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ABSTRACT

In a landmark 1981 paper, Valiant and Brebner gave birth to the
study of oblivious routing and, simultaneously, introduced its most
powerful and ubiquitous method: Valiant load balancing (VLB). By
routing messages through a randomly sampled intermediate node,
VLB lengthens routing paths by a factor of two but gains the crucial
property of obliviousness: it balances load in a completely decen-
tralized manner, with no global knowledge of the communication
pattern. Forty years later, with datacenters handling workloads
whose communication pattern varies too rapidly to allow central-
ized coordination, oblivious routing is as relevant as ever, and VLB
continues to take center stage as a widely used — and in some
settings, provably optimal — way to balance load in the network
obliviously to the traffic demands. However, the ability of the net-
work to rapidly reconfigure its interconnection topology gives rise
to new possibilities.

In this work we revisit the question of whether VLB remains
optimal in the novel setting of reconfigurable networks. Prior work
showed that VLB achieves the optimal tradeoff between latency and
guaranteed throughput. In this work we show that a strictly supe-
rior latency-throughput tradeoff is achievable when the throughput
bound is relaxed to hold with high probability. The same improved
tradeoft is also achievable with guaranteed throughput under time-
stationary demands, provided the latency bound is relaxed to hold
with high probability and that the network is allowed to be semi-
oblivious, using an oblivious (randomized) connection schedule but
demand-aware routing. We prove that the latter result is not achiev-
able by any fully-oblivious reconfigurable network design, marking
a rare case in which semi-oblivious routing has a provable asymp-
totic advantage over oblivious routing. Our results are enabled by
a novel oblivious routing scheme that improves VLB by stretching
routing paths the minimum possible amount — an additive stretch
of 1 rather than a multiplicative stretch of 2 — yet still manages to
balance load with high probability when either the traffic demand
matrix or the network’s interconnection schedule are shuffled by
a uniformly random permutation. To analyze our routing scheme
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we prove an exponential tail bound which may be of independent
interest, concerning the distribution of values of a bilinear form on
an orbit of a permutation group action.
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1 INTRODUCTION

Reconfigurable networks use rapidly reconfiguring switches to cre-
ate a dynamic time-varying topology, allowing for great flexibility
in efficiently routing traffic. This idea has gained prominence due
to recent technologies such as optical circuit switching [15, 39] and
free-space optics [17, 23, 42] that enable reconfigurations within
microseconds [28, 32] or even nanoseconds [11, 12]. Datacenter
network architectures that leverage this capability are now be-
ing actively explored, including with recent prototype systems
[7, 18, 29, 35] and theoretical modeling and analysis [1, 3, 40]. The
rate of change of datacenter network workloads (summarized by
a time-varying traffic demand matrix) has already outpaced the
reconfiguration speeds achievable using a central controller [18],
driving researchers to focus on oblivious reconfigurable net-
works (ORNs), which use a demand-oblivious reconfiguration and
routing mechanism that is fully decentralized.

An analogous set of questions came to the fore in an earlier era
of computing research, when the focus was on designing communi-
cation schemes for parallel computers. The network model at that
time — a fixed, bounded-degree topology — was very different, but
the objective was the same: to efficiently simulate arbitrary com-
munication patterns among a set of N nodes without requiring any
centralized control. In a landmark 1981 paper, Valiant and Brebner
articulated the central problem in terms that still resonate with the
practice of modern datacenter networking.
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The fundamental problem that arises in simu-
lating on a realistic machine one step of an ide-
alistic computation is that of simulating arbi-
trary connection patterns among the processors
via a fixed sparse network. .. For routing the pack-
ets the strategy will have to be based on only
a minute fraction of the total information nec-
essary to specify the complete communication
pattern.

The solution proposed by Valiant and Brebner, which henceforth
came to be known as Valiant load balancing or VLB, was beauti-
fully simple: to send data from source s to destination ¢, sample
an intermediate node u uniformly at random. Then form a rout-
ing path from s to t by concatenating “direct paths” from s to u
and from u to t. (The definition of direct paths may depend on
the network topology; often shortest paths suffice.) This lengthens
routing paths by a factor of two and thus consumes twice as much
bandwidth as direct-path routing. However, crucially, it is oblivious:
the distribution over routing paths from s to ¢t depends only on
the network topology, not the communication pattern. Oblivious
routing schemes satisfy the desideratum of being “based on only a
minute fraction of the total information necessary to specify the
complete communication pattern” in the strongest possible sense.
The focus of oblivious routing research in the 1980’s was on
network topologies designed to enable efficient communication
among a set of processors. These topologies, such as hypercubes
and shuffle exchange networks, tended to be highly symmetric
(often with vertex- or edge-transitive automorphism groups) and
tended to have low diameter and no sparse cuts. One could loosely
refer to this class of networks as optimized topologies. A second
phase of oblivious routing research, initiated by Récke in the early
2000’s, designed oblivious routing schemes for general topologies.
Compared to optimized topologies, the oblivious routing schemes
for general topologies require much greater overprovisioning, in-
flating the capacity of each edge by at least a logarithmic factor
compared to the capacity that would be needed if routing could
be done using an optimal (non-oblivious) multicommodity flow.
The construction of oblivious routing schemes with polylogarith-
mic [9, 24, 33] and eventually logarithmic [34] overhead was a
seminal discovery for theoretical computer science, but did not
improve over the performance of VLB for optimized topologies.
Remarkably, more than 40 years after the introduction of VLB,
it remains the state of the art for oblivious routing in optimized
topologies. In fact, existing results in the literature show that the
factor-of-two overprovisioning associated with VLB is optimal in
at least two important contexts: when building a network of fixed-
capacity links to permit any communication pattern with bounded
ingress and egress rates per node [6, 26, 41], and when designing an
oblivious reconfigurable network with bounded maximum latency,
again to permit any communication pattern with bounded ingress
and egress rates per node [3]. In both cases, authors proposed
optimized topologies, analyzed routing protocols which use VLB,
and provided lower bounds that matched the VLB performance.
Running the network is responsible for a significant fraction of
the cost of modern datacenters. The capital cost of the networking
equipment alone accounts for around 15% of the total cost to build
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and run a datacenter; this increases to over 30% when including
indirect costs such as power and cooling for network equipment
[8, 19]. Overprovisioning the network increases these costs propor-
tionally [35], which motivates investigating when it is possible to
“break the VLB barrier” and reap the benefits of oblivious routing
without paying the cost of provisioning twice as much capacity as
needed for optimal demand-aware routing.

In this work we show that the ability to randomize the network
topology in reconfigurable networks indeed allows oblivious routing
schemes that break the VLB barrier. We present a novel oblivious
routing scheme for reconfigurable networks with a randomized con-
nection schedule. The routing paths used by our scheme exceed the
length of shortest (latency-bounded) paths by the smallest possible
amount: an additive stretch of 1 rather than a multiplicative stretch
of 2. Building upon this new routing scheme, we obtain reconfig-
urable network designs that improve the throughput achievable
within a given latency bound by nearly a factor of two, under two
relaxations of obliviousness:

(1) when the network is allowed a small probability of violating
the throughput guarantee; or

(2) when the throughput guarantee must hold with probability
1, but routing is only semi-oblivious.

