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Abstract: In this article, we propose an omnibus test for comparing two survival functions under non-propor-
tional hazards. The test statistic is based on a product-limit estimate of the restricted distance correlation,
which is closely related to the L, distance between survival curves. The strong consistency is established under
mild regularity conditions. Our simulation studies show that the new test has satisfactory power under
proportional hazard and various non-proportional hazards settings including delayed treatment effect, dimin-
ishing effect, and crossing survival curves; therefore, it can be a competitive alternative to the existing
omnibus tests such as Kolmogorov-Smirnov test, Cramer-von Mises test, two-stage test, and the maxCombo
test based on weighted log-rank statistics. Two extensions of the new test to one-sided alternatives and a
Gaussian kernel are also discussed.
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1 Introduction

To evaluate the treatment effect for survival data, we often need to compare the survival functions of the
treatment and control groups. The most popular approach to comparing survival functions is the log-rank test,
and it is well known that under proportional hazards, the log-rank test is optimal and equivalent to the score
test in Cox regression model. When the proportional hazard assumption is moderately or severely violated,
however, the log-rank test might be suboptimal. In many clinical studies, especially cancer immunotherapy
trials [1,19,24], the violation of proportional hazards assumption is often encountered, and different patterns of
non-proportional hazards are frequently observed, e.g., delayed treatment effect, diminishing effect, and
crossing survival curves, making the traditional log-rank test underpowered. One way to address this chal-
lenge is using the weighted log-rank test, and a popular weight function is the Fleming-Harrington (FH) weight
with parameters p and y,

Wen(t; p,y) = [Sa(t)IP[1 = Sp()P,

where S,,(t-) is the estimated survival function immediately prior to time ¢. The choice of p and y can handle different
types of treatment effect. For instance, wen(t; p > 0, y = 0) is good for early separation, wen(t; p = 0,y > 0) for late
separation, and wpy(t; p > 0,y > 0) for middle separation. However, none of these tests is good for all situations, and
a prior misspecification of the weight function may decrease the power of the test. Motivated by previous studies
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[13,26], a cross-industry working group proposed a maxCombo test by taking the maximum of multiple FH-weighted
log-rank statistics [14]. One such combination is

Zmax = maX{ZFH(p’ y): (p’ V) € [(0: O): (O: 1)s (1: 0): (1’ 1)]}:

where Zpy(p, y) stands for the Z-statistic of the weighted log-rank test with wey(t; p, y), and it can be shown
that [Zpu(0, 0), Zeu(0, 1), Zpu(1, 0), Zey(1, D] are asymptotically joint normal. Using simulated data, Lin et al.
[14] showed that the maxCombo test has good statistical power under proportional hazard and different
patterns of non-proportional hazards, thus it can be used as an omnibus test for a broad class of alternative
hypotheses. A robust version of maxCombo based on weights [(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)] is suggested by
Roychoudhury et al. [18].

In addition to the maxCombo test, there are many other omnibus tests developed for survival data. To
name a few, Fleming et al. generalized the Kolmogorov-Smirnov (KS) test for arbitrarily right-censored data
[8]. Koziol et al. and Schumacher modified the Crdmer-von Mises (CVM) test under the assumption of randomly
censoring [12,20]. All these KS- or CVM-based methods can be viewed as a weighted L, distance (p = 2 for CVM
and p = » for KS) between two Kaplan-Meier (KM) curves or Nelson-Aalen curves. With the intent of addres-
sing crossing survival curves, Qiu and Sheng proposed a two-stage procedure, where the log-rank test is used
in the first stage and a particular weighted log-rank test is used in the second stage [16]. The weight function in
stage two is chosen to change signs before and after a potential crossing point, boosting its power for crossing
survival curves. Recently, Ditzhaus et al. proposed a permutation test based on the Nelson-Aalen-type integrals
without any restrictive model assumption [3]. Ferndndez et al. introduced a general nonparametric indepen-
dence test between right-censored survival times and covariates based on the supremum of a potentially
infinite collection of weight-indexed log-rank tests, with weight functions belonging to a reproducing kernel
Hilbert space (RKHS) of functions [7].

