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The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems 
to increase farm sustainability and profitability. However, current systems suffer from problems of complexity 
stemming from the challenge of integrating diverse, often non-interoperable hardware and software components. 
In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA 
innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support 
system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal 
solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically 
evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University, 
each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming 
environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized 
decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm 
where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows 
users to quickly make key decisions in designing their DA systems to increase farm profitability.
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 Introduction

The 2018 Global Agricultural Productivity (GAP) index highlights 
growing disparity between food supply and demand, for both devel-
ed and developing countries [1]. Conservative estimates predict that 
ricultural production will need to increase by 25-70% above current 
vels to meet the demand expected by 2050. As a result, the world is 
ely to face a large-scale food security crisis [1]. A major challenge 
 increasing food production is farm efficiency which is challenged by 
ited rural infrastructure [2].
Digital Agriculture (DA), which is the use of data-driven techniques 

 increase farm productivity and sustainability, is thought of as a 
ethod of addressing the crisis [3]. Research into data-driven agricul-
re is growing. It envisions a future in which on-farm data collection, 
ocessing, and transmission are ubiquitous [4]. Several start-up com-
nies are developing applications for data-driven farms [5], while 
ajor agribusiness firms are developing data collection and processing 
stems [5].
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According to Douthwaite et al., DA innovations are complex and 
require involving farm stakeholders to understand their goals and con-
straints to successfully deploy [2]. First, current DA solutions are often 
fragile due to non-interoperable hardware and software [6]. Second, 
DA solutions often take a generalized approach that is not suitable for 
the myriad of farmers, each of whom has unique demands and con-
straints that require personalized solutions; e.g. a specialty grape farm 
can focus on achieving a specific taste profile while a row crop corn 
farm can focus on optimizing yield [3]. These challenges often lead to 
low understanding, slow adoption, and high costs in implementing DA 
systems [2].

1.1. Digital agriculture systems

According to Nemes, farms are agricultural systems that are typi-
cally used to grow a crop to be sold for profit [7]. Farmers are the main 
stakeholder as they typically own and/or operate the farm [8]. Accord-
ing to the United Nations, a farmer can be defined as a person who 
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ltivates land, raises crops, and/or livestock for sustenance or com-
ercial purposes.
Digital Agriculture (DA) is the use of data to improve farm decision-
aking which can lead to increased environmental sustainability and 
rm profitability [3]. DA is composed of sensing, storing, computing, 
d actuating technologies that leverage on-farm data [7]. Gathering 
assive amounts of sensor data requires a robust network, but this 
 a challenge as farms in rural areas often have limited or no on-
rm networking or Internet access [8]. A Network-Enabled Farm (NEF) 
dresses these issues by using new technologies or old technologies re-
rposed to provide networking capabilities in the middle of a farm 
ch as 4G LTE, Long Range Radio (LoRa), and unlicensed TV White 
aces (TVWS) [9]. A NEF uses these capabilities to sense, transmit, and 
alyze farm data to produce actionable insights for farm stakeholders, 
 described in Seamless Visions, Seamful Realities: Anticipating Ru-
l Infrastructural Fragility in Early Design of Digital Agriculture [6]. 
 NEF provides the networking infrastructure to enable data-driven DA 
 optimize farm management. Integrating advanced digital technolo-
es, as explored by Gebresenbet et al. (2023), can further enhance the 
ciency and sustainability of these agricultural systems [10].
A NEF is a modular abstraction of software and hardware tech-
logies that are designed to fit the various needs of farmers. The 
ftware abstraction is split into three modules: Sensing, Computing, 
d Actuating. The Sensing module abstracts away sensors that allow 
fferent hardware sensors to be connected through software. The Com-
ting module allows for different analytic algorithms to be run to 
pport decision-making. The Actuating module performs some type 
 action such as releasing irrigation valves. These modules can connect 
anufacturer-agnostic hardware devices such as computers located at 
e farmhouse, field sensors, and water valves. With both the software 
d hardware connected, farmers can visualize aggregate data from 
rmally incompatible farming systems on a web application interface 
1]. To gain operational insights, farmers can run analytics on their 
ta to make farm decisions. Lastly, a NEF enables the creation of dig-
l twins of the physical farming system to automate farm processes 
ch as precision irrigation.
Our goal, then, is to address the gap in balancing utility, risk, and 
certainties when building DA systems. Our approach includes inte-
ating systems engineering principles with our experience designing 
d deploying NEFs. Specifically, Realtime Optimization and Manage-
ent System (ROAM) employs a methodology that evaluates Pareto 
timal decisions for farmers. The result has been the design and im-
ementation of ROAM, a decision-support tool designed to empower 
rmers with insights into the tradeoffs involved in constructing DA 
stems. ROAM facilitates holistic analysis, real-time simulation, and 
certainty and risk modeling. In the next sections we compare ROAM 
 other approaches, discuss the design of ROAM in detail, our results, 
d the contributions of applying ROAM to a commercial farm in Cali-
rnia.

2. Related works

In recent years, there has been a growing recognition of the com-
exities involved in decision-making tradeoffs within agricultural sys-
ms and in particular for Pareto optimal approaches. Jones et al. 
ve highlighted the intricacies of these tradeoffs and emphasized the 
ed for leveraging new networking technologies to explore research 
portunities in this domain [12]. Historically, agricultural systems re-
arch has often relied on non-real-time data and indirect farm data in 
odeling and simulations, neglecting real-time farmer preferences and 
cision-making tradeoffs [13]. However, the advent of advanced net-
orking capabilities, such as the NEF system, has paved the way for a 
w generation of models that integrate real-time farm data, thus offer-
g valuable insights into decision-making processes [12].
The current state of the art in decision support systems (DSS) 
2

r agriculture reflects a divide between non-real-time simulation and be
Smart Agricultural Technology 8 (2024) 100452