Semi-oblivious routing refers to routing schemes in which the net-
work designer must pre-commit (in a demand-oblivious manner) to
a limited set of routing paths between every source and destination,
but the decision of how to distribute flow over those paths is made
with awareness of the requested communication pattern. In the
context of reconfigurable networks, this means that the connection
schedule is oblivious but the routing scheme may be demand-aware.
In fact, the semi-oblivious routing scheme that we refer to in Re-
sult 2 above is demand-aware in a very limited sense: it uses the
oblivious routing scheme from Result 1 with high probability, but
in the unlikely event that this leads to congestion on one or more
edges, it reverts to using a different oblivious routing scheme that
is guaranteed to avoid congestion at the cost of incurring higher
latency. Note that this semi-oblivious routing scheme only requires
network nodes to share one bit of common knowledge about the
communication pattern (namely, whether or not there exists a con-
gested edge), hence it still obeys Valiant and Brebner’s desideratum
that routing decisions are based on only a minute fraction of the
total information needed to specify the communication pattern.
In the full version of our paper, we prove that purely oblivious
reconfigurable network designs (even with a randomized connec-
tion schedule) cannot achieve the same result as our semi-oblivious
design: if the throughput guarantee must hold with probability 1,
then the average latency must be strictly asymptotically greater for
oblivious reconfigurable networks than for semi-oblivious ones.

1.1 Summary of Results and Techniques

In our abstraction of a reconfigurable network, a fixed set of N
nodes communicates over a sequence of discrete time steps. In one
time step, each node is allowed to send data to only one other node
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Table 1: Bounds for reconfigurable networking with average latency constrained by L = (j(gN 1/9),

Goal Average hop-count | Throughput Reference
Minimize network hops g - naive counting
Uniform multicommodity flow g !l] [3]
Oblivious routing (w.h.p.) g+1 g% —-5VY6>0 this work
Semi-oblivious routing (prob. 1) g+1-o0(1) g% —6V6>0 this work
Oblivious routing (prob. 1) 2g 21—9 [3] (uses VLB)

and to receive data from only one! other node. This time-varying
connectivity pattern, called the connection schedule, may be random-
ized, but it must be predetermined in a demand-oblivious manner.
To route messages through the network, nodes may forward data
over links when they are available in the connection schedule, and
they may buffer messages when the next link of the designated
routing path is not yet available. The choice of routing paths is
called the routing scheme. We allow data to be fractionally divided
over routing paths (modeling the operation of randomly sampling
one path per data packet) so the routing scheme is represented
by specifying a fractional flow for each source-destination pair, at
each time step. In an oblivious reconfigurable network this flow
is predetermined, up to scaling, in a demand-oblivious manner.
In a semi-oblivious reconfigurable network only the connection
schedule is oblivious; the routing scheme may be demand-aware.
To place our results in context, it helps to reason a bit about the
fundamental limits of communication in reconfigurable networks.

(1) Throughput is bounded by the inverse of average hop-
count. A network design is said to have throughput r if it is
able to serve any communication pattern whose ingress and
egress rates, at each node in each time step, are bounded by
r times the amount of data that may be transmitted on any
link per time step. Adopting units in which link capacities
equal 1, the total amount of demand originating in any time
step is rN and the total link capacity is N. If the average
routing path is composed of g network hops, then the rN
units of demand originating in any time step will consume
grN units of capacity on average, hence gr < 1. Guarantee-
ing throughput r therefore requires guaranteeing average
hop-count at most 1/r.

Hop-count g requires latency L = Q(gN'/9). A routing
path originating at a given node is uniquely determined
by the set of time steps at which the path traverses net-
work hops. (This is because the connection schedule speci-
fies a unique node that is allowed to receive messages from
any given node at any given time.) Hence, in order for any
node to be able to reach any other node within L time steps
using a routing path of g or fewer hops, it must be the
case that Z?:o (]l“
L = Q(gN 1/9). A more complicated counting argument,
which we omit, establishes the same lower bound on average
latency, even if the bound of g hops per path is relaxed to
hold only on average.

@

) > N. The solution to this inequality is

!More generally one could impose a degree constraint, d, on the number of nodes
to/from which one node can send/receive data in a single time step. See [3] for a more
thurough explanation of this.
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These considerations establish a sort of speed-of-light barrier for
reconfigurable networking. Even without the constraint of oblivi-
ousness, delivering messages within O(gN'/9) time steps on aver-
age requires g-hop paths, hence limits throughput to 1/g. Oblivious
or semi-oblivious network designs can thus be evaluated in rela-
tion to this benchmark. Table 1 presents a comparison of bounds
for various reconfigurable networking goals, standardizing on an
average latency constraint of L = é(gN 1/9) where g could be any
positive integer (fixed, independent of N). As noted above, even if
we ignore capacity constraints and connect all source-destination
pairs using the minimum number of network hops subject to this
latency constraint, average path length g is unavoidable. Optimal
(demand-aware) routing schemes for the uniform multicommodity
flow match this bound, whereas optimal oblivious routing schemes
require average path length 2g [3]. The routing schemes presented
in this paper have average path length g+1 (minus a 0(1) in the case
of semi-oblivious routing), matching the “speed-of-light barrier” to
within an additive 1. We also present lower bounds establishing
that this result is the best possible.

The formal statement of our main results generalizes the fore-
going discussion by allowing the target throughput rate to be any
number (fixed, independent of N) in the interval (0, %].

THEOREM 1. Given any fixed throughput value r € (0, %], let
g=g9(r) = L% — 1] ande =¢(r) =g+1—(% — 1), and let

Lupp(r,N) = gN'/9 1)

Liow(r,N) =g ((EN)I/g + Nl/(9+1)> @)

Assuming € # 1:

(1) there exists a family of distributions over ORN designs for
infinitely many network sizes N which attains maximum la-
tency é(Lupp(r, N)), and achieves throughput r with high
probability;

(2) for infinitely many network sizes, there exists a single, fixed
ORN design that attains maximum latency (j(Lupp(r, N)),
and achieves throughput r with high probability over the uni-
form distribution on permutation demands;

(3) there exists a family of distributions over semi-oblivious recon-
figurable network designs for infinitely many network sizes
N which attains maximum latency (j(LupP(r, N)) with high
probability (and in expectation) over time-stationary demands,
and achieves throughput r with probability 1;

(4) furthermore, any fixed ORN design R of size N which achieves
throughput r with high probability over time-stationary de-
mands must suffer at least Q(Ljo.,(r, N)) maximum latency.
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The upper and lower bounds on lines (1)-(2) match to within a
constant factor for most values of r: when % ¢Unm_y (m - zlm m]
then e > 279, s0 Ly, > %Lupp. The latency of our reconfigurable
network designs is Lypp - O(log N), hence the upper and lower

bounds in Theorem 1 agree within a 0 (log N) factor for most values
of r. See Figure 1 for a visualization of these bounds. Additionally,
like in [40] we condition against ¢ = 1. This is due to requiring a
strictly positive slack factor between the throughput r and gﬁ

Throughput v. Log-Scale Latency, N=10"30

1031 4
1027 4
1023 4
> 1019 4
0
c
]
S 1015 4
1011 4
107 4
Our Design (Upper Bound)
103 —— Our Lower Bound
—— AWS+'22 Lower Bound (VLB)
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Throughput

Figure 1: Throughput versus log-scale maximum latency.
Tradeoff curves (j(Lupp) and Lj,,,, when compared against
the lower bound of [3], on an ORN containing 10>’ nodes.
Whenever throughput is less than %, our design beats VLB.