In this study, we shall develop a new omnibus test for comparing survival functions. The test statistic is
based on a restricted version of distance correlation and related to the unweighted L, distance between two
survival functions. Motivated by Edelmann et al. [5] and Zhang et al. [28], a permutation procedure based on
the product-limit estimator is used for implementing our method. Simulation studies show that the new test
performs well under different sample sizes and survival models.

The remainder of this study is structured as follows: Section 2 introduces the notion of restricted distance
correlation, and proposes a consistent estimator. Section 3 evaluates the performance of the new and existing tests
under different non-proportional hazards settings. Section 4 discusses the method with some future perspectives.

2 Restricted distance correlation test

In this section, we introduce the restricted distance correlation test for survival data and establish its statistical
consistency. We begin with the notations. For subject i € {1, ...,n}, let T; denote the survival time, X; the group
index (0 for the control arm, 1 for the treatment arm), 7 = P(X; = 1), and C; the censoring time due to admin-
istrative censoring or patient dropout. The observed event or censoring time is defined as U; = min{T;, C;}, with
event indicator 6; = I{T; < G}. Let fy (1), f,(t), Fo(t), Fi(t), So(t), S1(t) be the probability density functions (p.d.f.),
cumulative distribution functions (c.d.f.), and survival functions of T in two arms, ie., f,(t) = f(t|X; = 0), and
[@© = f{tXi = 1), K(t) = F(tlX; = 0), F1(t) = F(t1X; = 1), So(t) = 1 = F(t|X; = 0), and 8;(¢) = 1 = F(¢|X; = 1). Let
G(t) be the c.d.f. of C; for both arms and 7 be the study duration (max;C; < 7). The null and alternative hypotheses
can be formulated as follows:

Hy : So(t) = Si(t), for 0 <t < oo,

1
H, : So(t) # Si(t), forsome t. M

It is noteworthy that testing (1) amounts to testing the independence between the survival time T and group
index X, where T is continuous and X is binary. Herein, we consider the distance correlation test by Székely et al.
[23]. The distance covariance between two random vectors X and Y is defined as the square root of



DE GRUYTER A nonparametric test for comparing survival functions =—— 3

”¢)gy(tr S) - ¢x(t)¢y(s)”2

1+d 1+d,
w  Caclalltlla, sl ”

dCoviX,Y) = ds, @

_ pldon g . d o _ T
where ¢q, = g7 and Cq, = g,z [1Zlle, denotes the Euclidean norm of z € R%, and ||¢|* = ¢¢ for a
complex-valued function ¢ and its conjugate ¢ [15,23]. Similar to Pearson’s correlation coefficient, the distance
correlation is defined as follows:

dCov(X, Y)
JdCov(X, X) /dCov(Y,Y)

dCor(X,Y) = (3)

One remarkable property of distance correlation is that it is 0 if and only if X and Y are statistically inde-
pendent, indicating that the distance correlation can detect any form of association. Székely et al. [23] also
provided the following alternative definition of dCov(X, Y):

dCov*(X, Y) = Cov(||X; = Xal|, [|¥1 = Yall) — 2Cov(||X; — Xa|, [|¥1 — ¥3]]),
where (X3, 1), (X3, ¥2), and (X3, ¥5) stand for three independent copies of (X, Y).

As a special case of (3), in the following, we give the explicit formula of squared distance correlation
between the survival time T and group index X (the detailed proof is provided in Appendix A.1):

[ 181(0) - SO

dCor¥T,X) = —%= .
8, ], [7S1(s) + (1 = m)So(s)P[1 = 7S1(s) — (1 - m)So(s)[*dsdt

@

Noteworthily, the squared distance covariance between X and T (see equation (A1) in A.1) is equivalent to
the energy distance between T|X = 0 and T|X = 1. In fact, up to a constant multiple, equation (A1) is also
equivalent to Cramer’s distance [2] between T|X = 0 and T|X = 1. Crdmer’s distance can be viewed as a special
case of energy distance when bhoth variables are univariate. However, as Rizzo and Székely [17] pointed out,
the equivalence of energy distance with Crdmer’s distance cannot extend to higher dimensions, because while
energy distance is rotation invariant, Cramer’s distance is not.

