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The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems
to increase farm sustainability and profitability. However, current systems suffer from problems of complexity
stemming from the challenge of integrating diverse, often non-interoperable hardware and software components.
In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA
innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support
system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal
solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically
evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University,
each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming
environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized
decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm
where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows
users to quickly make key decisions in designing their DA systems to increase farm profitability.

According to Douthwaite et al., DA innovations are complex and
require involving farm stakeholders to understand their goals and con-
straints to successfully deploy [2]. First, current DA solutions are often
fragile due to non-interoperable hardware and software [6]. Second,
DA solutions often take a generalized approach that is not suitable for
the myriad of farmers, each of whom has unique demands and con-
straints that require personalized solutions; e.g. a specialty grape farm
can focus on achieving a specific taste profile while a row crop corn
farm can focus on optimizing yield [3]. These challenges often lead to
low understanding, slow adoption, and high costs in implementing DA
systems [2].

1. Introduction

The 2018 Global Agricultural Productivity (GAP) index highlights
a growing disparity between food supply and demand, for both devel-
oped and developing countries [1]. Conservative estimates predict that
agricultural production will need to increase by 25-70% above current
levels to meet the demand expected by 2050. As a result, the world is
likely to face a large-scale food security crisis [1]. A major challenge
to increasing food production is farm efficiency which is challenged by
limited rural infrastructure [2].

Digital Agriculture (DA), which is the use of data-driven techniques
to increase farm productivity and sustainability, is thought of as a

method of addressing the crisis [3]. Research into data-driven agricul-
ture is growing. It envisions a future in which on-farm data collection,
processing, and transmission are ubiquitous [4]. Several start-up com-
panies are developing applications for data-driven farms [5], while
major agribusiness firms are developing data collection and processing
systems [5].

* Corresponding author.

1.1. Digital agriculture systems

According to Nemes, farms are agricultural systems that are typi-
cally used to grow a crop to be sold for profit [7]. Farmers are the main
stakeholder as they typically own and/or operate the farm [8]. Accord-
ing to the United Nations, a farmer can be defined as a person who
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cultivates land, raises crops, and/or livestock for sustenance or com-
mercial purposes.

Digital Agriculture (DA) is the use of data to improve farm decision-
making which can lead to increased environmental sustainability and
farm profitability [3]. DA is composed of sensing, storing, computing,
and actuating technologies that leverage on-farm data [7]. Gathering
massive amounts of sensor data requires a robust network, but this
is a challenge as farms in rural areas often have limited or no on-
farm networking or Internet access [8]. A Network-Enabled Farm (NEF)
addresses these issues by using new technologies or old technologies re-
purposed to provide networking capabilities in the middle of a farm
such as 4G LTE, Long Range Radio (LoRa), and unlicensed TV White
Spaces (TVWS) [9]. A NEF uses these capabilities to sense, transmit, and
analyze farm data to produce actionable insights for farm stakeholders,
as described in Seamless Visions, Seamful Realities: Anticipating Ru-
ral Infrastructural Fragility in Early Design of Digital Agriculture [6].
A NEF provides the networking infrastructure to enable data-driven DA
to optimize farm management. Integrating advanced digital technolo-
gies, as explored by Gebresenbet et al. (2023), can further enhance the
efficiency and sustainability of these agricultural systems [10].

A NEF is a modular abstraction of software and hardware tech-
nologies that are designed to fit the various needs of farmers. The
software abstraction is split into three modules: Sensing, Computing,
and Actuating. The Sensing module abstracts away sensors that allow
different hardware sensors to be connected through software. The Com-
puting module allows for different analytic algorithms to be run to
support decision-making. The Actuating module performs some type
of action such as releasing irrigation valves. These modules can connect
manufacturer-agnostic hardware devices such as computers located at
the farmhouse, field sensors, and water valves. With both the software
and hardware connected, farmers can visualize aggregate data from
normally incompatible farming systems on a web application interface
[11]. To gain operational insights, farmers can run analytics on their
data to make farm decisions. Lastly, a NEF enables the creation of dig-
ital twins of the physical farming system to automate farm processes
such as precision irrigation.

Our goal, then, is to address the gap in balancing utility, risk, and
uncertainties when building DA systems. Our approach includes inte-
grating systems engineering principles with our experience designing
and deploying NEFs. Specifically, Realtime Optimization and Manage-
ment System (ROAM) employs a methodology that evaluates Pareto
optimal decisions for farmers. The result has been the design and im-
plementation of ROAM, a decision-support tool designed to empower
farmers with insights into the tradeoffs involved in constructing DA
systems. ROAM facilitates holistic analysis, real-time simulation, and
uncertainty and risk modeling. In the next sections we compare ROAM
to other approaches, discuss the design of ROAM in detail, our results,
and the contributions of applying ROAM to a commercial farm in Cali-
fornia.

1.2. Related works

In recent years, there has been a growing recognition of the com-
plexities involved in decision-making tradeoffs within agricultural sys-
tems and in particular for Pareto optimal approaches. Jones et al.
have highlighted the intricacies of these tradeoffs and emphasized the
need for leveraging new networking technologies to explore research
opportunities in this domain [12]. Historically, agricultural systems re-
search has often relied on non-real-time data and indirect farm data in
modeling and simulations, neglecting real-time farmer preferences and
decision-making tradeoffs [13]. However, the advent of advanced net-
working capabilities, such as the NEF system, has paved the way for a
new generation of models that integrate real-time farm data, thus offer-
ing valuable insights into decision-making processes [12].

The current state of the art in decision support systems (DSS)
for agriculture reflects a divide between non-real-time simulation and
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modeling and those incorporating uncertainties. Non-real-time models,
while valuable in understanding decision-making under risk and utility,
have traditionally relied on frameworks like Subjective Expected Util-
ity Theory (SEUT) to assess decision outcomes [14]. SEUT provides a
systematic approach to analyze decision alternatives based on expected
utility and risk, yet it falls short in capturing real-time decision dynam-
ics and unique decision contexts [15].

