Taylor & Francis
Taylor & Francis Group

Communications in Statistics - Theory and Methods

communications in statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/Ista20

On relationships between Chatterjee’s and
Spearman’s correlation coefficients

Qingyang Zhang

To cite this article: Qingyang Zhang (01 Feb 2024): On relationships between Chatterjee’s and
Spearman’s correlation coefficients, Communications in Statistics - Theory and Methods, DOI:
10.1080/03610926.2024.2309971

To link to this article: https://doi.org/10.1080/03610926.2024.2309971

ﬁ Published online: 01 Feb 2024.

\J
EJ/ Submit your article to this journal &

||I| Article views: 177

A
h View related articles &'

@ View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=Ista20



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS e Ial)’ |°Fr & Francis
https://doi.org/10.1080/03610926.2024.2309971 aylor & Francis Group

‘ W) Check for updates ‘

On relationships between Chatterjee’s and Spearman’s
correlation coefficients

Qingyang Zhang

Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas, USA
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In his seminal work, Chatterjee (2021) introduced a novel correlation Received 21 February 2023
measure that is distribution-free, asymptotically normal, and consistent Accepted 21 January 2024
against all alternatives. In this article, we study the probabilistic relation- KEYWORDS

ships between Chatterjee’s correlation and the widely used Spearman’s Chatterjee’s correlation;
correlation. We show that, under independence, the two sample-based Spearman’s correlation;
correlations are asymptotically joint normal and asymptotically inde- asymptotic joint normality
pendent. Under dependence, the magnitudes of two correlations can be

substantially different. We establish some extreme cases featuring large

differences between these two correlations. Motivated by these find-

ings, a new independence test is proposed by combining Chatterjee’s

and Spearman’s correlations into a maximal strength measure of vari-

able association. Our simulation study and real-data application show

the good sensitivity of the new test to different correlation patterns.

1. Introduction

Measuring and testing the dependence between two continuous variables is a durable research
topic in statistics. Two classical and arguably the most widely used dependence measures
are Pearson’s correlation and Spearman’s correlation. Pearson’s correlation is powerful in
detecting linear dependence, especially when the two variables are bivariate normal. Spear-
man’s correlation is a non parametric alternative to Pearsons. It is sensitive to monotonic
relations and generally robust to outliers since it is rank-based. Under the null hypothesis
of independence, the two sample-based correlations are both asymptotically normal, making
it easy to calculate p-values. However, the common drawback of these methods is that they
generally fail to detect non monotonic relationships.

In the past decades, there have been numerous tests developed that are consis-
tent against all alternatives, including the kernel-based test Pfister et al. (2018), dis-
tance correlation test Székely, Rizzo, and Bakirov (2007), sign covariance test Bergsma
and Dassios (2014), copula-based test Schweizer and Wolff (1981), graph-based test
Friedman and Rafsky (1983), and maximal information test Reshef et al. (2011),
among many others. For a recent survey, see Josse and Holmes (2016). Some of
these tests are popular among practitioners, for example, the distance correlation test.
However, one major bottleneck of these tests is the testing process: because there
is a lack of simple asymptotic theory that facilitates the analytical computation of

CONTACT Qingyang Zhang @ qz008@uark.edu @ Department of Mathematical Sciences, University of Arkansas,
Fayetteville, AR 72701, USA.

© 2024 Taylor & Francis Group, LLC



2 Q.ZHANG

p-values, an expensive permutation test is typically required. For instance, the asymptotic null
distribution of distance correlation is difficult to derive because it depends on the underlying
distributions of random variables, and the standard approach is to approximate the null
distribution of distance covariance via permutation, which requires a time complexity of
O(Rn?), where R is the number of permutations and # is the sample size.

Recently, Chatterjee (2021) introduced a rank-based correlation test that is also consistent
with all alternatives Chatterjee (2021). Different from the aforementioned tests, Chatterjee’s
correlation is asymptotically normal under independence, facilitating quick computation of
p-values. Due to its nice properties, Chatterjee’s correlation has attracted much attention over
the past two years. We begin with a brief review of this method and related literature. Let X
and Y be two continuous variables, and (Xj, Y;)i=1,..» be ni.i.d. samples of (X, Y). Assuming
that X;’s and Y;’s have no ties, the data can be uniquely arranged as (X(1), Y(1))5 ..o (X(n)» Y(n))>
such that X(;) < --- < X(y). Here Y(1), ..., Y() denote the concomitants. Let R; be the rank of
Y(i), thatis, Ry =Y ;_; 1{Y) < Y}, Chatterjee’s correlation &,(X, Y) is defined as

3% [Riy1 — Ryl

E/(X,Y) =1 - ===

(1)

The asymptotic behavior of £, (X, Y) and related problems have been examined in recent
papers. Here we outline a few of them that are most relevant to this work. In his original paper,
Chatterjee (2021), Chatterjee showed that £,(X, Y) converges almost surely to the following
quantity as n goes to infinity

J Var(E(L{Y > #|X}))dFy(t)

EX,Y)= [ Var(1{Y > t})dFy(t)