For clinical trials with survival endpoints, an administrative censoring is often applied at the end of the
study period so that no event can be observed after time 7, i.e., max;C; < 7. Similar to the restricted mean
survival time (RMST), we consider a restricted version of distance correlation on [0, 7] for hypothesis testing

[;[81(6) - So(t)lde

dCor¥XT,X; 7) = —= )
8J,J [7S1(s) + (1 = m)So()P[1 - 7Si(s) — (1 = m)So(s)Pdsde

®)

The null and alternative hypotheses based on the restricted distance correlation can be formulated as:

Hy: So(t) = Si(t), for 0<t<T,

H, : Sy(t) # Si(t), forsome t € [0, 7]. (©)

Under the restriction of total study duration, the null hypothesis in (6) can be interpreted as the inde-
pendence between T and X conditioningon0 < T < 7,i.e,T L X|0 < T < 7. With a sufficient study duration 7,
e.g., max{Sy(7), S1(7)} is small, (6) can be used as a proxy of (1), but results should not be over-interpreted for
relatively short 7.

Assuming independent censoring, i.e., T L C, let S1,(t) and Sp,(t) be some consistent estimators of S;(t)
and Sy(t), such as the product-limit estimator or the piecewise exponential estimator [11]. For simplicity, we
consider the following product-limit estimate:

IS0 - Sou(OPdlt

dCor(T,X; 1) = —= )
8, J, [7Sin(s) + (1 = m)Son($)P[1 = S1a(s) = (1 = m)Son(s)*dsdt

)]

Theorem 1 establishes the statistical consistency of (7), under mild regularity conditions (proof is given in
Appendix A.2).



4 — Qingyang Zhang DE GRUYTER

Theorem 1. Assuming independent censoring, 0 < S(7) <1 and G(t) < 1, we have

rl{irgldCor,z,(T, X;t) - dCor¥T,X; 7)| =0 a.s.

In general, the null distribution of distance correlation is impractical to derive as it depends on the
underlying distributions of X and Y; therefore, we suggest a permutation procedure to evaluate significance.
One may first calculate the test statistic dCor%(T, X; 7) for the observed data, then for each b =1,..., B,
calculate the distance correlation dCor(T,X; r) based on the random permutation of group indices
{Xi,i = 1, ...,n}. The permutation p-value can be computed as:

~ Y P 1{dCor(T, X; 7) = dCor(T, X; 7)} + 1 @®)
p= B+1 '

Though the formula for dCor%(T, X; 7) seems unwieldy, for the purposes of constructing a permutation
test, only the numerator is relevant. The numerator is essentially a L, distance between S;,(t) and Sp,(t), which
is closely related to the CVM criterion. The CVM statistic is

T
CVM (1) = _[[Sln(t) = Son(O)Pd[-7S1n(t) = (1 = m)Son(D)], €)
0
which is a L, distance between two estimated survival functions with weight nif;, (t) + (1 - m)f;,,(¢). The CVM
statistic assigns more weight on time points with higher event rates; thus, for concave-up survival functions, it
tends to better detect early separation than late separation. In contrast, our distance correlation statistic is an
unweighted L, distance, targeting the difference between two survival curves for the entire study period.

3 Two extensions of the proposed test

A limitation of the restricted distance correlation test is that it is only for two-sided alternatives, therefore not
suitable for superiority tests that can be formulated as:

Hy: So(t) = Si(t), for 0<t<=<T,

10
H, @ Sp(t) < Si(t), for 0t <. (10)

To this end, we also suggest a directional test by incorporating the sign information in L, distance. The
directional statistic for permutation test can be written as:

T

T = [ sgn[Sin(t) = Son(®)] X [S1n(t) = Son(O)1dt, (v
0

where sgn() is the sign function, i.e., sgn(x) = 1if x > 0 and sgn(x) = -1 if x < 0. Similar to (8), the permuta-
tion p-value can be computed as:

_ B2 T+ 1 12
B+1

Second, as suggested by the reviewers, we extend the proposed distance correlation test to the Gaussian
kernel, which can be equivalently used in the distance correlation formulation [6,10,22]. We derived the
distance covariance between X and T based on the Gaussian kernel with bandwidth parameter ¢? (see
Appendix A.3 for details). For illustrative purposes, we present the formula for 7 = 1/2 as follows:

1 - exp(-1/20?)

dCov¥T,X) = s

(Dgo + D11 = 2Dgy),

where
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11
t - b
Dy = I_[ exp a6l 12022| dSo(t1)dSo(t2),
00