We conclude this section by sketching how our routing scheme
differs from VLB, and how we analyze it to obtain the bounds stated
above. Both schemes construct routing paths composed of spray-
ing hops, which transport messages from the source to a random
intermediate node, and direct hops, which deliver messages from
the intermediate node to the destination.

In both cases the analysis of the routing scheme entails showing
that the spraying hops and the direct hops distribute load evenly
over the network links, whenever the routing scheme is used to
serve a permutation demand: a communication pattern where each
source node s seeks to communicate at rate r with a single destina-
tion o(s), and the function o is a permutation of [N]. For VLB this
is easy: intermediate nodes are sampled uniformly at random, so the
distribution of (source, intermediate node) pairs and the distribu-
tion of (intermediate node, destination) pairs are both uniform over
the set of all pairs of nodes in the network; a symmetry argument
then suffices to conclude that both the spraying hops and the direct
hops distribute load evenly over all links.

In our routing scheme, routing paths consist of just one spraying
hop followed by a direct path to the destination. Thus, the inter-
mediate node must be either the source itself, or one of the nodes
reachable by a direct link from the source node during the first L
time steps after the message originates. For L < N—1itisimpossible
for the intermediate node to be uniformly distributed, conditional
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on the source. Consequently (intermediate node, destination) pairs
in our routing scheme are also not uniformly distributed. This non-
uniform distribution retains some dependence on the permutation
o that associates sources with destinations. Hence it is unclear how
to guarantee that for every permutation o, flow traveling on direct
hops will be uniformly distributed over the edges of the network.

Our main innovation lies in the way we construct a connection
schedule and routing scheme to ensure (approximately) uniform
distribution of load over edges. The use of a single spraying hop
inevitably reduces the amount of randomness in the conditional
distribution of the intermediate node given the source, and we must
find a way to regain the lost randomness without adding extra
spraying hops. To do so, we exploit a novel source of randomness:
we randomize the timing of the direct hops. Prior work [3] used a
connection schedule based on identifying the node set [N] with
a vector space over a finite field, and associating time steps with
scalar multiples of the elementary basis vectors. To each pair of
nodes one could then associate a direct path corresponding to the
(unique) representation of the difference of the node identifiers as
a linear combination of elementary basis vectors. Thus, the timing
of direct hops was uniquely determined, given the location of the
intermediate node.

In our connection schedule we again identify [N] with a vector
space over a finite field. However, there are two key differences.
First, in some of our designs, the identification of [N] with a finite
vector space is done using a uniformly random one-to-one corre-
spondence. This allows us to reduce the analysis of our (randomized)
connection schedule to average-case analysis of a fixed connection
schedule, when the demand matrices are conjugated by a uniformly
random permutation matrix. Second, and more importantly, rather
than defining the connection schedule using a basis of this vector
space, we use an overcomplete system of vectors which we call a
constellation. Constellations in a g-dimensional vector space have
the property that every g-element subset forms a basis. (In other
words, they represent the uniform matroid of rank g.) Our routing
scheme constructs direct paths between two nodes by sampling
a random g-element subset of the constellation, representing the
difference between the nodes’ identifiers as a linear combination
of those g vectors, and using the corresponding g time steps of the
connection schedule to form the direct path.

To show that this method distributes load approximately uni-
formly over edges, we decompose the load on any given edge as a
sum of g + 1 random variables, each of which can be interpreted
as a bilinear form evaluated on a pair of vectors representing the
number of paths from each source node to the tail of the given edge,
and from the head of the given edge to each destination node. The
pair of vectors is sampled at random from an orbit of the permuta-
tion group Sy, which acts on pairs of vectors either by permuting
the coordinates of one of them (in the case when we’re analyzing
a uniformly random permutation demand) or by permuting the
coordinates of both simultaneously (in the case when we’re identi-
fying the node set with a vector space using a random bijection).
In both cases, we prove an exponential tail bound for the value
of the bilinear form on a vector pair randomly sampled from the
permutation-group orbit. When the permutation acts on only one
element of the ordered pair, the relevant exponential tail bound
follows easily from the Chernoff bound for negatively associated
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random variables [13]. When the permutation acts on both vectors
simultaneously, the negative association property does not hold
and we take a more indirect approach, using a 3-coloring of the
node set [N] to decompose the bilinear form into three parts, each
of which can be shown to satisfy an exponential tail bound after
a suitable conditioning. We believe the resulting exponential tail
bound for bilinear forms may be of independent interest.

To improve the high-probability bound on throughput to a bound
that holds with probability 1, we adopt a semi-oblivious routing
scheme that is a hybrid of a primary scheme identical to the obliv-
ious scheme sketched above, and a failover scheme which is also
oblivious, to be used in the (low-probability) case that the primary
scheme produces an infeasible flow. The failover scheme has latency
O(N) and resembles VLB, distributing flow over two-hop paths
from the source to the destination by routing through an intermedi-
ate node sampled from a nearly-uniform distribution. The challenge
is to modify the connection schedule to ensure that enough two-hop
paths exist between every source and destination. We accomplish
this by using a time-varying constellation in place of the fixed
constellation used by the routing scheme sketched above. The time-
varying sequence of constellations that we construct forms a sort of
combinatorial design, covering every vector with non-zero coordi-
nates an equal number of times. This equal-coverage property is the
key to proving the that the failover routing scheme balances load
evenly. For further details on this Semi-Oblivious Reconfigurable
Network Design, please see the full version of our paper.

Our lower bound. Our lower bound proof is heavily inspired by
the lower bound proof of [3], thus we leave the proof of Theorem 1.4
to the full version of our paper. We build a family of N! linear
programs, one for each permutation on the node set, that each
maximize throughput subject to a maximum latency constraint L.
We then take the dual, find a good dual solution, and analyze the
objective value of each dual solution. We then bound the expected
objective value across the whole set, and use this to bound the
achievable throughput with high probability. Interestingly, this
lower bound result also applies to the guaranteed throughput rate
of semi-oblivious designs — where the connection schedule must
be pre-committed to, but the routing algorithm may be adaptive
with respect to traffic.

1.2 Related Work

The most important related works, [3, 40], are summarized above
in Section 1.

Oblivious routing in general networks. Extensive theoret-
ical work in oblivious routing considers the competitive ratio in
congestion achievable in general networks, when compared to an
adaptive optimal routing. [33] proved the existence of a polylog n-
competitive algorithm for this problem, the competitive ratio later
improved upon by [24]. [5, 9, 24] then developed poly-time algo-
rithms to achieve this result. Later, these algorithms were imple-
mented and tested in wide-area networks [4]. [34] further improved
to a log n-competitive oblivious routing scheme, based on multi-
plicative weights and FRT’s randomized approximation of general
metric spaces by tree metrics [14]. This improved algorithm was
again demonstrated in wide-area networks by [27].
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Some works add additional constraints to this problem. For exam-
ple, [21] found a polylog n-competitive routing scheme oblivious
to both traffic and the cost functions of edges, and [16] finds a
polylog n-competitive ratio when constraining the number of phys-
ical hops in paths that both the oblivious routing scheme, and
the adaptive benchmark, can use. They also give an algorithm to
achieve this. These works assume a fixed graph topology, while our
work aims to co-design a network topology and routing scheme.
They also examine congestion, a related but not analogous measure
to our definition of throughput, make a guaranteed bound on that
congestion instead of a probabilistic bound, and (with the exception
of [16]) make little attempt to bound latency.