The limiting quantity £(X, Y) is also known as Dette-Siburg-Stoimenov’s dependence mea-
sure, Dette, Siburg, and Stoimenov (2013), which is between 0 and 1 (0 ifand only if X and Y
are independent, 1 ifand only if Y is a measurable function of X). Chatterjee (2021) also estab-

lished the asymptotic normality of &,(X, Y) under independence. Precisely, v/n&, (X, Y) i
N(0,2/5), as n — oo. The Central Limit Theorem of &, (X, Y) under dependence (as long as
Y is not a measurable function of X) is recently proved by Lin and Han (2022). In addition,
Auddy, Deb, and Nandy (2021) investigated the limiting power of &,(X,Y) under local
alternatives and obtained the exact detection threshold Auddy, Deb, and Nandy (2021). The
fast-growing literature on Chatterjee’s correlation also includes Shi, Drton, and Han (2022),
Shi, Drton, and Han (2021), Lin and Han (2021), Cao and Bickel (2020), Deb, Ghosal, and
Sen (2020), Han and Huang (2022), Azadkia and Chatterjee (2021), Zhang (2023), Chatterjee
and Vidyasagar (2022), among many others.

In addition to the simple asymptotic theory, as an empirical finding, Chatterjee’s test is
powerful to detect non monotonic associations, especially those with an oscillating nature
such as the W-shaped scatterplot and the sinusoid Chatterjee (2021). The only disadvantage
of Chatterjee’s test is that it may have less statistical power for smoother alternatives (such as
linear or other monotonic relationships) compared to other popular tests, including distance
correlation test and Bergsma-Dassios test. For instance, as shown in Figure 5 of Chatterjee
(2021), the power of &,(X, Y) quickly deteriorates as the noise level increases, which could
be a matter of concern in practice. Motivated by these facts, we propose a versatile test by
taking the maximum of Chatterjee’s correlation and Spearman’s correlation, where the latter
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one is powerful to detect monotonic and smoother associations. Two questions arising from
this proposal are

(1) What is the asymptotic joint distribution of the two correlations under independence?
(2) How much can they differ as a measure of dependence?

The first question is about the analytical calculation of p-values. The second question
investigates if the two correlations to be combined are complementary in the sense that they
measure different dependencies. In this article, we give a complete answer to the first question.
For the second question, we provide two extreme examples featuring large differences between
the two correlations. The idea of combining two complementary correlation metrics is not
new. For instance, Zhang, Qi, and Ma (2011) showed the asymptotic independence between
Pearson’s correlation and a quotient-type correlation and proposed a new test by combining
them into a maximal type measure Zhang, Qi, and Ma (2011).

The remainder of this article is structured as follows: Section 2 derives the asymptotic
joint distribution of S,(X,Y) and &,(X,Y) under independence. Section 3 investigates how
much the two correlations can differ under dependence. Section 4 proposes the new test of
independence, validated by both synthetic data and a real-world dataset. Section 5 discusses
the paper with some future perspectives.

2. Asymptotic joint distribution under independence

With the same notations in previous section, Spearman’s rank correlation can be written as

6 Z?:l(i - Ri)2
nn? —1)

>

Si(X,Y)=1—

where R; represents the rank of Y(;),i=1,...,n. Under the hypothesis of independence, it

is well known that E(\/nS,(X,Y)) =0, Var(y/nS,(X,Y)) =n/(n — 1), and /nS,(X,Y) 4
N(0,1), asn — oo. Though &,(X, Y) and S, (X, Y) are both asymptotically normal, their joint
behavior remains unexplored. In this section, we derive the asymptotic joint distribution of
£,(X,Y) and S, (X, Y) under independence.

Let [n] := {1, 2, ..., n} be the sample indices. Under independence, {Ry, ..., R,} is a random
permutation of [n]. We first show that &,(X,Y) and S,(X, Y) are uncorrelated for a finite
sample, as stated in the following lemma:

Lemma 1. If X and Y are independent, we have

Cov [$y(X,Y),6,(X, V)] =0,
forany n > 2.
Proof. Spearman’s correlation can be rewritten as

3(n+1) 12)7 iRi/n
n—1 n2-=1)

Sn(X,Y) =
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For the covariance between &,(X, Y) and S, (X, Y), we have

n—1 no.

J
Cov E R; —R‘,E =R,
— | i+1 1| p n Vi

n—1 n

=YY Cov |:R,+1 + R; — 2min(Ri+1, R)), Rj]
i=1 j=1
n—1 n ] n—1 n ]
= Z Z ;Cov [R,-_H,Rj] + Z Z ;Cov [R,-, Rj]
i=1 j=1 i=1 j=1
n—1 n ]
-2 zl: 21: ;Cov [min(Ri+1,Ri), Rj] . (2)
i=1 j=

The following results (Lin and Han (2021), Lemma 6.1, page 13) are needed for our derivations

n+1
Cov[R|, Ry] = —
ov[Ry, Rz ] B
-1 1
Var[R;] = n—-Dr+1)
12
1 -2
CovlRy, min(Ry, Ry)] = ED =2
. n+1
Cov[R;, min(Ry, R3)] = — TS
For the first term in Equation (2), we have
n—-1 n . it1 .
> Z ~Cov[Rit1,Rj] = Z Var[Ri]+ ) L CoviRy, Ry]
n “—~ n
i=1 j=1 = jFi+1
_”X‘:{mﬂ)(iﬂ) _ (n+1>2}
B 12 24
i=1
_(n+D(n—1)
N 24
Similarly for the second term, we have
n—1 n .
1 —1
Z Z iCov [RiaRj] — _M'
— —n 24
i=1 j=1

For the third term, we have

n—1 n

Z Z %Cov [min(Rit1, Ri), R;]

i=1 j=1

n—1

2i+1

Cov[Ry, min(Ry, R)] + Y L CoviRy, min(Ry, R3)]
i=1 i1 n
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Table 1. A special case when n = 3.