odeling and those incorporating uncertainties. Non-real-time models, 
hile valuable in understanding decision-making under risk and utility, 
ve traditionally relied on frameworks like Subjective Expected Util-
 Theory (SEUT) to assess decision outcomes [14]. SEUT provides a 
stematic approach to analyze decision alternatives based on expected 
ility and risk, yet it falls short in capturing real-time decision dynam-
s and unique decision contexts [15].
On the other hand, modeling with uncertainties has gained traction, 
pecially concerning risks induced by factors like climate change. This 
gment of research emphasizes the adaptation of management strate-
es to evolving uncertainties, utilizing bio-economic and bio-decision 
odels to optimize decision processes [14]. Collaborative efforts be-
een climate specialists and agricultural scientists have yielded cli-
ate change models that assess the impact of uncertain climate condi-
ns on crop yields, underscoring the importance of interdisciplinary 
llaborations in addressing complex agricultural challenges [14].
However, despite these advancements, existing research still faces 
allenges in adequately addressing utility, risk, and uncertainties to 
commend Pareto optimal decision-making strategies. The insuffi-
ency of current models in quantitatively capturing real-time decision-
aking processes has been discussed, with calls for methods to model 
anging uncertainties effectively and assess decision support systems’ 
cacy in addressing these challenges [7,12]. Additionally, while some 
ogress has been made in sequential decision-making modeling us-
g ensembles of crop and climate models, this area of research is still 
scent [16].
In summary, the literature underscores the need for advanced de-

sion support systems that merge systems engineering with real-time 
rm networking capabilities, enabling farmers to make informed deci-
ons based on up-to-date data and addressing the evolving challenges 
 agricultural systems management.

3. ROAM

In this paper, we present the Realtime Optimization and Manage-
ent System (ROAM), a tool that identifies a Pareto optimal set of 
chitectural decisions for farmers to build their own NEF. ROAM de-
rmines a Pareto front of optimal DA system architectures a farmer 
n choose between, usually eliminating the vast majority of potential 
chitectures. Thus, ROAM potentially advances the state of the art in 
ploying DA systems. It performs up-front analysis necessary to de-
oy DA systems and eliminates major barriers to the diffusion of DA 
chniques into real-world farms and increasing farm efficiency.
The design of ROAM is based on formalizing a method to evaluate 
DA architecture by encoding user generated evaluation metrics and 
certainties to assess a set of architectural decisions. An architectural 
cision is the choice between different components of the DA system 
ch as between a soil moisture or light sensor. Then, the ROAM Con-
uration File is used to create nodes or objects that represent unique 
chitectural configurations of a DA system. An architectural represen-
tion is a subset of architectural decisions made to create a NEF system. 
ext, the nodes are passed into an optimization function to uncover a 
reto optimal set of architectural representations most suitable to a 
er’s need. To abstract away the complexity of the ROAM implemen-
tion, a front-end user interface is designed and used to allow for easy 
put of key features of the user’s farm, constraints, and uncertainties. 
is frontend creates the ROAM Configuration File used for ROAM eval-
tion. In addition, as output, the frontend displays interactive 3-D data 
sualizations of the farmer’s potential DA system tradespace, which is 
en used to allow for better understanding of the recommendations 
 the system. The entire process from beginning to end, from encod-
g the ROAM Configuration File to the end step of visualization of the 
alysis is modularized to allow for swapping in and out interchange-
le software. For example, different types of optimization models can 

 used for ROAM.
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Fig. 1. NEF decision space.

4. Contributions

ROAM is a tool composed of various algorithms and optimization 
ethods based on systems engineering principles. We validate the util-
 of ROAM through our own field trials at Cornell University and 
rough an application on Cheng Xin Garden LLC (CXG), a commercial 
lifornia-based viticulture farm. For the CXG deployment, ROAM iden-
ed a Pareto optimal set of architectures and ultimately assisted the 
er in selecting one architecture that increased the CXG farm efficiency 
hile accounting for constraints and uncertainties. To summarize our 
ork makes the following research contributions:

) A framework, model, and software system tool for understanding 
decision making when building network-enabled farms

) Design and implementation of ROAM
) Validation of the utility of ROAM through a commercial farm de-
ployment

 Materials and methods

1. Data collection

We implemented and deployed several NEF instances, including 
 apple orchard, corn and hemp greenhouse, dairy cow farm, and 
neyard [17]. These instances of NEF deployments utilized research 
rms associated with Cornell University and were implemented be-
een August 2020 to July 2023. We have collected millions of sensor 
adings for our crop NEFs and tens of gigabytes of data from our live-
ock NEF at the time of writing. These deployments highlight both 
e flexibility of the NEF concept, as well as the importance of tailor-
g each deployment to fit the needs of each individual farm. Fig. 1
ustrates a common digital agriculture system framework, emphasiz-
g the novelty that lies in the mass customization possible for specific 
mponents like sensors and networking. This customization aspect is 
ndamental to ROAM, which tailors solutions to unique farm needs. 
 NEF uses cutting-edge networking approaches and technologies such 
 TV White-space (TVWS), LoRa, and sensors such as in situ plant wa-
r sensors [17] (See Fig. 1). The specific hardware and software of 
ese deployments are described in Comosum: An Extensible, Recon-
urable, and Fault-Tolerant IoT Platform for Digital Agriculture [17]. 
g. 1 shows a data-driven irrigation graphic of how a NEF connects the 
nsing Module through a (1) sensor, (2) sensor box, and (3) subedge or 
ge computation device to the (4) Computing Module through a cloud 
ftware service to the (5) Actuating Module with a raspberry pi [18]
d (6) actuation function.
In addition, we conducted a stakeholder analysis by interviewing 

 farmers in California, Washington, and New York. In these inter-
3

ews, we identified cost, performance, and risk as objectives farmers ch
Smart Agricultural Technology 8 (2024) 100452

e to evaluate new technology investments. The farmers we inter-
ewed expressed sensitivity to decisions that affected these objectives 
d through our analysis we understood variations across different pos-
ble NEF architectures using principles in system engineering.
To validate ROAM on a commercial farm, it was used on Cheng Xin 

arden LLC (CXG). CXG is a 120-acre wine grape commercial viticulture 
rm in Bakersfield, California. Due to limitations in California’s water 
pply caused by frequent droughts and forest fires, CXG was seeking 
 increase their farm efficiency, but was constrained by the lack of 
owledge on available technologies and the ability to envision the re-
lts from adopting a NEF. As part of the process, CXG used ROAM to 
nsider different decisions necessary to create a NEF that could meet 
eir needs. The process required in-depth user interviews where the 
sults were then encoded as input to ROAM, and used to evaluate the 
tput. The goal was to present a set of Pareto optimal architectures 
at could increase CXG’s farm operational efficiency while accounting 
r constraints and uncertainties.
After four weeks of interviews with the farm owner, we holisti-
lly understood the current situation, needs, and challenges of CXG’s 
rming practices and created a configuration for their viticulture farm. 
rough this process, CXG shared farm data that they had collected 
er the course of six years. For example, CXG had data that showed 
w a manual water tensiometer saved the farm 20% of water usage 
d their cost of water was $100 per day in California, which can vary 
om $50-$200 per day [19]. With this data, we created a tradespace 
nfiguration file for CXG to be inputted into ROAM.