On the other hand, modeling with uncertainties has gained traction,
especially concerning risks induced by factors like climate change. This
segment of research emphasizes the adaptation of management strate-
gies to evolving uncertainties, utilizing bio-economic and bio-decision
models to optimize decision processes [14]. Collaborative efforts be-
tween climate specialists and agricultural scientists have yielded cli-
mate change models that assess the impact of uncertain climate condi-
tions on crop yields, underscoring the importance of interdisciplinary
collaborations in addressing complex agricultural challenges [14].

However, despite these advancements, existing research still faces
challenges in adequately addressing utility, risk, and uncertainties to
recommend Pareto optimal decision-making strategies. The insuffi-
ciency of current models in quantitatively capturing real-time decision-
making processes has been discussed, with calls for methods to model
changing uncertainties effectively and assess decision support systems’
efficacy in addressing these challenges [7,12]. Additionally, while some
progress has been made in sequential decision-making modeling us-
ing ensembles of crop and climate models, this area of research is still
nascent [16].

In summary, the literature underscores the need for advanced de-
cision support systems that merge systems engineering with real-time
farm networking capabilities, enabling farmers to make informed deci-
sions based on up-to-date data and addressing the evolving challenges
in agricultural systems management.

1.3. ROAM

In this paper, we present the Realtime Optimization and Manage-
ment System (ROAM), a tool that identifies a Pareto optimal set of
architectural decisions for farmers to build their own NEF. ROAM de-
termines a Pareto front of optimal DA system architectures a farmer
can choose between, usually eliminating the vast majority of potential
architectures. Thus, ROAM potentially advances the state of the art in
deploying DA systems. It performs up-front analysis necessary to de-
ploy DA systems and eliminates major barriers to the diffusion of DA
techniques into real-world farms and increasing farm efficiency.

The design of ROAM is based on formalizing a method to evaluate
a DA architecture by encoding user generated evaluation metrics and
uncertainties to assess a set of architectural decisions. An architectural
decision is the choice between different components of the DA system
such as between a soil moisture or light sensor. Then, the ROAM Con-
figuration File is used to create nodes or objects that represent unique
architectural configurations of a DA system. An architectural represen-
tation is a subset of architectural decisions made to create a NEF system.
Next, the nodes are passed into an optimization function to uncover a
Pareto optimal set of architectural representations most suitable to a
user’s need. To abstract away the complexity of the ROAM implemen-
tation, a front-end user interface is designed and used to allow for easy
input of key features of the user’s farm, constraints, and uncertainties.
This frontend creates the ROAM Configuration File used for ROAM eval-
uation. In addition, as output, the frontend displays interactive 3-D data
visualizations of the farmer’s potential DA system tradespace, which is
then used to allow for better understanding of the recommendations
of the system. The entire process from beginning to end, from encod-
ing the ROAM Configuration File to the end step of visualization of the
analysis is modularized to allow for swapping in and out interchange-
able software. For example, different types of optimization models can
be used for ROAM.
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Fig. 1. NEF decision space.

1.4. Contributions

ROAM is a tool composed of various algorithms and optimization
methods based on systems engineering principles. We validate the util-
ity of ROAM through our own field trials at Cornell University and
through an application on Cheng Xin Garden LLC (CXG), a commercial
California-based viticulture farm. For the CXG deployment, ROAM iden-
tified a Pareto optimal set of architectures and ultimately assisted the
user in selecting one architecture that increased the CXG farm efficiency
while accounting for constraints and uncertainties. To summarize our
work makes the following research contributions:

(1) A framework, model, and software system tool for understanding
decision making when building network-enabled farms

(2) Design and implementation of ROAM

(3) Validation of the utility of ROAM through a commercial farm de-
ployment

2. Materials and methods
2.1. Data collection

We implemented and deployed several NEF instances, including
an apple orchard, corn and hemp greenhouse, dairy cow farm, and
vineyard [17]. These instances of NEF deployments utilized research
farms associated with Cornell University and were implemented be-
tween August 2020 to July 2023. We have collected millions of sensor
readings for our crop NEFs and tens of gigabytes of data from our live-
stock NEF at the time of writing. These deployments highlight both
the flexibility of the NEF concept, as well as the importance of tailor-
ing each deployment to fit the needs of each individual farm. Fig. 1
illustrates a common digital agriculture system framework, emphasiz-
ing the novelty that lies in the mass customization possible for specific
components like sensors and networking. This customization aspect is
fundamental to ROAM, which tailors solutions to unique farm needs.
A NEF uses cutting-edge networking approaches and technologies such
as TV White-space (TVWS), LoRa, and sensors such as in situ plant wa-
ter sensors [17] (See Fig. 1). The specific hardware and software of
these deployments are described in Comosum: An Extensible, Recon-
figurable, and Fault-Tolerant IoT Platform for Digital Agriculture [17].
Fig. 1 shows a data-driven irrigation graphic of how a NEF connects the
Sensing Module through a (1) sensor, (2) sensor box, and (3) subedge or
edge computation device to the (4) Computing Module through a cloud
software service to the (5) Actuating Module with a raspberry pi [18]
and (6) actuation function.

In addition, we conducted a stakeholder analysis by interviewing
11 farmers in California, Washington, and New York. In these inter-
views, we identified cost, performance, and risk as objectives farmers
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use to evaluate new technology investments. The farmers we inter-
viewed expressed sensitivity to decisions that affected these objectives
and through our analysis we understood variations across different pos-
sible NEF architectures using principles in system engineering.

To validate ROAM on a commercial farm, it was used on Cheng Xin
Garden LLC (CXG). CXG is a 120-acre wine grape commercial viticulture
farm in Bakersfield, California. Due to limitations in California’s water
supply caused by frequent droughts and forest fires, CXG was seeking
to increase their farm efficiency, but was constrained by the lack of
knowledge on available technologies and the ability to envision the re-
sults from adopting a NEF. As part of the process, CXG used ROAM to
consider different decisions necessary to create a NEF that could meet
their needs. The process required in-depth user interviews where the
results were then encoded as input to ROAM, and used to evaluate the
output. The goal was to present a set of Pareto optimal architectures
that could increase CXG’s farm operational efficiency while accounting
for constraints and uncertainties.

After four weeks of interviews with the farm owner, we holisti-
cally understood the current situation, needs, and challenges of CXG’s
farming practices and created a configuration for their viticulture farm.
Through this process, CXG shared farm data that they had collected
over the course of six years. For example, CXG had data that showed
how a manual water tensiometer saved the farm 20% of water usage
and their cost of water was $100 per day in California, which can vary
from $50-$200 per day [19]. With this data, we created a tradespace
configuration file for CXG to be inputted into ROAM.