Randomized Oblivious Routing. There is also extensive work
focused on oblivious routing with randomness. This problem is
often focused on packet routing, and aims to obliviously choose
a single path to route traffic on. It is well known that any such
deterministic oblivious routing on a graph of degree d suffers
Q(VN/d) congestion from an adversarial permutation demand.
[10, 25]. Valiant tackles this problem with Valiant Load Balancing,
a randomized technique which gives a log n-expected congestion
bound on the d-dimensional hypercube, butterfly, and mesh net-
works [37, 38]. He later provided a lower bound in these contexts
[36]. A similar procedure is used in ROMM routing in the hyper-
cube, which selects a larger number of intermediate nodes within
the sub-cube containing both the source and destination, and trades
off load balancing with latency [30, 31]. These works differ from
ours in that they aim to route discretized packets on paths, and
look at the congestion that occurs from worst-case traffic.

[2] showed that in bit-serial routing, any random oblivious al-
gorithm on a polylog degree network requires O(log? n/log log n)
bit-steps with high probability for almost all permutation traffic, as-
suming log n-bit messages, extending the Borodin-Hopcroft bound
for deterministic algorithms. [27] examines a partially adaptive (or,
semi-oblivious) routing, in which the router precommits to a set of
log N paths between each pair of vertices, and at runtime may only
send flow on one of the precommitted paths. This approach was
later shown to be polylog n-competitive by [43]. Since oblivious
routing under the same sparsity constraint cannot be polylog n-
competitive, this constitutes an asymptotic separation between the
power of semi-oblivious and oblivious routing. To the best of our
knowledge [43] constitutes the first provable asymptotic separation
between semi-oblivious and oblivious routing in the literature, and
the separation that we prove (in the full version of our paper) is the
second such result.

A work that closely models the problem we ask [22], gives a
O(log®n)-competitive algorithm with high probability over random
demands in directed graphs, and showed that one cannot do better
than O(log n/loglog n)-competitive with any constant probability.
Like in non-randomized oblivious routing, they also assume a fixed
graph topology, and do not attempt to bound latency.

ORN Proposals. Although [3] is first to name the ORN para-
digm, it was used earlier in proposed network architectures and de-
signs. Rotornet [18] and Sirius [7] both use optical circuit switches
to build a reconfigurable fabric, and Shoal [35] uses electronic circuit
switches. These works demonstrate different ways to implement
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ORNS using physical hardware, however they all use similar con-
nection and routing schedules that maximize throughput, at the
expense of latency. Opera [29] combines the ORN paradigm with
lengthened time slots, high node degrees, and some adaptive rout-
ing. This allows a separation into two traffic classes, low-latency
and throughput-sensitive. However the design makes significant
assumptions about the traffic workload, limiting its flexibility. Cer-
berus [20] uses a modification of Rotornet as one component of an
optical datacenter network, along with demand-aware reconfigura-
tion and static graphs.

[1] used the degree of the time-collapsed connection schedule, or
emulated graph, of an ORN design to bound its throughput, latency,
and buffer requirement. Using this, the authors derived a formula
for the ideal degree d to use for the emulated graph in order to
maximize throughput in a buffer-constrained network. The authors
proposed MARS, an ORN design that emulates a de Bruijn graph
with this ideal degree, to achieve near-optimal throughput under
buffer constraints, and evaluated this design through simulation.

2 DEFINITIONS

Definition 1. A connection schedule of N nodes and period length
T is a sequence of permutations & = o, 71, . . ., 77—1, each mapping
[N] to [N]. mx (i) = j means that node i is allowed to send one unit
of flow to node j during any timestep ¢ such that t = k (mod T).

The virtual topology of the connection schedule 7 is a directed
graph G, with vertex set [N] X Z. The edge set of G, is the union
of two sets of edges, Evirt and Eppys. Eyirt is the set of virtual edges,
which are of the form (i, t) — (i,t + 1) and represent flow waiting
at node i during the timestep t. Eppys is the set of physical edges,
which are of the form (i,t) — (m;(i),t + 1), and represent flow
being transmitted from i to ; (i) during timestep t.

We interpret a path in G,; from (a, t) to (b, t’) as a potential way
to transmit one unit of flow from node a to node b, beginning at
timestep ¢ and ending at some timestep ¢’ > t. Let P(a, b, t) denote
the set of paths in G, starting at the vertex (a,t) and ending at
some (b,t’) for any t’ > t, and let Py (a, b, ) be the set of such
paths for which ¢’ — ¢t < L. Finally, let # = {J,p; P (a, b, t) denote
the set of all paths in G,.

Definition 2. A flow is a function f : # — [0, o). For a given
flow f, the amount of flow traversing an edge e is defined as:

F(fie)= D F(P)-Tecp

PepP

We say that f is feasible if for every physical edge e € Eppys.
F(f,e) < 1. Note that in our definition of feasible, we allow virtual
edges to have unlimited capacity.

Definition 3. An oblivious routing scheme R is a set of functions
R(a,b,t) : P — [0, 1], one for every tuple (a,b,t) € [N] X [N] XZ,
such that:
(1) For all (a,b,t) € [N] X [N] X Z, R(a,b,t) is a probability
distribution supported on P (a, b, t).
(2) R has period T. In other words, R(a, b, t) is equivalent to
R(a, b, t+T) (except with all paths transposed by T timesteps).
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Definition 4. An Oblivious Reconfigurable Network (ORN) design R
consists of both a connection schedule 73 and an oblivious routing
scheme R.

Definition 5. A demand-aware routing scheme {Sy : o permut on
[N]} is a set of functions Sy (a, t) : P — [0, 1], one for every tuple
(a,t) € [N] X Z and permutation o on [N], such that:
(1) for all (a,t,0) € [N] X Z X SN, Ss(a,t) is a probability
distribution supported on P (a, o(a), t).
(2) So has period T. In other words, Ss(a,t) is equivalent to
So(a,t+T) (except with all paths transposed by T timesteps).

Definition 6. A Semi-Oblivious Reconfigurable Network (SORN)
Design S consists of a connection schedule ;. and a demand-aware
routing scheme {Ss : o permut on [N]}.

Definition 7. The latency L(P) of a path P in G, is equal to the
number of edges it contains (both virtual and physical). Travers-
ing any edge in the virtual topology (either virtual or physical) is
equivalent to advancing in time by one timestep, so the number
of edges in a path equals the elapsed time. For an ORN Design R
or SORN design S, the maximum latency is the maximum over all
paths P which may route flow.

Limax(R) = glay))({L(P) : da, b, t for which R(a, b,t,P) > 0}
€

Limax(S) = gla;)({L(P) : da, t, o for which S;(a, t, P) > 0}
€

The average (or normalized) latency is the weighted average
across all possible demand pairs and all paths P which may route
flow.