2. Decision tradeoffs

To effectively analyze the collected data, we use approaches and 
chniques from Systems Engineering (SE). The tools in SE include a 
nge of quantitative and qualitative techniques that deepen our under-
anding of trade-offs [20]. These SE techniques enable the evaluation 
d generation of a Pareto optimal set of decisions when navigating 
mplex systems [3]. Pareto optimal is a state in which resources within 
system are optimized such that improvement in one dimension would 
ad to deterioration in another [21].
Our first SE approach to analyze NEF systems uses systems thinking 
2]. It is both holistic and reductionist and aimed at comprehending 
d analyzing complex systems, along with the relationships among 
eir parts [22]. For example, in agriculture, it can be helpful to un-
rstand the elaborate interactions among different components of an 
ricultural system, such as the interconnections between crops, soil, 
ater, and weather [15]. By viewing the system as a whole initially 
d then honing in on specific parts, it becomes possible to identify the 
ain leverage points to boost the system’s performance and resilience, 
ereby cultivating more effective and sustainable solutions.

3. ROAM architecture

ROAM is an open-source software system. It includes a client-side 
owser-based interactive application and a server-side back-end ser-
ce. ROAM is designed and developed in a back-end and front-end 
tup due to the need for computational resources and data storage in 
e back-end, as well as the need for a user-friendly interface to lower 
chnology barriers for our users. The server-side back-end is devel-
ed with Python as the core programming language and hosts most 
nctionalities, including optimization, analytics, and data storage. We 
lected the Python Flask framework to develop the client-side web ap-
ication with Javascript as a core programming language. Both the 
ck-end service and the front-end application integrates functionali-
s from multiple external libraries and custom modules.
The system consists of four main modules: the Decision, Rhodium, 

ncertainty, and Graphical User Interface (GUI) modules as seen in 
g. 2. The Decision module defines and maintains the tradespace ar-

itecture from the Tradespace Configuration File and it hosts the 
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Fig. 2. System modules.

adespace Enumeration and Optimization algorithms. The Uncertainty 
odule defines the uncertainty variables and models uncertain farming 
vironments using historical data. The Rhodium module hosts func-
ns responsible for the extension and orchestration of the integrated 
ird-party Many-Objective Robust Decision Making (MORDM) libraries 
d provides key analysis of the tradespace. The GUI hosts the front-end 
terface and handles user data acquisition and visualization.
In the following sections we will describe how ROAM computa-
nally models and analyzes decision tradeoffs to recommend a set of 
reto optimal NEFs.

3.1. Tradespace model
To model and evaluate NEF designs, we draw from the study of 
stems architecture within SE for developing configurable complex 
stems and evaluating how well they satisfy stakeholder needs [23]. 
 decompose a complex system, we formulate a systems architect-
g optimization problem that represents a complex architecture as a 
t of decisions using an encoding scheme [23]. Generally, optimiza-
n problems that result from decisions in systems architecture are 
mbinatorial. To treat programmed decisions analytically we segment 
e decisions into six canonical decision classes: standard form, assign-
g, partitioning, permuting, downselecting, and connecting [23]. These 
tterns are interlinked and have some overlap, so we can think of the 
x classes as combinations of standard form and down-selecting deci-
ons.

The standard form (SF) decisions are decisions in which a user can 
ly select one option from a set of alternatives. When making multiple 
 decisions, the number of possible combinations of decisions is given 

1
𝑚𝑖 (1)

here 𝑚𝑖 is the number of alternatives for an i decision and N is the 
mber of decisions to be made [23]. In contrast, down-selecting (DS) 
cisions are where a user can choose more than one alternative. The 
4

mber of possible choices is given by M
Smart Agricultural Technology 8 (2024) 100452

(2)

here N is the number of alternatives. The next step of creating the 
adespace model is to create decisions to define the architecture space 
d subsequently to create objectives to evaluate the architectures. For 
r analyses, a NEF focuses both on pragmatic deployments of software 
d hardware components, so in any decision space we need to consider 
ultiple types of decisions. Table 1 is an example of a set of decisions, 
eir descriptions and importance, and the canonical class used to create 
d evaluate a NEF.

3.2. Problem formulation
The objective formulations and their subsequent values were in-
rmed by robust data sources, including journal publications [24][25], 
sights from 11 farmer interviews, and practical experience from five 
EF deployments. This comprehensive data set encompasses a range of 
ucial factors, such as annual yield increments, production objectives, 
vice pricing, component costs, and maintenance expenses. This ap-
oach ensures that our evaluation is not only grounded in empirical 
ta but also reflects the real-world intricacies of agricultural systems.
Once the tradespace has been constructed, it is essential to define 
aluation objectives for each architecture, as guided by literature and 
akeholder analysis [26][23]. In our case, cost, performance, and risk 
ere identified as key objectives, reflecting the priorities and sensitiv-
es of the farmers we interviewed. This methodology, supported by 
inciples in system architecture, allows for a nuanced understanding 
 variations across different architectures. The creation of value func-
ns for each decision, akin to Crawley and Selva’s “transfer function”, 
cilitates a comprehensive evaluation, taking into account the com-
exity and dynamic nature of agricultural systems.

3.3. Formulation of objectives
To formulate the Pareto optimal investment operating policy for a 
ven farmer we create a function composed of three objectives. A pol-
y represents a specific set of decisions made from available choices, 
ch affecting the farm’s operational outcome. For example, selecting 
water sensor and pairing it with a data storage mechanism, like a 
spberry Pi, forms part of a policy. A complete policy is thus an amal-
mation of such decisions across different categories. For instance, in 
ble 3 a policy is composed of six decisions. From work done by Cohon 
d Marks, and Reed et al. we can define our multi-objective prob-
m with a vector, 𝐹 (𝑑), as demonstrated by the following equation 
7][28].