2.2. Decision tradeoffs

To effectively analyze the collected data, we use approaches and
techniques from Systems Engineering (SE). The tools in SE include a
range of quantitative and qualitative techniques that deepen our under-
standing of trade-offs [20]. These SE techniques enable the evaluation
and generation of a Pareto optimal set of decisions when navigating
complex systems [3]. Pareto optimal is a state in which resources within
a system are optimized such that improvement in one dimension would
lead to deterioration in another [21].

Our first SE approach to analyze NEF systems uses systems thinking
[22]. It is both holistic and reductionist and aimed at comprehending
and analyzing complex systems, along with the relationships among
their parts [22]. For example, in agriculture, it can be helpful to un-
derstand the elaborate interactions among different components of an
agricultural system, such as the interconnections between crops, soil,
water, and weather [15]. By viewing the system as a whole initially
and then honing in on specific parts, it becomes possible to identify the
main leverage points to boost the system’s performance and resilience,
thereby cultivating more effective and sustainable solutions.

2.3. ROAM architecture

ROAM is an open-source software system. It includes a client-side
browser-based interactive application and a server-side back-end ser-
vice. ROAM is designed and developed in a back-end and front-end
setup due to the need for computational resources and data storage in
the back-end, as well as the need for a user-friendly interface to lower
technology barriers for our users. The server-side back-end is devel-
oped with Python as the core programming language and hosts most
functionalities, including optimization, analytics, and data storage. We
selected the Python Flask framework to develop the client-side web ap-
plication with Javascript as a core programming language. Both the
back-end service and the front-end application integrates functionali-
ties from multiple external libraries and custom modules.

The system consists of four main modules: the Decision, Rhodium,
Uncertainty, and Graphical User Interface (GUI) modules as seen in
Fig. 2. The Decision module defines and maintains the tradespace ar-
chitecture from the Tradespace Configuration File and it hosts the
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Fig. 2. System modules.

Tradespace Enumeration and Optimization algorithms. The Uncertainty
module defines the uncertainty variables and models uncertain farming
environments using historical data. The Rhodium module hosts func-
tions responsible for the extension and orchestration of the integrated
third-party Many-Objective Robust Decision Making (MORDM) libraries
and provides key analysis of the tradespace. The GUI hosts the front-end
interface and handles user data acquisition and visualization.

In the following sections we will describe how ROAM computa-
tionally models and analyzes decision tradeoffs to recommend a set of
Pareto optimal NEFs.

2.3.1. Tradespace model

To model and evaluate NEF designs, we draw from the study of
systems architecture within SE for developing configurable complex
systems and evaluating how well they satisfy stakeholder needs [23].
To decompose a complex system, we formulate a systems architect-
ing optimization problem that represents a complex architecture as a
set of decisions using an encoding scheme [23]. Generally, optimiza-
tion problems that result from decisions in systems architecture are
combinatorial. To treat programmed decisions analytically we segment
the decisions into six canonical decision classes: standard form, assign-
ing, partitioning, permuting, downselecting, and connecting [23]. These
patterns are interlinked and have some overlap, so we can think of the
six classes as combinations of standard form and down-selecting deci-
sions.

The standard form (SF) decisions are decisions in which a user can
only select one option from a set of alternatives. When making multiple
SF decisions, the number of possible combinations of decisions is given
by

e €))

where m; is the number of alternatives for an i decision and N is the
number of decisions to be made [23]. In contrast, down-selecting (DS)
decisions are where a user can choose more than one alternative. The
number of possible choices is given by
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2N )

where N is the number of alternatives. The next step of creating the
tradespace model is to create decisions to define the architecture space
and subsequently to create objectives to evaluate the architectures. For
our analyses, a NEF focuses both on pragmatic deployments of software
and hardware components, so in any decision space we need to consider
multiple types of decisions. Table 1 is an example of a set of decisions,
their descriptions and importance, and the canonical class used to create
and evaluate a NEF.

2.3.2. Problem formulation

The objective formulations and their subsequent values were in-
formed by robust data sources, including journal publications [24][25],
insights from 11 farmer interviews, and practical experience from five
NEF deployments. This comprehensive data set encompasses a range of
crucial factors, such as annual yield increments, production objectives,
device pricing, component costs, and maintenance expenses. This ap-
proach ensures that our evaluation is not only grounded in empirical
data but also reflects the real-world intricacies of agricultural systems.

Once the tradespace has been constructed, it is essential to define
evaluation objectives for each architecture, as guided by literature and
stakeholder analysis [26][23]. In our case, cost, performance, and risk
were identified as key objectives, reflecting the priorities and sensitiv-
ities of the farmers we interviewed. This methodology, supported by
principles in system architecture, allows for a nuanced understanding
of variations across different architectures. The creation of value func-
tions for each decision, akin to Crawley and Selva’s “transfer function”,
facilitates a comprehensive evaluation, taking into account the com-
plexity and dynamic nature of agricultural systems.

2.3.3. Formulation of objectives

To formulate the Pareto optimal investment operating policy for a
given farmer we create a function composed of three objectives. A pol-
icy represents a specific set of decisions made from available choices,
each affecting the farm’s operational outcome. For example, selecting
a water sensor and pairing it with a data storage mechanism, like a
Raspberry Pi, forms part of a policy. A complete policy is thus an amal-
gamation of such decisions across different categories. For instance, in
Table 3 a policy is composed of six decisions. From work done by Cohon
and Marks, and Reed et al. we can define our multi-objective prob-
lem with a vector, F(d), as demonstrated by the following equation
[27]1[28].

F(d)= (Fcost’ Frisk’ F["-”f) ®
Vd € Q @

subject to user defined:

F Frisk’ F, erf (5)

cost> D

Here d is a vector of decision variables in the tradespace Q. These
decisions can be expressed as real numbers utilizing value functions.
Each F(d) operating policy is evaluated based on its cost, risk, and per-
formance which can be constrained by user input. For example, because
we want a NEF system to be low cost, we can constrain cost to be less
than or equal to $2000 and it would be denoted as F,;, <2000. In terms
of optimization, the performance objective is maximized while the cost
and risk objectives are minimized. Each objective will be explained in
the following sections.