1
Lag(R) = <7 > > R@btPLP)
a,b,t PeP(a,b,t)
1
Laug(s) = _NTN' Ss(a,t,P)L(P)

0,a,t PeP (a,0(a),t)

Definition 8. A demand matrixis an NXN matrix which associates
to each ordered pair (a, b) a rate of flow to be sent from a to b. A
demand function D is a function that associates to every t € Z
a demand matrix D(t) representing the amount of flow D(t, a, b)
originating between each source-destination pair at timestep t.

A permutation demand D is a demand function in which every
demand matrix is the permutation matrix defined by ¢ : [N] —

[N].

Definition 9. If R is an oblivious routing scheme and D is a demand
function, the induced flow f(R, D) is defined by:

f(RD) = Z D(t,a,b)R(a, b, 1).
(a,b,t) e[N]|X[N]|xZ
If {Ss : 0 permut on [N]} is a demand-aware routing scheme and
Dy is a permutation demand function (possibly scaled by some
constant), then the induced flow is defined by f(Sg, Dy ).

Definition 10. An ORN Design R guarantees throughput r if the
induced flow f(R, rD) is feasible whenever for all ¢, the row and
column sums of D(t) are bounded above by 1. (Such matrices D(t)
are called doubly sub-stochastic.) An ORN Design R guarantees
throughput r with respect to time-stationary demands if for every
time-stationary demand function D with row and column sums
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bounded by 1, then the induced flow f(R,rD) is feasible. An easy
application of the Birkhoff-von Neumann Theorem establishes the
following: in order for an ORN design to guarantee throughput r
with respect to time-stationary demands, it is necessary and suffi-
cient that it guarantee throughput r with respect to permutation
demands.

An SORN design S guarantees throughput r (with respect to
permutation demands) if, for every permutation demand D, the
induced flow f(Sg, rDy) is feasible for all ¢.

Definition 11. A distribution over ORN designs %, is said to
achieve throughput r with high probability if, for any d > 1 and
demand function D such that D(t) is doubly sub-stochastic for all
t, routing D on a random R ~ Z induces a feasible flow with
probability at least 1 — C;/N9, where Cy is a constant that may
depend on d.

Similarly, & is said to achieve throughput r with high probability
under the uniform distribution on permutation demands if, for uni-
formly random permutations ¢ and any d > 1, the induced flow
f(R,rDy) is feasible with probability at least 1 — Cz/N 4 where Cq
is a constant that may depend on d, and the randomness is over
both the draw of R from & and the draw of ¢ from the uniform
distribution over permutations. In the special case when % is a
point-mass distribution on a singleton set {R}, we say that the
fixed design R achieves throughput r with high probability under
the uniform distribution over permutation demands.

Definition 12. A distribution over SORN designs &, is said to
achieve maximum latency L with high probability under the uniform
permutation distribution if, over uniformly random permutation o
and for any d > 1, routing rDs on a random S ~ & uses paths of
maximum latency L with probability at least 1 — C4/N 4 where Cq
is a constant that may depend on d. In the special case when & is
a point-mass distribution on a singleton set {S}, we say that the
fixed design S achieves maximum latency L with high probability
under the uniform distribution over permutation demands.

An SORN design S achieves maximum latency L with high proba-
bility (under the uniform permutation distribution) if, for uniformly
random permutations o and any d > 1, Lygx (Se) = maxpep{L(P) :
da, t for which Ss(a, t, P) > 0} is no more than L with probability
at least 1 — C4/N9, where C, is a constant that may depend on d.

Similarly, a distribution over SORN designs & achieves maxi-
mum latency L with high probability if, for any d > 1 and fixed
permutation demand Dg, routing Dy on a random S ~ & sends
flow on paths on latency no more than L with probability at least
1-Cy4/N 4 where C, is a constant that may depend on d.

Definition 13. A round robin for a group of nodes S of size k,
{s0,- -, Sk_1} is a schedule of k — 1 timesteps in which each element
of S has a chance to send directly to each other element exactly
once; during timestep ¢ € [k — 1] node s; may send to S;ys mod k-

3 UPPER BOUND: OBLIVIOUS DESIGN

In this section we prove Theorem 1, parts 1 and 2, restated below.

Theorem 1.1-1.2. Given any fixed throughput value r € (0, %], let
g=9(r) = L% — 1], and let Lypp(r, N) be the function

Lupp(r: N) = 9N1/g
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Then assuming % ¢ Z, there exists a family of distributions over ORN
designs for infinitely many network sizes N which attains maximum
latency (j(Lupp(r, N)), and achieves throughput r with high prob-
ability. Furthermore, under the same assumption on r, for infinitely
many network sizes there exists a fixed distribution over ORN de-
signs which attains maximum latency (j(LupP(r, N)), and achieves
throughput r with high probability under the uniform distribution.

We will begin by constructing an ORN design R® which is pa-
rameterized by N, g, and C, where C is a parameter which we set
during our analysis to a suitable function of N and r designed to
achieve the appropriate tradeoffs between throughput and latency.
We will then analyze Z (g, C), a distribution over all ORN designs
R7 which are equivalent to R up to re-labeling of nodes, and show
that it satisfies the conclusion of Theorem 1.1. Furthermore, we will
show that the fixed design R itself satisfies the conclusion of The-
orem 1.2. We make use of the following definition of a constellation
in our design.

Definition 14. A (C, g)-constellation in IF‘Z is a sequence of C(g+1)
vectors for which the following property holds. Any set of g distinct
vectors forms a basis over the vector space ]Fg

3.1 Connection Schedule

The connection schedule of R?, like the Vandermonde Basis Scheme
of [3], is based on round-robin phases (cf. Definition 13) defined by
Vandermonde vectors. However, in the case of R?, these vectors
will form a (C, g)-constellation. We interpret the set of nodes as
elements of the vector space F/, over the prime field Fp, where
N = pY. Each node a € [N] can then be interpreted as a unique
g-tuple (a1, a, . ..,ag) € Ff,.

During this connection schedule, each node will participate in
a series of round robins, each defined by a single Vandermonde
vector of the form v(x) = (1, x, x2, .. .,xg_l). The period length
of the connection schedule is T = C(g + 1)(p — 1), and one full
period of the schedule consists of C(g+ 1) consecutive round robins
called Vandermonde phases or simply phases, each of length (p —
1) timesteps. The C(g + 1) phases constituting one period of the
schedule are defined by distinct Vandermonde vectors of the form
v(x) = (1,x,...,x971). No property of the Vandermonde vectors
other than distinctness is required — any set of C(g + 1) distinct
Vandermonde vectors forms a (C, g)-constellation as desired. Since
Vandermonde vectors are parameterized by elements x € Fy, we
require p > C(g + 1) to ensure that sufficiently many distinct
Vandermonde vectors exist. The set of Vandermonde phases in the
(C, g)-constellation will be grouped into (g + 1) non-overlapping
phase blocks, each phase block consisting of C phases.