(𝑑) = (𝐹𝑐𝑜𝑠𝑡, 𝐹𝑟𝑖𝑠𝑘,𝐹𝑝𝑒𝑟𝑓 ) (3)

∈Ω (4)

bject to user defined:

𝑜𝑠𝑡, 𝐹𝑟𝑖𝑠𝑘,𝐹𝑝𝑒𝑟𝑓 (5)

Here d is a vector of decision variables in the tradespace Ω. These 
cisions can be expressed as real numbers utilizing value functions. 
ch 𝐹 (𝑑) operating policy is evaluated based on its cost, risk, and per-
rmance which can be constrained by user input. For example, because 
e want a NEF system to be low cost, we can constrain cost to be less 
an or equal to $2000 and it would be denoted as 𝐹𝑐𝑜𝑠𝑡 ≤ 2000. In terms 
 optimization, the performance objective is maximized while the cost 
d risk objectives are minimized. Each objective will be explained in 
e following sections.

st objective. The first goal of the system is to minimize cost as de-
ted by the equation:

𝑜𝑠𝑡 =𝐻 +𝑀 +𝑆 + 𝐼 (6)

e cost objective includes the cost of Hardware (H), subsequent Farm 

aintenance Cost (M), Software (S), and Installation (I). We input the 
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Table 1

Description of canonical decisions and their importance for the architecture.

# Decision Name Why it is important Importance Justification

1 Product Information The type of Product Information to be collected is an impor-
tant decision that will also impact scalability. Animals will 
likely require a higher-frequency monitoring as opposed to 
plants.

Very High This is a downselecting decision as we are able to decide 
on multiple alternatives from the initial set. Decisions range 
from resources that require the lowest-frequency monitoring 
to animals requiring the highest-frequency monitoring.

2 IoT Devices IoT devices are a crucial decision that must be weighed be-
tween cost and functionality. The devices that are too costly 
will not be feasible for farmers to implement, while those 
that are not functional will not be able to collect robust 
enough data.

High This is a standard form decision because we think that a sys-
tem with more than one manufacturer would not be scalable 
enough to accommodate a host of users.

3 User Interface The type of user interface is an important component that 
can affect performance and user attraction. The different 
user interfaces can provide different functions and it is where 
the customer can directly interact with our system, so we 
think it’s a high priority.

Medium We can provide multiple types of user interfaces for our users 
at the same time, such as a message, website, and applica-
tion. These options are not exclusive to each other.

4 Systems Architecture The possibility of scaling is important for our system as dif-
ferent system architectures might rule out a growing user 
base in the future. Similarly, scalable architectures are likely 
to require more initial effort to set up the system and will 
only pay off with a large user base.

Medium This decision is SF since it is formulated as picking one range 
from a set of options.

5 Data Type The type of Data Storage is an important decision as it de-
termines the security measures we intend to implement. A 
blockchain-based data storage would be the most secure de-
cision which will impose constraints on the scalability of the 
possible user base.

Low This is a downselection decision as we could think of 
a hybrid system that uses a cloud-based database and a 
blockchain backend in concert with each other. A CSV based 
backend would have the smallest amount of dependencies 
but would likely lack scalability and performance.

6 Data Collection One important process in our system is Data Collection from 
the user side. There are multiple ways we can do them, each 
method can strongly affect our system architecture and per-
formance. For example, if we choose manual input, then we 
need to consider a model for human labor. The options are 
flexible since the method of collecting data does not block 
our system performance.

Low Since our system has multiple components for data collect-
ing, such as measuring temperature, tracking product infor-
mation. Some of them can be automatic, while some of them 
have to be manual. We can have manual, automatic, or semi-
automatic.

7 Data Storage The data storage size is used to limit our capacity for stor-
ing our product information, user account information, and 
some intermediate data. The scale of our storage size deter-
mines our project scale and server stress.

Low We consider this decision as SF since the options are exclu-
sive to each other, we can only choose one from them.

8 Notification System This is a process that is crucial for the functionality of the 
system. In order for the stakeholders in the network to re-
ceive value, they must be able to interface with the system.

Low We can see this as a down selecting decision as a subset of 
alternatives would be possible such as Email and real-time 
display simultaneously.

9 File Exchange Type File exchange types that are streamlined will allow the sys-
tem to run more efficiently. If they are not, then the process-
ing time will increase.

Very Low This is a standard form decision as a system with more than 
one file format would be very fragile with respect to ensuring 
data consistency.

10 Machine Learning Machine learning model allows us to make predictions on 
yield, risk, weather, etc.

High This is a standard form decision since it takes too long to 
make a prediction; at present, we can try only one option.
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tual brand names along with the associated costs of the hardware 
 software component, recognizing that prices can vary widely across 
fferent types and brands. This approach ensures a precise cost estima-
n tailored to specific farm requirements and budgetary constraints. 
r example, we input the cost of a Davis Instruments soil moisture 
nsor to be $85 [29]. The hardware and installation costs are vital 
 minimize the total costs of implementing an NEF. Farmers typically 
ve a limited upfront budget for investments and face many costly de-
sions when investing in new technologies [30]. For example, given a 
rticular user’s budget, the cost of sensors may make deploying full 
nsor networks unfeasible in some contexts [31]. Thus, if the cost of 
ding sensors is too high from a particular user’s perspective, they will 
t be implemented on farms where capital and cash reserves are a 
nstraint. In regards to maintenance cost, unreliable sensors that need 
nstant repair would increase the M, resulting in large labor costs for 
e farmer. We factor in the time needed to calibrate sensors, fix de-
ces, clean equipment, and change batteries based on experience from 
ployments of sensors onto a farm [32]. If the costs to keep the sys-
ms running outweigh the benefit of optimizing the farm, it will be 
5

effective at helping farmers. Lastly, software costs are increasingly or
portant as corporations pivot to Software as a Service (SaaS) models 
here cost per computation is the norm. As a result, for larger farms 
ith an abundance of sensors, computation costs, and software services 
ill be much more expensive. It is also important to note that the type 
 farm, region, and climate also influence which sensors and decisions 
e the most suitable. For example, a soil moisture sensor is less suitable 
 environments where the temperature regularly drops below freezing 
int and the ground freezes. It is important to note that efforts were 
ade to create a holistic cost objective, but in complex living systems 
ch as a farm, there are many unforeseen costs.

sk objective. The second system goal is to minimize risk,

𝑖𝑠𝑘 = 𝑆 +𝑁 (7)

is equation quantifies the interruption risk of the Sensor Devices (S) 
d Networking (N) of an NEF design. In a deployed NEF, there are two 
asons why data from sensors might be incorrect or missing. First, the 
nsor hardware itself can malfunction due to climate, environmental, 

 implementation factors. These malfunctions can lead to both gaps in 
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Table 2