Cost objective. The first goal of the system is to minimize cost as de-
noted by the equation:
F,

cost

=H+M+S+1 (6)

The cost objective includes the cost of Hardware (H), subsequent Farm
Maintenance Cost (M), Software (S), and Installation (I). We input the



S.-W. Chin, G. Rubambiza, Y. Zhao et al.

Smart Agricultural Technology 8 (2024) 100452

Table 1
Description of canonical decisions and their importance for the architecture.

# Decision Name Why it is important Importance Justification

1 Product Information The type of Product Information to be collected is an impor- Very High This is a downselecting decision as we are able to decide
tant decision that will also impact scalability. Animals will on multiple alternatives from the initial set. Decisions range
likely require a higher-frequency monitoring as opposed to from resources that require the lowest-frequency monitoring
plants. to animals requiring the highest-frequency monitoring.

2 IoT Devices IoT devices are a crucial decision that must be weighed be- High This is a standard form decision because we think that a sys-
tween cost and functionality. The devices that are too costly tem with more than one manufacturer would not be scalable
will not be feasible for farmers to implement, while those enough to accommodate a host of users.
that are not functional will not be able to collect robust
enough data.

3 User Interface The type of user interface is an important component that Medium We can provide multiple types of user interfaces for our users
can affect performance and user attraction. The different at the same time, such as a message, website, and applica-
user interfaces can provide different functions and it is where tion. These options are not exclusive to each other.
the customer can directly interact with our system, so we
think it’s a high priority.

4 Systems Architecture The possibility of scaling is important for our system as dif- Medium This decision is SF since it is formulated as picking one range
ferent system architectures might rule out a growing user from a set of options.
base in the future. Similarly, scalable architectures are likely
to require more initial effort to set up the system and will
only pay off with a large user base.

5 Data Type The type of Data Storage is an important decision as it de- Low This is a downselection decision as we could think of
termines the security measures we intend to implement. A a hybrid system that uses a cloud-based database and a
blockchain-based data storage would be the most secure de- blockchain backend in concert with each other. A CSV based
cision which will impose constraints on the scalability of the backend would have the smallest amount of dependencies
possible user base. but would likely lack scalability and performance.

6 Data Collection One important process in our system is Data Collection from Low Since our system has multiple components for data collect-
the user side. There are multiple ways we can do them, each ing, such as measuring temperature, tracking product infor-
method can strongly affect our system architecture and per- mation. Some of them can be automatic, while some of them
formance. For example, if we choose manual input, then we have to be manual. We can have manual, automatic, or semi-
need to consider a model for human labor. The options are automatic.
flexible since the method of collecting data does not block
our system performance.

7 Data Storage The data storage size is used to limit our capacity for stor- Low We consider this decision as SF since the options are exclu-
ing our product information, user account information, and sive to each other, we can only choose one from them.
some intermediate data. The scale of our storage size deter-
mines our project scale and server stress.

8 Notification System This is a process that is crucial for the functionality of the Low We can see this as a down selecting decision as a subset of
system. In order for the stakeholders in the network to re- alternatives would be possible such as Email and real-time
ceive value, they must be able to interface with the system. display simultaneously.

9 File Exchange Type File exchange types that are streamlined will allow the sys- Very Low This is a standard form decision as a system with more than
tem to run more efficiently. If they are not, then the process- one file format would be very fragile with respect to ensuring
ing time will increase. data consistency.

10 Machine Learning Machine learning model allows us to make predictions on High This is a standard form decision since it takes too long to

yield, risk, weather, etc.

make a prediction; at present, we can try only one option.

actual brand names along with the associated costs of the hardware
or software component, recognizing that prices can vary widely across
different types and brands. This approach ensures a precise cost estima-
tion tailored to specific farm requirements and budgetary constraints.
For example, we input the cost of a Davis Instruments soil moisture
sensor to be $85 [29]. The hardware and installation costs are vital
to minimize the total costs of implementing an NEF. Farmers typically
have a limited upfront budget for investments and face many costly de-
cisions when investing in new technologies [30]. For example, given a
particular user’s budget, the cost of sensors may make deploying full
sensor networks unfeasible in some contexts [31]. Thus, if the cost of
adding sensors is too high from a particular user’s perspective, they will
not be implemented on farms where capital and cash reserves are a
constraint. In regards to maintenance cost, unreliable sensors that need
constant repair would increase the M, resulting in large labor costs for
the farmer. We factor in the time needed to calibrate sensors, fix de-
vices, clean equipment, and change batteries based on experience from
deployments of sensors onto a farm [32]. If the costs to keep the sys-
tems running outweigh the benefit of optimizing the farm, it will be
ineffective at helping farmers. Lastly, software costs are increasingly

important as corporations pivot to Software as a Service (SaaS) models
where cost per computation is the norm. As a result, for larger farms
with an abundance of sensors, computation costs, and software services
will be much more expensive. It is also important to note that the type
of farm, region, and climate also influence which sensors and decisions
are the most suitable. For example, a soil moisture sensor is less suitable
in environments where the temperature regularly drops below freezing
point and the ground freezes. It is important to note that efforts were
made to create a holistic cost objective, but in complex living systems
such as a farm, there are many unforeseen costs.

Risk objective. The second system goal is to minimize risk,

Fou=S+N @

This equation quantifies the interruption risk of the Sensor Devices (S)
and Networking (N) of an NEF design. In a deployed NEF, there are two
reasons why data from sensors might be incorrect or missing. First, the
sensor hardware itself can malfunction due to climate, environmental,
or implementation factors. These malfunctions can lead to both gaps in
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Table 2
Uncertainties problem formulation.
Uncertainty Variable ~ Notation ~ Lower Bound  Upper Bound
Climate Complexity C 0 3
Precipitation R 0 3*Expected Precipitation (user input)

data collection and incorrect data collection, both of which can lead to
inaccurate decision support and potentially necessitate costly repairs.
These risks are captured by S in the above formula. On the other hand,
if the network is unreliable, even if the sensors are collecting data prop-
erly, it cannot be transmitted to edge and cloud computers. This risk is
captured by N in the above formula.