More formally, we identify each congruence class k (mod T)
with a phase number x and a scale factor s, 0 < x < pand 1 <
s < p, such that k = (p — 1)x + s — 1. It is useful to think of
timesteps as being indexed by ordered pairs (x, s) rather than by
the corresponding congruence class mod T, so we will sometimes
abuse notation and refer to timestep (x, s) in the sequel, when we
mean k = (p — 1)x + s — 1. The connection schedule of R?, during
timesteps t = k (mod T), uses permutation ﬂ]g(a) = a+ sv(x),
where x and s are the phase number and scale associated to k.
Thus, each phase takes (p — 1) timesteps, and allows each node a
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to connect with nodes a’” where the difference a’ — a belongs to the
one-dimensional linear subspace generated by v(x).

As described above, Zx(g,C) is a distribution over all ORN
designs R” which are equivalent to R? up to re-labeling. When
we sample a random design R”, we sample a uniformly random
permutation of the node set 7 : IF‘Z — Fg, producing the schedule

ﬁi(a) =71 (ﬂg(r(a))), Note that, for every edge from node a to

node 7/ (a) in R?, there is a unique equivalent edge from 7(a) to
7(nf (a)) in RO

3.2 Routing Scheme

Our routing scheme for R? constructs routing paths composed of
at most one physical hop in each of g + 1 consecutive phase blocks.
Such a path can be identified by the node and timestep at which
it originates, the phases in which it traverses a physical hop, and
the scale factors applied to the Vandermonde vectors defining each
of those phases. Our first definition specifies a structure called a
pseudo-path that encodes all of this information.

Definition 15. A k-hop pseudo-path from a to b starting at time ¢
is a sequence of ordered pairs (x1, 1), ..., (x, g ) such that:

® Xxi,...,x} are phases belonging to distinct, consecutive phase
blocks beginning with the first complete phase block after
time t;

ai, ..., a € Fp are scalars;

e b—a=ao(x)+ao(xz) + -+ aro(xg).

A non-degenerate pseudo-path is one satisfying a1 # 0 and ag # 0.

The path corresponding to a pseudo-path is the path in the virtual
topology that starts at a, traverses physical edges in timesteps
ki = (xj, a;) for all i such that a; # 0, and traverses virtual edges
in all other timesteps.

Note that the path corresponding to a k-hop pseudo-path may
contain fewer than k physical hops. Two distinct pseudo-paths may
correspond to the same path, if the only difference between the
pseudo-paths lies in the timing of the phases with aj = 0, i.e. the
phases in which no physical hop is taken. Distinguishing between
pseudo-paths that correspond to the same path is unnecessary for
the purpose of describing the edge sets of routing paths, but it turns
out to be essential for the purpose of defining and analyzing the
distribution over routing paths employed by our routing schemes.

Our oblivious routing scheme for R? divides flow among routing
paths in proportion to a probability distribution over paths defined
as follows. To sample routing path from a to b starting at time ¢, we
sample a uniformly random non-degenerate (g + 1)-hop pseudo-
path from a to b that starts at time ¢. We then translate this pseudo-
path into the corresponding path, and use that as a routing path
from a to b. In other words, our oblivious routing scheme divides
flow among paths in proportion to the number of corresponding
non-degenerate (g + 1)-hop pseudo-paths.

To analyze the oblivious routing scheme, or even to confirm that
it is well-defined, it will help to prove a lower bound on the number
of solutions to the equation

®)

b—a=av(x1)+- -+ agr19(xg41)
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that satisfy a; # 0, ag4+1 # 0. Forany i € [g+ 1] and 8 € Fp, there
is a unique solution to (3) with a; = f. This is because the equation

b—a-pPo(xi) = Z ajo(x;)
J#i

is a system of g linear equations in g unknowns, with an invertible
coefficient matrix. (Here we have used the fact that the vectors v (x;)
are distinct Vandermonde vectors, hence linearly independent.)
Hence, the total number of solutions of (3) is p, and there is exactly
one solution with a; = 0 and exactly one solution with ag+1 = 0.
The number of solutions with &; # 0 and ag+1 # 0 is therefore
either p — 2 or p — 1. Since there are C9*! ways to choose the g + 1
distinct phases x1, . .. » Xg+1, We conclude that the number of non-
degenerate (g + 1)-hop pseudo-paths from a to b starting at time ¢
is between (p — 2)C9*™! and (p — 1)CI™L.

The routing scheme of R7, for general 7, is defined using the
bijection between the edges of R” and those of R?. For any path
from node a to node b in R there is a unique equivalent path from
7(a) to 7(b) in R, To route from a to b in R, simply apply the
inverse of this bijection to the probability distribution over routing
paths from r(a) to r(b) in RC.

3.3 Latency-Throughput Tradeoff

It is clear that any design RT ~ %N (g, C) will have maximum
latency C(g+2)(p—-1) < C(g+2)N1/9. (The factor of g+2 reflects the
fact that messages wait for the duration of at most one phase block,
then use the following g+ 1 phase blocks to reach their destination.)
Thus, we focus on proving the achieved throughput rate with high
probability in this section. Parts 1 and 2 of the following theorem
correspond to parts 2 and 1 of Theorem 1, respectively.

THEOREM 2. Given a fixed throughput value r, let g = g(r) =
L% —1]ande = e(r) =g+1 - (% — 1), and assume ¢ # 1. As
N ranges over the set of prime powers pJ for primes p exceeding
max {C(g+1),2+ 12:}, lety=1In (w) and

g-1
(1) the design R® achieves throughput r with high probability
under the uniform distribution,
(2) the family of distributions Ry (g, C) achieves throughput r
with high probability.

c= “’g;#f" In(N). Then:

Note thatif ¢ = 1, i.e. if % € Z, then there are no primes p which
exceed 2 + l_ze’ therefore we condition against ¢ = 1.

Both parts of the theorem will be proven by focusing on the
congestion of physical edges in the design R?. For the first part, the
focus on edges in R? is obvious. For the second part, we make use
of the isomorphism between R and R?. Rather than considering a
fixed demand function D and random design R”, we may consider
a fixed design R and random demand function D7 (t) = P~!D(t)P
where P denotes the permutation matrix with P; ;(;y = 1 for all i.

Now, focusing on any particular edge e € Eyj;¢(R°), we bound
the probability that e is overloaded by breaking down the (random)
amount of flow traversing e as a sum, over 0 < q < g, of the amount
of flow that crosses e on the (g+1)-th hop of a routing path. We will
describe how to interpret each of these random amounts of flow as
the value of a bilinear form on a pair of vectors randomly sampled
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from an orbit of a permutation group action. (The bilinear form is
related to the demand function D, and the pair of vectors is related
to the routing scheme.) We will then use a Chernoff-type bound for
the values of bilinear forms on permutation group orbits, to bound
the probability that the amount of (g + 1)-th hop flow crossing e is
larger than average. Finally we will impose a union bound to show
the probability that any edge gets overloaded is extremely small.

Existing Chernoff-type bounds for negatively associated random
variables are sufficient for the tail bound in the first part of the
theorem, but not for the second part. Instead, we prove the following
novel tail bound for the distribution of bilinear sums on orbits of a
permutation group action.