Uncertainties problem formulation.
Uncertainty Variable Notation Lower Bound Upper Bound

Climate Complexity C 0 3

Precipitation R 0 3*Expected Precipitation (user input)
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ta collection and incorrect data collection, both of which can lead to 
accurate decision support and potentially necessitate costly repairs. 
ese risks are captured by S in the above formula. On the other hand, 
the network is unreliable, even if the sensors are collecting data prop-
ly, it cannot be transmitted to edge and cloud computers. This risk is 
ptured by N in the above formula.
Understanding S and N are important for the quality of insights a 

EF can generate. As a result, if there is a great deal of interruption risk, 
can be linked to a bad quality NEF architecture. In ROAM, we define 
terruption risk as the probability of failure in the S to send and N to 
ansmit data packets. As a result, the range of risk is between 0% to 
0%. For example, in section 3 we used input from the farmer and our 
ployments to quantify the risk that S and N are not able to operate. 
hile ROAM can use default quantities for these risks determined by 
eraging the risks experienced by farmers in our user interview studies, 
e allow farmers to alternatively provide their own quantities based on 
eir personal evaluation based on the local conditions at their farm. As 
stems become ever more complex with many dependencies the risk 
jective will be all the more important.

rformance objective. The third system goal is to maximize perfor-
ance,

𝑒𝑟𝑓 = 𝑌 +𝑊 +𝐸 +𝐿 (8)

e equation above represents the utility of the system’s service to 
ers, an objective directly tied to creating value or increasing prof-
bility for users. The performance objective is developed as a combi-
tion of Yield Increase (Y), Water Cost Savings (W), Electricity Cost 
ving (E), and Labor Cost Savings (L), representing four ways in which 
 NEF deployment can add value for farmers. One of the primary ways 
 which an NEF can improve farms is by generating insights that al-
w farmers to grow more high-quality crops per acre of farmland. For 
ample, a NEF can identify underperforming parts of the field and sug-
st how to improve them and increase yield. In addition, an NEF can 
prove water costs by suggesting optimal watering amounts based on 
nsor data such as soil moisture levels [33]. NEFs also have different 
ectricity costs depending on the specific technologies used; for exam-
e, solar power may be cheaper than disposable batteries in the long 
n. Finally, NEFs can remove the need for human labor in some cases. 
r example, one of the farmers we interviewed during our user re-
arch described needing to hire a worker to walk the field that cost him 
28 everyday to measure soil moisture in every hectare of the farm, 
bor which would not be necessary for a NEF with a sensor network to 
easure soil moisture. For instance, if a yield increase of $1000 and a 
crease in water use by $500 is achieved, the performance would be 
 increase of profit by $1500. There is no lower bound or upper bound 
 performance as it can be negative and the values depend on user in-
t. For example, in section 3 the data utilized for this metric is based 
 both our three years of deploying DA systems and the farmer’s input. 
rformance was often thought about as the most important objective 
r our farmers in evaluating new technology investments.

3.4. Uncertainties
Once we establish the objectives and value functions for evaluating 
chitectures in the tradespace, we must define the uncertainties and 
eir effects on the various architectures within the tradespace. To im-
ove farmers’ competitiveness and extract insights from farming for 
cision-making, the system must be evaluated under the deeply uncer-
6

in farming environment reflecting reality. More formally, uncertainty To
 the tradespace model characterizes the behavior of an uncertain fac-
r affecting a farm as a variable [28]. The reason for having these 
certainties is to measure an architecture’s performance in a variety 
 uncertain environment instances, which provides a more realistic 
aluation of the architecture and aids the decision-making process. 
e following sections focus on the uncertainty variables constructed 
 ROAM.

imate. The farm climate is a complex nonlinear system, where dif-
rent levels of short-term climate-induced complexity may affect the 
rformance of the farm. Climate Complexity (CC) can lead to risks of 
nsor malfunction and suboptimal performance of hardware devices 
 they operate while exposed to outdoor farming environments. For 
ample, solar power sources can face risks of interruption in extreme 
eather events such as large storms. Utilizing information theory tech-
ques, the CC uncertainty variable aims to represent an approximate 
oxy to analyze and predict the level of regional short-term climate 
riability in a given farm area. CC uncertainty is modeled using an 
tropy-based measurement that is referred to as SampEn. It provides a 
nlinear approach for analyzing and predicting the entropy or com-
exity of climatic time series [34]. It is a probability measure that 
antifies the likelihood that sequences of consecutive data match one 
other within a tolerance r and remain similar when the length of the 
quences is increased by one sample. In this way, we quantify the reg-
arity and the unpredictability of fluctuations in weather to factor into 
r model. In order to calculate individual farm level SampEn we use 
ta from the Global Climate Models (GCMs) dataset [35]. The data is 
en processed based on the algorithm introduced in the paper Approx-
ate Entropy and Sample Entropy: A Comprehensive Tutorial [36]. 
cording to the SampEn calculations of climate complexity of regional 
eteorological data found by Shuangcheng et al. in the paper Mea-
rement of Climate Complexity, the authors found from using random 
imate data that SampEn approached 0 and with fully homogeneous 
ta that it approached 3 [34]. As a result, we use the SampEn range 
om 0 to 3 with a uniform distribution to model climate complexity as 
own in Table 2.

ecipitation. Precipitation has been directly linked to impacting the 
eld of agricultural products [37]. According to Hunho et al., it is seen 
at increased precipitation leads to a longer growing season and higher 
elds which in turn becomes higher profits for the farmer. On the other 
nd, in a study published in the journal Global Change Biology, pre-
pitation was detrimental to certain crop yields [38]. In the study, corn 
elds were reduced by as much as 34 percent during years with exces-
ve precipitation [38]. It was estimated that between 1989 and 2016, 
tense rain events caused $10 billion in agricultural loss [38].
The effects of climate change have a large impact on precipitation 
7]. It was cited as a reason for the increased and unpredictable pre-
pitation [37]. Precipitation is highly regional, so climate change is 
great cause of concern for precipitation in the future as farmers will 
ed to plan for excessive or shortages in precipitation which will affect 
e profitability of the farm. To model precipitation we utilize a normal 
stribution of historical annual precipitation and calculate the mean 
d standard deviation for the region of the farm area being studied. 
 anticipate how precipitation affects the performance of the farm, we 
ilt linear regression models based on publicly available United States 
tasets that correlate historical precipitation measurements with his-
rical crop yield to represent the effect of precipitation on crop yield. 