Understanding S and N are important for the quality of insights a
NEF can generate. As a result, if there is a great deal of interruption risk,
it can be linked to a bad quality NEF architecture. In ROAM, we define
interruption risk as the probability of failure in the S to send and N to
transmit data packets. As a result, the range of risk is between 0% to
100%. For example, in section 3 we used input from the farmer and our
deployments to quantify the risk that S and N are not able to operate.
While ROAM can use default quantities for these risks determined by
averaging the risks experienced by farmers in our user interview studies,
we allow farmers to alternatively provide their own quantities based on
their personal evaluation based on the local conditions at their farm. As
systems become ever more complex with many dependencies the risk
objective will be all the more important.

Performance objective.
mance,

The third system goal is to maximize perfor-

Fppy=Y+W +E+L ®)

The equation above represents the utility of the system’s service to
users, an objective directly tied to creating value or increasing prof-
itability for users. The performance objective is developed as a combi-
nation of Yield Increase (Y), Water Cost Savings (W), Electricity Cost
Saving (E), and Labor Cost Savings (L), representing four ways in which
an NEF deployment can add value for farmers. One of the primary ways
in which an NEF can improve farms is by generating insights that al-
low farmers to grow more high-quality crops per acre of farmland. For
example, a NEF can identify underperforming parts of the field and sug-
gest how to improve them and increase yield. In addition, an NEF can
improve water costs by suggesting optimal watering amounts based on
sensor data such as soil moisture levels [33]. NEFs also have different
electricity costs depending on the specific technologies used; for exam-
ple, solar power may be cheaper than disposable batteries in the long
run. Finally, NEFs can remove the need for human labor in some cases.
For example, one of the farmers we interviewed during our user re-
search described needing to hire a worker to walk the field that cost him
$128 everyday to measure soil moisture in every hectare of the farm,
labor which would not be necessary for a NEF with a sensor network to
measure soil moisture. For instance, if a yield increase of $1000 and a
decrease in water use by $500 is achieved, the performance would be
an increase of profit by $1500. There is no lower bound or upper bound
to performance as it can be negative and the values depend on user in-
put. For example, in section 3 the data utilized for this metric is based
on both our three years of deploying DA systems and the farmer’s input.
Performance was often thought about as the most important objective
for our farmers in evaluating new technology investments.

2.3.4. Uncertainties

Once we establish the objectives and value functions for evaluating
architectures in the tradespace, we must define the uncertainties and
their effects on the various architectures within the tradespace. To im-
prove farmers’ competitiveness and extract insights from farming for
decision-making, the system must be evaluated under the deeply uncer-
tain farming environment reflecting reality. More formally, uncertainty

in the tradespace model characterizes the behavior of an uncertain fac-
tor affecting a farm as a variable [28]. The reason for having these
uncertainties is to measure an architecture’s performance in a variety
of uncertain environment instances, which provides a more realistic
evaluation of the architecture and aids the decision-making process.
The following sections focus on the uncertainty variables constructed
in ROAM.

Climate. The farm climate is a complex nonlinear system, where dif-
ferent levels of short-term climate-induced complexity may affect the
performance of the farm. Climate Complexity (CC) can lead to risks of
sensor malfunction and suboptimal performance of hardware devices
as they operate while exposed to outdoor farming environments. For
example, solar power sources can face risks of interruption in extreme
weather events such as large storms. Utilizing information theory tech-
niques, the CC uncertainty variable aims to represent an approximate
proxy to analyze and predict the level of regional short-term climate
variability in a given farm area. CC uncertainty is modeled using an
entropy-based measurement that is referred to as SampEn. It provides a
nonlinear approach for analyzing and predicting the entropy or com-
plexity of climatic time series [34]. It is a probability measure that
quantifies the likelihood that sequences of consecutive data match one
another within a tolerance r and remain similar when the length of the
sequences is increased by one sample. In this way, we quantify the reg-
ularity and the unpredictability of fluctuations in weather to factor into
our model. In order to calculate individual farm level SampEn we use
data from the Global Climate Models (GCMs) dataset [35]. The data is
then processed based on the algorithm introduced in the paper Approx-
imate Entropy and Sample Entropy: A Comprehensive Tutorial [36].
According to the SampEn calculations of climate complexity of regional
meteorological data found by Shuangcheng et al. in the paper Mea-
surement of Climate Complexity, the authors found from using random
climate data that SampEn approached 0 and with fully homogeneous
data that it approached 3 [34]. As a result, we use the SampEn range
from 0 to 3 with a uniform distribution to model climate complexity as
shown in Table 2.

Precipitation. Precipitation has been directly linked to impacting the
yield of agricultural products [37]. According to Hunho et al., it is seen
that increased precipitation leads to a longer growing season and higher
yields which in turn becomes higher profits for the farmer. On the other
hand, in a study published in the journal Global Change Biology, pre-
cipitation was detrimental to certain crop yields [38]. In the study, corn
yields were reduced by as much as 34 percent during years with exces-
sive precipitation [38]. It was estimated that between 1989 and 2016,
intense rain events caused $10 billion in agricultural loss [38].

The effects of climate change have a large impact on precipitation
[37]. It was cited as a reason for the increased and unpredictable pre-
cipitation [37]. Precipitation is highly regional, so climate change is
a great cause of concern for precipitation in the future as farmers will
need to plan for excessive or shortages in precipitation which will affect
the profitability of the farm. To model precipitation we utilize a normal
distribution of historical annual precipitation and calculate the mean
and standard deviation for the region of the farm area being studied.
To anticipate how precipitation affects the performance of the farm, we
built linear regression models based on publicly available United States
datasets that correlate historical precipitation measurements with his-
torical crop yield to represent the effect of precipitation on crop yield.
To set the range we use the empirical rule which states 99.7 percent of
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values lie above and below three Standard Deviations (SD) of the mean
[39]. To run the model users input the geocoordinate of the farm of
interest.