(R1,R2, R3) HXY) SKY) 153X, Yl
(1,2,3) 1/4 1 1
(1,3,2) —1/8 12 172
2.1,3) —1/8 12 172
231 —1/8 —12 172
3.1,2 —-1/8 —1/2 172
3.2,1) 1/4 -1 1

s { Qi+ D+ D=2 (n+1)? L Qit Dot 1)}
o 24n 24 12n

0.

Therefore, Cov [S,(X, Y), &,(X, Y)] = 0. This completes the proof of Lemma 1. O

Remark 1. It is noteworthy that Lemma 1 only indicates the uncorrelatedness
between S,(X,Y) and &,(X,Y). In fact, under a finite sample, S,(X,Y) and &,(X,Y)
are generally dependent. A simple example is given in Table 1, where n=3 and
Cov [IS3(X, V), &3(X, Y)] = 1/24.

Next, we present a lemma that establishes the Central Limit Theorem for
{$n(X,Y),£,(X,Y)}. The key steps to prove Lemma 2 include (1) the coupling method
for permutation oscillation proposed by Angus (1995) (2) the Central Limit Theorem for
m-dependent sequence, and (3) Cramer-Wold device. The detailed proof is a bit lengthy, and
we provide it in Appendix.

Lemma 2. If X and Y are independent, \/nS,(X,Y) and /n&,(X, Y) are asymptotically joint
normal.

By Lemmas 1 and 2, our main theorem follows immediately.

Theorem 1. If X and Y are independent, \/nS,(X,Y) and \/n&, (X, Y) are asymptotically joint
normal and asymptotically independent. To be specific,

| Ve J#((0)-(o ot )]

Theorem 1 answers the first question that we asked in Section 1, which enables the
analytical calculation of p-values for the proposed integrated test (to be further discussed in
Section 4). Theorem 1, together with Lemma 1 and Remark 1, give a complete characterization
for the joint behavior of S,(X,Y) and &,(X,Y) under independence. The convergence
of {$,(X,Y),&,(X,Y)} to joint normality, as sample size n increases, is illustrated in the
Figure 1 below.

as n — oQ.
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Figure 1. Scatterplots of S, (X, Y) and &, (X, Y) under n = 10, 30, 100, 500.

3. Chatterjee’s and Spearman’s correlations - how much can they differ?

In this section, we explore the second question outlined in Section 1, that is, how much the two
correlations can differ as a metric of dependence. We focus on some extremal cases where the
magnitudes of £,(X,Y) and S, (X, Y) are largely different. For dependent variables X and Y,
£,(X, Y) is generally, though not always, between 0 and 1, while S, (X, Y) is between —1 and 1,
therefore we take the absolute value of S, (X, Y), and compare &,(X, Y) and |S,(X, V)| instead.
We first provide an extremal case where the absolute Spearman’s correlation is small but
Chatterjee’s correlation is large. This extremal case is easy to construct using simple symmetric
patternssuchas Y = [X|or Y = X%, -1 < X < 1.

Case 1: For any € > 0, there exist ranks {Rj, ..., R}, such that |S,(X,Y)| <€ and §,(X, Y) >
1—e.

Proof. Without loss of generality, suppose # is odd. We construct the following ranks

n=231i—-1), 1<i<m+1)/2
2i—(m+1), (n+3)/2<i<n.

i =

It is straightforward to show that

6n—9
nz—1

(X, Y)=1—
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To derive S, (X, Y), first we have

n (n+1)/2 n
di—R)Y= ) (—RP’+ Y (i—R)
i=1 i=1 i=(n43)/2
_(n=Dn+1)(n+2) n n(n+1)(n—1)
8 24
n—1m+1)(2n+3)
N 12 ’
then
(X, Y)| = 5
| n( > )l —Z-

For any given € > 0, we can find an odd number #, such that (6n — 9)/(n*> — 1) < € and
3/(2n) < €, therefore |S,(X,Y)| <€ and £,(X,Y) > 1 — €. O

Next, we seek an opposite extremal case where |S,(X, Y)| is large but &,(X, Y) is small.
This extremal case is not straightforward because when |S,(X, Y)| = 1, {Ry, ..., R} are mono-
tonically increasing or decreasing, therefore £,(X, Y) = (n — 2)/(n + 1), which means when
[S#(X,Y)]| is close to 1, the minimum possible value of &,(X,Y) may not be close to 0.
Mathematically, this can be formulated as the following optimization problem

Foragiven0 <€ < 1, find

max 1— —6 Z?ZI(i _ Ri)z

erm 2 —
(R R} ] n(n®—1)

>

where {Ry, ..., R,} b [n] represents that {R;, ..., R,} is a permutation of {1, ..., n}, given the
following inequality constraint

3315 [Riy1 — Ril

— <e€
n*—1

Unless # is small enough to enumerate all permutations of {Ry, ..., R,}, the optimization
problem above is difficult because of the complicated constraints. It may require advanced
integer programming techniques, which are beyond the scope of this work. We leave the
optimization problem as an open question and try to give a simple example instead, where
£,(X,Y) is relatively small but |S, (X, Y)| is substantially larger. Our intuition is that Spear-
man’s correlation measures the overall monotonic relations, while Chatterjee’s correlation is
sensitive to local changes. Accordingly, we construct a case that is overall monotonic but has
wiggly local patterns.