11
t - b
Dy = _U exp a6l 120_22| dS1(t)dS(t),
00

202

11
t - )
Dy = _” exp - uf dSo(t)dS1(t).
00

The expected distances Dy, D3, and Dy can be estimated by replacing the survival functions Sy(t) and S(t)
with the KM estimates Son(t) and Si,(t). A permutation test similar to equation (12) can then be performed
based on Do + D11 — 2Dgy. In general, the tuning parameter o2 in the Gaussian kernel affects the testing power,
and the effect depends on the data. Therefore, a data-driven approach should be used for selecting g%, Our
simulation studies have shown that the median survival of the pooled data (two arms) performs well under
different settings; therefore, we suggest using it for a2

4 Simulation study

In this section, we conduct simulation studies to evaluate the performance of the restricted distance correla-
tion test under different settings. In particular, we investigate the empirical statistical power and type I error
rate under both two-sided and one-sided settings.

4.1 Two-sided alternatives

We compare the distance correlation tests (based on Euclidean distance and Gaussian kernel, respectively) with
five existing tests, namely, (1) the robust maxCombo test, (2) two-stage test, (3) KS test, (4) CVM test, and (5) log-rank
test. The log-rank test is used as a gold standard for proportional hazard, and it was implemented using R function
survdiff in the survival package. The robust maxCombo test was implemented using the logrank.maxtest function in
the nph package. The two-stage test by Qiu and Sheng [16] was implemented by the two-stage function in the TSHRC
package. For KS, CVM, and our restricted distance correlation tests, p-values were computed based on 2,000 random
permutations. The CVM test is based on equation (9), and the KS test is based on the following statistic:

KS (1) = ggtaglsm(t) = Son(®)I. (13)

In the simulation, we set 77 = 1/2, and n = 60, 100, 150, and 200 (total sample size for two arms). For all
subjects, the loss to follow-up time (in months) is assumed to be exponential with rate parameter 0.005,
corresponding to a 5.8% annual dropout rate and 26% five-year dropout rate. Moreover, we assume that
the accrual time follows a uniform distribution over 3 years. Four alternatives, namely, a proportional hazards
setting (A) and three non-proportional hazards settings (B: delayed treatment effect, C: crossing survival
curves, D: diminishing effect), were constructed using exponential mixture models (similar curves can be
also constructed by other flexible models such as generalized Weibull models or piecewise exponential
models). The survival function of a two-component exponential mixture model is as follows:

Si(t; ¥j» Ajn, Aj2) =y exp(=Ant) + (1 -y exp(=4pt), j€{0,1} (14)

where y; and 1 - y; represent the proportions of two components in arm j, and 4;; and A;, are the corre-
sponding rate parameters. The parameters of each simulation setting are listed in the following, and the
survival curves are sketched in Figure 1.

(A) Proportional hazards: y, = y; = 1, An1 = 10g(2)/15, Ay = 1og(2)/22.5.

(B) Delayed treatment effect: y, = y, = 0.5, Ay = 10g(2)/20, Ag; = 10g(2)/10, Ay = 10og(2)/70, Ay, = log(2)/7.
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(C) Crossing survival curves: y, = y; = 0.2, Ag; = 10g(2)/20, Ag; = 10g(2)/20, Ay = 10g(2)/1, Ay = log(2)/40.
(D) Diminishing effect: y, = y; = 0.1, Ay = 108(2)/20, Az = 10g(2)/3, Au = 10g(2)/20, A = log(2)/5.

Figure 2 summarizes the empirical power over 5,000 simulations at the significance level of 0.05. The two
distance correlation metrics perform comparably across all settings, with the Gaussian kernel performing
slightly better than Euclidean distance. For example, in the proportional hazard setting with a sample size of
100, the test based on Euclidean distance achieves a power of 39%, while the test based on the Gaussian kernel
achieves a power of 41%. In the proportional hazards setting, the log-rank test has the highest power. The
distance correlation tests are the best among all omnibus tests, and when n = 200, our tests achieve similar
statistical power to the log-rank test. For Setting B, the distance correlation tests have the highest power among
all methods. The maxCombo, log-rank, and two-stage tests also have good performance especially for relatively
large sample sizes. It is noteworthy that the CVM test has low power in this delayed treatment effect setting,
because it assigns more weight on the early stage and less weight on the late stage. For crossing survival curves
(Setting C), the most powerful test is the two-stage test by Qiu and Sheng [16]. The two-stage procedure is
particularly designed for crossing survival curves; thus, it is sensitive to this pattern. Our new tests have the
second highest power in this setting, close to the robust maxCombo test. For the diminishing effect setting
(Setting D), where the separation occurs at the early and middle stage, CVM provides the best power. The KS
and distance correlation tests have slightly lower power than CVM. Overall, our distance correlation tests have
satisfactory power for different settings; thus, it can be an competitive alternative to the existing ones.

