

6n(n + 1)
→ 0,

therefore Gn(x)
P−→ x for x ∈ [0, 1], as n → ∞. It is also noteworthy that

1

n
√
n

(

n
∑

i=1

2i

n + 1
Ri −

n2

2

)

=
∫ √

n

[

Hn(x) − 1

2

]

dGn(x)

=
∫ √

n [Hn(x) − x] dGn(x) +
∫ √

n

[

x − 1

2

]

dGn(x) (A.1)

where the second term can be rewritten as
∫ √

n

[

x − 1

2

]

dGn(x) = 1√
n

n
∑

i=1

2i

n + 1
Ui −

√
n

2
.

The first term in Equation (A.1), using continuous mapping theorem, has the same limiting

distribution as
∫ √

n [Hn(x) − x] dx =
√
n

2
− 1√

n

n
∑

i=1

Ui,

therefore

1

n
√
n

(

n
∑

i=1

2i

n + 1
Ri −

n2

2

)

d
≈

n
∑

i=1

[

2i

n + 1
− 1

]

Ui.

where
d
≈ represents asymptotic equivalence in distribution. We will show that

∑n−1
i=1 [|Ui+1 − Ui| + 2Ui(1 − Ui) − 2/3] /

√
n and

∑n
i=1 [2i/(n + 1) − 1]Ui/

√
n are

asymptotically joint normal.

For any two constants, a and b, define

Zi = a|Ui+1 − Ui| + 2aUi(Ci − Ui) − 2a

3

and

Wn = 1√
n

n−1
∑

i=1

Zi,

where

Ci = 1 + bi

a(n + 1)
− b

2a
.

It can be seen that for any j ≥ 1, Zi+j is independent of [Z1, ...,Zi], therefore the sequence {Zi}
is 1-dependent sequence. Similar to Equations (11)–(14) in Angus (1995), we have

Var[Zi] = Var[a|Ui+1 − Ui|] + Var[2aUi(Ci − Ui)] + 2Cov[a|Ui+1 − Ui|, 2aUi(Ci − Ui)],
where

Var[a|Ui+1 − Ui|] = a2

18
,
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and

Var[2aUi(Ci − Ui)] = 4a2
[

C2
i

12
− Ci

6
+ 4

45

]

.

For the covariance term, it can be shown that Cov[|Ui+1 − Ui|,Ui] = 0, therefore

2Cov[a|Ui+1 − Ui|, 2aUi(Ci − Ui)] = −4a2Cov[|Ui+1 − Ui|,U2
i ]

= −a2

45
,

Summarizing the results above, we get

Var[Zi] = a2

18
+ 4a2

[

C2
i

12
− Ci

6
+ 4

45

]

− a2

45

= a2

18
+ b2

12

(2i − n − 1)2

(n + 1)2

≥ a2

18

For the covariance between Zi and Zi+1, we have

Cov[Zi,Zi+1] = Cov[a|Ui+1 − Ui| + 2aUi(Ci − Ui),

a|Ui+2 − Ui+1| + 2aUi+1(Ci+1 − Ui+1)]
= Cov[a|Ui+1 − Ui|, a|Ui+2 − Ui+1|]

+ Cov[2aUi(Ci − Ui), 2aUi+1(Ci+1 − Ui+1)]

= a2

180
− a2

90

= − a2

180
,

therefore

Var

[

n−1
∑

i=1

Zi

]

=
n−1
∑

i=1

Var(Zi) + 2

n−1
∑

i=1

Cov(Zi,Zi+1)

≥ 2(n − 1)a2

45
,

and
√

Var
[

∑n−1
i=1 Zi

]

n1/3
→ ∞

as n → ∞. Using theCentral Limit Theorem form-dependent randomvariables (Theorem1s

in Angus (1995)),Wn converges in distribution to a normal distribution. Finally, by Cramer-

Wold device,
√
nSn(X,Y) and

√
nξn(X,Y) are asymptotically joint normal.

Disclosure statement

The author has declared that no competing interests exist.



20 Q. ZHANG

Funding

The work was supported by an NSF DBI Biology Integration Institute (BII) grant (award no. 2119968;
PI-Ceballos).

References

Angus, J. E. 1995. A coupling proof of the asymptotic normality of the permutation oscillation. Proba-
bility in the Engineering and Informational Sciences 9 (4):615–21. doi:10.1017/S0269964800004095.

Auddy, A., N. Deb, and S. Nandy. 2021. Exact detection thresholds and minimax optimality of
Chatterjee’s correlation coefficient. arXiv preprint. arXiv:2104.15140.

Azadkia, M., and S. Chatterjee. 2021. A simple measure of conditional dependence. Annals of Statistics
49 (6):3070–102.

Bergsma,W., andA. Dassios. 2014. A consistent test of independence based on a sign covariance related
to Kendall’s tau. Bernoulli 20 (2):1006–28.