Case 2: For any € > 0, there exist ranks {Ry, ..., R,}, such that §,(X,Y) =€ + O(1/n) and
1S,(X, V)| =1 — /2/27(1 — €)% + 0(1/n).

1

Proof. We construct n = 2m + p ranks which can be partitioned into two parts: the partof 1 <
i < 2mhasan oscillating pattern, while the part of 2m + 1 < i < nis monotonically increasing
(i+1)/2, 1<i<2mandiisodd
Ri=1i/2+m, 1<i<2mandiiseven

i, 2m+1<i<n.
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Let ¢ = p/m, the following results can be obtained

3[m* + (m — 1)* + p]

6
=1- —(c+ 22 + O(1/n),

2m(m + 1)2m + 1) — 6m>

S, XY)=1-
156101 [2m + p)? — 112m + p)
4
=1——+ 0(1/n).
(c+2)3 +0/n)
For any 1 > € > 0, there exists ¢ > 0 such thate =1 —6/(c + 2)?, therefore £,(X,Y) = € +
O(1/n). By the same ¢, we have |S,(X,Y)| =1 — +/2/27(1 — €)3? 4+ Oo(1/n). ]

We give two examples for this extremal case (1) when n =100, m =40 and p = 20,
£,(X,Y) &~ 0.058 while S,(X,Y) = 0.753 (2) when n =60, m =23 and p =14, §,(X,Y) =
0.144 while S,,(X, Y) &~ 0.789, both show substantial difference between the two metrics.

Beyond extremal cases 1 and 2, we explore the magnitude of the difference when both
coeflicients clearly show dependence, that is, when both |S,,| and &, exceed a certain threshold,
for example 0.4. Case 3 is constructed such that |S,| is close to any given threshold n while &,
approaches 1.

Case 3: For any 1 > n > 0, there exist ranks {Ry, ..., R,}, such that |[S,(X,Y)| =n + O(1/n)
and £,(X,Y) =1+ O(1/n).

Proof. Without loss of generality, suppose n = m + p, where m is odd. We construct the
following ranks

m—21—-1), 1<i<(m+1)/2
Ri=R2i—(m+1), (m+3)/2<i<m

ia m + 1 f l f n
It is straightforward to show that

3(n+m—3)

E(XY) =1 = =

=14 0(1/n),

and
(m—1(m+1DEm+3)

1 _ 3
S.(X,Y)=1 2 — Dt D) =1—(m/n)” +0(1/n),

For a given 1 > 1 > 0, one can choose #n and m, such that m/n = (1 — n'/3. As an example,
forn =0.4,n =94 and m = 79, we have S,,(X,Y) = 0.4 and §,(X, Y) = 0.94. ]

In Case 4, £,(X, Y) is close to the given threshold  while |S, (X, Y)| is significantly larger.
This can be easily achieved by adapting Case 2. For instance, when n = 60, m = 38, we obtain
£,(X,Y)=0.41 and S,(X,Y) = 0.88. Figure 2 below presents examples for all four cases
discussed here.
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Case 1 Case 2
100- 60-
75+
40-
50-
5. 20-
~x 0 = 0
% 20 40 60 80 100 20 40 60
;_- Case 3 Case 4
60-
75-
40-
50-
25- 20
0- i . 1 1 0- : 3 :
20 40 60 80 20 40 60
X.rank

Figure 2. Some illustrative examples for extremal cases 1-4. Case 1: £,(X,Y) =~ 0.941, Sp(X,Y) ~ 0.016;
Case 2: £,(X,Y) =~ 0.144, S, (X, Y) =~ 0.789; Case 3: £,(X,Y) ~ 0.942, S, (X,Y) ~ 0.400; Case 4: £,(X,Y) ~
0.411,5,(X,Y) ~ 0.883.

4. A new test for independence
Motivated by the findings in Sections 2 and 3, we propose the following new metric
I,(X, Y) = max{[$,(X, Y)|, v/5/28,(X, Y)}.

As I,(X, Y) takes advantage of both S,,(X, Y) and &, (X, Y), it can be used as a versatile test
for detecting both monotonic and non monotonic associations. Moreover, by Theorem 1, one
can calculate the asymptotic p-value as follows

P(V/nI(X,Y) > 2) 1 — ®(2) [1 - 2®(-2)],

where z >0 and ®(-) represents the standard normal distribution function. For a given
significance level of &, we reject the null hypothesis if \/nI, (X, Y) > ¢y, where ¢, satisfies

1—D(cp) [1 =2P(—cy)] =a.