How uncertainties affect decision making. Understanding the impact of
climatic uncertainties on digital agriculture systems is crucial for tai-
loring solutions to the specific environmental conditions of a farm.
Factors such as CC and precipitation patterns can significantly affect
the performance and reliability of DA technologies. In ROAM, these un-
certainties are integrated into the decision-making process to ensure
that the recommended solutions are resilient and effective under var-
ious climatic conditions. For instance, we will explore different states
of the world (SOW) by assuming varied amounts of precipitation, sys-
tematically varying this key parameter over 1,000 iterations to simulate
its potential impacts on agricultural outcomes. This approach allows us
to examine the resilience and adaptability of policy decisions under a
wide range of climatic scenarios. By integrating a detailed analysis of
precipitation and CC variability, we aim to provide a nuanced under-
standing of how each decision fares in different SOWs. Further details
on this methodology and its implications for policy evaluation will be
discussed in section 2.3.5. The ROAM architecture takes into account
climate-induced risks and uncertainties by evaluating how different
components of the system, such as sensors and networking devices, per-
form under different climatic scenarios. For instance, sensor selection
in ROAM is influenced by the local climate, as some sensors may be
more susceptible to malfunction or degradation in harsh weather con-
ditions. Similarly, networking technologies are assessed for their ability
to maintain stable communication in the face of climate-induced disrup-
tions. When running ROAM for a farmer, we utilize the user’s latitude
and longitude to identify historical weather data from their farm area to
model climatic uncertainties. By simulating various climate scenarios,
ROAM helps identify architectures that are not only cost-effective and
performance-optimized but also resilient to uncertain climatic condi-
tions. This approach increases the reliability that DA systems designed
using ROAM are adaptable to the specific climatic realities of each farm.

Many Objective Robust Decision Making (MORDM) is a model that
does optimizations under uncertainty. In creating ROAM, we leverage
Rhodium to apply MORDM to ROAM to find the Pareto optimal NEF un-
der uncertain environments (subsubsection 2.3.4) [40][41]. Rhodium is
an open-source Python library developed by researchers at Cornell Uni-
versity [41]. Robust Decision Making (RDM) is an analytic framework
that helps identify potential robust strategies for a particular problem,
characterize the vulnerabilities of such strategies, and evaluate trade-
offs among them [28]. MORDM is an extension of RDM to account for
problems with multiple competing performance objectives, enabling the
exploration of performance tradeoffs with respect to robustness [27].
We use the Multi-Objective Evolutionary Algorithm (MOEA) provided
by Rhodium to optimize the Pareto set of ‘policies’ calculated in the
Decision Module under a representative or average instance of the un-
certain environment also known as State-of-the-World or SOW. Each
representative instance is taken by examining a distribution and utiliz-
ing the average. The Pareto efficient policies are further explored using
the uncertainty analysis functions provided by Rhodium. Finally, the
sensitivity analysis provided by the SALib python library [27] is used to
analyze and categorize the effect of different uncertain elements in the
farming environment.

2.3.5. MORDM

Optimization. To find the Pareto optimal policy for a NEF we built a
function that calculates the tradespace Pareto front. The function called
‘calcPareto’, is run in the Decision Module. In order for us to con-
sider uncertainties, we use a Rhodium optimization function to find
the Pareto optimal set of policies based on the performance, cost, and
risk objectives (subsubsection 2.3.3). The optimization function in the
Rhodium Module is a MOEA that utilizes the Non-dominated Sorting
Genetic Algorithm (NSGA-II) algorithm provided by the Rhodium li-
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brary [41]. Together these two optimization methods serve different
purposes in exploring the Tradespace. The *calcPareto’ function in
the Decision Module enumerates all possible policies solely based on
the static decision configurations defined by the Tradespace Configura-
tion File, which finds the initial optimal set of policies on paper based
on prior knowledge about the decisions. The optimization function in
the Rhodium Module iteratively adjusts the controlled parameters or
combination of decisions while searching for the optimal set of policies
under the mean SOW. This function then finds the set of policies most
optimal under the characterized uncertainty model.

Scenario discovery. The scenario discovery function is used to ex-
plore and analyze the influence of uncertainties in the Pareto optimal
set of ‘policies’ that are found by the Rhodium optimization mod-
ule [41]. To run this function, first, a set of uncertainty variables
are defined using the parameters and distributions on the Uncertainty
model (subsubsection 2.3.4). Then, a Rhodium internal function, * sam-
ple lhs’, is called to generate a standard 1000 SOWs through a Latin
Hypercube Sample — a technique used to reflect the true underlying
distribution on the uncertain parameters [41]. Each SOW consists of
a combination of uncertainty variables and represents an instance of
the uncertain environment. Then, the policy evaluation function is ex-
ecuted to evaluate each policy in the Pareto optimal set on the 1000
SOWs. The results produced from scenario discovery can be used to vi-
sualize and explore different characteristics of various Pareto policies,
such that policies demonstrate tradeoffs in objectives when evaluating
against uncertainties. The analysis of these tradeoffs can provide us with
insights into how different system architectures may be a better fit for
certain scenarios (e.g. excessive precipitation) that cause a policy to fail
and be vulnerable. These tradeoffs will be further explored and conclu-
sions can be drawn through sensitivity analysis.

Sensitivity analysis. The Rhodium library’s internal implementation ex-
tended from Python’s SALib is used to perform global and regional
Sensitivity Analysis (SA) on modeled uncertainties which are performed
to prioritize the factors (parameters) most significantly affecting the
output and fix those that are not [41]. This functionality is enabled by
the browser-end interface; here users can specify an objective and pol-
icy of their interest to investigate, and then the SA function performs
global SA using commonly used methods. First, the Method of Morris is
used to analyze which decisions are most influential to the output ob-
jectives and the effect of uncertainty variables in isolation [42]. Second,
the Sobol method is used to calculate second-order and total-order in-
dices for capturing the interactional effects between uncertainties [43].
The function can also perform one-at-a-time (OAT) or regional SA to
explore each parameter in detail. In OAT SA, we fix all parameters at
their default value except one [44]. For this one parameter, we then
sample across its entire range and observe how the objective of interest
changes.

Uncertainty input. A user is able to input their own farm uncertainties.
The first step is to define the farm uncertainties and how they affect
an architectural policy. If it is unknown than default values predefined
within the function ‘farm approach’ are used. For example, with
greater precipitation, yield may increase and watering costs may de-
crease. The function ‘setupModel’ is used to allow for user input
through the web interface of what the average uncertainty value will
be for their farm. Once these uncertainty parameters are set, we can
use the ‘optimizeModel’ function to run 10,000 function evaluation
calls of NSGAII to calculate the optimal policy in the uncertain state of
the world.