 set the range we use the empirical rule which states 99.7 percent of 
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lues lie above and below three Standard Deviations (SD) of the mean 
9]. To run the model users input the geocoordinate of the farm of 
terest.

ow uncertainties affect decision making. Understanding the impact of 
imatic uncertainties on digital agriculture systems is crucial for tai-
ring solutions to the specific environmental conditions of a farm. 
ctors such as CC and precipitation patterns can significantly affect 
e performance and reliability of DA technologies. In ROAM, these un-
rtainties are integrated into the decision-making process to ensure 
at the recommended solutions are resilient and effective under var-
us climatic conditions. For instance, we will explore different states 
 the world (SOW) by assuming varied amounts of precipitation, sys-
matically varying this key parameter over 1,000 iterations to simulate 
 potential impacts on agricultural outcomes. This approach allows us 
 examine the resilience and adaptability of policy decisions under a 
ide range of climatic scenarios. By integrating a detailed analysis of 
ecipitation and CC variability, we aim to provide a nuanced under-
anding of how each decision fares in different SOWs. Further details 
 this methodology and its implications for policy evaluation will be 
scussed in section 2.3.5. The ROAM architecture takes into account 
imate-induced risks and uncertainties by evaluating how different 
mponents of the system, such as sensors and networking devices, per-
rm under different climatic scenarios. For instance, sensor selection 
 ROAM is influenced by the local climate, as some sensors may be 
ore susceptible to malfunction or degradation in harsh weather con-
tions. Similarly, networking technologies are assessed for their ability 
 maintain stable communication in the face of climate-induced disrup-
ns. When running ROAM for a farmer, we utilize the user’s latitude 
d longitude to identify historical weather data from their farm area to 
odel climatic uncertainties. By simulating various climate scenarios, 
AM helps identify architectures that are not only cost-effective and 
rformance-optimized but also resilient to uncertain climatic condi-
ns. This approach increases the reliability that DA systems designed 
ing ROAM are adaptable to the specific climatic realities of each farm.
Many Objective Robust Decision Making (MORDM) is a model that 
es optimizations under uncertainty. In creating ROAM, we leverage 
odium to apply MORDM to ROAM to find the Pareto optimal NEF un-
r uncertain environments (subsubsection 2.3.4) [40][41]. Rhodium is 
 open-source Python library developed by researchers at Cornell Uni-
rsity [41]. Robust Decision Making (RDM) is an analytic framework 
at helps identify potential robust strategies for a particular problem, 
aracterize the vulnerabilities of such strategies, and evaluate trade-
s among them [28]. MORDM is an extension of RDM to account for 
oblems with multiple competing performance objectives, enabling the 
ploration of performance tradeoffs with respect to robustness [27]. 
e use the Multi-Objective Evolutionary Algorithm (MOEA) provided 
 Rhodium to optimize the Pareto set of ‘policies’ calculated in the 
ecision Module under a representative or average instance of the un-
rtain environment also known as State-of-the-World or SOW. Each 
presentative instance is taken by examining a distribution and utiliz-
g the average. The Pareto efficient policies are further explored using 
e uncertainty analysis functions provided by Rhodium. Finally, the 
nsitivity analysis provided by the SALib python library [27] is used to 
alyze and categorize the effect of different uncertain elements in the 
rming environment.

3.5. MORDM
ptimization. To find the Pareto optimal policy for a NEF we built a 
nction that calculates the tradespace Pareto front. The function called
alcPareto’, is run in the Decision Module. In order for us to con-
der uncertainties, we use a Rhodium optimization function to find 
e Pareto optimal set of policies based on the performance, cost, and 
sk objectives (subsubsection 2.3.3). The optimization function in the 
odium Module is a MOEA that utilizes the Non-dominated Sorting 
7

enetic Algorithm (NSGA-II) algorithm provided by the Rhodium li- th
Smart Agricultural Technology 8 (2024) 100452

ary [41]. Together these two optimization methods serve different 
rposes in exploring the Tradespace. The ‘calcPareto’ function in 
e Decision Module enumerates all possible policies solely based on 
e static decision configurations defined by the Tradespace Configura-
n File, which finds the initial optimal set of policies on paper based 
 prior knowledge about the decisions. The optimization function in 
e Rhodium Module iteratively adjusts the controlled parameters or 
mbination of decisions while searching for the optimal set of policies 
der the mean SOW. This function then finds the set of policies most 
timal under the characterized uncertainty model.

enario discovery. The scenario discovery function is used to ex-
ore and analyze the influence of uncertainties in the Pareto optimal 
t of ‘policies’ that are found by the Rhodium optimization mod-
e [41]. To run this function, first, a set of uncertainty variables 
e defined using the parameters and distributions on the Uncertainty 
odel (subsubsection 2.3.4). Then, a Rhodium internal function, ‘sam-
e_lhs’, is called to generate a standard 1000 SOWs through a Latin 
ypercube Sample – a technique used to reflect the true underlying 
stribution on the uncertain parameters [41]. Each SOW consists of 
combination of uncertainty variables and represents an instance of 
e uncertain environment. Then, the policy evaluation function is ex-
uted to evaluate each policy in the Pareto optimal set on the 1000 
Ws. The results produced from scenario discovery can be used to vi-
alize and explore different characteristics of various Pareto policies, 
ch that policies demonstrate tradeoffs in objectives when evaluating 
ainst uncertainties. The analysis of these tradeoffs can provide us with 
sights into how different system architectures may be a better fit for 
rtain scenarios (e.g. excessive precipitation) that cause a policy to fail 
d be vulnerable. These tradeoffs will be further explored and conclu-
ons can be drawn through sensitivity analysis.

nsitivity analysis. The Rhodium library’s internal implementation ex-
nded from Python’s SALib is used to perform global and regional 
nsitivity Analysis (SA) on modeled uncertainties which are performed 
 prioritize the factors (parameters) most significantly affecting the 
tput and fix those that are not [41]. This functionality is enabled by 
e browser-end interface; here users can specify an objective and pol-
y of their interest to investigate, and then the SA function performs 
obal SA using commonly used methods. First, the Method of Morris is 
ed to analyze which decisions are most influential to the output ob-
ctives and the effect of uncertainty variables in isolation [42]. Second, 
e Sobol method is used to calculate second-order and total-order in-
ces for capturing the interactional effects between uncertainties [43]. 
e function can also perform one-at-a-time (OAT) or regional SA to 
plore each parameter in detail. In OAT SA, we fix all parameters at 
eir default value except one [44]. For this one parameter, we then 
mple across its entire range and observe how the objective of interest 
anges.

ncertainty input. A user is able to input their own farm uncertainties. 
e first step is to define the farm uncertainties and how they affect 
 architectural policy. If it is unknown than default values predefined 
ithin the function ‘farm_approach’ are used. For example, with 
eater precipitation, yield may increase and watering costs may de-
ease. The function ‘setupModel’ is used to allow for user input 
rough the web interface of what the average uncertainty value will 
 for their farm. Once these uncertainty parameters are set, we can 
e the ‘optimizeModel’ function to run 10,000 function evaluation 
lls of NSGAII to calculate the optimal policy in the uncertain state of 
e world.