The consistency of the new test under fixed alternatives can be established using Shi, Drton,
and Han (2022). Precisely, the testing power satisfies

P(v/nl,(X,Y) > co|Ha) = P(max{y/n|Sy(X, Y)|,+/51/26,(X, Y)} > co|Ha)
> P(\/ 5”/2 n(X’ Y) > Ca|Ha)
= P(Vn&y(X,Y) > /2/5¢q|Ha).

By Proposition 5 of Shi, Drton, and Han (2022), Chatterjee’s independence test is consistent
for any given «, that is,

lim P(\/nEn(X,Y) > /2/521-alHa) = 1.
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Linear Quadratic1 Quadratic2

— Integrated
== Chatterjee
-+ Spearman
Stepwise2 -= Symmetrized.Chatterjee
— - Hoeffding
= Blum-Kiefer-Rosenblatt
Bergsma-Dassios

empirical power

20 40 60 80 10020 40 60 80 10020 40 60 80 100
sample size

Figure 3. Power comparison of the seven independence tests under different alternatives and sample sizes.

Therefore for any given «, there exists & such that ¢y, = z1_4/, thus we have
lim P(v/nl,(X,Y) > cy|Ha) = lim P(v/n&,(X,Y) > /2/5¢4|H,a) = 1.
n—0o0 n—0o0

We conducted two simulation studies to evaluate the performance of the proposed test. In
the first study, we compared the empirical power of seven independence tests, including Sy, &,,
I,,, Hoeftding’s D Hoeftding (1948), Blum-Kiefer-Rosenblatt’s R Blum, Kiefer, and Rosenblatt
(1961), Bergsma-Dassios’ t*Bergsma and Dassios (2014), and the symmetrized version of
&, Zhang (2023), under different sample sizes {20, 40, 60, 80, 100}. The calculations of S, &,,
and I, are by our own implementations, and those of D,, R, and 7, are made by R package
independence Even-Zohar (2020). The following six alternatives were considered, where Z ~
N@O,1)and Z 1L X

. Linear: X ~ Unif (-1,1), Y =X+ Z

. Quadratic 1: X ~ Unif(—1,1), Y = X2 +0.3Z.

. Quadratic 2: X ~ Unif (—3/4,5/4), Y = X? + 0.4Z.

. Sinusoid: X ~ Unif (—1,1), Y = cos(2n X) + 0.75Z.

. Stepwise 1: X ~ Ui’llf(—l, 1),Y= ]l{—ISXS—O.S} + 2 % ]]-{—0.5<X§0} + 3% ]]-{0<X§0.5} +4 %
Tio5<x<1} + 2Z.

6. Stepwise 2: X ~ UT’llf(—l, 1),Y= ]l{—ISXS—O.S} + 2 % 1{—0.5<X§0} + 3% ]1{0<X§0.5} + 2 %

Lios5<x<1y +Z.

(S O R S

Figure 3 summarizes the empirical power over 5,000 simulation runs (at the significance
level of 0.05). As expected, Spearman’s test has the highest power for the monotonic settings,
that is, "Linear” and “Stepwise 17, but extremely low power for some non monotonic settings
including ”Sinusoid” and “Quadratic 1”>. Chatterjee’s test is most powerful for two non
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Table 2. Empirical size of the seven independence tests (o = 0.05).

n Integrated  Chatterjee  Spearman  Symmetrized  Hoeffding  Blum-Kiefer-Rosenblatt ~ Bergsma-Dassios
20 0.0406 0.0411 0.0513 0.0225 0.0497 0.0485 0.0490
40 0.0438 0.0462 0.0507 0.0299 0.0503 0.0493 0.0508
60 0.0464 0.0469 0.0499 0.0331 0.0500 0.0501 0.0501
80 0.0489 0.0487 0.0512 0.0333 0.0489 0.0497 0.0492
100 0.0496 0.0492 0.0504 0.0370 0.0502 0.0492 0.0497

monotonic settings, “Quadratic 1”7 and “Sinusoid”, but it has much lower power for the
monotonic settings. For instance, in the linear setting when n = 60, Chatterjee’s test has a
power of 0.532, while S,, and I,, both have a power higher than 0.98. The symmetrized &,
is slightly less powerful than &, because of its conservativeness, Zhang (2023). Hoeftding’s
D, Blum-Kiefer-Rosenblatt’s R, and Bergsma-Dassios’ 7* have high power in the linear,
quadratic, and stepwise settings, but low power in the sinusoidal setting. The new test has
satisfactory power for all settings, especially for the monotonic settings where the new test is
comparable to Spearman’s method. When comparing "Quadratic 2” and ”Stepwise 2” settings,
where Spearmans and Chatterjee’s tests exhibit similar performance, the integrated test
demonstrates superior performance, outperforming both. Table 2 summarizes the empirical
size over 10, 000 simulation runs, where X 1 Y, X ~ Uniform[—1,1]and Y ~ N(0, 1). It can
be seen that all seven tests control the Type I error rate at 0.05. The symmetrized version of
&y is slightly conservative.