3. Results

In our study, we assisted Cheng Xin Garden (CXG) in streamlining
their decision-making process by applying ROAM to navigate through
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Table 3
Configuration for Cheng Xin Garden LLC.
# Decision Name Description Alternative 1 Alternative 2 Alternative 3 Class Importance
1 Water Sensor The methods to collect water stress data Manual Sampling Glass Tube Digital Sensor SF 1
2 Humidity Sensor The methods to collect humidity and temperature Manual Sampling Digital Sensor N/A SF 1
3 Microcontroller The devices put in the agriculture field FarmBeats CR6 Datalogger Arduino SF .75
4 Data Storage The type of storage for product information and Raspberry Pi Cloud N/A SF 1
user data
5 Analytics The model for prediction or applications for Model Predictive Control On/off Control Scheduling SF 1
analytics of water stress (machine learning model) (closed loop) (open loop)
6 Irrigation Controller How to water the plants B-Hyve Smart Hose Rachio Raspberry Pi SF 1
Watering Timer
Trade Space Exploration
For The Software-Defined Farm
Tradespace Exploration is a decision-support tool developed to find the optimal architectural
designs for The Software Defined Farm using a Robust Decision Making framework
This tool has the capability of identifying potential robust strategies for the architectural design.
analyzing the vulnerability of each strategy, and evaluate their performance in deep uncertainties.
Parameters: Functions: Log:

Crop Type:

GrOp ype [ 1] Generating TradeSpace, Please wait for outputs...

Farm Area (acres): [ Calculate Pareto Front

444

User Amount: Updato Modsl

[1000

SampEn:

26—

Precipitation:

1302.775

Fig. 3. Generate tradespace.

a vast array of choices to become a Network-Enabled Farm (NEF).
The Tradespace Configuration File (TCF) was configured to encapsulate
CXG’s distinct farm requirements and constraints, leading to the iden-
tification of 324 sets of potential decisions or policies. Our approach,
utilizing advanced analytical techniques, progressively narrowed these
possibilities to 18 Pareto optimal policies, considering the unique fac-
tors of CXG’s farm environment. Through the integration of uncertainty
analysis and the integration of the farm owner’s preferences, we fur-
ther refined these choices to two and ultimately recommended the
most effective policy. This tailored solution was achieved by leverag-
ing a combination of scenario discovery, optimization algorithms, and
a deep understanding of CXG’s operational context, thus demonstrating
the utility of ROAM.

The following result sections will discuss our work with CXG. First,
the tradespace was enumerated as shown in Fig. 4. From this enumer-
ation, we found the Pareto front as shown in Fig. 5. Here we high-
light distinct policy points within the Tradespace: those reflecting a
risk-averse approach with lower performance as measured in profit as
defined in 2.3.3 and cost the (risk < 0.3) and a singular, higher risk
point (risk = 0.6) indicative of a risk-tolerant strategy. Despite their
differences, all points are Pareto optimal, with the higher risk point
correlating with increased performance, while the lower risk points
manifest in reduced performance. The introduction of uncertainties in
Fig. 6 further refines these optimal points, underscoring the impact of
environmental factors on policy efficacy. Subsequently, we conduct a

what-if analysis through scenario discovery, examining the performance
of each Pareto optimal policy under 1000 varied situations, as shown
in Fig. 7. This comprehensive approach, as demonstrated in our col-
laboration with CXG, was pivotal for understanding decision-making
dynamics in the CXG complex farming scenarios.

3.1. Generate tradespace

To test the utility of ROAM on CXG, we first inputted all of CXG’s
decision points to create the TCF that represented the needs and con-
straints of their farm environment. The TCF was created from a JSON
skeleton provided by ROAM, which consists of a list of decision struc-
tures as detailed in section 2. Table 3 shows the various decision points
we identified and encoded in the TCF.

After the configuration was imported, Generate Tradespace ini-
tiated the Tradespace Exploration workflow by generating the
Tradespace Network and enumerating all possible policies that can
be constructed based on the given configuration. In the unconstrained
architecture space, there were six Standard Form (SF) decisions with
three alternatives each and two SF decisions with two alternatives. As
a result, ROAM found 324 possible decisions in CXG’s tradespace, as
shown in Fig. 3.

Calculate Pareto Front then computed the Pareto optimal set
of policies in the architectural space without considering uncertain
factors in the farming environment. Using the ROAM optimization al-
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Fig. 4. Visualization of enumerating the trade space with performance being
the increase in farm profitability.
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Fig. 5. Visualization of the trade space Pareto front.

gorithm, 18 Pareto optimal policies were found in the tradespace for
CXG’s configuration. Once narrowing the tradespace to 18 policies we
perform further analysis in MORDM where we mined for the Pareto op-
timal set of policies to analyze decision tradeoffs. Fig. 4 shows the entire
tradespace on a two-dimensional plot, where the x-axis is the cost de-
noted in dollars, the y-axis is performance denoted by profit in dollars,
and the z-axis depicted through color coding is risk denoted by a per-
cent as discussed in 2.3.3. Fig. 5 shows the policies on the Pareto front
of the tradespace that were generated for CXG.

3.2. Analysis in MORDM

Many-Object Robust Decision Making (MORDM) was then used to
decipher the policies’ performance, cost, and risk of CXG under simu-
lated uncertain environments. To initiate analysis using MORDM, CXG
inputted additional constraints and specifications on the tradespace.
This allowed CXG to narrow the scope of analysis by specifying the
key parameters of their farm region, including the type of crop grown,
the area of the farm, the estimated climate complexity, and the average
precipitation level. CXG was then also able to specify a set of constraints
on the objectives to define the ideal tradeoffs for their farm. Finally, im-
posing objective constraints was used to classify the policies of interest
and identify the key uncertainties for later analysis.