Blum, J. R., J. Kiefer, and M. Rosenblatt. 1961. Distribution free tests of independence based
on the sample distribution function. The Annals of Mathematical Statistics 32 (2):485–98.
doi:10.1214/aoms/1177705055.

Cao, S., and P. Bickel. 2020. Correlations with tailored extremal properties. arXiv preprint.
arXiv:2008.10177.

Chatterjee, S. 2008. A new method of normal approximation. Annals of Probability 36 (4):1584–610.
Chatterjee, S. 2021. A new coefficient of correlation. Journal of the American Statistical Association 116

(536):2009–22. doi:10.1080/01621459.2020.1758115.
Chatterjee, S., and M. Vidyasagar. 2022. Estimating large causal polytree skeletons from small samples.

arXiv preprint. arXiv:2209.07028.
Deb, N., P. Ghosal, and B. Sen. 2020. Measuring association on topological spaces using kernels and

geometric graphs. arXiv preprint. arXiv:2010.01768.
Dette,H., K. F. Siburg, andP.A. Stoimenov. 2013.A copula-based non-parametricmeasure of regression

dependence. Scandinavian Journal of Statistics 40 (1):21–41. doi:10.1111/j.1467-9469.2011.00767.x.
Even-Zohar, C. 2020. independence: Fast rank-based independence testing, R package version 1.0.1,

https://CRAN.R-project.org/package=independence.
Friedman, J. H, and L. C. Rafsky. 1983. Graph-theoretic measures of multivariate association and

prediction. Annals of Statistics 11 (2):377–91.
Han, F., and Z. Huang, 2022. Azadkia-Chatterjee’s correlation coefficient adapts to manifold data. arXiv

preprint. arXiv:2209.11156.
Hoeffding, W. 1948. A non-parametric test of independence. The Annals of Mathematical Statistics 19

(4):546–57. doi:10.1214/aoms/1177730150.
Josse, J., and S.Holmes. 2016.Measuringmultivariate association and beyond. Statistics Surveys 10:132–

67. doi:10.1214/16-SS116.29081877.
Kendall, M. G. 1942. Partial rank correlation. Biometrika 32 (3-4):277–83.

doi:10.1093/biomet/32.3-4.277.
Lin, Z., and F. Han. 2021. On boosting the power of Chatterjee’s rank correlation. Biometrika 110

(2):283–299. doi:10.1093/biomet/asac048.
Lin, Z., and F. Han. 2022. Limit theorems of Chatterjee’s rank correlation. arXiv preprint.

arXiv:2204.08031.
Liu, Qi., C. Li, V.Wanga, and B. E. Shepherd. 2018. Covariate-adjusted Spearman’s rank correlation with

probability-scale residuals. Biometrics 74 (2):595–605. doi:10.1111/biom.12812.29131931.
Pfister, N., P. Bühlmann, B. Schölkopf, and J. Peters. 2018. Kernel-based tests for joint inde-

pendence. Journal of the Royal Statistical Society Series B: Statistical Methodology 80 (1):5–31.
doi:10.1111/rssb.12235.

Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander,
M.Mitzenmacher, and P. C. Sabeti. 2011. Detecting novel associations in large data sets. Science (New
York, N.Y.) 334 (6062):1518–24. doi:10.1126/science.1205438. 22174245.



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 21

Schweizer, N., and E. F. Wolff. 1981. On nonparametric measures of dependence for random variables.
Annals of Statistics 9 (4):879–85.

Shi, H., M. Drton, and F. Han. 2021. OnAzadkia-Chatterjee’s conditional dependence coefficient. arXiv
preprint. arXiv:2108.06827.

Shi, H., M. Drton, and F. Han. 2022. On the power of Chatterjee’s rank correlation. Biometrika 109
(2):317–33. doi:10.1093/biomet/asab028.

Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D.
Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast
Saccharomyces cerevisiae by microarray hybridization.Molecular Biology of the Cell 9 (12):3273–97.
doi:10.1091/mbc.9.12.3273.9843569.

Székely, G. J., M. L. Rizzo, and N. K. Bakirov. 2007. Measuring and testing dependence by correlation
of distances. Annals of Statistics 35 (6):2769–94.

Zhang, Q. 2023. On the asymptotic null distribution of the symmetrized Chatterjee’s correlation
coefficient. Statistics & Probability Letters 194:1–7. doi:10.1016/j.spl.2022.109759.

Zhang, Z., Y. Qi, and X.Ma. 2011. Asymptotic independence of correlation coefficients with application
to testing hypothesis of independence. Electronic Journal of Statistics 5:342–72.


	Abstract
	1.  Introduction 
	2.  Asymptotic joint distribution under independence 
	3.  Chatterjee's and Spearman's correlations - how much can they differ? 
	4.  A new test for independence 
	5.  Discussion and conclusions 
	Appendix: Proof of Lemma 2 
	Disclosure statement
	Funding
	References