In the second study, we examined the p-value bias. The exact p-value was approximated
using 5,000 permutations and the bias was computed as the asymptotic p-value minus the
exact p-value. In each simulation run, we generated X from Uniform[—1,1] and Y from
N(0,1) independently with sample size {20, 40, 60, 80, 100}. Figure 4 summarizes the bias
over 1,000 simulations runs. It can be seen that the asymptotic p-values are overall close
to the exact p-values. However, for a relatively small sample size, for example, n = 20, the
asymptotic p-values is positively biased, indicating the conservativeness of the test. The bias
vanishes as sample size increases. In practice, if the sample size is small, for example, n < 30,
we recommend a permutation test based on I, (X, Y) to avoid power loss.

The proposed method was also tested on a transcriptomics dataset by Spellman et al.
(1998), which contains the expression levels of 6,223 yeast genes over 23 successive time points
during the cell cycle Spellman et al. (1998). This dataset was processed by Reshef et al. (2011),
where genes with missing observations were excluded. The processed dataset has 4,381 genes,
which are available through the R package minerva. There have been many papers testing
different correlation measures using this particular dataset including Chatterjee (2021).

We analyzed this data using S, &, and I,. For all three methods, p-values were calculated
using asymptotic formulas and then adjusted by the Benjamini-Hochberg procedure to
control the false discovery rate (FDR) at the level of 0.05. Figure 5 summarizes the number of
significant genes identified by three tests. Out of a total of 4,381 genes, the new test selected
734 genes whose expression levels change during the cell cycle, while the other two tests
selected 619 and 385 genes, respectively. This is due to the existence of different expression
patterns in the data, that is, some genes have smoother expression change while others have
non monotonic such as oscillating expression change. Figure 6 presents a random sample of
four genes that were identified by the new test but missed by Spearman’s test. It can be seen
that the expression levels of all four genes exhibit certain oscillating patterns. Figure 7 shows
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Figure 4. Comparison of the asymptotic and exact p-values. Bias is computed as the asymptotic p-value
minus the exact p-value.
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Figure 5. Number of significant genes identified by three methods.

a random sample of four genes that are identified by the new test but missed by Chatterjee’s
test, where all genes have smoother expression change during the cell cycle.

5. Discussion and conclusions

Chatterjee’s rank correlation has attracted a lot of attention during the past two years due to its
simplicity and nice statistical properties. However, the cost we pay for this simple method is its
inferior performance in detecting smoother correlation patterns, such as linear relationships.
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Figure 6. A random sample of four genes selected by the new test but missed by Spearman’s test.
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Figure 7. A random sample of four genes selected by the new test but missed by Chatterjee’s test.
To boost the power of this ingenious measure, in this article, we proposed a max-type test by

combining Chatterjee’s correlation with Spearman’s correlation, as the latter one is also rank
based but sensitive to smooth correlation patterns. We derive the asymptotic joint distribution
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of these two correlations under independence, which enables the analytical calculation of p-
values. Our simulation study and the transcriptomics application illustrated the promise of
the new test. Due to the simple calculation and satisfactory performance, the test is readily
applicable to many correlative analyses, for example, the gene-gene interaction and protein-
protein interaction network construction.

There are several possible extensions of this work. First, the new test statistic I,(X, Y) is
generally asymmetric because &, (X, Y) is asymmetric, that is, £,(X, Y) # &,(Y, X). When a
symmetric measure is more suitable, one can consider the following modification

L(X,Y) = max{Sy(X, Y),/5/26,(X, Y), \/5/26,(Y, X)).

In previous work, Zhang (2023), we established the asymptotic joint normality of &,(X,Y)
and &,(Y,X) and showed that the symmetrized metric, that is, max{£,(X,Y),&,(Y,X)},
converges to a skew normal distribution under independence. The proof is based on
Chatterjee’s Central Limit Theorem Chatterjee (2008). The joint asymptotic behavior of
{Su(X, Y), /5/264(X, Y), 4/5/26,(Y, X)} could be studied in a similar way, and the first and
most important step is to construct a valid interaction rule for I, (X, Y) Auddy, Deb, and
Nandy (2021); Zhang (2023). Although the asymptotic theory of I’" remains unknown, it
is easy to carry out a permutation test for independence using this statistic. Figure 8 shows
the empirical power of I, and I,, under the same simulation settings as those described
in Section 4, where I, exhibits satisfactory performance in all settings, albeit with slightly
lower power than I,,.

Second, one can consider generalizing our test by replacing &, with its modified version,
Lin and Han (2021). The modified statistic &, s incorporates M right nearest neighbors,
which is also asymptotically normal but generally more powerful than &,. Notably, Lin and
Han (2021) showed that the modified test achieves near-parametric efficiency in testing
against Gaussian rotation alternatives. The simulations using permutation tests (Figure 9)
confirm that replacing the traditional Chatterjee’s coefficient &, with &, 51 results in consistent
power improvement. Notably, the generalized test (I, s = /1 max(|Sy|, v/5M/2&, p1), where
M =10, 20) outperforms the original test across all six settings with different sample sizes,
albeit with slight but consistent gains.