THEOREM 3. Supposeu, v € (Ro)N are non-zero, non-negative
llull ) ( l2llx

vectors satisfying
4
(Ilulloo) (Ilvlloo

for some C > 1. Let D be any N-by-N doubly stochastic matrix and
consider the bilinear form

B(x,y) = Z Djjxiy;.
i#j

) = o

®)

Let M = 1 if D is a permutation matrix, and M = N? otherwise. If P
is a uniformly random N-by-N permutation matrix then:

(1) foranyy >0,

Pr(B(u, Pv) > eyM < Me™3V°C, (6)
N
(2) foranyy > 0,
Pr | B(Pu, Pv) > EYM < 15Me™10Y°C, 7)
’ N

The proof of Theorem 3 is left to the full version of our paper.

Proor. (Of Theorem 2.) We may assume without loss of gener-
ality that the demand matrix D(¢) is doubly stochastic for all ¢. For
part 1 of the theorem this is because D(t) is assumed to be a random
permutation matrix. For part 2, it is because every non-negative
matrix whose row and column sums are bounded above by 1 can be
made into a doubly stochastic matrix by (weakly) increasing each of
the matrix entries [3]. Modifying the demand function in this way
cannot decrease the induced flow on any edge, so it cannot increase
the probability that f(R, rD) is feasible. Thus, we will assume for
the remainder of the proof that D(t) is doubly stochastic for all ¢.

Fix an edge e and 0 < g < g, and consider the amount of flow
traversing edge e traveling on paths where edge e occurs in the
(g + 1)-th phase block? of the flow path. We will denote this value
as the amount of (q + 1)-th hop flow traversing edge e.>

First we examine q = 0. First-hop flow traversing edge e origi-
nates at source node tail(e) during the phase block preceding the
one to which e belongs. There are C(p — 1) time steps during that
phase block, and r units of flow per time step originate at tail(e).
2We number phase blocks in a flow path using the convention that phase block 1 is the
first complete phase block in the flow path. Recall from Section 3.2 that this is also the
first phase block in which it is possible that the flow is transmitted on a physical edge.
3Note this is a different value than if edge e is the (g + 1)-th physical hop traversed
on the path. It may be the case that in some earlier phase blocks of the path, flow

may not have traversed any physical hop. If this is confusing, revisit pseudo-paths in
Section 3.2.
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Each unit of flow is divided evenly among a set of at least (p—2)CI*+!
pseudo-paths, at most C9 of which begin with edge e as their first
hop. (After fixing the first hop and the destination of a (g + 1)-
hop pseudo-path, the rest of the path is uniquely determined by
the g-tuple of phases xz,...,x4+1.) Hence, of the rC(p — 1) units
of flow that could traverse e as their first hop, the fraction that

actually do traverse e as their first hop is at most Con-

c9
(p-2)Co*t”
sequently, the amount of first-hop flow on e is bounded above by

% = (%) r. (Note that this is not a probabilistic state-
ment; the upper bound on first-hop flow holds with probability 1.)

A symmetric argument shows that the amount of last-hop flow on
e is bounded above by (%) r as well.

Now suppose 1 < g < g — 1, and let X; be the random variable
realizing the amount of (g + 1)-th hop flow traversing edge e due
to source node i. Clearly, the total amount of (q + 1)-th hop flow
traversing e will be }; X;. Let I denote the interval of timesteps
constituting the g™ phase block before the phase block that contains
edge e; recall that this means I is made up of C(p — 1) consecutive

timesteps. Let
Z D(t)ij
tel

— 1

bij = rC(p—1)

denote the (normalized) rate of flow demanded by source-destination
pair (i, j) during phase block I. The normalizing factor makes D into
a doubly stochastic matrix. Let pg (i, e) denote the number of g-hop
pseudo-paths from i to tail(e) with non-zero first coefficient, and
let p;_q(e, J) denote the number of (g — g)-hop pseudo-paths from
head(e) to j with non-zero last coefficient. Finally, let pg+1(i, j)
denote the number of non-degenerate (g + 1)-hop pseudo-paths
from i to j. Of the flow that originates at i with destination j during
time window I, the fraction of flow that traverses edge e under our
routing scheme for R? is p{;(i, e) - p;]"_q(e, 7)/pg+1(i, j). Hence,

Z p;(l’e) p;—q(eaj) .

Xi = — ZD(t)ij
jel e Pen () rel
> pg(i.e) - pj gle.j) - rC(p~1) - Dy
- JEINT, j#i (p - 20"
_ p— 1 .. P;(ls e) p-g‘;q(esj)
(=) 2 m(te) (M
Je[N], j#i
N —(i + ;
P- 1 —_ pq (l’ e) pg—q(e’ ]) —_
X; < (—) r Dij ( — = D,-juivj
; p-2 ; ca o] ;
(8)
where
o (21, pq (ire) b Py—q(e. ) o)
\p-2 ca ) 7T e

To prove the first part of the theorem, Theorem 2.1, when the
ORN design is fixed to be R? and the demand function is the time-
stationary demand D, for a random permutation o, then

Zﬁijuivj = Z

N
Uilg(j) < Zuivo(i).
i#j i#o (i) i=1
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The distribution of ¢ is the same as the distribution of 7 o 7 where
7 is an arbitrary (non-random) permutation without fixed points,
and 7 is a uniformly random permutation. Letting P denote the
permutation matrix representing 7, the amount of (q + 1)th hop
flow on edge e is stochastically dominated by

N

Z UiV (x(i)) = Br(u, Po)

i=1
where B;; denotes the bilinear form B, (x,y) = Zf\il XiYr(i)-

Similarly, to prove the second part of the theorem, Theorem 2.2,

recall that we are drawing a random ORN design R” from the
distribution &N (C, r), and that the induced (q + 1)-th hop flow on
the edge of R” corresponding to e, under demand function D, is
equal to the induced (q + 1)-th hop flow on edge e under demand
function P~1DP. Again letting P denote the permutation matrix
representing 7, this induced flow is bounded above by

Z(P_lﬁp)ijuiﬂj = Zﬁijur(i)vr(j) = B(Pu, PU)
i#j i#j
where B is the bilinear form B(x,y) = 3;4; Dijjxiy;.

Hence, we are in a position to prove tail bounds on the induced
(g+1)-th hop flow on edge e, using the Chernoff-type bounds in The-

orem 3, provided we can estimate the norms ||ul|1, [|2]l1, [|#]lco, [|2]]co-

p=1l

2 TCa Zfil p(;(i, e). The sum on the
right side can be calculated by realizing that it counts the total
number of g-hop pseudo-paths with non-zero first coefficient that
end at tail(e). There are C? ways of choosing a g-tuple of phases
from the g phase blocks preceding the phase block containing e, for
each such choice there are (p — 1)p9~! ways to choose a sequence
of coefficients beginning with a non-zero value. Hence,

For ||u||; we have |ju||; =

(p - 1)
2)

p(p -

Il = 2= - &g+ (0= Dp ' = per

2 Cq
Similarly,

lolly = —— - p979.

Now we turn to bounding ||u#||c, ||2]|lco from above, which is
tantamount to bounding the number of g-hop pseudo-paths from
i to tail(e) and (g — q)-hop pseudo-paths from head(e) to j, with
non-zero first and last coefficients respectively. One such upper
bound is easy to derive: for each of the C? many ways of selecting
one phase x; from each of the q phase blocks preceding tail(e),
there is at most one g-hop pseudo-path from i to tail(e) using that
sequence of phases. This is because the existence of two distinct
such pseudo-paths would imply that the vector tail(e) — i could
be represented in two distinct ways as a linear combination of
vectors in the set {x1, .. .,xq}, violating linear independence. For
an analogous reason, p; (head(e), j) < C974.