With the defined parameters, the software used a many-objective
optimization algorithm to calculate the optimal set of policies among
the tradespace Pareto front, at the mean State-of-the-World (SOWs). The
new set of policies found by the algorithm are the optimal policies after
accounting for the effects of uncertainties, modeled through stakeholder
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Fig. 6. Optimal set of policies after factoring in uncertainties.

analysis and research detailed in subsubsection 2.3.4. Although hard to
see as the 18 points in Fig. 5 are overlapping with each other due to
similar values, in Fig. 6 after factoring the mean SOWs there are nine
remaining optimal policies found among the tradespace Pareto front.
With the Pareto optimal set of policies under the mean SOWs iden-
tified, the software performed a what-if analysis of each Pareto policy
through Scenario Discovery under more robust uncertainties. A set of
1000 SOWs were generated based on the distribution for each of CXG’s
uncertainty variables. This analysis is depicted in Fig. 7, where Fig. 7a
presents a 3D plot and Fig. 7b showcases a 2D projection of the same
data. Notably, in Fig. 7b, it is observed that Policy 2 exhibits a higher
cost and better performance under the what-if analysis compared to the
other eight policies. In addition, Fig. 7 shows the continuous range of
the performance objective, in contrast to the discrete cost objective. The
insights from this what-if analysis were instrumental in narrowing down
the set of Pareto optimal policies, ultimately focusing on Policies 5 and
6, as depicted in Fig. 8. With Scenario Discovery, we were able to il-
lustrate distinctions in outcomes under what-if analysis among the nine
equivalently optimal set of policies to support further decision making.

3.3. Final result

Building on our Tradespace Exploration, we conducted further anal-
ysis to refine our selection from the initial nine options by taking into
account user preferences. The owner of CXG farm prioritized perfor-
mance enhancements over system cost and exhibited a high tolerance
for risk. This preference guided us to focus on Policies 5 and 6, as illus-
trated in Fig. 8. Both policies offered a similar balance between risk and
cost, yet differed slightly in performance. Scenario Discovery revealed
that Policy 5 aligns more closely with the decision maker’s preferences
compared to Policy 6, likely due to differences in sensitivity to labor
costs and farm area. Therefore, the components of Policy 5, which
include Water Sensor: ‘Glass tube’, Humidity Sensor: ‘None’, Microcon-
troller: ‘Farmbeats’, Data Storage: ‘Cloud’, Analytics: ‘Model Predictive
Control’, and Irrigation Control: ‘Raspberry Pi’, with a performance of
$2.85 million, a cost of $801.5, and a risk of 0.3, were recommended
as the most Pareto optimal setup for the NEF system at CXG.

Finally, when compared to CXG’s previous deployment, which was
not a network-enabled farm (e.g. sensors had to be read manually),
ROAM'’s Pareto optimal Policy 5 would lead to a 37% reduction in costs,
a 33% improvement in performance, and an 11% decrease in risk.

4. Discussion
With ROAM, farmers can understand what a Pareto optimal set of

choices for a farm of interest might be. The idea of creating a NEF sys-
tem is daunting due to the number of choices that must be made. In
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Fig. 7. Visualization of optimal decisions in Scenario Discovery 2D Plot.

section 3, the farm owner had over 324 policies to consider. ROAM
simplified the process and allowed the user to understand the trade-
offs when examining design decisions and to filter choices based on
their needs. ROAM presents Pareto optimal farm architectures based
on performance, cost, and risk while factoring in climatic uncertainties.
Further, ROAM is extensible, as the code is written in an object-oriented
manner, and allows interchanging new parameters and analytical opti-
mization models. ROAM users can conceptualize what a data-driven
farm management system might look like based on their specific goals
and farming environment.

To allow for ease of use for our target users such as farm-owners,
scientific researchers, industry professionals, and decision makers, we
have developed a browser-end interface to host the workflow of ROAM.
Users can use ROAM to generate interactive visualizations for commu-
nication and demonstrations with colleagues. Farm-owners and farm
stakeholders specifically utilize a configuration file and input parame-
ter features to customize and explore the decision space for their farms.
ROAM’s current implementation optimizes for cost, performance, and
risk. For additional optimization goals, an extension of the software
and further data analysis can be implemented.

ROAM allows the intricate dynamics of DA decision making to be
explored, particularly focusing on the nuanced tradeoffs inherent in
building a Pareto optimal NEF. Drawing from empirical studies, our
five live deployments at Cornell University, and validation of ROAM
through deployment to CXG, we have explored the granular aspects
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Fig. 8. Policy 5 and 6 in Scenario Discovery.

of building Pareto optimal DA systems. We recognize the importance of
integrating user input and modeling uncertainty to tailor robust DA sys-
tems to individual needs. Our methodology underscores the necessity of
a DSS that not only enhances the profitability of farming operations but
also navigates the complexities of utility, risk, and uncertainties inher-
ent in agriculture.

While our approach with ROAM has shown promising potential, it is
important to acknowledge its limitations. Firstly, the efficacy of ROAM
hinges on the availability and accuracy of farm data, underscoring the
need for precise and up-to-date information for Pareto optimal results.
Secondly, although ROAM is designed as a versatile tool adaptable to
various agricultural contexts, its utility is maximized only with detailed
user input specific to their farm’s operational goals. Third, ROAM’s
predictive capabilities, particularly in forecasting future climatic con-
ditions, are grounded in historical data analysis. This approach, while
informative, might not always capture the unpredictable nature of agri-
cultural changes. We acknowledge that past trends may not always be
reliable predictors of the future. Lastly, our initial validation focused
on wine grape production at CXG farm, revealing specific insights ap-
plicable to this crop. However, agricultural systems are diverse, and
future work will extend ROAM’s application to a broader range of
crops, enhancing its utility and adaptability across different agricultural
contexts. Despite these limitations, ROAM allows for a systematic un-
derstanding of the decision-making processes in building DA systems.

5. Conclusion

We presented the Realtime Optimization and Management System
(ROAM). It is designed to identify the Pareto optimal set of tradeoffs for
a Digital Agriculture (DA) based farm, which is important because DA
is seen as an approach to address the Global Agricultural Productivity
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(GAP) shortfall [1]. Specifically, DA enables data driven farm manage-
ment, which requires on farm networking. A Network-Enabled Farm
(NEF) uses new networking on a farm to enable DA. Based on deploy-
ing five NEFs, 11 farmer interviews, and testing on a farm in California,
ROAM is able to present Pareto optimal NEF architectures for a given
farm area of interest. ROAM presents general recommendations as to
how to best implement a NEF based off of data inputted by the user and
climatic data.
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