 Results

In our study, we assisted Cheng Xin Garden (CXG) in streamlining 

eir decision-making process by applying ROAM to navigate through 
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Table 3

Configuration for Cheng Xin Garden LLC.
# Decision Name Description Alternative 1 Alternative 2 Alternative 3 Class Importance

1 Water Sensor The methods to collect water stress data Manual Sampling Glass Tube Digital Sensor SF 1

2 Humidity Sensor The methods to collect humidity and temperature Manual Sampling Digital Sensor N/A SF 1

3 Microcontroller The devices put in the agriculture field FarmBeats CR6 Datalogger Arduino SF .75

4 Data Storage The type of storage for product information and 
user data

Raspberry Pi Cloud N/A SF 1

5 Analytics The model for prediction or applications for 
analytics of water stress

Model Predictive Control 
(machine learning model)

On/off Control 
(closed loop)

Scheduling 
(open loop)

SF 1

6 Irrigation Controller How to water the plants B-Hyve Smart Hose 
Watering Timer

Rachio Raspberry Pi SF 1

Fig. 3. Generate tradespace.
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vast array of choices to become a Network-Enabled Farm (NEF). 
e Tradespace Configuration File (TCF) was configured to encapsulate 
G’s distinct farm requirements and constraints, leading to the iden-
cation of 324 sets of potential decisions or policies. Our approach, 
ilizing advanced analytical techniques, progressively narrowed these 
ssibilities to 18 Pareto optimal policies, considering the unique fac-
rs of CXG’s farm environment. Through the integration of uncertainty 
alysis and the integration of the farm owner’s preferences, we fur-
er refined these choices to two and ultimately recommended the 
ost effective policy. This tailored solution was achieved by leverag-
g a combination of scenario discovery, optimization algorithms, and 
deep understanding of CXG’s operational context, thus demonstrating 
e utility of ROAM.
The following result sections will discuss our work with CXG. First, 
e tradespace was enumerated as shown in Fig. 4. From this enumer-
ion, we found the Pareto front as shown in Fig. 5. Here we high-
ht distinct policy points within the Tradespace: those reflecting a 
sk-averse approach with lower performance as measured in profit as 
fined in 2.3.3 and cost the (risk < 0.3) and a singular, higher risk 
int (risk = 0.6) indicative of a risk-tolerant strategy. Despite their 
fferences, all points are Pareto optimal, with the higher risk point 
rrelating with increased performance, while the lower risk points 
anifest in reduced performance. The introduction of uncertainties in 
g. 6 further refines these optimal points, underscoring the impact of 
8

vironmental factors on policy efficacy. Subsequently, we conduct a fa
hat-if analysis through scenario discovery, examining the performance 
 each Pareto optimal policy under 1000 varied situations, as shown 
 Fig. 7. This comprehensive approach, as demonstrated in our col-
boration with CXG, was pivotal for understanding decision-making 
namics in the CXG complex farming scenarios.

1. Generate tradespace

To test the utility of ROAM on CXG, we first inputted all of CXG’s 
cision points to create the TCF that represented the needs and con-
raints of their farm environment. The TCF was created from a JSON 
eleton provided by ROAM, which consists of a list of decision struc-
res as detailed in section 2. Table 3 shows the various decision points 
e identified and encoded in the TCF.
After the configuration was imported, Generate Tradespace ini-
ted the Tradespace Exploration workflow by generating the
adespace Network and enumerating all possible policies that can 
 constructed based on the given configuration. In the unconstrained 
chitecture space, there were six Standard Form (SF) decisions with 
ree alternatives each and two SF decisions with two alternatives. As 
result, ROAM found 324 possible decisions in CXG’s tradespace, as 
own in Fig. 3.
Calculate Pareto Front then computed the Pareto optimal set 

 policies in the architectural space without considering uncertain 

ctors in the farming environment. Using the ROAM optimization al-
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g. 4. Visualization of enumerating the trade space with performance being 
e increase in farm profitability.

Fig. 5. Visualization of the trade space Pareto front.

rithm, 18 Pareto optimal policies were found in the tradespace for 
G’s configuration. Once narrowing the tradespace to 18 policies we 
rform further analysis in MORDM where we mined for the Pareto op-
al set of policies to analyze decision tradeoffs. Fig. 4 shows the entire 

adespace on a two-dimensional plot, where the x-axis is the cost de-
ted in dollars, the y-axis is performance denoted by profit in dollars, 
d the z-axis depicted through color coding is risk denoted by a per-
nt as discussed in 2.3.3. Fig. 5 shows the policies on the Pareto front 
 the tradespace that were generated for CXG.

2. Analysis in MORDM

Many-Object Robust Decision Making (MORDM) was then used to 
cipher the policies’ performance, cost, and risk of CXG under simu-
ted uncertain environments. To initiate analysis using MORDM, CXG 
putted additional constraints and specifications on the tradespace. 
is allowed CXG to narrow the scope of analysis by specifying the 
y parameters of their farm region, including the type of crop grown, 
e area of the farm, the estimated climate complexity, and the average 
ecipitation level. CXG was then also able to specify a set of constraints 
 the objectives to define the ideal tradeoffs for their farm. Finally, im-
sing objective constraints was used to classify the policies of interest 
d identify the key uncertainties for later analysis.
With the defined parameters, the software used a many-objective 
timization algorithm to calculate the optimal set of policies among 
e tradespace Pareto front, at the mean State-of-the-World (SOWs). The 
w set of policies found by the algorithm are the optimal policies after 
9

counting for the effects of uncertainties, modeled through stakeholder te
Smart Agricultural Technology 8 (2024) 100452

Fig. 6. Optimal set of policies after factoring in uncertainties.