However, if g < g/2 then there is a tighter upper bound:
pq (i tail(e)) < C%7!. To see why, first observe that any 2q of
the C(g + 1) Vandermonde vectors used in the g + 1 phase blocks
preceding edge e must be linearly independent, since 2q < g.
If (x1,a1),...,(xg ag) and (x],a7),. ..,(x(’z, a(’]) are two pseudo-
paths from i to tail(e) then

{(xia) Lo #0) = {(x},a)) | &) #0},
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as otherwise the vector (tail(e) — i) could be represented in two
inequivalent ways as a linear combination of elements of

{x1, x{, X3, xé, o Xgs x(’]}, contradicting linear independence. Con-
sequently, when g < ¢/2, two distinct g-hop pseudo-paths from
i to tail(e) can only differ in the choice of phases x; with a; = 0.
In other words, every g-hop pseudo-path from i to tail(e) has the
same coeflicient sequence ay, ay, . . ., g, and in constructing the
corresponding phase sequence we have only one choice of phase
when «; # 0 and C choices when a; = 0. Furthermore, there is at
least one value of i, namely i = 1, for which «; # 0. Consequently,
pq (i, tail(e)) < C?7! when g < ¢/2, as claimed. An analogous
argument proves that p;(head(e),j) < €979 wheng - q < g/2.
For every g, at least one of ¢, g — q is less than or equal to ¢g/2, and
hence

pq (i, tail(e)) - py (head(e), j)
< max{C?!. 979, 9. 9791} = 9!

) ) (p;(i, tail(e)) - p (head(e), )

. -

-1
-2

p
llullollolleo < (
p

=

|

p-1
p-2
(p n?

g .
( il ol )> Pon T :(p—l)ZCN> Ien
lelleoliolloa ) = 223 £ ) ~2
for p > 5. If we observe that M = (p( l)z)r < r, then we

may use Theorem 3 to conclude that for any y > 0,
Pr (B (u, Pv) > e'r) < N2 11°C

Pr (B(Pu, Pv) > e'r) < I5NZe— e VC.

Supposing C >

bgl#N In(N) for some positive integer, then we
4

union bound over all C(p —1) (g+1)N edges of the virtual topology
andall1 < g <g—1tofind
Pr[any edge has > e'r (q + 1)-th hop flow forany 1 < g < g — 1]
2 (,— A y2\C
< NC(p-1)(g+1)(g—1) - 15N (e 05 ¥ )

< N3+1/g

loglog N L
gy—:zg In(N)(g* - 1)e"mm loglog N In(N)

< (Nm/gw(gz _
< =

1
<0
(YNd

2
This fulfills our definition of with high probability for fixed y.
Finally, we need to show that if none of the bad events as de-
scribed above occur, if every edge has at most e?r (g+1)-th hop flow
for 1 < g < g — 1, then no edge will be overloaded. Recall also that

the (g+1)-th hop flow on e for q € {0, g} 1s( )r = r+— Recall
also that eV = gs;#,gz L%—lj,and£=g+1—(;—l) =

2+g— % Hence, if no bad events occur, the induced flow on each
edge will be bounded above by

1)) N_zlﬁ loglog N

) for any constant d.
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2r 2
2r+ —— +(g-DeVr=(2+ ——+g—¢e- r
p—2 p-2 p—2

=(2+g—£)r=(%)r=1.

4 CONCLUSION AND OPEN QUESTIONS

In this paper, we showed that, compared to the guaranteed through-
put versus latency tradeoff achieved in [3], a strictly superior latency-
throughput tradeoff is achievable when the throughput bound is
relaxed to hold with high probability. We showed that the same
improved tradeoff is also achievable with guaranteed throughput
under time-stationary demands, provided the latency bound is re-
laxed to hold with high probability and that the network is allowed
to be semi-oblivious, using an oblivious (randomized) connection
schedule but demand-aware routing. We proved that the latter re-
sult is not achievable by any fully-oblivious reconfigurable network
design, marking a rare case in which semi-oblivious routing has a
provable asymptotic advantage over oblivious routing.

Removing the logarithmic gap and when ¢ is small. Our de-
signs only attain maximum latency O (Lypp(r, N)) uptoa o (logN)
factor, leaving a logarithmic gap between our upper and lower
bounds. Is there an ORN or SORN design that achieves maximum
latency O(Lypp(r, N))? Alternatively, is there a stronger lower
bound than the one we presented in Theorem 1.4?

Additionally, when el9 is sub-constant, then Lupp (r,N) >
O(Ljy4y(r, N)). This leaves us with a small but measurable fraction
of throughput values for which we cannot find ORN and SORN de-
signs which achieve provably optimal throughput-latency tradeofts,
even up to a logarithmic factor. [3] handled this case by developing a
second ORN family which sent flow on both k- and (h+1)-hop semi-
paths. We believe a similar result for ORNs achieving throughput
with high probability, and for SORNs, may be proven by consider-
ing larger numbers of constellations when routing the hop-efficient
paths. However, we leave that to future work.

Time-varying demands. In order to prove our throughput-
latency tradeoffs for SORN designs, we were required to restrict
ourselves to time-stationary (permutation) demands. While this still
shows that semi-oblivious routing has a provable asymptotic advan-
tage over oblivious routing in the case of reconfigurable networks,
it is desirable to find SORN designs which can handle time-varying
demands. Our SORN design &n (g, C) works for almost all time-
varying demands. However, in the case that it must route all flow
(from every starting timestep t) along 2-hop paths, there is no obvi-
ous way to “ramp back up” to sending flow on (g + 1)-hop paths
again without waiting for most flow in the network to clear, which
would require almost 2 full periods, or iterations of the schedule.

Bridging the gap between theory and practice. As with previ-
ous work, we make several assumptions that do not hold in practice
in order to make the analysis tractable. In particular, our model of
ORNS5s does not account for propagation delay between nodes. In
practice, it takes time for each message to traverse each physical
link. Our model of ORNSs can easily be adjusted to take this into
account with our definition of the virtual topology, and the design
itself could be modified by taking advantage of the fact that flow
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paths always take at most one physical hop per phase block. How-
ever, large propagation delays penalize solutions which take more
physical hops, which inherently changes the attainable throughput
versus latency tradeoffs in a real system. Once propagation delays
become superlinear in N, one should always maximize throughput,
since latency becomes dominated by propagation delay. It is worth
exploring where and how this shift from a full tradeoff curve to a
single optimal point occurs, as propagation delay increases.

Additionally, we assume fractional flow: each unit of flow can be
fractionally divided and sent across multiple different paths. In a
practical network, flow is sent in discrete packets, which cannot be
divided. Due to this assumption, our model sends small fractions
of flow from multiple paths across the same link. However in a
real system, only one packet from one path may traverse the link
during a single timestep. This may lead to queuing, which is best
addressed using a congestion control system. Congestion control
has a decades-long history of active research across various net-
working contexts. Our proposed designs present a new context for
this area of research, and will likely require both adapting existing
ideas from other contexts, as well as new innovations.
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