Theoretically, it would be important to study the joint behavior of S, and &,, 5 and derive
the asymptotic null distribution of I, 51. One possible approach involves leveraging the Hajek
representation from Lin and Han (2021). However, a significant obstacle exists concerning
the application of Chatterjee’s CLT to locally dependent sequences. Recall that &, s is
defined as

6 Z?:l Z]r\ndzl min{R;, Ryn(i)}
(n+ D[nM + MM + 1)/4]’

gn,M =-2+

where m(i) is the index of the mth right nearest neighbor of X;. Lin and Han (2021) established
its asymptotic normality under independence by leveraging the Héjek representation of &,
(see én,M in Section A.2.1, proof of Theorem 3.2). Their proof hinges on demonstrating the
asymptotic equivalence in distribution between &, 5; and its Hajek representation. This allows
them to focus on the asymptotic normality of £, 5, which can be further established using
Chatterjee’s CLT based on a well-defined interaction rule.
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Figure 8. Power comparison of the integrated test and its symmetrized version under different alternatives
and sample sizes.

Following this approach, we define the Hajek representation of a&, »r + bS, for constants

a and b as follows
n

M
Z Z min{F(Y;), F(Ym(i))}

=1 m=1

6an
(n+ D[nM 4+ M(M + 1) /4] 4

aén,M + bgn

6a
mzmm{F(Y) F(Y)}+b2[ - 1} F(Y;).

Then an asymptotically equivalent version with local dependence is

6an
(n+ D[nM + M(M + 1) /4] 4

Z Z min{F(Y;), F(Ym))}

=1 m=1

aén,M + bgn =

n

_ 12 Z(F(Y~)—1F2(Y~)—l)—bzn: B e .
n+ 1= Y2 Y3 —|n+1 Yoon+ 1

It suffices to show the asymptotic normality of €,y 4 bS,. However, applying Chatterjee’s
CLT necessitates a valid interaction rule G that satisfies all conditions outlined in Theorem
2.5 of Chatterjee (2008). The interaction rule employed by Lin and Han (2021), unfortunately,
does not apply in this regard. Specifically, the function f;(Z) in their proof (see Section A.2.1,
Step I1I-1, Lin and Han (2021)) becomes

ﬁ(Z) 6an
(n+ DM + M(M + 1)/4] 4

Z min{F(Y;), F(Ymai)} + iF(Y)
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Figure 9. Power comparison of the integrated test and two modifications based on &, y=10 and &, y=20
under different alternatives and sample sizes.

which in general does not satisfy f;(Z) — f;(Z¥) = fi(Z") — f,(Z). 1dentifying an alternative
interaction rule that fulfills all conditions for applying Chatterjee’s CLT within our framework
remains a critical task for future research.

Third, as enlightened by a reviewer, it is also possible to define the appropriate version of the
new test statistic for testing conditional independence, that is, Hy : X L Y|Z, although there
are some technical hurdles in (1) defining the rank-based estimator of conditional Spearman’s
correlation and (2) deriving the asymptotic distribution of the integrated statistics. To make
it suitable for conditional independence test, first, we can replace &, (X, Y) with the following
T, (X,Y|Z), a multivariate analogue of Chatterjee’s correlation, proposed by Azadkia and
Chatterjee (2021). Let (X, Yi, Z)i=1,...» be i.i.d. samples of (X, Y, Z)

> i1 (min{R;, Ry} — min{R;, Rny})
> i1 (Ri — min{R;, RN () })
where R; is the rank of Y;, M(i) is the j such that X; is the nearest neighbor of X;, N(i) is
the j such that Z; is the nearest neighbor of Z;. Azadkia and Chatterjee (2021) showed that
T,(X,Y|Z) converges almost surely to a limit quantity T'(X, Y|Z), such that T(X, Y|Z) =0
if and only if X and Y are conditionally independent given Z, and T'(X,Y|Z) =1 if and
only if Y is almost surely equal to a measurable function of X given Z. Second, we need to
replace S, (X, Y) with its conditional counterpart. However, this presents a challenge due to
the absence of a straightforward, rank-based estimator for conditional Spearman’s correlation.

TW(X,Y|Z) =

>
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The partial rank correlation, defined as
Su(X,Y) = $u(X, 2)Su(Y, Z)

Si(X,Y|Z2) =
VU =82(X,2))(1 — (Y, Z))

is an adaptation of Pearson’s partial correlation that replaces the actual values with their ranks.
However, as noted in Kendall (1942), this definition lacks justification, and its interpretation
is unclear (e.g., whether it truly measures conditional linear relationships). Liu et al. (2018)
proposed a sound definition for conditional Spearman’s correlation based on a kernel-based
estimator involving residual calculations (see Sections 3.2-3.3 in Liu et al. (2018)). This
definition, however, is not rank-based, making it challenging to analyze its joint behavior
with T, (X, Y|2).

Deriving the asymptotic distribution of the integrated statistic presents another significant
challenge. Even for the simple rank-based estimator S,(X, Y|Z), obtaining its asymptotic
null distribution is difficult (although simulations suggest normality). For instance, applying
Lin and Han (2021)’s method proved unfeasible due to the difficulty in establishing a Hajek
representation of S, (X, Y|Z) that readily transforms into a locally dependent sequence. The
Héjek representation of Ty, (X, Y|Z) is more straightforward, which can be written as a linear
combination (see the representation &/ in A.2.2, proof of Theorem 3.1, Shi, Drton, and Han
(2021)). Additionally, even under conditional independence, the asymptotic distributions of
Sﬁ X,Y), Sﬁ (X,Z) and Sﬁ(Y, Z) remain elusive due to potential pairwise dependencies among
X, Y and Z.