alysis and research detailed in subsubsection 2.3.4. Although hard to 
e as the 18 points in Fig. 5 are overlapping with each other due to 
milar values, in Fig. 6 after factoring the mean SOWs there are nine 
maining optimal policies found among the tradespace Pareto front.
With the Pareto optimal set of policies under the mean SOWs iden-
ed, the software performed a what-if analysis of each Pareto policy 
rough Scenario Discovery under more robust uncertainties. A set of 
00 SOWs were generated based on the distribution for each of CXG’s 
certainty variables. This analysis is depicted in Fig. 7, where Fig. 7a 
esents a 3D plot and Fig. 7b showcases a 2D projection of the same 
ta. Notably, in Fig. 7b, it is observed that Policy 2 exhibits a higher 
st and better performance under the what-if analysis compared to the 
her eight policies. In addition, Fig. 7 shows the continuous range of 
e performance objective, in contrast to the discrete cost objective. The 
sights from this what-if analysis were instrumental in narrowing down 
e set of Pareto optimal policies, ultimately focusing on Policies 5 and 
 as depicted in Fig. 8. With Scenario Discovery, we were able to il-
strate distinctions in outcomes under what-if analysis among the nine 
uivalently optimal set of policies to support further decision making.

3. Final result

Building on our Tradespace Exploration, we conducted further anal-
is to refine our selection from the initial nine options by taking into 
count user preferences. The owner of CXG farm prioritized perfor-
ance enhancements over system cost and exhibited a high tolerance 
r risk. This preference guided us to focus on Policies 5 and 6, as illus-
ated in Fig. 8. Both policies offered a similar balance between risk and 
st, yet differed slightly in performance. Scenario Discovery revealed 
at Policy 5 aligns more closely with the decision maker’s preferences 
mpared to Policy 6, likely due to differences in sensitivity to labor 
sts and farm area. Therefore, the components of Policy 5, which 
clude Water Sensor: ‘Glass tube’, Humidity Sensor: ‘None’, Microcon-
oller: ‘Farmbeats’, Data Storage: ‘Cloud’, Analytics: ‘Model Predictive 
ntrol’, and Irrigation Control: ‘Raspberry Pi’, with a performance of 
.85 million, a cost of $801.5, and a risk of 0.3, were recommended 
 the most Pareto optimal setup for the NEF system at CXG.
Finally, when compared to CXG’s previous deployment, which was 
t a network-enabled farm (e.g. sensors had to be read manually), 
AM’s Pareto optimal Policy 5 would lead to a 37% reduction in costs, 
33% improvement in performance, and an 11% decrease in risk.

 Discussion

With ROAM, farmers can understand what a Pareto optimal set of 
oices for a farm of interest might be. The idea of creating a NEF sys-

m is daunting due to the number of choices that must be made. In 
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Fig. 7. Visualization of optimal decisions in Scenario Discovery 2D Plot.

ction 3, the farm owner had over 324 policies to consider. ROAM 
mplified the process and allowed the user to understand the trade-
s when examining design decisions and to filter choices based on 
eir needs. ROAM presents Pareto optimal farm architectures based 
 performance, cost, and risk while factoring in climatic uncertainties. 
rther, ROAM is extensible, as the code is written in an object-oriented 
anner, and allows interchanging new parameters and analytical opti-
ization models. ROAM users can conceptualize what a data-driven 
rm management system might look like based on their specific goals 
d farming environment.
To allow for ease of use for our target users such as farm-owners, 
ientific researchers, industry professionals, and decision makers, we 
ve developed a browser-end interface to host the workflow of ROAM. 
sers can use ROAM to generate interactive visualizations for commu-
cation and demonstrations with colleagues. Farm-owners and farm 
akeholders specifically utilize a configuration file and input parame-
r features to customize and explore the decision space for their farms. 
AM’s current implementation optimizes for cost, performance, and 

sk. For additional optimization goals, an extension of the software 
d further data analysis can be implemented.
ROAM allows the intricate dynamics of DA decision making to be 
plored, particularly focusing on the nuanced tradeoffs inherent in 
ilding a Pareto optimal NEF. Drawing from empirical studies, our 
e live deployments at Cornell University, and validation of ROAM 
10

rough deployment to CXG, we have explored the granular aspects is
Smart Agricultural Technology 8 (2024) 100452

Fig. 8. Policy 5 and 6 in Scenario Discovery.

 building Pareto optimal DA systems. We recognize the importance of 
tegrating user input and modeling uncertainty to tailor robust DA sys-
ms to individual needs. Our methodology underscores the necessity of 
DSS that not only enhances the profitability of farming operations but 
so navigates the complexities of utility, risk, and uncertainties inher-
t in agriculture.
While our approach with ROAM has shown promising potential, it is 
portant to acknowledge its limitations. Firstly, the efficacy of ROAM 
nges on the availability and accuracy of farm data, underscoring the 
ed for precise and up-to-date information for Pareto optimal results. 
condly, although ROAM is designed as a versatile tool adaptable to 
rious agricultural contexts, its utility is maximized only with detailed 
er input specific to their farm’s operational goals. Third, ROAM’s 
edictive capabilities, particularly in forecasting future climatic con-
tions, are grounded in historical data analysis. This approach, while 
formative, might not always capture the unpredictable nature of agri-
ltural changes. We acknowledge that past trends may not always be 
liable predictors of the future. Lastly, our initial validation focused 
 wine grape production at CXG farm, revealing specific insights ap-
icable to this crop. However, agricultural systems are diverse, and 
ture work will extend ROAM’s application to a broader range of 
ops, enhancing its utility and adaptability across different agricultural 
ntexts. Despite these limitations, ROAM allows for a systematic un-
rstanding of the decision-making processes in building DA systems.

 Conclusion

We presented the Realtime Optimization and Management System 
OAM). It is designed to identify the Pareto optimal set of tradeoffs for 
Digital Agriculture (DA) based farm, which is important because DA 

 seen as an approach to address the Global Agricultural Productivity 
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AP) shortfall [1]. Specifically, DA enables data driven farm manage-
ent, which requires on farm networking. A Network-Enabled Farm 
EF) uses new networking on a farm to enable DA. Based on deploy-
g five NEFs, 11 farmer interviews, and testing on a farm in California, 
AM is able to present Pareto optimal NEF architectures for a given 
rm area of interest. ROAM presents general recommendations as to 
w to best implement a NEF based off of data inputted by the user and 
imatic data.
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