(a) (b)
1.00- 1.00-
2 )
£ 0.75- £0.75-
o) o)
(] ©
o) o)
o o
S.0.50 8.0.50
© ©
= =
Z Z
5 0.25- 5 0.25-
1) %)
0.00- 0.00-
0 10 20 30 40 0 10 20 30 40
Time in months Time in months
(c) (d)
1.00- 1.00-
2 P
£ 0.75- £ 0.75-
o) o)
4] ®
o) o]
o o
. 0.50 o 0.50
© ©
= =
Z Z
5 0.25- 5 0.25-
%) %)
0.00- 0.00-
0 10 20 30 40 0 10 20 30 40
Time in months Time in months

Figure 1: Survival curves in the simulation study (a: proportional hazards, b: delayed treatment effect, c: crossing survival curves, and
d: diminishing effect), where red represents the control arm and blue represents the treatment arm.
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Figure 2: Empirical power over 5,000 simulations for two-sided alternatives.

We also investigated the type I error rate control under different sample sizes. Figure 3 presents the type I
error rate over 10,000 simulations (under the null model y, = y; = 1, Ap1 = Ay = log(2)/15). All the tests control
the type I error rate. The three permutation based tests, namely KS, CVM, and restricted distance correlation
tests, have type I error rates close to the nominal level of 0.05. The log-rank test and maxCombo test based on
weighted log-rank statistics are slightly conservative when sample size is small, e.g., n = 60.

0.15-
0.10-
5 — DCor
= -- DCor.Kernel
(©] - LR
- - KS
g -~ CVM
2 - = maxCombo
0.05- — TwoStage
0.00-
50 100 150 200
sample size

Figure 3: Type I error rate over 10,000 simulations for two-sided alternatives.
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Figure 4: Empirical power over 5,000 simulations for one-sided alternatives.

4.2 One-sided alternatives

For one-sided alternatives, we compare our directional distance correlation test (equations (11) and (12)) with
(D) log-rank test, (2) RMST test, and (3) the robust maxCombo, under the same simulation settings as detailed in
Section 3.1. The two-stage, CVM, and KS tests are excluded in the analysis because they are not suitable for one-
sided alternatives. Figure 4 displays the empirical power over 5,000 simulations at the significance level of
0.05. Same as what we observed in the two-sided case, in the proportional hazards setting, the log-rank test has
the highest statistical power. Our distance correlation test has similar power to RMST, both higher than
maxCombo. In the delayed treatment effect setting, the RMST and distance correlation tests substantially
outperform the log-rank and maxCombo tests. Specifically, the maxCombo test is the most powerful test for
detecting differences between crossing survival curves (Setting C). In the diminishing effect setting, the dis-
tance correlation test has the greatest power, slightly higher than the log-rank test. Overall, our distance
correlation test have satisfactory power across different settings. Figure 5 summarizes the empirical sizes
of the four tests, where it can be seen that all four tests control the type I error rate, and three RMST tests are
slightly conservative.

5 Discussion and conclusions

In recent clinical studies, especially in cancer immunotherapy studies, the violation of the proportional
hazards assumption is often encountered; thus, the traditional log-rank test may not be optimal. In this
work, we propose a simple and versatile test to compare survival curves under non-proportional hazards.
The test statistic is derived from a restricted version of the widely used distance correlation metric, which is
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Figure 5: Type I error rate over 10,000 simulations for one-sided alternatives.

essentially the L, distance between the KM curves of two treatment groups. Our simulation studies show that
the new test is powerful under both proportional hazards and different types of non-proportional hazards.