Finally, as we discussed in the simulation study, the asymptotic p-value is generally close
to the true p-value, but it tends to be positively biased for small sample, for example, n < 30,
resulting in certain power loss. In the case of small sample, we recommend a permutation
test for better testing performance. Another way to reduce the potential p-value bias is
to use asymptotic expansion method, for example, Edgeworth expansion, Cornish-Fisher
expansion, or saddle point approximation, which may improve p-value approximation by
incorporating higher-order moments such as skewness and kurtosis.

Appendix: Proof of Lemma 2

Proof. We first define F(y) =P(Y <y), Ui=F({Yy), Fu(y) = Z?:l 1{Ys <y}/n, and
H,(x) = Z?:l 1{U; < x}/n. For Chatterjee’s correlation, using Equations (5)-(8) in Angus
(1995), we have

n—1

S R — Rl —n(n—1)/3 1 2
= =—> |IUp1 — Ul +2U:0 = U) — 5 | + 2,
\/ﬁ(l’l — 1) \/ﬁ — | i+1 1| z( z) 3

P
where Z — 0. For Spearman’s correlation, we define the following function

n

1 2i
Gulx) == D = LU < x).

=
Since

1o 2i 1o 2i
— U, <x} < - =1,
n;n—kl {1_}_nZn—|—1

i=1




18 Q. ZHANG

we have 0 < G, (x) < 1. The expectation and variance of G,(x) are E [G,(x)] = x and
2x(1 —x)2n+1) - 2n+1

Var [Gu(x)] = 3n(n+1)  ~ 6n(n+1)

— 0,

therefore G, (x) E) x for x € [0, 1], as n — oo. It is also noteworthy that

1 n 2i 1’l2 1
(B 22 - o

i=1

=/~/E[HH(X)—x] dGn(x)+/«/ﬁ x— é] dG,(x) (A.1)

where the second term can be rewritten as
1 1 o« 2i vn
nlx——1dG,(x) = — —U; — —.
/‘/_[ 2} n®) ﬁ;n+l )

The first term in Equation (A.1), using continuous mapping theorem, has the same limiting
distribution as

_Vr o1y
/\/ﬁ[Hn(x)_x]dx— 2 \/E;Ul’

therefore

1 "2 nt\ d < 2i
—— R —— |~ —1]|U.
nﬁ<§n+1’ 2) ;[er } !

d
where ~ represents asymptotic equivalence in distribution. We will show that
I Uiy — Uil +2Ui(0 = Up) —2/3] //n and Y1, [2i/(n+1) — 1] Ui//n  are
asymptotically joint normal.
For any two constants, a and b, define

Zi=a|Uip1 — Uj| 4+ 2aUi(C; — Uy) — Z?a
and
=
Wa=—= ;Z,,
where

|+ bi b

an+1) 2a
It can be seen that for any j > 1, Z;; is independent of [Z1, ..., Z;], therefore the sequence {Z;}
is 1-dependent sequence. Similar to Equations (11)-(14) in Angus (1995), we have

Ci=

Var[Z;] = Var[a|Ujy1 — U;l] + Var[2aU;(C; — Uy)] + 2Cov[a|Uiy — Ujl, 2aU;(C; — U],

where
22

Var[a|Ujy; — Uj|] = —,
[ | i+1 z|] 18
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and
Var[2aUi(C; — Up)] = 4? [C—Z _Gy i} .
12 6 45
For the covariance term, it can be shown that Cov[|U;+; — Uj|, U;] = 0, therefore

2Cov[a|Ui1 — Ujl,2aUi(C; — Up)] = —4a’>Cov[|Uiz1 — Ujl, U7

(12

5

Summarizing the results above, we get
2 2 2
a ¢ G 4 a
Var[Zl= — +4g% | 2L — 2 4 — | - 2
arlZil = g +4a [12 6+45:| 45
a2 P Qi—n—1)
18 12 (n+1)?

a2

>4
18
For the covariance between Z; and Z; 1, we have
CovlZ;, Zit1] = Covla|Uit1 — Uil + 2aUi(C; — Uy),
a|Uiys — Uiyq| 4+ 2aUi 1 (Cigq — Ui )]
= Cov[a|Uiy1 — Uil, a|Uiyz — Uil
+ Cov[2aU;i(C; — U;),2aUi41(Ciy1 — Uig1)]

a’ a?
180 90
2
~ 180
therefore
n—1 n—1 n—1
Var [Z zi] =) Var(Z) +2 ) Cov(Zi Zit1)
i=1 i=1 i=1
- 2(n — 1)a2)
- 45
and

Var [Z:‘:ll Zi]

— O
n1/3

asn — 00. Using the Central Limit Theorem for m-dependent random variables (Theorem 1s
in Angus (1995)), W, converges in distribution to a normal distribution. Finally, by Cramer-
Wold device, +/nS,(X, Y) and 4/n&,(X, Y) are asymptotically joint normal. O
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