One major limitation of the proposed test is the lack of an analytical formula for computing p-values.
Therefore, it would be of great interest to investigate the asymptotic behavior of the restricted distance
correlation theoretically. While the sampling distribution of the distance correlation is generally impractical
to derive, Shen et al. [21] derived a chi-square distribution that well approximates and dominates the limiting
null distribution in the upper tail. They showed that under the bias-corrected estimate of the distance correla-
tion, the chi-square test exhibits similar testing power to the standard permutation test. However, the exis-
tence of censored samples in survival data makes it difficult to obtain the bias-corrected estimate. Therefore,
directly applying the chi-squared approximation based on the KM estimates may result in low power. Figure 6
presents a comparison of the power of the permutation test and Shen et al’s chi-squared approximation. As
can be seen, the chi-squared test can be very conservative, especially when the sample size is relatively small
(e.g., n = 60). To circumvent this problem, we need to find a new estimate or approximating distribution
function to calculate an upper bound of the p-value. We leave this as a topic for future research.

Another practical limitation is the assumption of independent censoring, meaning that the censoring time
is independent of both groups and survival time. When the censoring depends on groups, the permutation test
may have an inflated type I error rate; even, the survival curves are equal. To illustrate this, we performed
simulations (Figure 7) and found that the type I error rate inflation is non-negligible when there is a sub-
stantial difference in the censoring rate between two arms. Therefore, it is important to check whether the two
arms have similar censoring distributions before using a distance correlation test. Possible approaches for
estimating censoring distributions or censoring rates include the reverse KM curve and the person-time
follow-up rate [25].

There are several possible extensions of our test. Throughout this study, for illustrative purposes, we have
focused on the two-sample comparison. However, our method can be readily applied to compare multiple
survival functions. In the K-sample case, the restricted distance correlation based on Euclidean distance can
be expressed as:
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Figure 6: Power comparison for the permutation test and chi-squared test.
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Figure 7: Type I error rate inflation under different censoring rates in two arms (the x-axis represents the ratio of censoring rates of two
arms, ranging from 1 to 10).

Sy [S() - SOt

T : (15)
af [ ISP - S(t)*dsdt

dCor¥T, X; 7) =
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where 1, = P(X = k), Sk(t) = S(t|X = k), and S(t) = Zlenksk(t). Similar to equation (7), one can use the pro-
duct-limit method to estimate the restricted distance correlation, and a permutation test based on the
numerator of (13) can be used to obtain p-values. In the case of ordinal X, e.g., age groups or dosage levels,
one can derive the restricted distance correlation based on the predefined distance between categories.

In addition to right-censored data, our test might also be applicable to other censoring types. For instance,
when the data are left-censored, one may utilize the Left-KM (LeftKM) method to estimate the survival
functions in the distance correlation. Under independent censoring, Gomez et al. [9] proved the consistency
of the LeftKM estimator, and we may use this result to establish the statistical consistency of the restricted
distance correlation test.
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Appendix

A.1 Derivation of equation (4)

The squared distance covariance between T and X can be written as:
dCov¥(T, X) = E(ITy - Tll% - X)) + E(IT - TDE(I% - X,I) - 2E(IT: - Tl1Xi — X)),
where (T3, X)), (T, X;), and (T;, X3) are three independent copies of (T, X). Let
Do =E(|Ty - Tl|X1 = 0, X; = 0),
Dy =E(L - TllX = 0,X% = 1),
Du=E(L-LlX=1X=1),
the following results can be shown using elementary probability:
E(|R, - Tl) = m*Dy + (1 = m)* Doy + 271(1 = 1)Dyy,
E(|1% - Xp|) = 21(1 - 1),
E(|T - Bll% - X%[) = 21(1 = 7)Doy,
E(IR - Tl|X - X3|) = m*(1 = m)Dyy + (1 = 7)*Doo + (1 = 7)Dyy.

Furthermore, we can show

Dyo =2 [So(0)[1 - So(t)]dt,
0

Dy =2 [S0[1 - Sy(o)ldt,
0

Dy = .[50(” + 51(0) - 2S5()Sy(t)dt.
0
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Summarizing the aforementioned results, we have

©

dCov (T, X) = 4r%(1 - n)ZI[sl(t) - Sy(H)dt. (A1)
0

It is also straightforward to show
dCov¥X, X) = 4*(1 - m)%. (A2)

Finally, by Theorem 5.1 of Edelmann et al. [4], we have

0 00

dCov¥(T, T) = 8f [S(s)2[1 - S(s)Pdsd, (A3)

0t
where S(t) stands for the overall survival function and S(t) = nS;(t) + (1 — m)Sp(t). Combining (16)-(18),
we have
[7181(0) - So(t) Pt
SJ: Lw[ﬂsl(s) + (1= MSyPIL - 7Si(s) = (1 - m)So(s)Pdsde

dCorXT,X) =

A.2 Proof of Theorem 1

By Yu and Li [27], for any 7 such that S(7) > 0 and G(7) < 1, we have

rllim sup|Sip(t) - S1(®)] =0 as. (A4)
— 00 [<T
and

}IIEEIO sup|Sen(t) = So(®)] =0 as. (A5)

t<t

As 4%(1 — m)? < 1/4 and |S1(t) + S1(t) — Sga(t) — So(t)| < 4, we have

|ACOVET, X; ©) = dCOvA(T, X; 1<  [I1SC0) - Sn(OF = [S1(0) = So(OF e
0
< [15(®) = $1(0) = Son() + Su(v)ldt
0

< [Isu®) - sio)ldt + [I0n(6) - SuCv)ldt
0 0

< 7 sup|Sip(t) = S1()] + T sup|Soa(t) — So(D)|.

t<t t<t

By equations (A4) and (A5), 7 sup,.,|S1,(t) — S1(t)] and 7 sup,.,|Son(t) — So(t)| both converge to 0 almost surely;
therefore,

a.s.
dCov(T, X; 7) — dCov¥T, X; 7).

Next, we show the almost sure convergence of the denominator, i.e., dCovX(T, T;7). First, we bound

A= Hsn(s)m ~ Sy(s)[Pdsdt - J’j3(s)2[1 - S(s)Pdsdt |.
0t 0t
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Similar to the proof for dCov i(T, X; 1),

A< [ [I8)21 - Su(s) - S(s[1 - S(s)Pldsde

0t

< 2J'j|sn(s) ~ S(s)|dsdt + 2”|s,$(s) ~ §¥(s)|dsdt
0t 0t

<2 [Isu(s) - S(sldsde + 2 [ [184(5) = S©)IISa(s) + S(s)ldsdt
00 00

< ij|8n(s) - S(s)|dsdt
00

< 672 sup|S,(t) - S(t)|.

t<t

Again by equations (A4) and (A5), 672 sup,..|Sx(t) — S(t)| converges almost surely to 0; therefore,
dCov (T, T;7) = dCov¥T, T; 7).

To show the almost sure convergence of dCor’(T, X; 7), we only need to show that dCovT, T; 7) is strictly
positive. Since we assume 1> S(7) >0 and S(¢) is non-increasing, there exists 0 < wpin <1 such that
1 = Wmin > S(t) > Wpin uniformly for 0 < ¢ < 7; thus,

TT

[[scs211 - s@)pdsde > wy2re.

0t

This completes the proof.

A.3 Derivation for the Gaussian kernel

Let K(x,y; a2) = exp(-|x - y |*/20%) be the Gaussian kernel with bandwidth parameter o2. By elementary
probability, we have

E[K(Xy, X)) = 7% + (1 - 1) + 21(1 - m)e e,
E[K(T;, T,)]= (1 - m)*Dgo + m*Dyy? + 27(1 = 7)Dgy,
E[K(T, YK, X)| = (1 - 7)2Dgg + Dy + 21(1 - m)e”w"Dog,
E[K (T, TYK (X, X)] = [7%(1 - 70) + m% 202 |Dgo + [m(1 = 1) + (1 - m)% | Dy
+ 201 - mye w? + 1(1 - 7)%|Doy.
The squared distance covariance based on K(x, y; ¢2) is

dCovX(T,X) = E[K(Xy, %)E[K(T, B)] + EIK(T, T)K(X,, X)] - 2E[K(T, T)K (X, X3)], (A6)
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where

11
t-6f
D= [ [ exp|-1 2 laspasico),
00

11
h-bf
Dy = II exp Jach 2022 = dS:(t)dS:(%),
00

11
-t
Doy = Ij exp —% dSo(t)dS:(t).
00

When 7 = 1/2, equation (A6) can be simplified to:

1 - exp(-1/20?)

dCov¥T, X) = .

(Doo + D11 = 2Dg1),
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